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Furthermore, after removing SNPs with MACH Rsq  ! 0.3, ac-

curacy for both rare and low frequency SNPs was very high 

and almost identical to accuracy for common SNPs. We 

found that imputation using the 1KG-EUR panel had advan-

tages in successfully imputing rare, low frequency and com-

mon variants. Our findings suggest that 1KG-based imputa-

tion can increase the opportunity to discover significant as-

sociations for SNPs across the allele frequency spectrum. 

Because the 1KG Project is still underway, we expect that lat-

er versions will provide even better imputation performance. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 Genome-wide association (GWA) studies and meta-
analyses have been successful in discovering common 
variants influencing many complex traits (http://www.
genome.gov/gwastudies/)  [1] . Genotype imputations 
provide inferences of untyped markers in a study sam-
ple by using the linkage disequilibrium among markers 
present in an outside reference panel, such as those from 
the HapMap Project. The public data from the Interna-
tional HapMap Consortium  [2]  provides over 3.1 mil-
lion SNPs across populations. Typical GWA studies di-
rectly genotype fewer SNPs than HapMap SNPs and im-
pute the untyped markers that were present in the 
HapMap panel  [3, 4] . Therefore, imputation provides a 
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 Abstract 

 Genotype imputations based on 1000 Genomes (1KG) Proj-

ect data have the advantage of imputing many more SNPs 

than imputations based on HapMap data. It also provides an 

opportunity to discover associations with relatively rare vari-

ants. Recent investigations are increasingly using 1KG data 

for genotype imputations, but only limited evaluations of 

the performance of this approach are available. In this paper, 

we empirically evaluated imputation performance using 

1KG data by comparing imputation results to those using the 

HapMap Phase II data that have been widely used. We used 

three reference panels: the CEU panel consisting of 120 hap-

lotypes from HapMap II and 1KG data (June 2010 release) and 

the EUR panel consisting of 566 haplotypes also from 1KG 

data (August 2010 release). We used Illumina 324,607 auto-

somal SNPs genotyped in 501 individuals of European ances-

try. Our most important finding was that both 1KG reference 

panels provided much higher imputation yield than the 

HapMap II panel. There were more than twice as many suc-

cessfully imputed SNPs as there were using the HapMap II 

panel (6.7 million vs. 2.5 million). Our second most important 

finding was that accuracy using both 1KG panels was high 

and almost identical to accuracy using the HapMap II panel. 
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higher resolution of association regions and can boost 
power when compared to using only the genotyped 
SNPs  [5, 6] . Furthermore, when different studies use dif-
ferent genotyping platforms, imputation with a com-
mon set of SNPs, such as the HapMap reference panel, 
makes it possible for different studies to be used in meta-
analysis (e.g.  [7] ).

  Most imputations have used HapMap Phase II (HMII) 
data as a reference panel using several programs such as 
IMPUTE  [8] , MACH  [9–11] , BIMBAM  [12]  or BEAGLE 
 [13, 14] . However, data from the 1000 Genomes (1KG) 
Project recently became available and provide a higher 
resolution of human genome sequence variation  [15] . Us-
ing 1KG data as the reference panel, more genetic variants 
in GWA studies can be imputed than using HapMap 
data. Several recent papers have used 1KG data for impu-
tation  [16] . Using 1KG-based imputations with MACH, 
Sanna et al.  [17]  discovered association of  CBLB  gene 
variants with multiple sclerosis. Similarly using 1KG-
based imputations with IMPUTE, Liu et al.  [18]  con-
firmed an effect on smoking quantity at a locus on 15q25. 
Using 1KG-based imputations, these and other investiga-
tions were able to observe stronger associations with 
SNPs that were not available in HMII data.

  The major advantage of imputations based on the 
1KG data, instead of the HapMap data, is the ability to 
impute a much larger number of SNPs. The 1KG Project 
aims to discover more than 95% of the variants with mi-
nor allele frequencies (MAF) as low as 0.01 across the 
genome and from 0.001 to 0.005 in gene regions  [15] . 
Therefore, 1KG-based imputations should provide many 
more variants that are rare and low frequency than Hap-
Map-based imputations. Browning  [19]  suggested that 
GWA studies using both imputed and observed geno-
types increased the power for detecting rare causal vari-
ants. Li et al.  [11, 20]  also have shown that gain in power 
with imputation can be higher for rare variants than
for common variants: for common variants (simulated 
MAF = 0.5) power slightly increased from 93.0 to
96.4%, whereas for rare variants (simulated MAF = 0.025) 
power dramatically increased from 24.4 to 56.2%. How-
ever, there are concerns about the data from the 1KG 
Project due to its potentially lower quality. The HapMap 
data were based on direct genotyping of previously dis-
covered SNPs and have been thoroughly scrutinized, 
whereas currently available 1KG data were based on low-
depth whole-genome sequence data and, hence, are ex-
pected to be of lower quality. Furthermore, only limited 
evaluations of the performance of 1KG-based imputa-
tions are available  [21, 22] .

