
ISSN 1392 – 124X INFORMATION TECHNOLOGY AND CONTROL, 2005, Vol.34, No.1

PERFORMANCE OF HYBRID GENETIC ALGORITHM

FOR THE GREY PATTERN PROBLEM♣

Alfonsas Misevičius, Dalius Rubliauskas

Kaunas University of Technology, Department of Practical Informatics

Studentų St. 50−416a, LT−51368 Kaunas, Lithuania

Abstract. Recently, genetic algorithms (GAs) are quite popular by solving combinatorial optimization problems.

In this paper, we discuss a hybrid genetic algorithm that uses a new kind of solution recombination operators − a so-

called multiple parent crossover. We examined this innovative crossover operator on the grey pattern problem, which

is as special case of the well-known problem, the quadratic assignment problem. The results obtained during the

experimentation with the set of 62 instances of the grey pattern problem demonstrate promising efficiency of the

multiple parent crossover. All the instances tested were solved to pseudo-optimality within surprisingly small

computation times.

Keywords: combinatorial optimization, heuristic algorithms, genetic algorithms, multiple parent crossover, grey

pattern problem.

Indroduction r, t = 1, ..., n1, s, u = 1, ..., n2. frstu may be thought of as

an electrical repulsion force between two electrons (to

be put on the grid points) i and j (i, j = 1, ..., n) located

in the positions k = π(i) and l = π(j) with the

coordinates (r, s) and (t, u). The ith (i ≤ m) element of

the permutation (solution) π, π(i) = n2(r − 1) + s, gives

the location in the rectangle (grid) where a black point

(case) has to be placed in. The coordinates of the

location π(i) are derived according to the formulas:

r = (π(i) − 1)/n2 + 1, s = ((π(i) − 1) mod n2) + 1,

i ≤ m. See [22] for more details. One can obtain plenty

of different instances of the grey pattern problem by

varying the choices of n1, n2 and m (see Section 3).

The grey pattern problem − firstly introduced by

Taillard [22] − is based on a rectangle (grid) of dimen-

sions n1 × n2 containing n = n1 × n2 points (square

cases) with m black points (cases) and n − m white

points. By juxtaposing many of these rectangles, one

gets a grey pattern (frame) of density m/n. The objec-

tive is to get the finest grey pattern, that is, the black

points have to be spread on the rectangle as regularly

as possible. The grey pattern problem is a special case

of a more general problem, the quadratic assignment

problem (QAP) [11] which is known to be NP-hard.

The QAP is formulated in the following way. Let two

matrices A = (aij)n×n and B = (bkl)n×n and the set Π of

all possible permutations of the integers from 1 to n be

given. The goal is to find a permutation π = (π(1),

π(2), ..., π(n)) ∈ Π that minimizes

.)(
1 1

)()(∑∑
= =

=
n

i

n

j

jiijbaz πππ (1)

Many heuristic approaches may be applied for

solving both the QAP and, at that time, its particular

case − the grey pattern problem. For serveys of the

heuristics for the QAP, see [2,3,22]. Genetic algo-

rithms and their hybrids have recently achieved great

success in solving the QAP [1,5,12,14,15]. In this

paper, we propose, a hybrid genetic algorithm (HGA)

which incorporates an innovative operator of the

recombination of solutions. The template of this algo-

rithm and the details of the new recombination

(crossover) operator are discussed in Section 2. The

computational results of HGA for the various grey

pattern problem instances are presented in Section 3.

Section 4 completes the paper with concluding re-

marks.

In the grey pattern problem (as formulated in [22]),

the matrix (aij)n×n is defined as aij = 1 for i, j =1, 2, ...,

m and aij = 0 otherwise. The matrix (bkl)n×n is defined

by the given values − the distances between every two

of n points. More precisely, =

, where

utnsrnkl bb +−+−=)1()1(22

rstuf

2
2

2
1

}1,0,1{,)()(

1
max

wnusvntr
f

wv
rstu +−++−

=
−∈

,

♣

 This work is supported by Lithuanian State Science and Studies Foundation.

