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Performance of group testing algorithms
with constant tests-per-item

Oliver Johnson∗ Matthew Aldridge† Jonathan Scarlett‡

November 21, 2016

Abstract

We consider the nonadaptive group testing problem in the case that each item
appears in a constant number of tests, chosen uniformly at random with replacement,
so that the testing matrix has (almost) constant column weights. We analyse the
performance of simple and practical algorithms in a range of sparsity regimes, showing
that the performance is consistently improved in comparison with more standard
Bernoulli designs. In particular, using a constant-column weight design, the DD
algorithm is shown to outperform all possible algorithms for Bernoulli designs in a
broad range of sparsity regimes, and to beat the best-known theoretical guarantees
of existing practical algorithms in all sparsity regimes.

Keywords: algorithms, concentration-of-measure, group testing.
MSC: 60C05; 68W40

1 Introduction and notation

The group testing problem was introduced by Dorfman [12], as described in [13, Chapter
1.1]. While a large variety of problem setups have been considered, they all share common
features, and can be considered in a wider class of sparse inference problems which includes
compressed sensing [1]. Group testing has since been applied in a wide variety of contexts,
for example including biology [11, 18, 31, 36, 39], anomaly detection in networks [20, 25],
signal processing and data analysis [17, 19], and communications [8, 37, 40, 41], though
this list is very far from being exhaustive.
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In this paper, we prove rigorous performance bounds on algorithms for the nonadaptive
noiseless group testing problem. We consider a testing design in which each item is in a
fixed number of tests, and study practical algorithms for detecting the defective items.
We shall see that we can detect items with fewer tests compared to a more commonly-
considered design in which items are placed in tests independently at random.

Let us fix some notation. Suppose we have a large number of items N , of which K
are ‘defective’ in some sense. We assume that the defectives are rare, with K = o(N) as
N → ∞; moreover, for concreteness we follow [6, 34, 35] by taking K = Θ(N θ) for some
fixed parameter θ ∈ (0, 1). We follow the ‘combinatorial model’ and suppose that K, the
true set of defective items, is uniformly random from the

(
N
K

)
sets of this size.

We perform a sequence of tests to form an estimate K̂ of K, and study the tradeoff
between maximising the success probability P(suc) := P(K̂ = K) and minimising the
number of tests T . We could simply take T = N , and test each item one by one. However,
Dorfman’s key insight [12] is that since the problem is sparse (in the sense that K � N),
the outcomes of the tests are zero with high probability, so these tests are not optimally
informative. A better procedure considers a series of subsets (‘pools’) of items which
are tested together, where (in an idealized testing procedure) the outcome of each test is
positive if and only if it contains at least one defective item. More formally:

Definition 1.1. We store the testing pools in a (possibly random) binary matrix X ∈
{0, 1}T×N , where xti = 1 if test t includes item i and xti = 0 otherwise. The rows of X
correspond to tests, and the columns correspond to items. The outcomes of each test are
stored in a binary vector y = (yt) ∈ {0, 1}T , where a positive outcome yt = 1 occurs if and
only if xti = 1 for some i ∈ K.

We estimate the defective set by K̂ = K̂(X,y), and write

P(suc) =
1(
N
K

) ∑
|K|=K

P(K̂ = K),

where the probability is over the random test design X.

We have freedom to design the test matrix, and in this paper, we focus on the non-
adaptive case, where the entire matrix is fixed in advance of the tests. In the adaptive
case (where the members of each test are chosen using the outcomes of the previous tests),
Hwang’s Generalized Binary Splitting Algorithm [21] recovers the defective set K using
log2

(
N
K

)
+O(K) tests. This can be seen to be essentially optimal by a standard argument

based on Fano’s inequality (see for example [10]), a strengthened version of which (see [9])
implies that any algorithm using T tests has success probability bounded above by

P(suc) ≤ 2T(
N
K

) . (1)

This means that any algorithm with success probability P(suc) tending to 1 requires at
least

T = log2

(
N

K

)
∼ (1− θ)K log2N tests (2)
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(see [5, Lemma 25] for details of the asymptotic behaviour of the binomial coefficient).
This motivates the following definition [5] of the rate of an algorithm.

Definition 1.2. For any algorithm using T tests, we define the rate to be

log2

(
N
K

)
T

. (3)

Given a random matrix design, we say that R is an achievable rate if for any ε > 0, there
exists a group testing algorithm with rate at least R and success probability at least 1− ε
for N sufficiently large. We define the capacity of a design to be the supremum of the
achievable rates for that design.

Intuitively, one can think of R as being the number of bits of information learned per
test when the recovery is successful.

In this language, Hwang’s adaptive algorithm [21] has achievable rate R = 1 in the
regime K = Θ(N θ) (and is therefore optimal, since no algorithm can learn more than 1 bit
per test). It is an interesting question to consider whether there exists a matrix design and
an algorithm with achievable rate R = 1 in the nonadaptive case. Indeed, it appears to be
difficult even to design a class of matrices with non-zero achievable rate using combinatorial
constructions (see [13, 27] for reviews of the extensive literature on this subject, with key
early contributions coming from [14, 15, 28]). Hence, much recent work on nonadaptive
group testing has considered Bernoulli random designs,where each item appears in each test
independently with fixed probability; see for example [2, 3, 5, 7, 10, 34, 35]. In particular:

Theorem 1.3 ([2, 34]). The capacity for Bernoulli nonadaptive group testing with K =
Θ(N θ) defectives is

C(θ) = max
ν>0

min

{
νe−ν

ln 2

1− θ
θ

, h(e−ν)

}
, (4)

where h(t) = −t log2 t− (1− t) log2(1− t) is the binary entropy function. In particular, for
θ ≤ 1/3, the capacity of Bernoulli designs is 1.

The curve (4) is illustrated in Figure 1 below. For θ ≥ 1/2, the paper [5] showed that the
capacity (4) is achieved by a simple algorithm, which we refer to as DD (see Definition 3.3
for a description). However, for θ < 1/2, the algorithms known to achieve the capacity (4)
are based on maximising the likelihood or solving other difficult combinatorial problems,
and cannot be considered as practical in a computational sense – see Section 3.4 for more
detail. For example, we describe the SSS algorithm in Definition 3.4, which achieves the
capacity but is impractical for large values of N and K.

The structure of the remainder of the paper is as follows. In Section 2, we summarise the
main results of the paper, and provide simulation results to illustrate the performance of
various algorithms. In Section 3, we describe the main algorithms used and introduce some
key quantities that control their performance. In Section 4, we state some distributional
results (proved in the appendices) and deduce the main theorem of the paper.
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2 Main results

Our main result provides strict improvements on Theorem 1.3 in a broad range of sparsity
regimes, as well as strict improvements over existing practical algorithms in all scaling
regimes. To do this, we make use of the following class of test designs, following our initial
work in [6].

