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Recently, there has been an increased interest in the use of the time-delay estimation (TDE) technique to locate and track acoustic
sources in a reverberant environment. Typically, the delay estimate is obtained through identifying the extremum of the generalized
cross-correlation (GCC) function or the average magnitude difference function (AMDF). These estimators are well studied and
their statistical performance is well understood for single-path propagation situations. However, fewer efforts have been reported
to show their performance behavior in real reverberation conditions. This paper reexamines the GCC- and AMDF-based TDE
techniques in real room reverberant and noisy environments. Our contribution is threefold. First, we propose a weighted cross-
correlation (WCC) estimator in which the GCC function is weighted by the reciprocal of AMDF. This new method can sharpen
the peak of the GCC function, which corresponds to the true time delay and thus leads to a better estimation performance as
compared to the conventional GCC estimator. Second, we propose a modified version of the AMDF (MAMDF) estimator in
which the delay is determined by jointly considering the AMDF and the average magnitude sum function (AMSF). Third, we
compare the performance of the GCC, AMDF, WCC, and MAMDF estimators in real reverberant and noisy environments. It
is shown that the AMDF estimator can yield better performance in favorable noise conditions and is slightly more resilient to
reverberation than the GCC method. The GCC approach, however, is found to outperform the AMDF method in strong noisy
environments. Weighting the correlation function by the reciprocal of AMDF can improve the performance of the GCC estimator
in reverberation conditions, yet its improvement in noisy environments is limited. The MAMDF algorithm can enhance the AMDF
estimator in both reverberant and noisy environments.

Keywords and phrases: time-delay estimation, generalized cross-correlation function, average magnitude difference function,
average magnitude sum function.

1. INTRODUCTION

A microphone array, which consists of a set of microphones
that are spatially distributed at known locations with refer-
ence to a common point, has the ability to reinforce a desired
signal from the look direction while suppressing undesired
signals such as noise from other directions. This feature im-
pels the increasing use of microphone arrays in such situa-
tions as hands-free speech communications where a system
operates under strong noise and reverberation conditions.
In the microphone array system, the most crucial issue is to
measure the time difference of arrival (TDOA) between two

microphone signals since such a time difference often serves
as the basis for beamforming and the estimation of direction
of arrival (DOA).

Extensive work has been reported for determining the
TDOA between two signals [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16]. One typical time-delay estimation (TDE)
technique is the generalized cross-correlation (GCC) method
[1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, 19, 20] in which the de-
lay estimate is obtained as the time lag that maximizes the
GCC function between two microphone signals. The mea-
sured time delay is an integral multiple of the sampling pe-
riod. In other words, the time-delay resolution depends on
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the sampling period but is not limited to it. A finer resolution
can be acquired in light of an interpolation between consec-
utive samples of the GCC function when necessary [17, 21].

Another widely used traditional TDE technique relies on
the identification of the minimum of the average magnitude
difference function (AMDF) between two studied signals [7,
17]. Similarly, an interpolation may be employed to refine the
delay estimate.

Both the GCC and AMDF methods are formulated based
on the ideal propagation model where no multipath effect
is taken into account. They perform fairly well in single-
path propagation situation, but suffer performance degra-
dation when multipath or reverberation effects are present.
Recently, several advanced TDE techniques were proposed
[22, 23, 24, 25, 26], which can better deal with reverberation.
However, the GCC and AMDF techniques are still preferred
by many engineers and are widely used in various systems for
their computational efficiency and simplicity to implement.

In single-path propagation situations, the GCC and
AMDF algorithms have been extensively investigated and
their statistical performance is well understood [8, 17]. How-
ever, multipath propagation and reverberation effects are
more common in practice. Unfortunately, fewer efforts have
been reported to show the performance behavior of these
algorithms in practical reverberant environments. An early
study [18] examined the effects of the simulated room rever-
beration on the performance of the GCC approach to TDE.
It was shown that the performance of this algorithm severely
deteriorated as the reverberation time increased. If the ac-
ceptable level of the percentage of anomalous estimates is set
to be 10%, the maximum likelihood (ML) GCC method can-
not be used reliably when the reverberation time is greater
than 0.18 seconds, which is quite common in hands-free
communication applications.