15

A. Misevičius, D. Rubliauskas

2. Hybrid genetic algorithm using multiple

parent crossover for the grey pattern

problem

The original concepts of genetic algorithms (GAs)

were developed by Holland [10] in 1975. A genetic

algorithm operates with a group P (called a popula-

tion) of solutions s1, s2, ..., sPS = |P| (called individuals)

from S − the set of solutions of a combinatorial

optimization problem. Each individual (si) is asso-

ciated with some fitness, i.e. the objective function

value (f(si)). In minimization problems, the less the

objective function value, the more fitting the indivi-

dual, and the larger is the probability that the indivi-

dual will survive in evolution process. During many

generations, best fitting individuals tend to dominate,

while less fitting ones tend to die off.

The main components of GA are as follows [4, 8,

21]: a) a mechanism of selecting individuals from the

population; b) an operator for creation new solutions

by combining pairs of previous solutions (i.e. "pa-

rents") (this operator is known as a crossover); c) a

mutation procedure that generates new solutions by

random perturbations of the existing solutions; d) a

population replacement (culling) scheme. Our focus is

on the crossover operator, which is responsible for the

efficiency of the genetic search in a high degree. It

should be noted that the state-of-the-art genetic

algorithms are rather hybrid algorithms which incor-

porate additional heuristic components [19]. In such

algorithms there is used a post-crossover procedure

that play the role of a local improvement algorithm

applied to the solution produced by the crossover.

However, this fact does not imply that the perfor-

mance of recombination operators is not important

anymore. In this paper, we propose an improvement of

HGA which is exactly due to the new enhanced

crossover operator.

Dozens of crossover operators for the permutation-

based problems are known from the literature, for

example, cohesive crossover [5], cycle crossover [20],

distance preserving crossover [13], partially mapped

crossover [9], uniform (like) crossover [24], and many

others. As a rule, these crossovers share one principle

characteristic: the offspring is created by using two

parents. There are two aspects of these crossovers.

Firstly, they are distinguished for the conceptual simp-

licity and relatively high efficiency in solving such

problems, like the quadratic assignment problem or

the traveling salesman problem. On the other hand,

some shortcomings of the typical crossover operators

might be discovered. For example, some useful infor-

mation may be left out of account by using two pa-

rents only. The other negative aspect is related to the

fact that there exists a quite large degree of

randomness. This is especially true when parents are

selected in a pure random manner. In this case, it is

obvious that the parents will, most probably, produce a

"child" of rather poor quality. This kind of behaviour

may be viewed as one of the most pessimistic factors

related to the traditional crossover operators. In order

to try to overcome these difficulties, innovative cross-

over procedures should be proposed. In this paper, we

introduce such a non-ordinary crossover − we call it

"µ-crossover" (or shortly ΜX). This name can be

thought of as a derivative from the term "multiple

parent crossover", i.e. "crossover based on µ parents".

So, the heart of the new crossover is generation of the

offspring by means of several parents. The details of

this crossover are discussed below.

The main criterion for high quality ΜX operator is

the ability of inheritance of the features contained in

all the parents that take part in generation of the

offspring. Which way we can implement this crite-

rion? Our idea is to use so-called desirability measures

for the elements of a solution∗. Let µ be the number of

the solutions-parents (i.e. chromosomes in the context

of GA) to produce a solution-offspring. The solution is

organized as a certain permutation π = (π(1), π(2), ...,

π(n)), where π(i) denotes the position (also called a

locus) that the element i (also called a gene) is

assigned to. Then, the desirability information can be

maintained in a matrix D of size n × n, where the entry

dij is simply equal to the number of times that the

element, i.e. gene i is assigned to the position, i.e.

locus j = π(i) in the parents (i.e. the set that consists of

µ chromosomes). The following are the simple

properties of the entries of D: 1) 0 ≤ dij ≤ µ, i, j = 1, 2,

..., n; 2) ∑ , j = 1, 2, ..., n; 3) , i = 1,

2, ..., n. Naturally, the larger the value of d

µ=
=

n

i

ijd
1

µ=∑
=

n

j

ijd
1

ij, the more

is desirable that π(i) is set to j (π(i) = j) in the

offspring. Let ()ji =)(offsprPr π denote the probability

that the gene i will be assigned to the locus j in the

offspring πoffspr. We assume that this probability is

equal to the aspect ratio

parents

)(that ji

ofnumber

 timesof

 number =π
, that is,

()
µ
ijd

i

) 1=

)(Pr(offspr i =

πPr offspr

Pr
1

∑
=

n

j

π

ji ==)(

()(offspr = ji

. Then, it is obvious from the

properties (2), (3) that: 1) ∑ ,

j = 1, 2, ..., n (this means that, in the offspring’s

chromosome, every locus will necessary be associated

with one of the genes); 2) similarly,

, i = 1, 2, ..., n (this means that

every gene will be associated with one of the loci).