  In this paper, we empirically evaluated imputation 
performance using the 1KG data by comparing imputa-
tion results to those using the HMII data that have been 
widely used. Because the most used reference panel for 
imputing individuals of European ancestry is the CEU 
panel consisting of 120 haplotypes constructed from 
HMII data, we used two versions of reference panels con-
structed from the 1KG data. The CEU panel consisted of 
120 haplotypes constructed from the 1KG sequencing 
data (June 2010 release) of the same 60 individuals as for 
CEU HapMap data. The EUR panel consisted of 566 hap-
lotypes constructed from the 1KG sequencing data (Au-
gust 2010 release) of 283 individuals of European ances-
try. Due to the increased number of haplotypes of the 
EUR panel, it contains a substantially larger number of 
variants (11.4 million) than the other two panels. In par-
ticular, since both 1KG panels contain a large number of 
rare and low frequency variants, we investigated whether 
1KG-based imputations provided good performance for 
these rare and low frequency variants.

  Materials and Methods 

 Study Sample 
 We used Illumina 324,607 autosomal SNPs genotyped in 501 

Caucasian individuals in the HERITAGE Family Study  [23, 24] . 
The study recruited 503 Caucasian individuals from 99 nucle -
ar families in the United States and Canada to investigate the
genetic basis of cardiovascular and metabolic responses to exer-
cise training. The participants were in good health and seden-
tary. GWA genotyping was performed using the Illumina
HumanCNV370-Quad v3.0 BeadChips on Illumina BeadStation 
500GX platform. The genotype calls were done with the Illumina 
GenomeStudio software and all samples were called in the same 
batch to eliminate batch-to-batch variation. Monomorphic SNPs 
and SNPs with only one heterozygote, as well as SNPs with more 
than 30% missing data were filtered out with GenomeStudio. 
Twelve samples were genotyped twice with 100% reproducibility 
across all SNPs. All GenomeStudio genotype calls with a Gen-
Train score  ! 0.885 were checked and confirmed manually. Qual-
ity control of the GWA study SNP data confirmed all family rela-
tionships and found no evidence of DNA sample mix-ups. This 
study obtained informed consent from participants, and approv-
al from the appropriate institutional review boards.

  Reference Panels from the 1KG and HapMap 
 To impute individuals of European ancestry, we used 3 refer-

ence panels. The first panel, denoted by HMII-CEU ,  is the CEU 
reference panel consisting of 120 haplotypes constructed from 
HMII data (release 22, build 36) .  The second panel, denoted by 
1KG-CEU ,  is the CEU panel consisting of 120 haplotypes con-
structed from the 1KG sequencing data (June 2010 release) of the 
same 60 individuals as for HMII-CEU. The third panel, denoted 
by 1KG-EUR, is the EUR panel consisting of 566 haplotypes con-
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structed from the 1KG sequencing data (August 2010 release) of 
the 283 individuals of European ancestry. Both 1KG-CEU and 
1KG-EUR were obtained from http://www.sph.umich.edu/csg/
abecasis/MACH/download/, as directed by the 1KG Project. The 
1KG-EUR is the most recent QC-ed reference panel of European 
ancestry from the 1KG Project.

  The HapMap Project aimed to discover common variants 
(MAF  1 0.05) and the HMII-CEU panel was constructed using ge-
notype data of SNPs that were previously discovered. In contrast, 
the 1KG Project aims to discover rare (MAF  ̂  0.01) and low fre-
quency (0.01  ! MAF  ̂  0.05) variants, and both 1KG-CEU and 
1KG-EUR were constructed using low-depth whole-genome se-
quencing data, obtained with next-generation sequencers such as 
ABI’s SOLiD, Roche’s 454 and Illumina’s Genome Analyzer. As 
shown in  figure 1 , HMII-CEU, 1KG-CEU and 1KG-EUR contained 
2.5 million, 6.8 million and 11.4 million SNPs, respectively. Most 
SNPs in HMII-CEU panel were also present in 1KG panels.