In this paper, we reexamine the GCC and AMDF algo-
rithms in real room reverberant and noisy environments. We
also show that these estimators can be improved by incorpo-
rating some other information. Our contribution is three-
fold. First of all, inspired by the weighted autocorrelation
method, which has been recently proposed for pitch tracking
[27], we propose a weighted cross-correlation (WCC) esti-
mator in which the GCC function is weighted by the recip-
rocal of AMDF. This new method can sharpen the peak of
the GCC function, which corresponds to the true time delay
and thus leads to a better estimation performance as com-
pared to the conventional GCC estimator. Secondly, we pro-
pose a modified version of the AMDF (MAMDF) estimator
in which the delay is determined by jointly considering the
AMDF and the average magnitude sum function (AMSF).
We show that the combination of AMDF and AMSF can en-
hance the performance of the AMDF estimator. Thirdly, the
GCC, AMDF, WCC, and MAMDF estimators are evaluated
with data collected in the Varechoic Chamber at Bell Labo-
ratories. On one hand, this evaluation will find which algo-
rithm can produce better TDE in practical situations. On the
other hand, such a comparative study can offer insight into
the range of TDE techniques that can be employed in practi-
cal room reverberation conditions. The experimental results

justify that proper manipulation of the GCC function and
AMDF can make the TDE techniques more robust with re-
spect to reverberation.

2. THE TDE PROBLEM

2.1. Signal model

A widely used signal model for the TDE problem is given by

x1(n) = s(n− t) + w1(n),

x2(n) = αs(n− t − τ) + w2(n),
(1)

where xm(n), m = 1, 2, denotes the output signal of the mth
microphone, α is an attenuation factor due to the propa-
gation effect, t is the propagation time from the unknown
source s(n) to Microphone 1, wm(n) is an additive noise sig-
nal at microphone m, and the parameter τ is the true time
delay between two microphones. We assume that wm(n) is a
(real) zero-mean stationary random process which is uncor-
related with both s(n) and the noise signal from the other
microphone. It is also assumed that s(n) is reasonably broad-
band. This model reflects an ideal situation in which the sig-
nal propagation from the source to each microphone occurs
along a single direct path in a nondispersive medium. The
TDE problem is to find an estimate τ̂ of the true delay τ, us-
ing a finite set of observation samples of x1(n) and x2(n). The
signal x1(n) will be also called the reference signal.

2.2. TDE principles

The TDE techniques investigated in this paper are based on
searching for the extremum of the GCC or some other sta-
tistical cost functions of the observed signals. Particularly, we
consider the following estimators.

2.2.1. The generalized cross-correlation estimator

The GCC method, proposed by Knapp and Carter in 1976
[1], is the most popular technique for TDE, in which the
time-delay estimate is obtained as follows:

τ̂GCC = arg max
n

Ψ̂GCC(n), (2)

where

Ψ̂GCC(n) =
N−1∑

k=0

Φ(k)Sx1x2 (k)e j(2πnk/N) (3)

is the GCC function, Sx1x2 (k) = E{X1(k)X∗2 (k)} is the cross
spectrum, E{·} and (·)∗ stand, respectively, for the expecta-
tion and complex conjugate operator, Xm(k) is the discrete
Fourier transform of the signal xm(n), Φ(k) is a weighting
function (sometimes called a prefilter), and N denotes the
number of observation samples during the observation in-
terval.

The weighting function Φ(k) plays an important role in
controlling the TDE performance. It is chosen according to
some criterion. Commonly used weighting functions include
unit weighting (the classical cross-correlation method),
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the smoothed coherence transform (SCOT) [3], the Roth
processor [4], the Echart filter, the phase transform (PHAT),
the ML processor [1], the Hassab-Boucher transform [5],
and so forth. Some of these are optimal in the sense that
the estimation variance can achieve the Cramèr-Rao lower
bound (CRLB). Others are suboptimal but possess special
properties, as for example the PHAT algorithm [1, 12], where
the weighting function is chosen as Φ(k) = 1/|Sx1x2 (k)|. Sub-
stituting ΦPHAT(k) into (3) and neglecting the noise effects,
one can readily derive that the weighted cross spectrum is
free from the source signal and depends only on the chan-
nel responses. Consequently, the PHAT algorithm performs
more consistently than many other GCC members when the
characteristics of the source signal vary in time. Hence, this
weighting function is adopted in this research.