Taking the above facts into account, a natural way to

create a gene i (i.e. to obtain a locus for the current

gene i) is to choose such a number j (among those not

yet chosen) that

() 1Pr
1

=
=

n

j

)j

)(offspr =iπ

π is maximized. (Of

∗
 Note that this idea has some similarities with the

adaptive memory principle (see [7] for more details).

16

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

course, if the gene is assigned to the same locus in all

the parents, then this gene remains at the same locus

for the offspring.) This process is to be continued until

all the genes are assigned to their loci. The detailed

template of the resulting multiple parent crossover

procedure (in the Pascal-language like notation) is

presented Figure 1. The memory size and time comp-

lexity of this crossover is O(n2). An illustrative

example of ΜX is shown in Figure 2. It should be

noted that ΜX offers some degree of randomization.

Randomness is achieved by the existence of many

variants for choosing different sequences of the genes.

function ΜX(parents, µ); // µ-crossover //

 // input: parents − the structure, i.e. the matrix containing the parents, µ − the number of parents //

 // output: π − the resulting offspring (permutation) produced by µ parents // // output: π − the resulting offspring (permutation) produced by µ parents //

 D := 0; D := 0;

 for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1; for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1;

 I := {1, 2, ..., n}; J := ∅; I := {1, 2, ..., n}; J := ∅;
 repeat // continue until the offspring is created // repeat // continue until the offspring is created //

 choose i ∈ I; choose i ∈ I;

),(maxarg:)(
,...,2,1

jiDi

Jj
nj

∉
=

=),(maxarg:)(
,...,2,1

jiDi

Jj
nj

∉
=

=π ;

 // ties (i.e. situations when more than one j satisfying the given equation exist) are broken in a random

way //

 I := I \ { i }; J := J ∪ { π(i) }

 until I = ∅;

 return π
end.

Figure 1. Pseudo-code of the template of the µ-crossover

Current population (population size: 5)

Offspring

Desirability matrix

Suppose that the genes are picked up in the following order:

7, 3, 1, 8, 2, 6, 5, 4, 9.

Then, the offspring’s chromosome is created as follows:

{ } { } 9maxarg))7(Pr(maxarg)7(7 ==== j
jj

djππ ;

{ } 3))3(Pr(maxarg)3(
9

===
≠

j
j

ππ ;

{ } 4))1(Pr(maxarg)1(
9,3

===
≠

j
j

ππ ;

4 3 6 7 1 2 9 8 5

4 3 6 7 1 9 5 8 2

4 6 3 1 7 5 9 2 8

4 7 3 1 8 5 9 6 2

5 6 3 1 2 4 9 7 8

0 0 0 4 1 0 0 0 0

0 0 2 0 0 2 1 0 0

0 0 3 0 0 2 0 0 0

3 0 0 0 0 0 2 0 0

2 1 0 0 0 0 1 1 0

0 1 0 1 2 0 0 0 1

0 0 0 0 1 0 0 0 4

0 1 0 0 0 1 1 2 0

0 2 0 0 1 0 0 2 0

4 6 3 7 1 5 9 8 2

Figure 2. Example of producing of the offspring in µ-crossover (µ = 5)

The multiple parent crossover distinguishes one-

self for the one more important feature. As long as the

number of parents in the crossover, µ, is equal to the

current population size, PS, there no need in any

selection procedure: the selection is "hidden" in the

crossover itself; in the other words, ΜX performs the

functions of both selection and recombination. This

variant (i.e. µ = PS) was used in our implementation.

In order to increase the performance of GA even

more, the crossover can be applied more than once at

the same generation. In our implementation, the

number of ΜXs per one generation is controlled by

the parameter Noffspr (# of offspring per generation).