  The 1KG data contained a much larger number of variants 
than the HapMap data across the MAF spectrum. With sequenc-
ing data, 1KG-CEU contained a large number of additional low 
frequency and common SNPs that were not present in HMII-CEU 
(shown in  table 1 ). Furthermore, with sequencing data from more 
individuals, 1KG-EUR contained an even larger number of addi-
tional rare and low frequency SNPs that were not present in either 
HMII-CEU or 1KG-CEU.

  Imputations Using MACH 
 In this paper, we used MACH  [10, 11]  because MACH and

IMPUTE  [8] , the two leading programs, have been shown to pro-
vide the most accurate results across various settings  [25, 26] . Be-
fore imputation, the strand of GWA study SNPs that did not 
match with HapMap SNPs were flipped by using PLINK  [27] . Fol-
lowing the developers’ recommendation, we used a two-step pro-
cedure for running MACH (version 1.0.16). In the first step, the 
crossover map and error rate map were estimated using 50 rounds 
of iterations and 188 unrelated individuals. Then all subjects were 
used for genotype imputation in the second step. Imputations 
were performed separately by chromosomes.

  To evaluate imputation performance, we masked 5, 25, 50 and 
75% of SNPs in the HERITAGE GWA study. These masked SNPs 
were removed and imputation was performed using the remain-
ing SNPs. Then the imputed results for these masked SNPs were 
compared with their real genotyped data to get imputation accu-
racy. To mask 5% of data, we removed an SNP in every 20th posi-
tion in a physical map. Other masking was done similarly. We 

considered much higher masking rates than other papers that in-
vestigated imputation performance because we wanted to assess 
imputation performance for less desirable conditions, in particu-
lar, using the 1KG data. Most remaining SNPs that were used for 
imputation were present in all three reference panels ( table  2 ). 
This is expected because most Illumina SNPs genotyped for the 
HERITAGE individuals were selected from HapMap SNPs. The 
panel 1KG-EUR contained a slightly smaller number of GWA 
SNPs than 1KG-CEU (317,110 vs. 320,366), although it included 
almost twice as many SNPs as shown in  table 1 . We observed that 
most of these differences occurred because the two panels some-
times used different rs IDs when there were multiple rs IDs at the 
same position.

  To evaluate imputation performance, we used imputation 
yield and accuracy for each imputed data set and concordance 
among the three reference panels. Following the developers’ rec-
ommendation, we applied a filtering rule that removed mono-
morphic SNPs and SNPs with MACH’s quality measure Rsq  ! 0.3. 

HMII-CEU

(2,543,857)

33,058 772,500

71,304

2,298,744

5,302,855

140,751 3,715,507

1KG-CEU

(6,858,055)

1KG-EUR

(11,457,857)

  Fig. 1.  Venn diagram showing 14,163,455 SNPs on chromosomes 
1 through 22 across the three reference panels from HMII and 
1KG Projects. For the overlap between 1KG-CEU and 1KG-EUR, 
the hg18 map positions of 1KG-CEU were converted into hg19 
positions, using the liftOver program on the UCSC Genome 
Browser web site. 

Table 1.  Number of SNPs across the MAF spectrum in the three reference panels from HMII and 1KG projects

Reference 
panel

Rare Low frequency Common T otal

n % n % n % n %

HMII-CEU 103,252 4.1 284,178 11.2 2,156,427 84.8 2,543,857 100.0
1KG-CEU 15,300 0.2 1,556,959 22.7 5,285,796 77.1 6,858,055 100.0
1KG-EUR 3,646,988 31.8 2,246,325 19.6 5,564,544 48.6 11,457,857 100.0

Rar e variants: MAF ≤0.01; low frequency variants: 0.01 < MAF ≤ 0.05; common variants: MAF >0.05.
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Hence, non-monomorphic SNPs with Rsq  6 0.3 were considered 
as successfully imputed SNPs with appropriate quality. This also 
corresponds to the current common practice for numerous im-
puted data sets that were used in GWA and meta-analysis pub-
lished papers. We defined  imputation yield  as the number of fil-
tered SNPs that remained after removing SNPs with low imputa-
tion quality measures.