2.2.2. The AMDF estimator

The AMDF between two studied signals is described by

Ψ̂AMDF(n) =
1

N

N−1∑

i=0

∣∣x1(i)− x2(i + n)
∣∣. (4)

The delay estimate, based on AMDF, is given by

τ̂AMDF = arg min
n

Ψ̂AMDF(n). (5)

The AMDF approach has been used for TDE and pitch track-
ing for decades [7, 28]. The preference of employing AMDF
over GCC for TDE is mainly due to the following facts. First,
the performance of the AMDF estimator in favorable noise
conditions is better than that of the GCC method as reported
in [17]. Second, the AMDF technique has relatively low com-
putational cost as no multiplications are involved in the es-
timation of AMDF although the computational burden may
not be a big concern with today’s computers.

Assuming that the signal s(t) can be modeled as a zero-
mean Gaussian process, from the invariance technique [29,
30], we can derive the expectation of the AMDF as follows
(see the appendix):

E
{
Ψ̂AMDF(n)

}
= E

{
1

N

N−1∑

i=0

∣∣x1(i)− x2(i + n)
∣∣
}

=

√
2

π

[
ex1 + ex2 − 2Rx1x2 (n)

]
,

(6)

where exm = E{x2
m(n)} represents the energy of the obser-

vation signal xm(n), and Rx1x2 (n) = E{x1(i)x2(i + n)} is the
direct cross-correlation function between x1(n) and x2(n).
Inspection of (6) shows that the magnitude of the princi-
ple minimum of the AMDF is essentially influenced by the
intensity variation and the background noise of the obser-
vation signal. This indicates that the AMDF method may
be sensitive to the background noise. As a matter of fact,
many reported experiments have confirmed that the AMDF
estimator is less robust with respect to noise than the GCC
method [31]. Equation (6) also suggests that the perfor-
mance of AMDF can be affected by the source signal, like in
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Figure 1: GCC function and WCC function in a moderately rever-
berant but noise-free condition.

the conventional cross-correlation approach. This problem,
however, can be alleviated by prewhitening the observation
signal before the estimation of AMDF.

2.2.3. The weighted cross-correlation estimator

The maximum of the GCC function does not necessarily oc-
cur at the true time delay as also pointed out in [6, 17]. This
is mainly due to the delayed version of the signal containing
new samples for different time lags. Figure 1 shows one esti-
mated GCC function between two microphone signals in a
moderately reverberant but noise-free condition. As can be
seen, the GCC function has two large peaks. One appears at
0.625 milliseconds which corresponds to the true time de-
lay, and another one appears at 1.125 milliseconds. Unfor-
tunately, the maximum peak appears at 1.125 milliseconds
which leads to an estimation failure. In comparison, AMDF
generally produces more accurate estimates. However, as
mentioned before, the primary disadvantage of the AMDF
approach is the lack of robustness with respect to noise.

To achieve a good compromise between the robustness of
the GCC method and the accuracy of the AMDF approach,
we propose a heuristic method by weighting the GCC func-
tion with the reciprocal of AMDF, which may not necessarily
be the optimum way to combine both, but will certainly im-
prove TDE performance, as shown in Section 3. The result-
ing estimator is described by

τ̂WCC = arg max
n

Ψ̂WCC(n), (7)

where

Ψ̂WCC(n) =
Ψ̂GCC(n)

Ψ̂AMDF(n) + ε
, (8)
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and ε is a small positive number to prevent division overflow.
Figure 1 also shows the weighted GCC function (WCCF). In
this case, picking the maximum of the WCCF will lead to a
correct estimate.

2.2.4. The modified AMDF estimator

The AMDF specifies the synchrony between the reference
signal and a delayed version of this signal. In the noise-free
condition, the AMDF yields its minimum when the two sig-
nals are synchronized. Synchrony can also be described by
the AMSF defined as follows:

Ψ̂AMSF(n) =
1

N

N−1∑

i=0

∣∣x1(i) + x2(i + n)
∣∣. (9)

If both signal and noise are assumed to be uncorrelated
Gaussian processes, when two microphone signals are syn-
chronized, the AMDF will reach its minimum while the
AMSF will approach its maximum. We can further show
that the correlation coefficients between AMDF and AMSF
are approximately zero (see the appendix). This suggests
that AMDF and AMSF contain supplementary information
though both of them measure the same synchrony between
two studied signals. Hence, we can expect to improve the
TDE performance by combining AMDF and AMSF. The re-
sulting new estimator is called the MAMDF method de-
scribed as follows:

τ̂MAMDF = arg min
n

Ψ̂MAMDF(n), (10)

where

Ψ̂MAMDF(n) =
Ψ̂AMDF(n)

Ψ̂AMSF(n) + ǫ
, (11)

and again ǫ is a fixed positive number similar to ε in (8) to
prevent division overflow.