The remaining components of the hybrid genetic

algorithm for the grey pattern problem are identical to

those of HGA for the quadratic assignment problem,

except the specific cases discussed below. The frame-

work of this algorithm (entitled as HGA-ΜX-TS) is

presented in Figure 3. The details can be found in

[17]. Remind that the outstanding performance of

HGA for the QAP was achieved by exploiting the idea

of genetic-tabu search, i.e. combining the genetic ope-

rators with the enhanced tabu search (TS) procedure −

17

A. Misevičius, D. Rubliauskas

as a local improvement (post-crossover) algorithm.

The details of the TS procedure are described in [18].

One important modification should be mentioned. It is

related to the performance of the tabu search, more

precisely, the exploration of neighbourhoods (i.e. the

sets of neighbouring solutions of the current solu-

tions), as well as the calculation of the differences in

the objective function values. A lot of the computa-

tions can be shorten and simplified (consequently, the

large amount of computer’s (CPU) time may be saved)

due to the very special character of the matrix A in the

grey pattern problem, as shown in [22]. For this

problem, the exploration of the neighbourhood in the

TS procedure is restricted to the interchange of one of

the first m elements (black points) with one of the last

n − m elements (white points). Therefore, the

neighbourhood size decreases to O(m(n − m)), instead

of O(n2) for the ordinary QAP. In addition, the

calculation of the differences in the objective function

values becomes more faster because the matrix A is

consisting of entries 0 and 1 only. So, instead of the

standard formula of calculation difference in the

objective function values when exchanging the ith and

jth elements in the current permutation

+−−=))((),,(∆)()()()(iijjjjii bbaajiz πππππ

 +−−))(()()()()(jiijjiij bbaa ππππ

,,...,1,1,...,2,1

),)((

))((

,,1

)()()()(

,,1

)()()()(

∑

∑

≠=

≠=

+=−=

−−

+−−

n

jikk

ikjkkjki

n

jikk

kikjjkik

nijni

bbaa

bbaa

ππππ

ππππ

 (2)

the simplified formula

,)(2),,(∆
,1

)()()()(∑
≠=

−=
m

ikk

kikj bbjiz πππππ

nmjmi ,....1,,...2,1 +== (3)

is used. As a result, the TS algorithm complexity is re-

duced from O(n3) to O(m2(n − m)). As the TS pro-

cedure is invoked many times during the execution of

HGA, the overall effect is even more evident,

especially, in the cases when m << n. All these

favourable circumstances allowed to treat very large

problems (n = 256) with reasonable CPU times (see

Section 3).

function HGA-ΜX-TS(A, B, n); // hybrid genetic algorithm using ΜX-crossover and tabu search //

 // input: A, B − the matrices, n − the problem size; output: π∗ − the best solution (permutation) found //

 // parameters: PS − the population size, Ngen − # of generations, Noffspr − # of offspring per generation, //

 // µ − the number of parents //

 read A, B, n, PS, Ngen, Noffspr, µ;

 create the initial population P ⊂ Π, where | P | = PS;

 ; // π)(ππ
π

z
P∈

∗ = argmin:
∗ denotes the best so far solution //

 for generation := 1 to Ngen do begin // generations cycle //

 for child := 1 to Noffspr do begin // offspring creation cycle //

 select µ solutions, i.e. parents from P: these solutions are

organized

 as µ × n matrix entitled parents, where parents(i) denotes the ith parent,

 and parents(i, j) is the jth element in the ith parent;

 π& :=ΜX(parents, µ); // the offspring is created by applying the multiple parents crossover to µ
parents //

 improve π& by using tabu search, get the resulting solution π• ;
 add the improved permutation π• to the population P;

 if z(π•) < z(π∗) then π∗ := π• // save the best so far solution //

 end; // for child ... //

 cull the population P by removing Noffspr worst individuals;

 if the level of diversity of P is below the predefined threshold
then

 make a "restart"

 end; // for generation ... //

 return π∗
end.