Definition 2.1 (Constant column weight designs). We define the constant-column weight
testing design via a testing matrix X in which L = νT/K entries of each column of are
selected uniformly at random with replacement and set to 1 for some parameter ν > 0,
with independence between columns. The remaining entries of X are set to 0.

We refer to these as ‘constant column weight’ designs despite the fact that some columns
will have weight slightly less than L. Since the weight of a column is the number of tests
an item is in, these designs are also known as ‘constant tests-per-item’.

In [6], we showed that ν = ln 2 is optimal with respect to all of the bounds derived
therein, and we will also use this value throughout the present paper. This choice ensures
that each test is equally likely to be positive or negative, and can thus be thought of as
being maximally informative.

In our previous paper [6], we proved the two following results.

Theorem 2.2. Using a constant column weight design in the regime where there are K =
Θ(N θ) defectives:

1. ([6, Theorem 1]) The COMP algorithm of Chan et al. [10] (see Section 3.1) has
achievable rate ln 2 (1− θ) (improving by 30.7% on the rate of (1− θ)/(e ln 2) proved
by [5, Theorem 11] for COMP with Bernoulli designs).

2. ([6, Theorem 2]) Regardless of the choice of ν > 0, no algorithm can have a rate
greater than

min

{
1, ln 2

1− θ
θ

}
.

For completeness, we provide a proof of Theorem 2.2 in Section 4, albeit with ν = ln 2
in the second statement as opposed to a general choice.

The main result of this paper is the following theorem, which is proved in the same
section.

Theorem 2.3. For constant column weight designs in the regime where there are K =
Θ(N θ) defectives, the DD algorithm has success probability tending to 1 if

T ≥ (1 + ε)
1

(ln 2)2
max{θ, 1− θ}K lnN,

and hence has achievable rate

R = ln 2 min

{
1,

1− θ
θ

}
.
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Figure 1: Rates and bounds for group testing algorithms with Bernoulli designs and con-
stant column weight designs. In red, we plot the rate bounds for constant column weight
designs from Theorems 2.2 and 2.3. In blue, we plot the rate bounds for Bernoulli designs
from Theorem 1.3 and [5]. The green line represents the bound arising from (1).

We illustrate the above bounds in Figure 1, with the various rates for constant column
weight designs marked in red, and corresponding rates for Bernoulli designs marked in blue.
Note that in particular, a comparison of Theorems 1.3, 2.2 and 2.3 shows the following.

Remark 2.4. 1. DD with constant column weight designs offers the best rate currently
proved for ‘practical’ algorithms for all θ.

2. DD with constant column weight designs outperforms any possible algorithm (prac-
tical or not) for Bernoulli designs, for all values of θ > 1/(1 + e(ln 2)2) ≈ 0.434.

3. If we use a constant column weight design, the DD algorithm gives the optimal
performance for θ ≥ 1/2.

To complement our lower bound, in Theorem 4.7, we provide an upper bound for the
rate of DD with constant column weight designs. Although our upper bound does not
reveal whether the lower bound is tight at low values of θ, it does reveal that some amount
of gap to the rate of 1 is unavoidable.

Although the rates are asymptotic as N →∞, in Figure 2 we illustrate the performance
of these algorithms in a finite blocklength sense, in an illustrative sparse case (N = 500,
K = 10) and a denser case (N = 2000, K = 100). For the sparse case, in addition to
plotting performance of COMP and DD, we plot the performance of the SSS algorithm,
which (see [3, Corollary 4]) achieves the capacity bounds of Theorem 1.3, though is not
practical for larger problems. Because of this issue of practicality, we do not consider SSS
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for the denser case. Instead, we plot the performance of a related algorithm called SCOMP,
which is described in [5], so we omit a description in this paper for the sake of brevity.
Essentially, it amouts to performing DD followed by greedy refinements.

Constant column weight designs are not new in the literature, as we briefly describe
below. Our key contribution is a rigorous analysis of such designs in the regimeK = Θ(N θ),
including in particular the first such analysis for the DD algorithm, and the first results to
attain the benefits described in Remark 2.4.

At an intuitive level, we believe the improvement over Bernoulli designs arises due to
the fact that the latter can result in some items appearing in considerably fewer tests than
average, meaning that it is harder for any algorithm to infer their defectivity status.

Related work:

Kautz and Singleton [22] observed that good group testing peformance is obtained by
matrices corresponding to constant weight codes with a high minimum distance. However,
ensuring the minimum distance is sufficiently large is not easy in practice. Mézard et al.
[30] considered randomized designs with both fixed row and column weights, and with
fixed column weights only. They suggested that such designs can beat Bernoulli designs;
however, their ‘short-loops’ assumption is shown to be rigorous only for θ > 5/6, and in
fact fails for small θ. Chan et al. [10] considered constant row-weight designs and find no
improvement over Bernoulli designs. Wadayama [38] analysed constant row and column
weight designs in the K = cN regime, and demonstrates close-to-optimal asymptotic
performance for certain ratios of parameter sizes. D’yachkov et al. [16] used exactly-
constant column weights, and setting their list size to one corresponds to insisting that
COMP succeeds. However they only considered the case that K = O(1); in the limit as
K gets large, the rate ln 2 obtained [16, Claim 2] matches the rate for COMP given in
Theorem 2.2.1 as θ → 0.

3 Description of decoding algorithms used

Here we describe the COMP, DD and SSS algorithms, as introduced in [10] and [5], and
discuss the conditions under which they succeed. We make one further key definition.

Definition 3.1. Given an item i and a set of items L, we say that i is masked by L if
every test which includes i also includes at least one member of L.

3.1 COMP algorithm

The COMP algorithm [10] is based on a simple inference: Any negative test only contains
non-defective items, so any item in a negative test can be marked as non-defective. Given
enough negative tests, we might hope to correctly infer every member of Kc in this way.
Formally speaking, the COMP algorithm proceeds as follows:
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Figure 2: Empirical performance (based on 1000 experiments) of various algorithms for
both constant column weight and Bernoulli designs, in the cases N = 500, K = 10 and
N = 2000, K = 100.
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Definition 3.2 (COMP algorithm, [10]).

1. Mark each item which appears in a negative test as non-defective, and refer to every
other item as a Possible Defective (PD) – we write PD for the set of such items.