2.3. Implementation

From (2), (5), (7), and (10), one can readily see that the esti-
mated time delay is an integral multiple of the sampling pe-
riod. This resolution is usually not sufficient for many mi-
crophone array applications. Much effort has been devoted
to solving this problem [17, 21, 32]. Among these, interpo-
lation around the detected peaks of the cost function is the
simplest yet most effective way to refine the TDE. Here we
employ the 3-point Lagrange’s method to improve the reso-
lution such that the estimated time delay can be a fraction of
the sampling period. The implementation procedure of the
developed estimators is summarized below.

(i) Partition the observation signal sequences x1(n) and
x2(n) into nonoverlapping frames with a frame width
of 128 milliseconds. For all experiments, microphone
signal is digitized with a sampling frequency of 16 kHz.
A Hamming window of length 128 milliseconds is ap-
plied for a better spectral estimate.

(ii) To reduce the dependence of the TDE on the
structure of the source signal, we prewhiten sig-
nals xm(n) before starting the TDE. The prewhiten-
ing process is performed in the frequency domain
and the FFT algorithm is used for efficiency, that is,
IFFT{FFT[xm(n)]/|FFT[xm(n)]|}.

(iii) Compute the cost function defined in (2), (4), (8), and
(11).

(iv) Search for the extremum of the cost function and the
corresponding lag time is denoted as n̂ext.

(v) Interpolate 4 points between n̂ext − 1 and n̂ext and
another 4 points between n̂ext and n̂ext + 1, using
the 3-point Lagrange’s method (the AMDF-based cost
functions are squared before interpolating [17]). Then
search the extremum of the interpolated cost function.
The corresponding peak (valley) position relative to

n̂ext is denoted as ∆̂ (∆̂ is negative when the extremum
is located in the left-hand side of n̂ext, and is positive
when the extremum is located in the right-hand side
of n̂ext).

(vi) The time-delay estimate is obtained as τ̂ = n̂ext + ∆̂.

3. PERFORMANCE EVALUATION

In general, the performance of the GCC, AMDF, WCC, and
MAMDF techniques is affected by the interpolation and fi-
nite width of the estimation window. Apart from these sys-
tematic factors, the accuracy of the estimates is substan-
tially impaired by noise and reverberation. In this section,
we present the results of the experiments to investigate the
statistical performance of TDE in real reverberant and noisy
environments.

Following [6, 18], we distinguish an estimate as either an
anomaly or a nonanomaly according to its absolute error. If
the absolute error |τ̂i − τ| > Tc/2, the estimate is identified
as an anomaly; otherwise, it is declared as a nonanomaly,
where τ and τ̂i are the true delay and ith delay estimate,
respectively, and Tc is the signal correlation time. To com-
pute Tc, we divide the source signal into short frames with
a frame size of 128 milliseconds. A short-time autocorre-
lation function is estimated from each frame of data. The
long-term average autocorrelation function is then com-
puted as the arithmetic average of the short-time autocor-
relation functions. Tc is computed as the 3 dB width of the
main lobe of the long-time average autocorrelation function
(in our experiment, the calculated Tc is equal to 4.3 sam-
ples). We evaluate the TDE performance in terms of the per-
centage of anomalous estimates over the total estimates, the
bias, and the standard deviation of the nonanomalous esti-
mates.

3.1. Experimental setup

Experiments were carried out in the Varechoic Chamber
which is a unique facility at Bell Laboratories. The chamber
is a 6.7×6.1×2.9 m room whose surfaces are covered by a to-
tal of 369 active panels which can be controlled digitally. Each
panel consists of two perforated sheets. When the holes in the
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Figure 2: Layout of the microphone array and source positions in
the varechoic chamber.

sheets are aligned, absorbing material behind the sheets will
be exposed to the sound field, whereas a highly reflective sur-
face can be formed if the holes are shifted to misalignment.
Combination of open and closed panels can produce 2369 dif-
ferent acoustic environments where the 60 dB reverberation
time T60 can change from 0.2 to almost 1 second (refer to
[33, 34] for more details).