  We measured  imputation accuracy  using dosage Rsq: the 
squared correlation between the true genotype and continuous-
valued imputed genotype dosage for each masked SNP. Concor-
dance rates between true and imputed genotype calls are often 
very high for rare and low frequency SNPs and it is hard to com-
pare imputation accuracy across SNPs with different MAFs. On 
the other hand, dosage Rsq is not confounded by MAF and can be 
used to compare accuracy for rare and common SNPs. We com-

puted imputation accuracy for each panel using the mean of dos-
age Rsq values at filtered SNPs. Imputation accuracy was strati-
fied within each MAF bin (rare, low frequency and common 
SNPs). To evaluate the effect of the filtering rule, we also com-
puted accuracy using the mean of dosage Rsq values at all imput-
ed SNPs.

  Results 

 Imputation Yield across the MAF Spectrum 
 Imputations using 1KG data provided significantly 

higher yield (the number of filtered SNPs) than imputa-

Table 2.  Number of Illumina SNPs in the HERITAGE original GWA and masked datasets and overlaps with the 
reference panels

Masking
rate

Masked
SNPs

Remaining
SNPs

S NPs also in reference panels*

HMII -CEU 1KG-CEU 1KG-EUR

Original data 0 324,607 314,015 320,366 317,110
5% 16,231 308,376 298,308 304,348 301,293
25% 81,152 243,455 235,475 240,246 237,931
50% 162,304 162,303 157,010 160,139 158,649
75% 243,455 81,152 78,540 80,120 79,179

* SN Ps also in reference panels correspond to the remaining HERITAGE SNPs that are used for imputation.

Table 3.  Imputation yield, number of filtered SNPs (with MACH Rsq >0.3) across the MAF spectrum

Masking rate Panel Rare Low frequency Common Total

5% HMII-CEU 48,136 269,239 2,148,288 2,465,663
1KG-CEU 67,122 982,959 4,941,873 5,991,954
1KG-EUR 394,061 1,228,568 5,120,445 6,743,074

25% HMII-CEU 45,207 263,495 2,138,067 2,446,769
1KG-CEU 56,370 915,119 4,855,531 5,827,020
1KG-EUR 302,363 1,092,582 5,016,263 6,411,208

50% HMII-CEU 38,065 243,455 2,105,485 2,387,005
1KG-CEU 35,880 743,918 4,623,292 5,403,090
1KG-EUR 149,272 788,592 4,715,170 5,653,034

75% HMII-CEU 17,985 165,944 1,893,608 2,077,537
1KG-CEU 7,167 315,203 3,559,825 3,882,195

1KG-EUR 15,717 233,130 3,352,765 3,601,612

V alues in bold denote the highest accuracy rates for each masked data set. Figure 2 and supplementary figure 
1 show the number of all imputed SNPs in gray color.

Rare variants: MAF ≤0.01; low frequency variants: 0.01 < MAF ≤ 0.05; common variants: MAF >0.05.
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tions using HapMap data.  Table 3  shows overall yield and 
yields across the MAF spectrum for all four masked data 
sets.  Figure 2  also shows the total number of imputed 
SNPs in gray color. Imputation yield was highest with 
1KG-EUR, next highest with 1KG-CEU and lowest with 
HMII-CEU for most masking rates. For the 5% masked 
data, which corresponded to a typical imputation scenar-
io, imputation yield was 2.5 million, 6.0 million and 6.7 
million SNPs using HMII-CEU, 1KG-CEU and 1KG-
EUR, respectively. In particular, for 1KG-EUR, only 6.7 
million (out of 11.5 million) SNPs were classified as suc-
cessfully imputed, with 4.7 million SNPs being filtered 
out ( fig. 2 ). As expected, imputation yield dropped with 
higher masking rates. However, imputation yield dropped 
only slightly even for the 50% masked data (2.4 million, 
5.4 million and 5.6 million SNPs). Decrease in imputation 
yield became significant only for the 80% masked data 
(2.1 million, 3.9 million and 3.6 million SNPs). This indi-
cates a high tagging property of Illumina 330,000 SNPs 
because with 50% masking over 94% of SNPs in the 
HMII-CEU were successfully imputed. For 50% and 
higher masking rates, 1KG-CEU provided higher impu-
tation yield than 1KG-EUR.