2. Mark every item in PD as defective.

Clearly, the first step will not make any mistakes (every item marked as non-defective
will indeed be non-defective), so errors will only occur in the second step. As a result

COMP will always estimate K by a set K̂COMP with K ⊆ K̂COMP.
As in [5], a particular quantity of interest is G := |PD \ K| = |PD| −K, the number

of non-defective items masked by the defective set K; that is, non-defective items which
do not appear in any negative test. It is clear that COMP succeeds (recovers the defective
set exactly) if and only if G = 0, so that

PCOMP(suc) = P(G = 0). (5)

We use this in the proof of Theorem 2.2.1 in Section 4.

3.2 DD algorithm

The DD (‘Definite Defectives’) algorithm builds on the first step of COMP, as follows:

Definition 3.3 (DD algorithm [5]).

1. Mark each item which appears in a negative test as non-defective, and refer to every
other item as a Possible Defective (PD).

2. For each positive test which contains a single Possible Defective item, mark that item
as defective.

3. Mark all remaining items as non-defective.

Again, the first step will not make any mistakes, and since every positive test must
contain at least one defective item, the second step is also certainly correct. Hence, any
errors due to DD come from marking a true defective as non-defective in the third step,
meaning that the estimate K̂DD ⊆ K. The choice to mark all remaining items as non-
defective is motivated by the sparsity of the problem, since a priori an item is much less
likely to be defective than non-defective.

We analyse DD rigorously in Section 4, using the following notation, used in [5] and
illustrated in Figure 3. For each i ∈ K, we write:

• Mi for the number of tests containing defective item i and no other defective;

• Li for the number of tests containing defective item i and no other possible defective
item (no other member of PD).

8



In the terminology of Definition 3.1, we see that DD succeeds if and only if no defective
item i ∈ K is masked by PD \{i}. Further, since item i is masked by PD \{i} if and only
if Li = 0, we can write:

PDD(suc) = 1− P

(⋃
i∈K

{Li 6= 0}

)
. (6)

For a given defective item i ∈ K, we write K(i) = K \ {i} for the set of defectives with
i removed. For a given set M, we write W (M) for the total number of tests containing at
least one item fromM. The random variable WK\{i} (the total number of tests containing
at least one item in K(i)), henceforth denoted by W (K\i), will be of particular interest.

To understand the distributions of the quantities illustrated in Figure 3, as in [6], it is
helpful to think of the process by which elements of the columns are sampled as a coupon
collector problem, where each coupon corresponds to one of the T tests. Recall also that
that distinct columns of X are sampled independently. Hence, for a single item, W ({i}) is
the number of distinct coupons selected when L coupons are chosen uniformly at random
from a population of T coupons. In general, for a set M of size M , the independence of
distinct columns means that W (M) is the number of distinct coupons chosen when choosing
ML coupons uniformly at random from a population of T coupons.

Hence, as described in more detail in Section 4, we can first give a concentration
of measure result for W (K\i) (see Lemma 4.1), then characterize the distribution of Mi

given W (K\i) (see Proposition 4.2). Following this, we can state the distribution of G
conditioned on W (K) = W (K\i) + Mi (see Lemma 4.3), and finally deduce the distribution
of Li conditioned on G and W (K) (see Lemma 4.4). This allows us to deduce bounds on
(6).

3.3 SSS algorithm

We describe one more algorithm, which we refer to as SSS, in terminology taken from [5].

Definition 3.4 (SSS algorithm [5]). Say that a putative defective set J is ‘satisfying’ if:

1. No negative test contains a member of J .

2. Every positive test contains at least one member of J .

The SSS algorithm simply finds the Smallest Satisfying Set (breaking ties at random), and

takes that as an estimate K̂SSS.

Note that the true defective set K is certainly a satisfying set, hence SSS is guaranteed
to return a set of no larger size (that is |K̂SSS| ≤ |K|). However, it may well not be the

case that K̂SSS ⊆ K. We can, however, see a possible failure event for SSS: If a defective
item i ∈ K is masked by the other defective items K \ {i} (in the sense of Definition 3.1)
then K \ {i} will be a satisfying set in the sense above, so SSS is certain to fail.
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item i

6

set K
G items in PD \ K

1 0 0 0 . . . 1
0 1 0 0 . . . 0

...
0 0 0 1 . . . 0

...

...
0 1 0 1 . . . 0
0 0 0 0 . . . 1
0 0 0 0 . . . 1

...

...
0 0 0 0 . . . 1
0 0 0 0 . . . 0
0 0 0 0 . . . 0

...

...
0 0 0 0 . . . 0

0
0
...
...
0

0
0
...
...
0

0
0
...
...
0

0
0
...
...
0

0
0
...
...
0

0
1
...
...
1

0
0
...
...
1

0
1
...
...
0

6 6 6 6

W (K\i) tests

Mi tests

negative tests

Li = 1�

Figure 3: Illustration of random variables Mi, Li, W
(K\i) and G. For simplicity of presenta-

tion, and without loss of generality, we illustrate the case where K = {1, . . . , K} and i = K.
We present a version of X with rows sorted so that the tests containing no defectives appear
at the bottom, and the W (K\i) tests containing at least one item of K(i) = {1, . . . , K − 1}
appear at the top.
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Hence, writing Ai for the event that item i is masked by K \ {i}, we can use the
Bonferroni inequality to obtain a lower bound on the SSS error probability PSSS(err) of the
form

PSSS(err) ≥ P

(⋃
i∈K

Ai

)
≥
∑
i∈K

P(Ai)−
1

2

∑
i 6=j∈K

P (Ai ∩ Aj) . (7)

This serves as a starting point for upper bounding the rate of the SSS algorithm.

3.4 Note on practical feasibility

We refer to COMP and DD as practical algorithms, since they can be implemented with
low run-time. For example, COMP simply requires us to take one pass through the test
matrix and outcomes, requiring no more than O(N) storage beyond the matrix itself, and
O(TN) runtime. Similarly, DD builds on COMP, requiring two passes through the test
matrix and outcomes and can be performed with the same amount of storage and runtime.

In contrast, we can think of SSS as a 0-1 linear programming problem, meaning that it
is unlikely to be practical to run in practice for large problems. However, we think of it as a
‘best possible’ algorithm (this is made more rigorous in [2]), to deduce overall performance
bounds. Note that although the SSS algorithm may be considered to be infeasible in
practice, the paper [26] shows that a relaxation of the 0-1 linear programming problem to
the reals can give good performance.

Further, the decoding algorithms we consider here do not require exact, or even ap-
proximate, knowledge of K. This compares to the optimal maximum likelihood decoder
of [34], which requires the exact value of K. Note, however, that optimal choice of the
parameter ν = (ln 2)T/K in the design stage does require K.

4 Proofs of bounds on the rate

The ultimate goal of this section is to prove our achievable rate for the DD algorithm, but
along the way, we will also prove the COMP rate and the SSS upper bound, since they
will essentially come ‘for free’.