Figure 3. Pseudo-code of the template of the hybrid genetic algorithm

18

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

3. Computational experiments

Before extensive testing of HGA-ΜX-TS on the

large grey pattern problems, we have conducted a

small experiment to demonstrate the behaviour of the

new proposed crossover operator. (A data instance

with n = 9 compiled by A. Misevičius was used in this

experimentation.) To show the possible benefits of the

multiple parent crossover, we compared the results

produced by our new crossover and the traditional

two-parent crossover — namely the uniform (like)

crossover due to Tate and Smith [24] (so far, this

crossover and its modifications have been proven to

be quite efficient). The results obtained from this ex-

periment are presented in Figure 4. They confirm the

"aggressiveness" of the multiple parent crossover. It

can be seen that ΜX enables to explore the solution

space and to direct the search in promising regions

quite efficiently. Multiple parents seem to be able to

discover the "building blocks" — these blocks are of

the highest importance in genetic search — surprising-

ly effectively. This can be seen clearly when com-

paring the results of ΜX and the two-parent crossover.

Further, the more thorough computational experi-

ments have been carried out on a set of 62 instances of

the grey pattern problem. For the instance family

tested, the size of the instances is equal to 256, and the

frames are of dimensions 16 × 16. The parameter m,

i.e. the density of grey varies from 3 to 64. The

instances are denoted by the name grey_16_16_m,

where 2 ≤ m ≤ 64. Remind that, for these instances,

the data matrix B remains unchanged, while the data

matrix A is of the form , where 1 is a sub-

matrix of size m × m composed of 1s only [23]. All

these instances were examined by our hybrid genetic

algorithm with the multiple parent crossover. The goal

was to find out how difficult are the grey pattern

problems for HGA (which has been proven to be

00
01

extremely efficient for the QAP) and, especially, for

ΜX. We focused on the average computation time

needed to find the pseudo-optimal (best know) solu-

tions for these problems. Note that, for many instan-

ces, we performed several independent runs each

consisting of 10 restarts of HGA-ΜX-TS. Various

combinations of the values of the control parameters,

which depend on the particular instance, are used in

the different runs. The best CPU times obtained during

these runs are given in Table 1. The ranges of the main

parameter values for HGA-ΜX-TS are as follows: PS

varies between 4 and 30; Ngen − between 2 and 100;

Noffspr = 1. The number of parents in ΜX is equal to

the population size PS in all the experiments.

It can be viewed from Table 1 that the efficiency of

HGA-ΜX-TS for the grey pattern problem is very

promising. The results indicate that all the instances

examined are most probably solved pseudo-optimally

at really short CPU times. (There were only a

negligible number of instances with relatively large

CPU times. So far, we have no well-founded explana-

tions of these anomalies, except that the algorithm

sometimes tends to converge (in fact, misconverge) to

high-quality locally optimal solutions which may be

quite "far" from a global optimum.) The performance

of HGA-ΜX-TS for the particular instances is

impressive indeed. For example, for the largest

instance tested grey_16_16_64 (m = 64), less than 5

seconds of 3GHz Pentium computer are enough to

find a pseudo-optimal solution. We guess that the

search time may be decreased even more by a careful

tuning of the control parameters of HGA-ΜX-TS.

The quality of the solutions obtained is also

confirmed by the graphical illustrations. In Figure 5,

we give twelve frames that correspond to the pseudo-

optimal solutions of the instances grey_16_16_53..

grey_16_16_64. So, the reader can grasp the quality of

the obtained solutions from the visual point of view,

too.

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

2 5 7 8 6 3 9 1 4 125578

8 7 9 2 4 5 6 3 1 132120

4 7 2 8 3 5 9 1 6

4 7 2 8 6 3 9 1 5 121034

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

2 5 7 8 6 3 9 1 4 125578

4 7 2 8 6 3 9 1 5

4 9 2 6 8 5 7 1 3 118180

4 7 2 8 6 3 9 1 5 121034

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

(a)

Initial (improved) population

1st offspring

Population after crossover and improvement:

2nd generation

2nd offspring

Population after crossover and improvement:

3rd generation

(Pseudo-)optimal solution

19

A. Misevičius, D. Rubliauskas

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

2 5 7 8 6 3 9 1 4 125578

5 7 9 2 4 8 6 3 1 132120

5 7 2 1 4 8 9 3 6

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

2 5 7 8 6 3 9 1 4 125578

5 7 9 2 4 8 6 3 1 132120

2 7 1 8 3 5 9 6 4

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

2 5 7 8 6 3 9 1 4 125578

2 7 1 5 4 3 6 8 9 131536

4 7 2 5 3 9 1 6 8

..