  Imputation using 1KG-EUR provided the highest 
yield for rare and low frequency variants for most mask-
ing rates ( figure 2 ;  table 3 ). Improvement in imputation 

yield of 1KG-EUR over the other two panels was different 
across MAF spectrum. For 5% masked data, imputation 
using 1KG-EUR provided more than twice as many com-
mon SNPs as HMII-CEU (5.1 million vs. 2.1 million), 
four times as many low frequency SNPs (1.2 million vs. 
0.3 million), and eight times as many rare SNPs (0.39 mil-
lion vs. 0.05 million). Imputation yield using 1KG-CEU 
was similar to that using 1KG-EUR for common and low 
frequency SNPs. We expect that with non-masked data, 
an even larger number of rare and low frequency SNPs 
would be successfully imputed using the 1KG-EUR pan-
el. However, imputation using 1KG-EUR provided 4.7 
million SNPs that were classified as poorly imputed
because they had MACH Rsq  ! 0.3. Among these, 3.4
million were rare SNPs. With higher masking rates, im-
putation yield decreased more for rare and low fre-
quency SNPs (see online supplementary figure 1, www.
karger.com/doi/10.1159/000334084).

  Imputation Accuracy across the MAF Spectrum 
 Overall imputation accuracy, the mean of dosage Rsq 

values at all imputed SNPs, using both 1KG panels was 
high and almost identical to the accuracy using the 
HMII-CEU panel for most masking rates.  Table 4  shows 
accuracy before filtering (across all imputed SNPs) and 
after filtering (across filtered SNPs) for all masked data. 
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 Figure 2  shows accuracy before filtering (in gray) and af-
ter filtering (in color) for the 5% masked data. Before fil-
tering, accuracy rates were 87.5, 86.8 and 87.5% using 
HMII-CEU, 1KG-CEU and 1KG-EUR, respectively, for 
the 5% masked data. Accuracy for common SNPs was 
similar to overall accuracy. Accuracy for rare variants 
was highest with HMII-CEU (61%), lowest with 1KG-
CEU (35%) and in the middle with 1KG-EUR (54%).

  After filtering SNPs with MACH Rsq  ! 0.3, imputa-
tion with 1KG-EUR provided the highest imputation ac-
curacy (90.7%). Accuracy was slightly lower with HMII-
CEU and 1KG-CEU (88.6 and 88.9%). In particular, ac-
curacy with 1KG-EUR was much improved for rare and 
low frequency variants (54 and 90% before and after fil-
tering for the 5% masked data). Patterns were very similar 
across levels of masking ( table 3 ; online suppl. fig. 1). This 
is very surprising because accuracy using HMII-CEU or 
1KG-CEU was not improved nearly as much by the filter-
ing rule.

  We investigated why these three reference panels be-
haved differently with the same filtering rule. A possible 
explanation for their different behavior is shown in  figure 
3 . The MACH Rsq value is supposed to be an unbiased 
estimate of the true dosage Rsq value, but this does not 
seem to be the case for the 1KG reference panels. The 
black line in the three panels is what the regression line 
would be if the MACH Rsq was actually unbiased. The 

magenta line is the actual regression line and the differ-
ence between the two is bias. Though there is little bias 
with the HMII-CEU, there is more with 1KG-CEU and 
still more with 1KG-EUR. Using the rule of removing 
SNPs with MACH Rsq  ! 0.3 with the 1KG-EUR reference 
panel approximately corresponded to removing SNPs 
with true dosage Rsq  ! 0.5. Because accuracy corresponds 
to the mean of dosage Rsq values at the filtered SNPs, this 
may account for the better performance of this filtering 
rule. This bias increased with higher masking rates.

  Discussion 

 In this paper, we evaluated the performance of geno-
type imputations using the 1KG Project data, relative to 
imputations using the HMII data. Our most important 
finding was that both 1KG reference panels (1KG-CEU 
and 1KG-EUR) provided much higher imputation yield 
than the HMII panel. In particular, there were more than 
twice as many successfully imputed SNPs using 1KG-
EUR as there were using HMII data (6.7 million vs. 2.5 
million). There were twice as many common SNPs as 
HMII-CEU (5.1 million vs. 2.1 million), four times as 
many low frequency SNPs (1.2 million vs. 0.3 million), 
and eight times as many rare SNPs (0.39 million vs. 0.05 
million). Our second most important finding was that ac-