A linear microphone array which consists of 22 omni-
directional Panasonic WM-61A microphones was mounted
at the distance of 500 mm from the north wall of the cham-
ber and approximately at the center of the wall. The 22 mi-
crophones are uniformly distributed along an aluminum rod
whose diameter is 1 cm. The spacing between adjacent mi-
crophones is 10 cm. The source signal is played by a Cabasse
Baltic Murale loudspeaker in 46 different positions. An illus-
tration of this setup is shown in Figure 2.

In order to reduce the reflections from the north wall,
the wall behind the array is covered by a 3-inch-thick fiber
class pillow which has a rectangle shape of 3230 × 750 mm.
Its lower edge is 90 mm above the floor and the left edge
1950 mm from the west wall of the chamber. During the ex-
periment, the chamber was not completely empty; objects
such as chairs, loudspeakers, and unused equipments were
left in the room. Also the inner door of the room in the east
corner of the south wall was kept open during the course of
the experiment.

For the purpose of data reusability, the impulse response
from each source location to each microphone was measured
[34]. The measurement of the impulse responses was per-
formed using the built-in measurement tool of the Huron
Lake system [34]. A 65536-point long logarithmic sweep sig-
nal digitized at a sampling rate of 48 kHz was used as the exci-
tation signal. From each source location to each microphone,
the excitation is played and recorded. An estimate of the
transfer function is obtained by a spectral division between
the original source excitation and the recorded microphone
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Figure 3: (a) Measured impulse response when 30% of the panels
are closed. (b) Backward integrated impulse response.

signal. We show in Figure 3 an impulse response measured
from Microphone 22 when 30% of the panels are closed
and the loudspeaker is placed at the position S21 (shown in
Figure 2). Also shown in Figure 3 is the backward integrated
decay curve of the measured impulse response. One can see
from this decay curve that the reverberation time T60 is ap-
proximately 0.37 second.

The observation signal is obtained by convolution of
the recorded speech with the measured impulse response,
and then adding noise to the results. Two types of noise
have been used in the experiments: the computer generated
pseudo Gaussian noise and a noise signal recorded from a
New York Stock Exchanging (NYSE) room. The NYSE noise
consists of sounds from various sources such as speakers,
telephone rings, electric fans, and so forth. Figure 4 plots
the first two seconds of the NYSE noise and its spectrogram,
from which we can see the changing characteristics of such
noise.

3.2. Experimental results

As pointed out before, the microphone output signal is
computed by convolving a 4-minute speech from a female
speaker with the corresponding measured impulse response
and then adding zero-mean noise to the results for a given
signal-to-noise ratio (SNR). This output signal is then seg-
mented into nonoverlapping frames with a frame width
of 128 milliseconds. For each frame, a time-delay estimate
is obtained by estimators described in (2), (5), (7), and
(10). The array consists of 22 microphones in total, so we
have C2

22 = 231 microphone pairs. In our experiment,
however, we choose Microphone 1 as a reference and only
measure the time delay of each microphone signal relative
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Figure 4: The NYSE noise: (a) waveform of the first two seconds of
the noise; (b) the spectrogram of the signal shown in (a).
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Figure 5: Percentage of anomalous time-delay estimates versus T60

among the GCC, AMDF, WCC, and MAMDF algorithms at SNR =
25 dB. Microphones 1 and 3 are used in the experiment. The fitting
curve is a third-order polynomial.

to the signal of Microphone 1. For a specific reverbera-
tion and noise condition, we have 21 (microphone pairs) ×
46 (source positions)×240 (seconds)/0.128(frame length) ≈
1.8 million time-delay estimates. If taking into account the
different reverberation and SNR conditions, we have in to-
tal 5 (different reverberation time)× 10 (SNR)× 1.8 M ≈ 90
million delay estimates. For the sake of brevity, we selected
some representative results to present here.

GCC

AMDF

WCC

MAMDF

0 0.1 0.2 0.3 0.4 0.5 0.6

Reverberation time T60 (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1

B
ia

s
o

f
n

o
n

an
o

m
al

o
u

s
es

ti
m

at
es

(m
s)

Figure 6: Bias of nonanomalous time-delay estimates versus T60

among the GCC, AMDF, WCC, and MAMDF algorithms at SNR =
25 dB. Microphones 1 and 3 are used in the experiment. The fitting
curve is a third-order polynomial.
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Figure 7: Standard deviation (SD) of the nonanomalous time-delay
estimates versus T60 among the GCC, AMDF, WCC, and MAMDF
algorithms at SNR = 25 dB. Microphones 1 and 3 are used in the
experiment. The fitting curve is a third-order polynomial.