4 7 2 6 3 9 1 8 5 121476

4 7 2 6 3 9 1 8 5 121476

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

4 3 9 8 1 5 7 2 6 125376

4 6 2 5 3 7 1 8 9

4 1 2 6 3 5 7 9 8 118592

4 7 2 6 3 9 1 8 5 121476

4 7 2 6 3 9 1 8 5 121476

4 7 2 6 3 9 1 8 5 121476

4 6 2 5 7 3 9 1 8 124142

..

4 1 2 6 3 5 7 9 8 118592

4 1 2 6 3 5 7 9 8 118592

4 1 2 6 3 5 7 9 8 118592

4 1 2 6 3 5 7 9 8 118592

4 1 2 6 3 5 7 9 8 118592

Parents

3rd offspring

Population after crossover and improvement:

5th generation

Parents

5th offspring

Population after crossover and improvement:

6th generation

Population at 11th generation

It can be seen that, eventually, the algorithm

has prematurely converged without finding the

(pseudo-)optimal solution

(b)

Figure 4. Comparison of the genetic processes by using the multiple parent crossover (a) and 2-parent crossover (b).

Note. The elements (items) that correspond to "building blocks" (i.e. the elements that are likely to be contained in the

optimal solution) are printed in bold face

Table 1. Results of the experiments for grey pattern problems

Instance

name
Best known value

Time

‡

Instance

name
Best known value

Time

‡

grey_16_16_3 7810 0.0 grey_16_16_34 4560162 a 5.1

grey_16_16_4 15620 0.0 grey_16_16_35 4890132 a 6.3

grey_16_16_5 38072 0.0 grey_16_16_36 5222296 a 3.4

grey_16_16_6 63508 0.0 grey_16_16_37 5565236 a 3.9

grey_16_16_7 97178 0.0 grey_16_16_38 5909202 a 1.6

grey_16_16_8 131240 0.0 grey_16_16_39 6262248 a 1.9

grey_16_16_9 183744 a 0.1 grey_16_16_40 6613472 a 1.6

grey_16_16_10 242266 a 0.0 grey_16_16_41 7002794 a 0.9

grey_16_16_11 304722 a 0.1 grey_16_16_42 7390586 a 1.5

Initial population

Parents

1st offspring

Population after crossover and improvement:

2nd generation

Parents

2nd offspring

Population after crossover and improvement:

3rd generation

20

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

21

Instance

name
Best known value

Time

‡

Instance

name
Best known value

Time

‡

grey_16_16_12 368952 a 0.1 grey_16_16_43 7794422 b 6.6

grey_16_16_13 457504 a 0.1 grey_16_16_44 8217264 b 18

grey_16_16_14 547522 a 0.1 grey_16_16_45 8674910 c ∼130

grey_16_16_15 644036 a 0.1 grey_16_16_46 9129192 c ∼90

grey_16_16_16 742480 a 0.1 grey_16_16_47 9575736 a 6.7

grey_16_16_17 878888 a 0.3 grey_16_16_48 10016256 a 4.1

grey_16_16_18 1012990 a 0.2 grey_16_16_49 10518838 b 7.1

grey_16_16_19 1157992 a 0.3 grey_16_16_50 11017342 a 8.9

grey_16_16_20 1305744 a 0.4 grey_16_16_51 11516840 b 12.5

grey_16_16_21 1466210 a 0.7 grey_16_16_52 12018388 b 11.9

grey_16_16_22 1637794 a 0.6 grey_16_16_53 12558226 a 14

grey_16_16_23 1820052 a 0.5 grey_16_16_54 13096646 b 8.9

grey_16_16_24 2010846 a 0.9 grey_16_16_55 13661614 b 19

grey_16_16_25 2215714 b 5.5 grey_16_16_56 14229492 b 5.8

grey_16_16_26 2426298 c ∼50 grey_16_16_57 14793682 b 5.0

grey_16_16_27 2645436 a 1.6 grey_16_16_58 15363628 b 3.7

grey_16_16_28 2871704 a 1.7 grey_16_16_59 15981086 a 7.3

grey_16_16_29 3122510 a 1.4 grey_16_16_60 16575644 a 5.5

grey_16_16_30 3373854 a 0.9 grey_16_16_61 17194812 b 4.8

grey_16_16_31 3646344 a 1.2 grey_16_16_62 17822806 b 6.1

grey_16_16_32 3899744 a 0.9 grey_16_16_63 18435790 a 2.6

grey_16_16_33 4230950 a 1.3 grey_16_16_64 19050432 a 4.6

‡ time (in seconds of 3GHz Pentium computer) needed to find the best known solution (BKS) under condition that all

 the 10 restarts out of 10 succeeded in finding the BKS;

 the optimality of these values has been proven by Drezner [6];
a reference: Taillard, Gambardella, 1997 [23]; b reference: Misevicius, 2003 [16]; c reference: Misevicius, 2003 [15].

4. Concluding remarks

In this paper, we proposed a hybrid genetic algo-

rithm that involves the innovative solution recombina-

tion operator − the so-called multiple parent crossover

(ΜX). ΜX is distinguished for the important fact that

the offspring derives the information from many

parents − this is a quite contrast to the classical cross-

over operators where the inheritance of the informa-

tion by the child is limited to two parents only. This

original recombination operator coupled with other

components of the hybrid genetic-tabu search resulted

in a powerful optimization tool − the algorithm HGA-

ΜX-TS. HGA-ΜX-TS was applied to the special case

of the quadratic assignment problem, the grey pattern

problem. The results obtained show promising perfor-

mance of HGA-ΜX-TS. Sixty two instances of the

grey pattern problem have been solved to pseudo-

optimality at surprisingly short computational times

with few exceptions. Some of these pseudo-optimal

solutions were brought out in the graphical representa-

tion form.

Our ΜX crossover is very aggressive and robust.

Still, there is a room for the further enhancements.

This is especially true due to the fact that some disad-

vantages of ΜX might be observed by performing

more thorough experiments. One of the shortcomings

is the loss of the diversity, especially, in the cases

when the genetic search progresses and the individuals

of the population tend to become very similar to each

other. Consequently, if the degree of the diversity of

the population is low, then the child produced by ΜX

will, most likely, be just a copy of one of the parents.

To overcome these (and other) difficulties, some

improvements of the proposed ΜX are possible:

a) incorporating the additional knowledge by

constructing the desirability matrix, for example, the

fitness (cost) of the individuals (solutions); b) adding

noise (or some sort of fuzziness) to the desirability

matrix; c) experimenting with the different numbers of

the parents and/or population sizes. All these and,

possibly, other extensions could be proper directions

of the future research.

A. Misevičius, D. Rubliauskas

22

(a) (b)

(c) (d)

(f) (e)

Figure 5. Examples of grey frames of densities 53/256 (a), 54/256 (b), 55/256 (c), 56/256 (d), 57/256 (e), 58/256 (f) (Part I)

Performance of Hybrid Genetic Algorithm for the Grey Pattern Problem

23

(i) (j)

(g) (h)

(k) (l)

Figure 5. Examples of grey frames of densities 59/256 (g), 60/256 (h), 61/256 (i), 62/256 (j), 63/256 (k), 64/256 (l) (Part II)

A. Misevičius, D. Rubliauskas

References

 [1] R.K. Ahuja, J.B. Orlin, A. Tiwari. A greedy genetic

algorithm for the quadratic assignment problem. Com-

puters & Operations Research, 2000, Vol.27, 917–

934.

 [2] R.E. Burkard, E. Çela, P.M. Pardalos, L. Pitsoulis.
The quadratic assignment problem. In D.Z.Du, P.M.

Pardalos (eds.), Handbook of Combinatorial Optimi-

zation, Kluwer, Dordrecht, 1998, Vol.3, 241−337.

 [3] E. Çela. The Quadratic Assignment Problem: Theory

and Algorithms. Kluwer, Dordrecht, 1998.

 [4] L. Davis. Handbook of Genetic Algorithms. Van Nost-

rand, New York, 1991.