Table 4.  Imputation accuracy (%), mean of dosage Rsq values, at all imputed SNPs and filtered SNPs (with MACH Rsq >0.3) across the 
MAF spectrum

Masking
rate

Panel All imputed SNPs F iltered SNPs

rare low frequency common total rare low frequency common total

5% HMII-CEU 60.6 80.5 87.8 87.5 72.8 83.4 88.8 88.6
1KG-CEU 34.6 77.8 87.1 86.8 58.0 82.7 89.1 88.9
1KG-EUR 53.7 80.5 87.9 87.5 90.4 88.5 90.8 90.7

25% HMII-CEU 60.9 78.3 87.0 86.7 70.8 81.6 88.1 87.9
1KG-CEU 55.0 76.4 86.4 86.1 67.3 82.5 88.5 88.4
1KG-EUR 50.4 77.6 86.9 86.5 85.2 87.6 90.1 90.0

50% HMII-CEU 53.3 70.8 81.9 81.5 68.7 76.3 83.9 83.6
1KG-CEU 44.5 68.9 81.2 80.8 61.5 79.0 85.0 84.8
1KG-EUR 44.8 68.6 81.0 80.5 82.2 84.6 86.3 86.3

75% HMII-CEU 39.3 51.9 65.4 65.0 64.0 67.3 73.2 73.1
1KG-CEU 27.5 48.1 63.7 63.2 55.0 74.7 76.8 76.7
1KG-EUR 27.3 45.5 61.6 61.0 85.1 81.5 77.7 77.7

Val ues in bold denote the highest accuracy rates for each masked data set.
Rare variants: MAF ≤0.01; low frequency variants: 0.01 < MAF ≤ 0.05; common variants: MAF >0.05.
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curacy using both 1KG panels was high and almost iden-
tical to the accuracy using the HMII-CEU panel. Further-
more, after removing SNPs with MACH Rsq  ! 0.3, accu-
racy for both rare and low frequency SNPs was very high 
and almost identical to accuracy for common SNPs.

  Despite much higher SNP density, we expected the 
1KG-based imputations to be of lower quality than Hap-
Map-based imputations, due to low depth in terms of se-
quencing read depths (average of 4.6! in CEU). Our re-
sults were somewhat consistent in this regard in that 
1KG-based imputations had a large fraction of SNPs with 
MACH Rsq  ! 0.3. However, because the 1KG data con-
tained a substantially larger number of SNPs, there were 
twice as many retained SNPs using the 1KG data as using 
the HapMap data. Furthermore, we observed that MACH 
Rsq values were consistently underestimating true dos-
age Rsq values for SNPs from 1KG-based imputations. As 
a consequence, accuracy of retained SNPs was highest 
with 1KG-based imputations.

  We investigated whether using data from the 1KG has 
any advantage in terms of successfully imputing a large 
number of rare and low frequency variants. First, we 
found that rare variants in general had lower MACH Rsq 
values and were classified as poorly imputed. This was 
more obvious using the 1KG data. Our findings are con-

sistent with other investigations  [25, 28]  which showed 
that rare variants were more difficult to tag than com-
mon SNPs and also confirm that imputation programs 
often perform poorly when imputing rare variants. Sec-
ond, we found that imputations using 1KG-EUR had an 
advantage in imputing rare and low frequency variants. 
Our findings are consistent with those of Jostins et al. 
 [29] , who showed that HapMap3-based imputations pro-
vided highly accurate imputation of low frequency vari-
ants due to large and diverse reference sets  [30] . Imputa-
tion using 1KG-CEU also had an advantage in imputing 
low frequency variants. Furthermore, we found that us-
ing both 1KG-CEU and 1KG-EUR had a big advantage in 
imputing a large number of common variants. Our find-
ings suggest that imputation using data from the 1KG can 
increase the opportunity to discover significant associa-
tions for SNPs across the whole MAF spectrum.

  In this paper, we used two versions of the 1KG Project 
Pilot 1 data. We emphasize here that even though these 
1KG reference panels were based on low-depth sequence 
data, to better handle low-depth sequence data, these 
panels were constructed using three independently de-
veloped methods that combine sequence data across sam-
ples and HapMap3 data: (1) QCALL  [31] ; (2) Thunder 
 [22] , and (3) DePristo et al.  [32]  using Genome Analysis 
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  Fig. 3.  Imputation accuracy (dosage Rsq) values versus MACH Rsq values for the 5% masked data. Red solid 
circles are rare SNPs and black solid squares are low frequency SNPs. The black line indicates where MACH 
Rsq equals dosage Rsq. The magenta line is the regression line. The vertical dashed line is the filtering rule that 
we used. Imputation accuracy (table 4, fig. 2) was computed as the average of dosage Rsq values shown in the 
Y-axis. Colors refer to the online version only.       