3.2.1. TDE performance versus reverberation time

In the first experiment, we analyze the TDE performance
versus reverberation time. To do so, we assume that the
background noise is white Gaussian noise, and SNR is rel-
atively high, say SNR = 25 dB. The source position varies
from S02 to S46, as shown in Figure 2, whereas the micro-
phone pair is a fixed one (Microphones 1 and 3 are used
in this experiment). Figures 5, 6, and 7 plot, respectively,
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Figure 8: Percentage of anomalous time-delay estimates versus
SNR in white Gaussian noise when T60 = 0.31 second. Microphones
1 and 3 are used in the experiment. The source is in S31.

the average percentage of anomalies, and the bias and stan-
dard deviation of the nonanomalous estimates, all as a func-
tion of the reverberation time T60.

Obviously, the percentage of the anomalous estimates of
all estimators increases with the reverberation time. As the
reverberation time increases, more reflected signals with dif-
ferent delay will reach the microphone sensor and as a re-
sult, the erroneous peaks (for GCC and WCC) or valleys (for
AMDF and MAMDF) of the cost function increase, which
leads to more mistakes in extremum searching, and even-
tually leads to more anomalous time-delay estimates. Com-
pared with the GCC approach, the AMDF estimator ex-
hibits less anomalies when the reverberation time increases.
This shows the advantage of AMDF for TDE. It is inter-
esting to note from Figure 5 that weighting the GCC func-
tion by the reciprocal of AMDF can reduce the probability
of anomalous estimates. However, if the acceptable level of
anomalous estimates is set to 10%, according to Figure 5,
all the studied methods cannot be used reliably when T60 >
0.5 second.

From Figures 6 and 7, it can be seen that both the bias and
standard deviation of the nonanomalous estimates degrades
severely as the reverberation time increases. The four estima-
tors exhibit a similar bias and standard deviation in light re-
verberation conditions. In highly reverberant environments,
the GCC estimator has a slightly worse performance.

3.2.2. TDE performance versus SNR

In the above experiment, we show the impact of reverber-
ation time on TDE performance, where a very high SNR is
assumed. In a practical situation, however, the TDE has to
deal with both reverberation and noise. The second experi-
ment is to evaluate the TDE performance in both simulated
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Figure 9: Bias of nonanomalous time-delay estimates versus SNR
in white Gaussian noise when T60 = 0.31 second. Microphones 1
and 3 are used in the experiment. The source is in S31. The fitting
curve is a third-order polynomial.
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Figure 10: Standard deviation (SD) of nonanomalous time-delay
estimates versus SNR in white Gaussian noise when T60 =

0.31 second. Microphones 1 and 3 are used in the experiment. The
source is in S31. The fitting curve is a third-order polynomial.

(white Gaussian) and real (NYSE) noisy environments,
where we assume a moderate reverberation, say T60 =

0.31 second. The results in Gaussian noise are presented in
Figures 8, 9, and 10, and the results in NYSE noise are por-
trayed in Figures 11, 12, and 13. We found that the probabil-
ity of anomalies reduces as SNR increases, and the four TDE
methods have a similar percentage of anomalies in both noise
conditions.
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Figure 11: Percentage of anomalous time-delay estimates versus
SNR in the NYSE noise when T60 = 0.31 second. Microphones 1
and 3 are used in the experiment. The source is in S31. The fitting
curve is a third-order polynomial.
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Figure 12: Bias of nonanomalous time-delay estimates versus SNR
in the NYSE noisy environments when T60 = 0.31 second. Micro-
phones 1 and 3 are used in the experiment. The source is in S31.
The fitting curve is a third-order polynomial.

From Figures 9 and 12, we see that in high SNR condi-
tions, four estimators have almost identical estimation bias.
In lower SNR situations, the AMDF estimator has a higher
bias. This is inconsistent with the result reported in [17], in
which the AMDF is shown to have much lower bias than
the GCC method in high SNR conditions and has almost
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Figure 13: Standard deviation (SD) of nonanomalous time-delay
estimates versus SNR in the NYSE noisy environments. T60 =

0.31 second. Microphones 1 and 3 are used in the experiment. The
source is in S31.

the same bias as GCC in strong noise environments. We
attribute the difference to three factors. Firstly, the experi-
ment in [17] was performed only in high noise conditions
where reverberation is absent. Secondly, the GCC estima-
tor tested in [17] is based on the direct cross-correlation
function rather than the GCC function. Finally, the results
reported in [17] did not distinguish between estimates as
anomalies and nonanomalies.