4.1 Concentration of W (M)

Recall that W (M) corresponds to total number of tests in which items fromM are placed.
The following lemma shows that this quantity is concentrated around its mean.

Lemma 4.1. When making LM = αT draws with replacement from a total of T coupons,
the total number of distinct coupons W (M) satisfies

P
(∣∣W (M) − (1− exp(−α))T

∣∣ ≥ εT
)
≤ 2 exp

(
−ε

2T

α

)
. (8)
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Proof. This result was stated as [6, Lemma 1]. The key insight is that the value of W (M)

changes by at most 1 when the value of any particular coupon is changed, so the result
follows using McDiarmid’s inequality [29].

4.2 Upper bound on SSS rate

For completeness, we give a proof of Theorem 2.2.2 (SSS rate) using the above concentration
result, albeit for ν = ln 2 instead of general ν > 0 in Definition 2.1 (the latter is proved
similarly).

Proof of Theorem 2.2.2. The upper bound of 1 is well-known for arbitrary test designs,
following for example from (1), so we choose T according to the other term, setting T =
γSSSθK lnN with γSSS = (1 − ε)/(ln 2)2. Hence, L = K ln 2/T = (1 − ε)θ lnN/ ln 2. The
key is to observe that Lemma 4.1 above shows that for M = K−2 or M = K−1, choosing
α = LM/T = ln 2M/K ∼ ln 2 reveals that W (M) is exponentially concentrated around
1/2.

We consider the two terms of the RHS of (7) separately. Fixing i, conditional on
W (K\i) = w, the event Ai occurs if each test that item i occurs in is contained in the w
‘already hit’ tests. Hence, for any c1 > 0, we can write

KP(Ai) = K
∑
w

P
(
Ai
∣∣ W (K\i) = w

)
P
(
W (K\i) = w

)
= K

∑
w

(w
T

)L
P
(
W (K\i) = w

)
≥ K

∑
w

(w
T

)L
P
(
W (K\i) = w

)
I(w ≥ Tc1)

≥ KcL1 P
(
W (K\i) ≥ Tc1

)
(9)

Similarly, for any i 6= j, we can write the following for any c2 > 0:(
K

2

)
P(Ai ∩ Aj)

=

(
K

2

)∑
w

P
(
Ai ∩ Aj

∣∣ W (K\i,j) = w
)
P
(
W (K\i,j) = w

)
=

(
K

2

)∑
w

(w
T

)2L
P
(
W (K\i,j) = w

)
≤
(
K

2

)∑
w

(w
T

)2L
P
(
W (K\i,j) = w

)
I(w ≤ Tc2) +

(
K

2

)
P
(
W (K\i,j) ≥ Tc2

)
≤ K2

2
c2L2 P

(
W (K\i,j) ≤ Tc2

)
+

(
K

2

)
P
(
W (K\i,j) ≥ Tc2

)
. (10)
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Combining (9) and (10), we obtain that (7) is at least

KcL1 P
(
W (K\i) ≥ Tc1

)(
1− Kc2L2 P(W (K\i,j) ≤ Tc2)

cL1 P(W (K\i) ≥ Tc1)

)
−
(
K

2

)
P
(
W (K\i,j) ≥ Tc2

)
,

which we can bound away from zero using Lemma 4.1 by taking c1 ∼ 21/(θ(1−ε)) and taking
c2 = 1/2(1 + ε′) for ε′ sufficiently small.

4.3 Conditional distributions of Mi and G

For any integers (n, k), define {
n
k

}
:=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn (11)

for the Stirling number of the second kind (see for example [24, Eq. (8)]).
Recall that Mi denotes the number of tests containing defective item i but no other de-

fectives items. The following proposition gives the distribution of this quantity conditioned
on W (K\i), the number of tests covered by those other defectives.

Proposition 4.2.

1. We can write the distribution of Mi | W (K\i) explicitly as

P
(
Mi = j | W (K\i) = w

)
=

(T − w)(j)
TL

L−j∑
s=0

(
L

s

){
L− s
j

}
ws, (12)

where (T − w)(j) := (T − w)!/(T − w − j)! denotes the falling factorial.

2. There exists an explicit constant C := C(L,w) = exp(L2/(4w)) such that

P
(
Mi = j | W (K\i) = w

)
≤ C

(
L

j

)(
1− w

T

)j (w
T

)L−j
,

that is, a multiple of the Bin(L, 1− w/T ) mass function.

Proof. See Appendix A.

Next, we observe that (see Figure 3) we can write W (K) = W (K\i) +Mi. Recall that G
is the number of non-defectives masked by the defective set K, and observe that since an
item is only counted in G if each of the tests appearing in the corresponding column are
in the set of size W (K), we have the following.

Lemma 4.3. Conditional on W (K) = x we have

G |
{
W (K) = x

}
∼ Bin

(
N −K, (x/T )L

)
.

13



4.4 Proof of COMP achievable rate

For completeness, we give a proof of Theorem 2.2.1 using the above results.

Proof of Theorem 2.2.1. We consider the regime where T = γCOMPK lnN , where γCOMP =
(1 + ε)/(ln 2)2. As mentioned in (6), COMP succeeds if and only if G = 0. Using Lemma
4.3, we know that

P(G = 0 | W (K) = x) =

(
1−

( x
T

)L)N−K
,

which is a decreasing function in x. Hence, given δ, for all x ≤ (1/2 + δ)T , we have

P(G = 0 | W (K) = x) ≥ P
(
G = 0

∣∣ W (K) = (1/2 + δ)T
)

=
(

1−
(
1/2 + δ

)L)N−K
.

Next, using the fact that

L = T ln 2/K = γCOMP ln 2 lnN = (1 + ε) lnN/ ln 2,

we find that for any ε, we can choose δ sufficiently small that (1/2 + δ)L ≤ N−(1+ε/2), and
hence

P(G = 0 | W (K) = x) ≥
(
1−N−(1+ε/2)

)N−K
.

We deduce that the success probability of COMP satisfies

PCOMP(suc) =
∑
x

P
(
W (K) = x

)
P
(
G = 0

∣∣ W (K) = x
)

≥
∑

x≤(1/2+δ)T

P
(
W (K) = x

) (
1−N−(1+ε/2)

)N−K
=
(
1−N−(1+ε/2)

)N−K [
1− P

(
W (K) ≥ (1/2 + δ)T

)]
,

which is seen to tend to 1 by taking α = ln 2 in Lemma 4.1 (since we collect a total of
KL = T ln 2 coupons).

4.5 Conditional distribution of Li

Recalling that Li denotes the number of tests containing defective item i and no other
“possible defective” (item from PD), we have the following.