 Performance of Genotype Imputations 
Using Data from the 1KG Project  

Hum Hered 2012;73:18–25 25

 References 

  1 Hindorff LA, Sethupathy P, Junkins HA, Ra-
mos EM, Mehta JP, Collins FS, Manolio TA: 
Potential etiologic and functional implica-
tions of genome-wide association loci for hu-
man diseases and traits. Proc Natl Acad Sci 
USA 2009;   106:   9362–9367. 

  2 The International HapMap Consortium: A 
second generation human haplotype map of 
over 3.1 million SNPs. Nature 2007;   449:   851–
861. 

  3 Anderson CA, Pettersson FH, Barrett JC, 
Zhuang JJ, Ragoussis J, Cardon LR, Morris 
AP: Evaluating the effects of imputation on 
the power, coverage, and cost efficiency of 
genome-wide SNP platforms. Am J Hum 
Genet 2008;   83:   112–119. 

  4 Hao K, Chudin E, McElwee J, Schadt EE: Ac-
curacy of genome-wide imputation of un-
typed markers and impacts on statistical 
power for association studies. BMC Genet 
2009;   10:   27. 

  5 Spencer CCA, Su Z, Donnelly P, Marchini J: 
Designing genome-wide association studies: 
sample size, power, imputation, and the 
choice of genotyping chip. PLoS Genet 2009;  
 5:e1000477. 

  6 Marchini J, Howie B: Genotype imputation 
for genome-wide association studies. Nat 
Rev Genet 2010;   11:   499–511. 

  7 de Bakker PIW, Ferreira MAR, Jia X, Neale 
BM, Raychaudhuri S, Voight BF: Practical 
aspects of imputation-driven meta-analysis 
of genome-wide association studies. Hum 
Mol Genet 2008;   17:R122–R128. 

  8 Marchini J, Howie B, Myers S, McVean G, 
Donnelly P: A new multipoint method for 
genome-wide association studies by imputa-
tion of genotypes. Nat Genet 2007;   39:   906–
913. 

  9 Scott LJ, Mohlke KL, Bonnycastle LL, Willer 
CJ, Li Y, et al: A genome-wide association 
study of type 2 diabetes in Finns detects mul-
tiple susceptibility variants. Science 2007;  
 316:   1341–1345. 

 10 Li Y, Abecasis GR: MACH 1.0: rapid haplo-
type reconstruction and missing genotype 
inference. Am J Hum Genet 2006;S79:   2290. 

 11 Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR: 
MaCH: using sequence and genotype data to 
estimate haplotypes and unobserved geno-
types. Genetic Epidemiol 2010;   34:   816–834. 

 12 Servin B, Stephens M: Imputation-based 
analysis of association studies: candidate re-

gions and quantitative traits. PLoS Genet 
2007;   3:e114. 

 13 Browning SR, Browning BL: Rapid and ac-
curate haplotype phasing and missing-data 
inference for whole-genome association 
studies by use of localized haplotype cluster-
ing. Am J Hum Genet 2007;   81:   1084–1097. 

 14 Browning BL, Browning SR: A unified ap-
proach to genotype imputation and haplo-
type phase inference for large data sets of 
trios and unrelated individuals. Am J Hum 
Genet 2009;   84:   210–223. 

 15 The 1000 Genomes Project Consortium: A 
map of human genome variation from pop-
ulation-scale sequencing. Nature 2010;   467:  
 1061–1073. 

 16 Ellinghaus E, Ellinghaus D, Stuart PE, Nair 
RP, Debrus S, et al: Genome-wide associa-
tion study identifies a psoriasis susceptibility 
locus at TRAF3IP2. Nat Genet 2010;   42:   991–
995. 

 17 Sanna S, Pitzalis M, Zoledziewska M, Zara I, 
Sidore C, et al: Variants within the immuno-
regulatory CBLB gene are associated with 
multiple sclerosis. Nat Genet 2010;   42:   495–
497. 