In Figures 10 and 13, it can be seen that in high SNR con-
ditions, the GCC method has a lightly higher deviation than
the other three estimator. When SNR becomes lower, how-
ever, the GCC estimator shows a smaller deviation, indicat-
ing the robustness of the GCC method with respect to noise.
Weighting the AMDF function with the reciprocal of the
AMSF function can enhance the performance of the AMDF
estimator. However, the performance of the WCC approach
in noisy conditions is basically a tradeoff between the AMDF
and GCC methods.

3.2.3. Other experiments

Additional experiments were performed including changing
the source locations and using different microphone pairs.
Figures 14, 15, and 16 plot the statistical performance as a
function of loudspeaker position shown in Figure 2. One can
see that percentage of anomalies does not vary much when
the source is moved from one position to another. How-
ever, the bias and standard deviation fluctuate a lot as the
source location varies. According to our experience, though
in general the change of the reverberation time T60 is neg-
ligible, the echo structure varies appreciably as the source
position moves. This will eventually lead to fluctuation of
the bias and standard deviation of the time-delay estimate.
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Figure 14: Percentage of anomalous time-delay estimates versus
source location among the GCC, AMDF, WCC, and MAMDF al-
gorithms when T60 = 0.31 second and SNR = 30 dB. Microphones
1 and 2 are used in the experiment.
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Figure 15: Bias of the nonanomalous time-delay estimates versus
source location among the GCC, AMDF, WCC, and MAMDF algo-
rithms when T60 = 0.31 second and SNR = 30 dB. Microphones 1
and 2 are used in the experiment.

It is interesting to note that biases of the four investigated
estimators are almost identical, whereas the percentage of
anomalies and standard deviation of nonanomalous esti-
mates of the GCC method is slightly higher than the AMDF-
based methods. This is consistent with the observation from
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Figure 16: Standard deviation (SD) of the nonanomalous time-
delay estimates versus source location among the GCC, AMDF,
WCC, and MAMDF algorithms when T60 = 0.31 second and
SNR = 30 dB. Microphones 1 and 2 are used in the experiment.

the previous experiments since this experiment is carried
out at very high SNR and moderate reverberation environ-
ments.

We also varied the microphone pairs while keeping the
source position fixed. Quite similar qualitative behavior as
above was observed.

4. CONCLUSION

This paper addressed the TDE problem in real reverber-
ant and noisy environments. We have proposed two new
time-delay estimators. One is the weighted cross-correlation
method in which the GCC function is weighted by the
reciprocal of AMDF. This weighting process can sharpen
the desired peak and suppress the other peaks in the GCC
function, hence leading to more accurate time-delay esti-
mates. The other proposed estimator is the modified ver-
sion of the AMDF method in which the AMDF is weighted
by the inverse AMSF—another function that can mea-
sure the synchrony between two signals. This approach
is seen to exhibit a superior performance to the AMDF
method in both high reverberation and high noise condi-
tions.

We have evaluated the GCC, WCC, AMDF, and MAMDF
approaches in both room reverberant and noisy environ-
ments. In general, it is observed that the cross-correlation-
based method exhibits a slightly higher percentage of anoma-
lous estimates than the AMDF-based estimator in favorable
noise conditions. However, the GCC-based approaches are
more resilient to strong noise.
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APPENDIX

The expectation of the AMDF defined in (4) can be written
as follows:

E
{
Ψ̂AMDF(n)

}
= E

{
1

N

N−1∑

i=0

∣∣x1(i)− x2(i + n)
∣∣
}

=
1

N

N−1∑

i=0

E
{∣∣x1(i)− x2(i + n)

∣∣}.
(A.1)

Assuming that both signal and noise can be modeled as zero-
mean Gaussian processes, we know from [29] that

E
{∣∣x1(i)− x2(i + n)

∣∣} =
√

2

π

√
E
{[
x1(i)− x2(i + n)

]2
}
.