Lemma 4.4. For any g, w, j, we have

P
(
Li = 0

∣∣ G = g,W (K\i) = w,Mi = j
)

= φj

(
1

w + j
, gL

)
,

where

φj(s, V ) =

j∑
`=0

(−1)`
(
j

`

)
(1− `s)V . (13)

14



Proof. See Appendix A.

Note that the function φj(s, V ) also appeared in [5]; however, our analysis here requires
using it very differently. In particular, we make use of the following properties, the proofs
of which are deferred to Appendix B.

Lemma 4.5. For all values of j, s and V , the function φj(s, V ) introduced in (13) has the
properties that:

1. φj(s, V ) is increasing in s,

2. φj(s, V ) is increasing in V ,

3. φj(s, V ) is decreasing in j.

Proposition 4.6. If sV j ≤ 2, then

φj(s, V ) ≤ V !sj

(V − j)!
≤ exp (j ln(V s)) .

4.6 Proof of the DD achievable rate

We put the above results together to prove Theorem 2.3, giving a lower bound on the
achievable rate of the DD algorithm. As in [5], the key is to express the success probability
PDD(suc) in terms of an expectation of the function φ, and to show that this expectation
is concentrated in a regime where φ takes favourable values.

Proof of Theorem 2.3. Recall that we consider the regime where T = γDDmK lnN , with
γDD = (1 + ε)/(ln 2)2 and m = max(θ, 1 − θ). It is useful to know that in this regime, L
satisfies L ln 2 = T (ln 2)2/K = m(1 + ε) lnN .

As in [5], writing PDD(suc) for the success probability of DD and applying the union
bound to (6) we know that

PDD(suc) = 1− P

(⋃
i∈K

{Li = 0}

)
≥ 1−

∑
i∈K

P(Li = 0), (14)

so that PDD(suc) will tend to 1 (as required) if, for a particular defective item i ∈ K,

KP(Li = 0)→ 0, (15)

since symmetry means that P(Li = 0) is equal for each i ∈ K. The stated value for the
rate then follows on substituting the value of T and (2) into (3).
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In order to characterize P(Li = 0), we define A = {w− ≤ W (K\i) ≤ w+} and B = {G ≤
g∗}, for some w−, w+ and g∗ to be chosen shortly. Using Lemma 4.4, we can write

P(Li = 0)

=
∑
w,j,g

P
(
W (K\i) = w,Mi = j, G = g

)(
I(A ∩B) + I ((A ∩B)c)

)
φj

(
1

w + j
, gL

)

≤
∑

w∈(w−,w+)

P
(
W (K\i) = w

) L∑
j=0

P
(
Mi = j

∣∣ W (K\i) = w
)
φj(1/w−, g

∗L) + P
(
(A ∩B)c

)
(16)

=
∑

w∈(w−,w+)

P
(
W (K\i) = w

) L∑
j=0

P
(
Mi = j

∣∣ W (K\i) = w
)
φj(1/w−, g

∗L)

+ P(Ac) + P(A ∩Bc)

≤
∑

w∈(w−,w+)

P
(
W (K\i) = w

) L∑
j=0

P
(
Mi = j

∣∣ W (K\i) = w
)
φj(1/w−, g

∗L)

+ P
(
W (K\i) /∈ (w−, w+)

)
+ P

(
G > g∗

∣∣ W (K\i) ∈ (w−, w+)
)
, (17)

where:

• (16) follows because, by Lemma 4.5, on the event {A∩B} the bound φj(1/w, gL) ≤
φj(1/w−, g

∗L) holds and everywhere else φ ≤ 1 (since φ represents a probability);

• (17) folllows since P(A ∩Bc) = P(Bc | A)P(A) ≤ P(Bc | A).

We consider the terms of (17) separately, taking w− = T (1 − δ)/2, w+ = T (1 + δ)/2,
g∗ = N(1/2 + δ)L, where δ = (ε ln 2)/4(1 + ε).

1. The first term of (17) can be bounded as follows. Combining L = ln 2T/K and
w− = T (1−δ)/2 gives L/w− = 2 ln 2/(K(1−δ)), and recalling that g∗ = N(1/2+δ)L

and m = max(θ, 1− θ), it follows that

β := ln

(
g∗L

w−

)
= (1− θ) lnN + L ln(1/2 + δ) + ln

(
2 ln 2

1− δ

)
≤ m

(
1 + (1 + ε)

(
− 1 +

2δ

ln 2

))
lnN + ln

(
2 ln 2

1− δ

)
≤ m

(
− ε

2

)
lnN + ln

(
2 ln 2

1− δ

)
, (18)

where the second line follows by combining L = m(1 + ε) lnN/ ln 2 and ln(1/2 + δ) ≤
− ln 2 + 2δ, and the third line follows since 1 + (1 + ε) (−1 + 2δ/ ln 2) ≤ −ε/2 under
the above choice δ = (ε ln 2)/4(1 + ε).
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We claim that (18) implies jg∗L/w− ≤ 2 for all j ≤ L. Indeed, we have T =
Θ(K logN) and L = Θ(T/K), so that L = Θ(logN), whereas (18) implies that
g∗L/w− decays to zero strictly faster than 1/ logN . This implies that

φj(1/w−, g
∗L) ≤ exp

(
j ln

(g∗L
w−

))
,

since the conditions of Proposition 4.6 are satisfied under these arguments.

Writing φ(j) = φj(1/w−, g
∗L) (which is decreasing in j by Lemma 4.5.3), we can

bound K times the inner sum of (17) using (18), as follows:

K
L∑
j=0

P
(
Mk = j

∣∣ W (K\i) = w
)
φ(j)

≤ KC(L,w)
L∑
j=0

P
(
Bin(L, 1− w/T ) = j

)
φ(j) (19)

= KC(L,w)
L∑
j=0

P
(
Bin(L, 1− w+/T ) = j

)( P(Bin(L, 1− w/T ) = j)

P(Bin(L, 1− w+/T ) = j)

)
φ(j)

(20)

≤ KC(L,w)
L∑
j=0

P
(
Bin(L, 1− w+/T ) = j

)
φ(j) (21)

≤ KC(L,w−)

(
w+

T
+
T − w+

T
exp(β)

)L
(22)

= C(L,w−)
K

2L
(
1 + δ + exp(β)(1− δ)

)L
(23)

≤ C(L,w−) c exp (−θε lnN) exp
(
L(δ + exp(β)(1− δ))

)
(24)

≤ C(L,w−) c exp

((
− θε+

m(1 + ε)

ln 2

(
δ + exp(β)(1− δ)

))
lnN

)
. (25)

Here:

• (19) follows from the second part of Proposition 4.2.