 [5] Z. Drezner. A new genetic algorithm for the quadratic

assignment problem. INFORMS Journal on Com-

puting, 2003, Vol.15, 320−330.

 [6] Z. Drezner. Finding a cluster of points and the grey

pattern quadratic assignment problem. Working paper,

College of Business and Economics, California State

University-Fullerton, Fullerton, CA, 2005.

 [7] C. Fleurent, F. Glover. Improved constructive multi-

start strategies for the quadratic assignment problem

using adaptive memory. INFORMS Journal on Com-

puting, 1999, Vol.11, 198−204.

 [8] D.E. Goldberg. Genetic Algorithms in Search, Opti-

mization and Machine Learning. Addison-Wesley,

Reading, 1989.

 [9] D.E. Goldberg, R. Lingle. Alleles, loci, and the tra-

veling salesman problem. In J.J.Grefenstette (ed.),

Proceedings of the First International Conference on

Genetic Algorithms and their Applications, Lowrence

Erlbaum, Hillsdale, 1985, 154−159.

[10] J.H. Holland. Adaptation in Natural and Artificial

Systems. University of Michigan Press, Ann Arbor,

1975.

[11] T. Koopmans, M. Beckmann. Assignment problems

and the location of economic activities. Econometrica,

1957, Vol.25, 53−76.

[12] M.H. Lim, Y. Yuan, S. Omatu. Efficient genetic

algorithms using simple genes exchange local search

policy for the quadratic assignment problem. Compu-

tational Optimization and Applications, 2000, Vol.15,

249−268.

[13] P. Merz, B. Freisleben. A genetic local search

approach for the quadratic assignment problem. In

T.Bäck (ed.), Proceedings of the Seventh International

Conference on Genetic Algorithms, Morgan Kauf-

mann, East Lansing, 1997, 465–472.

[14] P. Merz, B. Freisleben. Fitness landscape analysis

and memetic algorithms for the quadratic assignment

problem. IEEE Transactions on Evolutionary

Computation, 2000, Vol.4, 337−352.

[15] A. Misevicius. Genetic algorithm hybridized with ruin

and recreate procedure: application to the quadratic

assignment problem. Knowledge-Based Systems, 2003,

Vol.16, 261−268.

[16] A. Misevicius. Ruin and recreate principle based ap-

proach for the quadratic assignment problem. In

E.Cantú-Paz, J.A.Foster, K.Deb et al. (eds.), Lecture

Notes in Computer Science, Vol.2723, Genetic and

Evolutionary Computation − GECCO 2003, Procee-

dings, Part I, Springer, Berlin-Heidelberg, 2003,

598−609.

[17] A. Misevicius. An extension of hybrid genetic algo-

rithm for the quadratic assignment problem. Infor-

mation Technology and Control, 2004, Vol.4(33),

53−60.

[18] A. Misevicius. A tabu search algorithm for the quad-

ratic assignment problem. Computational Optimiza-

tion and Applications, 2005, Vol.30, 95−111.

[19] P. Moscato. Memetic algorithms: a short introduction.

In D.Corne, M.Dorigo, F.Glover (eds.), New Ideas in

Optimization, McGraw-Hill, London, 1999, 219–234.

[20] I.M. Oliver, D.J. Smith, J.R.C. Holland. A study of

permutation crossover operators on the traveling

salesman problem. In J.J.Grefenstette (ed.), Genetic

Algorithms and their Applications: Proceedings of the

Second International Conference on Genetic

Algorithms, Lawrence Erlbaum, Hillsdale, 1987, 224–

230.

[21] C.R. Reeves, J.E. Rowe. Genetic Algorithms: Prin-

ciples and Perspectives. Kluwer, Norwell, 2001.

[22] E. Taillard. Comparison of iterative searches for the

quadratic assignment problem. Location Science,

1995, Vol.3, 87−105.

[23] E. Taillard, L.M. Gambardella. Adaptive memories

for the quadratic assignment problem. Tech. Report

IDSIA-87-97, Lugano, Switzerland, 1997.

[24] D.M. Tate, A.E. Smith. A genetic approach to the

quadratic assignment problem. Computers & Opera-

tions Research, 1995, Vol.1, 73–83.

24