(A.2)

Then it is trivial to derive

E
{
Ψ̂AMDF(n)

}
=

√
2

π

[
ex1 + ex2 − 2Rx1x2 (n)

]
, (A.3)

where ex1 = E{x2
1(n)} and ex2 = E{x2

2(n)} represent the
energies of the signals x1(n) and x2(n), and Rx1x2 (n) =

E{x1(i)x2(i+n)} is the direct cross-correlation function. Sim-
ilarly, one can derive the expectation of the AMSF as follows:

E
{
Ψ̂AMSF(n)

}
=

√
2

π

[
ex1 + ex2 + 2Rx1x2 (n)

]
. (A.4)

The covariance between AMDF and AMSF is written as
follows:

cov
[
Ψ̂AMDF(n), Ψ̂AMSF(n)

]

=
1

N2

N−1∑

i=0

N−1∑

k=0

E
{∣∣x1(i)− x2(i + n)

∣∣∣∣x1(k) + x2(k + n)
∣∣}

− E
{
Ψ̂AMDF(n)

}
E
{
Ψ̂AMSF(n)

}
.

(A.5)

For two random Gaussian variables θ and ϑ, it can be derived
from [29] that

E
{
|θ| · |ϑ|

}
=

2

π

{
E[θ · ϑ]sin−1 E[θ · ϑ]√

E
[
θ2
]
E
[
ϑ2
]

+
√
E
[
θ2
]
· E
[
ϑ2
]
−
(
E[θ · ϑ]

)2

}
.

(A.6)

Therefore, the covariance between AMDF and AMSF can be
expressed as follows:

cov
[
Ψ̂AMDF(n), Ψ̂AMSF(n)

]
= ξ1(n) + ξ2(n)− ξ3(n), (A.7)

where

ξ1(n) =
2

πN2

N−1∑

i=0

N−1∑

k=0

R

· sin−1 R√[
Rx1x1 (0) + Rx2x2 (0)

]2
− 4
[
Rx1x2 (n)

]2
,

ξ2(n) =
2

πN2

×

N−1∑

i=0

N−1∑

k=0

√[
Rx1x1 (0)+Rx2x2 (0)

]2
−4
[
Rx1x2 (n)

]2
−R2,

ξ3(n) =
2

π

√[
Rx1x1 (0) + Rx2x2 (0)

]2
− 4
[
Rx1x2 (n)

]2
,

R = Rx1x1 (k − i) + Rx1x2 (k + n− i)− Rx1x2 (i + n− k)

− Rx2x2 (k − i).
(A.8)

A similar derivation can be used to derive the variance of
Ψ̂AMDF(n) and Ψ̂AMSF(n). We can then calculate the correla-
tion coefficient ρ(n) defined as

ρ(n) =
cov

[
Ψ̂AMDF(n), Ψ̂AMSF(n)

]
√

var
[
Ψ̂AMDF(n)

]
var
[
Ψ̂AMSF(n)

] . (A.9)

For simplicity of analysis, besides the assumptions made in
Section 2, we further assume that the signal is also a Gaussian
process with zero-mean and variance σ2

s , the noise observed
from different microphones has the same variance denoted
by σ2

w, and that the relative propagation attenuation between
two microphones is negligible, that is, α = 1. After making
the above assumptions, we have

Rx1x1 (n) =



σ2
s + σ2

w, for n = 0,

0, otherwise,

Rx2x2 (n) =



σ2
s + σ2

w, for n = 0,

0, otherwise,

Rx1x2 (n) =



σ2
s , for n = τ,

0, otherwise.

(A.10)

We now consider to estimate ρ(n) in two conditions, that is,
n = τ and n �= τ.

(i) When n = τ. Substituting Rx1x1 (n), Rx2x2 (n), and
Rx1x2 (n) into (A.7), we have

ξ1(n) = 0,

ξ2(n) = ξ3(n) =
4

π

√
σ4
w + 2σ2

s σ2
w.

(A.11)

Therefore, in this case, ρ(n) = 0.
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(ii) When n �= τ, we have

ξ1(n) =
4

πN
σ2
s sin−1 σ2

s

2
(
σ2
s + σ2

w

) ,

ξ2(n) =
4

π

(
σ2
s + σ2

w

)

+
8

πN

(
σ2
s + σ2

w

)


√√√√1−

σ4
s

4
(
σ2
s + σ2

w

)2 − 1


,

ξ3(n) =
4

π

(
σ2
s + σ2

w

)
.

(A.12)

In the context of TDE, N is often taken between a few hun-
dreds and a few thousands. With such a large N , it can be
verified that ξ3(n) ≈ ξ2(n) ≫ ξ1(n). It is trivial then to show
that ρ(n) ≈ 0.
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