• (21) uses the following argument: The bracketed term in (20) is easily verified
to be increasing in j by substituting the Binomial mass function and noting 1−
w/T ≥ 1−w+/T , and we already know from Lemma 4.5 that φ(j) is decreasing.
Hence, (20) is the expectation of the product of an increasing and decreasing
function, and is therefore bounded above by the product of the expectations of
those functions. (This uses ‘Chebyshev’s other inequality’ – see [23, eq. (1.7)]).
In fact, [23, eq. (1.7)] concerns E[f(X)g(X)] for two increasing functions, but
we can transform this to E[f(X)h(X)] for decreasing h by simply defining h(·) =
L− g(·).)
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• (22) follows by upper bounding C(L,w) ≤ C(L,w−) and φ(j) ≤ ejβ (as estab-
lished above), and then evaluating the summation explicitly.

• (23) follows by substituting w+ = T (1 + δ)/2.

• (24) follows from 1 + ζ ≤ eζ , along with the fact that

K

2L
exp ((θ −m(1 + ε)) lnN) ≤ c exp(−θε lnN)

by L = m(1 + ε) lnN/ ln 2 and K = Θ(N θ) (and hence K ≤ cN θ for some
c = Θ(1)).

• (25) follows by again using L = m(1 + ε) lnN/ ln 2.

We conclude that (25) acts as an upper bound on K times the first term of (17).
Overall (25) tends to zero for δ sufficiently small, since C(L,w−) = exp(L2/(4w−))
tends to 1 in this regime.

2. The second term of (17) decays to zero exponentially fast in N , using Lemma 4.1. In
this case, we make (K − 1)L draws with replacement, so that α = (K − 1) ln 2/K →
ln 2, meaning that we can take ε = δ/3 in Lemma 4.1 to obtain

lim sup
N→∞

K P(W (K\i) /∈ (w−, w+)) ≤ lim sup
N→∞

K P
(∣∣W (K\i) − (1− exp(−α))T

∣∣ ≥ εT
)

≤ 2 lim sup
N→∞

K exp

(
−ε

2T

α

)
= 2c lim sup

N→∞
exp

(
lnN

(
θ − ε2γDDmK

α

))
,

since T = γDDmK lnN and K = Θ(N θ) (and hence K ≤ cN θ for some c = Θ(1)).
We conclude that this term tends to zero, since the exponent behaves as −K lnN .

3. To control the third term in (17), observe that if W (K\i) ≤ w+, then

W (K)

T
≤ 1 + δ

2
+
L

T
=

1 + δ

2
+

ln 2

K
≤ 1

2
+

3δ

4
,

where the first inequality holds since W (K) ≤ W (K\i) + L and w+ = T (1 + δ)/2, the
equality holds since L = ln 2T/K, and the final inequality holds for K sufficiently
large. Hence, and defining p = (1/2 + 3δ/4)L, Lemma 4.3 gives that

P
(
G > g∗ | W (K\i) ∈ (w−, w+)

)
≤ P

(
Bin(N, p) > g∗

)
≤ exp

(
− (g∗)2

2(Np+ g∗/3)

)
(26)

= exp

(
−N (1/2 + δ)2L

2
(
(1/2 + 3δ/4)L + (1/2 + δ)L/3

))

= exp

(
−N (1/2 + δ)L

2(1/3 + o(1))

)
, (27)
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where the second line follows from Bernstein’s inequality [?, Eq. (2.10)], the third
line follows from p = (1/2 + 3δ/4)L and g∗ = N(1/2 + δ)L, and the final line follows
since the ratio of (1/2 + 3δ/4)L to (1/2 + δ)L tends to zero as N → ∞ (and hence
L→∞, since L = Θ(logN)).

Finally, since L = m(1 + ε) logN/ log 2, we find that (1/2 + δ)L behaves as N c for
some c that can be made arbitrarily close to m = max(θ, 1 − θ) by choosing δ and
ε sufficiently small. By definition, m < 1, and the bound in (27) is exponential in
N1−c, yielding the desired result.

4.7 Upper bound on DD rate

The following theorem provides an upper bound on the rate of DD with constant column
weight designs.

Theorem 4.7. The maximum achievable rate of DD with a constant column weight design
and K = Θ(N θ) defectives is upper bounded by

R ≤ max
ν>0

min

{
e−ν(1 + ν)h

( 1

1 + ν

)
, −ν log(1− e−ν)

1− θ
θ

}
. (28)

This bound is illustrated in Figure 4.

Remark 4.8. More simply, and only very slightly worse, we have

R ≤ min

{
0.839, ln 2

1− θ
θ

}
. (29)

We get (29) from (28) by optimizing the first term (numerically) at ν ≈ 0.563, and opti-
mizing the second term (by differentiating) at ν = ln 2.

The message here is that while is it is unclear whether the low-sparsity rates of DD
with constant column weight designs can be improved via different analysis techniques, we
know that some amount of gap to the counting bound is unavoidable. More specifically,
while we don’t know the maximum achievable rate of DD for θ < 1/2, (29) shows the rate
is always below 0.839, so we cannot achieve the counting bound of 1. For the fixed choice
ν = ln 2, one can slightly tighten this upper bound to 0.826.

Proof. The second term in (28) is the algorithm-independent converse of [6] with ν unop-
timised. (Specialising to ν = ln 2 gives the bound of [6] and Theorem 2.2 part 2 of this
paper, and is the second term in the simpler form (29).) It remains to prove the first term,
for fixed ν. Then optimising over ν gives the result.

We follow a similar proof for the Bernoulli case in [4]. The idea is that the group testing
rate is bounded by the entropy rate of the outcomes, R ≤ H(Y)/T . A simple bound would
be to write H(Y) ≤

∑T
t=1H(Yt) and note that H(Yt) ≤ 1, to get the counting bound.

However, a key point is that DD makes no use of tests containing two or more defectives
– these necessarily have two or more Possible Defectives, so cannot be used to ‘convert’ a
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Figure 4: Achievable rates and upper bounds for the DD algorithm with Bernoulli and
constant column weight designs. The Bernoulli upper bound is from [4], the Bernoulli
achievability is from [5], the constant column weight upper bound is Theorem 4.7, and the
constant column weight achievability is Theorem 2.3.

possible defective to a definite defective – so we can bound the group testing rate by the
entropy rate of the outcomes with only zero or one defectives.

Write π0, π1, π2+ for the probability a given test contains, respectively zero, one, and
at least two defectives, and write D0, D1, and D2+ for the number of such tests. Then

π0 =

(
1− 1

T

)KL
=

(
1− 1

T

)νT
→ e−ν ,

π1 = K

(
1−

(
1− 1

T

)L)(
1− 1

T

)(K−1)L

= K

(
1−

(
1− 1

T

)νT/K)(
1− 1

T

)νT (1−1/K)

∼ K
(
1− e−ν/K

)
e−ν

→ νe−ν

π2+ = 1− π0 − π1 → 1− e−ν − νe−ν .