 18 Liu JZ, Tozzi F, Waterworth DM, Pillai SG, 
Muglia P, et al: Wellcome Trust Case Control 
Consortium, Mooser V, Francks C, Marchini 
J: Meta-analysis and imputation refines the 
association of 15q25 with smoking quantity. 
Nat Genet 2010;   42:   436–440. 

 19 Browning SR: Missing data imputation and 
haplotype phase inference for genome-wide 
association studies. Hum Genet 2008;   124:  
 439–450. 

 20 Li Y, Byrnes AE, Li M: To identify associa-
tions with rare variants, just WHaIT: weight-
ed haplotype and imputation-based tests. 
Am J Hum Genet 2010;   87:   728–735. 

 21 Fridley BL, Jenkins G, Devo-Svendsen ME, 
Hebbring S, Freimuth R: Utilizing genotype 
imputation for the augmentation of sequence 
data. PLoS One 2010;   5:e11018. 

 22 Li Y, Sidore C, Kang HM, Boehnke M, Abe-
casis GR: Low-coverage sequencing: impli-
cations for design of complex trait associa-
tion studies. Genome Res 2011;   21:   940–951. 

 23 Bouchard C, Leon AS, Rao DC, Skinner JS, 
Wilmore JH, Gagnon J: The HERITAGE 
family study. Aims, design, and measure-
ment protocol. Med Sci Sports Exerc 1995;   27:  
 721–729. 

 24 Bouchard C, Sarzynski MA, Rice TK, Kraus 
WE, Church TS, Sung YJ, Rao DC, Rankinen 
T: Genomic predictors of maximal oxygen 
uptake response to standardized exercise 
training programs. J Appl Physiol 2011;   110:  
 1160–1170. 

 25 Pei YF, Li J, Zhang L, Papasian CJ, Deng HW: 
Analyses and comparison of accuracy of dif-
ferent genotype imputation methods. PLoS 
One 2008;   3:e3551. 

 26 Nothnagel M, Ellinghaus D, Schreiber S, 
Krawczak M, Franke A: A comprehensive 
evaluation of SNP genotype imputation. 
Hum Genet 2009;   125:   163–171. 

 27 Purcell S, Neale B, Todd-Brown K, Thomas 
L, Ferreira   MAR, Bender D, Maller J, Sklar P, 
de Bakker PIW, Daly MJ, Sham PC: PLINK: 
a tool set for whole-genome association and 
population-based linkage analyses. Am J 
Hum Genet 2007;   81:   559–575. 

 28 Huang L, Li Y, Singleton AB, Hardy JA, Abe-
casis   G, Rosenberg NA, Scheet P: Genotype-
imputation accuracy across worldwide hu-
man populations. Am J Hum Genet 2009;   84:  
 235–250. 

 29 Jostins L, Morley KI, Barrett JC: Imputation 
of low-frequency variants using the Hap-
Map3 benefits from large, diverse reference 
sets. Eur J Hum Genet 2011;   19:   662–666. 

 30 The International HapMap 3 Consortium: 
Integrating common and rare genetic varia-
tion in diverse human populations. Nature 
2010;   467:   52–58. 

 31 Le SQ, Durbin R: SNP detection and geno-
typing from low-coverage sequencing data 
on multiple diploid samples. Genome Res 
2011;   21:   952–960. 

 32 DePristo M, Banks E, Poplin R, Garimella K, 
Maguire J, Hartl C, Philippakis A, del Angel 
G, Rivas MA, Hanna M, McKenna A, Fennell 
T, Kernytsky A, Sivachenko A, Cibulskis K, 
Gabriel S, Altshuler D, Daly M: A framework 
for variation discovery and genotyping using 
next-generation DNA sequencing data. Nat 
Genet 2011;   43:   491–498. 

 33 McKenna A, Hanna M, Banks E, Sivachenko 
A, Cibulskis K, Kernytsky A, Garimella K, 
Altshuler D, Gabriel S, Daly M, DePris-
to MA: The Genome Analysis Toolkit: a
MapReduce framework for analyzing next-
generation DNA sequencing data. Genome 
Res 2010;   20:   1297–1303. 

  

Toolkit (GATK)  [33]  and BEAGLE  [13, 14] . Furthermore, 
the 1KG Project is still underway, and genotype accuracy 
will be further improved due to increased sample sizes 
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low-depth sequencing data. We expect that later versions 
will provide even better imputation performance.
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