Here, the expression for π1 comes about since we need a test to be ‘hit’ by one or more
of the L coupons corresponding to one of the K defectives, and missed by the (K − 1)L
coupons corresponding to the other K − 1 defectives. Further, by linearity of expectation,
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we have
ED0 = π0T, ED1 = π1T, ED2+ = π2+T,

and we have exponential concentration of D0, D1, D2+ around these means. (For D0 this
follows immediately form Lemma 4.1; the argument for D1 and D2+ is identical, so we do
not repeat it here.)

We fix ε > 0. The event that D2+ ≥ (1− e−ν − νe−ν − ε)T has probability at least 1− ε
for N (and hence T ) sufficiently large. Thus, by conditioning on this event, and recalling
the above discussion that DD only uses tests with 0 or 1 defectives, we have for sufficiently
large N that

R ≤ ε+
1

T
H
(
Y0,1 | D2+ ≥ (1− e−ν − νe−ν − ε)T

)
(30)

≤ 2ε+
1

T
H
(
Y0,1 | D2+ = (1− e−ν − νe−ν − ε)T

)
(31)

≤ 2ε+
1

T
(e−ν + νe−ν + ε)T h

(
π′0

π′0 + π′1

)
(32)

≤ 3ε+
1

T
(e−ν + νe−ν + ε)T h

(
e−ν

e−ν + νe−ν

)
(33)

= 3ε+ (e−ν + νe−ν + ε)h

(
1

1 + ν

)
,

where:

• In (30), Y0,1 is the vector of outcomes of the tests containing 0 or 1 defectives, and
H is the entropy function.

• In (31), we have used that the entropy of Y0,1 given D2+ is decreasing in D2+.
Moreover, we have added ε to account for the uncertainty in the length of Y0,1 itself,
which behaves as o(T ) since the length concentrates exponentially around its mean.

• In (32), we have used the inequality H(Y | ·) ≤
∑

iH(Yi | ·), and we have defined
π′0 and π′1 to be defined in the same way as π0 and π1 but conditioned on D2+ =
(1− e−ν − νe−ν − ε)T , as well as letting h denote the binary entropy function.

• In (33), we have used continuity of h to replace π′0/(π
′
0 + π′1) with its limit, at the

cost of an extra ε. Specifically, we have π′0 → π0 and π′1 → π1 as ε→ 0, and these in
turn have limiting values as characterized above.

Taking ε arbitrarily small gives the result.

5 Conclusions

We have shown the simple and practical DD algorithm outperforms the best possible group
testing algorithms (practical or not) for Bernoulli designs for a broad range of (dense)
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sparsity levels, as well as showing that it beats the best known performance bounds for
practical algorithms with Bernoulli designs at all sparsity levels.

We briefly mention four interesting open problems connected with this paper, which
we hope to address in future work:

1. It remains open to determine the capacity of constant column weight designs for
θ ≤ 1/2, in the spirit of Theorem 1.3. We conjecture that the value is given by
a similar expression, corresponding to the performance of a maximum likelihood
algorithm (or equivalently the SSS algorithm of [5]), and that Part 2 of Theorem 2.2
is sharp.

2. It is an important open problem to decide whether ‘practical’ algorithms can improve
on the performance of DD. For example, the SCOMP algorithm of [5] and approaches
based on linear programming both have a rate at least as large as DD [4]. However,
we do not know how to determine whether these algorithms or others can have a
higher rate than DD.

3. It remains of great interest to determine whether a capacity of 1 can be achieved for
values of θ beyond 1/3 using constant column weights or some other design, as well
as determining whether there exists an adaptivity gap: Does there exist θ < 1 such
that any non-adaptive design must have rate less than 1, despite the rate of 1 being
achievable when adaptivity is allowed?

4. A design of potential interest is that with both constant column weights (tests-per-
item) and constant row weights (items-per-test). On one hand, the nonrigorous work
of Mézard, Tarzia and Toninelli [30] suggests that for θ < 1 there may be no gain
over constant column weight designs considered here. On the other hand, in the light
of Wadayama’s work [38] on constant row-and-column designs in the regime where
K grows linearly with N , and the performance of LDPC codes, this does seem like
a natural place to look for improvements. Either way, the independence of columns
of X plays a significant role in the proofs of this paper, so new arguments would be
required to investigate this.
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A Properties of the distribution of Mi

A.1 Proof of Proposition 4.2

Proof of Proposition 4.2. The two parts of the proposition are proved as follows:
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1. We prove this part directly. Suppose that we pick L coupons from a population of
T coupons, w of which were previously chosen. Clearly, the probability of the event
that exactly s of the coupons picked were previously chosen is P(Bin(L,w/T ) = s).

Conditioning on this event, we calculate the probability that we pick L− s coupons
out of a population of T − w coupons and obtain exactly j distinct new coupons.
Clearly we require L−s ≥ j, or s ≤ L−j. By a standard counting argument, we can
choose these j coupons

(
T−w
j

)
ways, then

{
L−s
j

}
ways of placing the L − s coupons

into j unlabelled bins such that none of them are empty (see [24, P.204]), and finally
j! different labellings of the bins. Moreover, overall there are (T −w)L−s assignments
of the coupons.

Putting this all together and recalling the definition

(T − w)(j) =
(T − w)!

(T − w − j)!
=

(
T − w
j

)
j!,

we have

P
(
Mi = j

∣∣ W (K\i) = w
)

=

L−j∑
s=0

(
L

s

)(w
T

)s (
1− w

T

)L−s((T − w
j

){
L− s
j

}
j!

1

(T − w)L−s

)

=

L−j∑
s=0

(
L

s

)
ws

TL
(T − w)(j)

{
L− s
j

}
,

as required.

2. Relabelling t = L − j − s ≥ 0 and using the fact that
{
t+j
j

}
≤
(
t+j
j

)
jt (see [33]), we

obtain that the inner sum of (12) is:

L−j∑
t=0

(
L

L− j − t

){
t+ j
j

}
wL−j−t ≤ wL−j

L−j∑
t=0

(
L

L− j − t

)(
t+ j

j

)( j
w

)t
= wL−j

(
L

j

) L−j∑
t=0

(
L− j
t

)( j
w

)t
= wL−j

(
L

j

)(
1 +

j

w

)L−j
≤ wL−j

(
L

j

)
C,

where the third line follows by explicitly evaluating the summation, and the final line
holds with C = exp(L2/(4w)) since

(1 + j/w)L−j ≤ exp(j(L− j)/w) ≤ exp(L2/(4w)).
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This allows us to deduce that the whole of (12) satisfies

P
(
Mi = j

∣∣ W (K\i) = w
)
≤ C

(T − w)(j)
TL

wL−j
(
L

j

)
≤ C

(T − w)j

TL
wL−j

(
L

j

)
,

as required.

A.2 Proof of Lemma 4.4

Proof of Lemma 4.4. The case j = 0 is trivial, so we assume here that j ≥ 1.
We have conditioned on W (K\i) = w (i.e., there are w tests containing one or more item

from K \ i), Mi = j (i.e., there are j tests that contain item i and no member of K \ i),
and G = g (i.e., there are g items labelled as possibly defective but not in K).

By relabelling, without loss of generality, we can assume that tests 1, . . . , j are the ones
that contain defective item i and no other defective item. We write As for the event that
test s does not have any element of PD \ K in it.

If an item is in PD \ K, then the tests that it appears in are chosen uniformly among
those which already contain a defective. Hence, for any set S ⊆ {1, . . . , j} of size `, we
have P(

⋂
r∈S Ar) = (1 − `/(w + j))gL, since we require that the L coupons of each of g

items in PD \K take values in the set of positive tests (W (K\i) +Mi = w+ j in total), but
avoid the specified ` tests. Thus,

P
(
Li = 0

∣∣ G = g,W (K\i) = w,Mi = j
)

= P

(
j⋂
s=1

Acs

)

= 1− P

(
j⋃
s=1

As

)

=

j∑
`=0

(−1)`
∑

S⊆{1,...,j}
|S|=`

P

(⋂
j∈S

Aj

)

=

j∑
`=0

(−1)`
(
j

`

)(
1− `

w + j

)gL
, (34)

and the result follows.

B Properties of the φ function

B.1 Proof of Lemma 4.5

Proof of Lemma 4.5. Using the expression

φj(s, V ) =

j∑
`=0

(−1)`
(
j

`

)
(1− `s)V
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from (13), we deduce the results as follows:

1. As in [5, Lemma 32], a direct calculation using the fact that `
(
j
`

)
= j
(
j−1
`−1

)
gives

∂

∂s
φj(s, V ) = V j

j∑
`=1

(−1)`−1
(
j − 1

`− 1

)
(1− `s)V−1 (35)

= (1− s)V−1V j
j∑
`=1

(−1)`−1
(
j − 1

`− 1

)(
1− (`− 1)s

1− s

)V−1
= (1− s)V−1V jφj−1

(
s

1− s
, V − 1

)
(36)

≥ 0,

where the second line uses the fact that

(1− `s) = (1− s)
(

1− (`− 1)s

1− s

)
,

and the third line above follows by relabelling `′ = `− 1.

2. Again using `
(
j
`

)
= j
(
j−1
`−1

)
, we can write

φj(s, V )− φj(s, V − 1) =

j∑
`=0

(−1)`
(
j

l

)
(1− `s)V−1((1− `s)− 1)

= sj

j∑
`=1

(−1)`−1
(
j − 1

`− 1

)
(1− `s)V−1

=
s

V

∂

∂s
φj(s, V )

≥ 0,

where the third line follows from (35).

3. Finally, by expanding
(
j
`

)
=
(
j−1
`

)
+
(
j−1
`−1

)
, we can write

φj(s, V ) =

j∑
`=0

(−1)`
((

j − 1

`

)
+

(
j − 1

`− 1

))
(1− `s)V

= φj−1(s, V )− 1

(V + 1)j

∂

∂s
φj(s, V + 1)

≤ φj−1(s, V ),

again using (35).
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B.2 Proof of Proposition 4.6

We now prove Proposition 4.6, first giving two preliminary lemmas.

Lemma B.1. We can expand φj(s, V ) (as defined in (13)) as a polynomial in s of degree
V as follows:

φj(s, V ) =
sjV !

(V − j)!

V−j∑
u=0

(−1)usu
j!(V − j)!

(u+ j)!(V − u− j)!

{
j + u
j

}
, (37)

where we again write
{
j+u
j

}
for the Stirling number of the second kind.

Proof. We can expand

φj(s, V ) =

j∑
`=0

(−1)`
(
j

`

)
(1− `s)V

=

j∑
`=0

(−1)`
(
j

`

) V∑
t=0

(
V

t

)
(−s)t`t

=
V∑
t=0

(
V

t

)
(−s)t

(
j∑
`=0

(−1)`
(
j

`

)
`t

)
(38)

=
V∑
t=0

(
V

t

)
(−s)t

({
t
j

}
j!(−1)j

)

=

V−j∑
u=0

(
V

j + u

)
(−s)j+u

({
j + u
j

}
j!(−1)j

)
,

where the second line can be seen by directly evaluating the summation, the forth line
follows by recognising the bracketed inner sum in (38) as a multiple of the Stirling number
using (11), and the last line follows since by relabelling t = j + u and noting that

{
t
j

}
is

non-zero only when t ≥ j. The result now follows by writing(
V

j + u

)
=

V !

(V − u− j)!(u+ j)!
· (V − j)!

(V − j)!

and (−s)j+u(−1)j = (−1)usjsu.

We also use the following result from [32, Theorem 4.4].

Lemma B.2. The Stirling numbers of the second kind are log-concave in their first argu-
ment, that is for any j, u ∈ Z+:{

j + u+ 1
j

}2

≥
{
j + u
j

}{
j + u+ 2

j

}
.
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We deduce Proposition 4.6 as follows:

Proof of Proposition 4.6. Using Lemma B.1, we consider φj(s, V ) as a sum of the form

φj(s, V ) =
sjV !

(V − j)!

V−j∑
u=0

(−1)uau,

where

au = su
j!(V − j)!

(u+ j)!(V − u− j)!

{
j + u
j

}
.

By the alternating series test, if au is a monotonically decreasing sequence, we can bound∑V−j
u=0 (−1)uau ≤ a0 = 1, and the result follows. We can verify that au is indeed monotoni-

cally decreasing by considering the ratio:

au+1

au
= s

(
V − j − u
j + u+ 1

)({j+u+1
j

}{
j+u
j

} ) . (39)

The first bracketed term in (39) is trivially decreasing in u, and the second bracketed term
in (39) is decreasing in u by Lemma B.2. Hence, since the ratio (39) is decreasing in u,
it is sufficient to verify that a1/a0 ≤ 1. Since

{
j
j

}
= 1 and

{
j+1
j

}
= j(j + 1)/2, direct

substitution in (39) gives that a1/a0 = s(V − j)j/2, so it is sufficient to assume that
s(V − j)j/2 ≤ 1.
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