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PERFORMANCE OF HYBRID GENETIC ALGORITHM  

FOR THE GREY PATTERN PROBLEM♣ 
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Kaunas University of Technology, Department of Practical Informatics 

Studentų St. 50−416a, LT−51368 Kaunas, Lithuania 

Abstract. Recently, genetic algorithms (GAs) are quite popular by solving combinatorial optimization problems. 

In this paper, we discuss a hybrid genetic algorithm that uses a new kind of solution recombination operators − a so-

called multiple parent crossover. We examined this innovative crossover operator on the grey pattern problem, which 

is as special case of the well-known problem, the quadratic assignment problem. The results obtained during the 

experimentation with the set of 62 instances of the grey pattern problem demonstrate promising efficiency of the 

multiple parent crossover. All the instances tested were solved to pseudo-optimality within surprisingly small 

computation times. 
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Indroduction r, t = 1, ..., n1, s, u = 1, ..., n2. frstu may be thought of as 

an electrical repulsion force between two electrons (to 

be put on the grid points) i and j (i, j = 1, ..., n) located 

in the positions k = π(i) and l = π(j) with the 

coordinates (r, s) and (t, u). The ith (i ≤ m) element of 

the permutation (solution) π, π(i) = n2(r − 1) + s, gives 

the location in the rectangle (grid) where a black point 

(case) has to be placed in. The coordinates of the 

location π(i) are derived according to the formulas: 

r = (π(i) − 1)/n2 + 1, s = ((π(i) − 1) mod n2) + 1, 

i ≤ m. See [22] for more details. One can obtain plenty 

of different instances of the grey pattern problem by 

varying the choices of n1,  n2 and m (see Section 3). 

The grey pattern problem − firstly introduced by 

Taillard [22] − is based on a rectangle (grid) of dimen-

sions n1 × n2 containing n = n1 × n2 points (square 

cases) with m black points (cases) and n − m white 

points. By juxtaposing many of these rectangles, one 

gets a grey pattern (frame) of density m/n. The objec-

tive is to get the finest grey pattern, that is, the black 

points have to be spread on the rectangle as regularly 

as possible. The grey pattern problem is a special case 

of a more general problem, the quadratic assignment 

problem (QAP) [11] which is known to be NP-hard. 

The QAP is formulated in the following way. Let two 

matrices A = (aij)n×n and B = (bkl)n×n and the set Π of 

all possible permutations of the integers from 1 to n be 

given. The goal is to find a permutation π = (π(1), 

π(2), ..., π(n)) ∈ Π that minimizes 
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Many heuristic approaches may be applied for 

solving both the QAP and, at that time, its particular 

case − the grey pattern problem. For serveys of the 

heuristics for the QAP, see [2,3,22]. Genetic algo-

rithms and their hybrids have recently achieved great 

success in solving the QAP [1,5,12,14,15]. In this 

paper, we propose, a hybrid genetic algorithm (HGA) 

which incorporates an innovative operator of the 

recombination of solutions. The template of this algo-

rithm and the details of the new recombination 

(crossover) operator are discussed in Section 2. The 

computational results of HGA for the various grey 

pattern problem instances are presented in Section 3. 

Section 4 completes the paper with concluding re-

marks. 

In the grey pattern problem (as formulated in [22]), 

the matrix (aij)n×n is defined as aij = 1 for i, j =1, 2, ..., 

m and aij = 0 otherwise. The matrix (bkl)n×n is defined 

by the given values − the distances between every two 

of n points. More precisely, = 

, where  
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2. Hybrid genetic algorithm using multiple 

parent crossover for the grey pattern 

problem 

The original concepts of genetic algorithms (GAs) 

were developed by Holland [10] in 1975. A genetic 

algorithm operates with a group P (called a popula-

tion) of solutions s1, s2, ..., sPS = |P| (called individuals) 

from S − the set of solutions of a combinatorial 

optimization problem. Each individual (si) is asso-

ciated with some fitness, i.e. the objective function 

value (f(si)). In minimization problems, the less the 

objective function value, the more fitting the indivi-

dual, and the larger is the probability that the indivi-

dual will survive in evolution process. During many 

generations, best fitting individuals tend to dominate, 

while less fitting ones tend to die off. 

The main components of GA are as follows [4, 8, 

21]: a) a mechanism of selecting individuals from the 

population; b) an operator for creation new solutions 

by combining pairs of previous solutions (i.e. "pa-

rents") (this operator is known as a crossover); c) a 

mutation procedure that generates new solutions by 

random perturbations of the existing solutions; d) a 

population replacement (culling) scheme. Our focus is 

on the crossover operator, which is responsible for the 

efficiency of the genetic search in a high degree. It 

should be noted that the state-of-the-art genetic 

algorithms are rather hybrid algorithms which incor-

porate additional heuristic components [19]. In such 

algorithms there is used a post-crossover procedure 

that play the role of a local improvement algorithm 

applied to the solution produced by the crossover. 

However, this fact does not imply that the perfor-

mance of recombination operators is not important 

anymore. In this paper, we propose an improvement of 

HGA which is exactly due to the new enhanced 

crossover operator. 

Dozens of crossover operators for the permutation-

based problems are known from the literature, for 

example, cohesive crossover [5], cycle crossover [20], 

distance preserving crossover [13], partially mapped 

crossover [9], uniform (like) crossover [24], and many 

others. As a rule, these crossovers share one principle 

characteristic: the offspring is created by using two 

parents. There are two aspects of these crossovers. 

Firstly, they are distinguished for the conceptual simp-

licity and relatively high efficiency in solving such 

problems, like the quadratic assignment problem or 

the traveling salesman problem. On the other hand, 

some shortcomings of the typical crossover operators 

might be discovered. For example, some useful infor-

mation may be left out of account by using two pa-

rents only. The other negative aspect is related to the 

fact that there exists a quite large degree of 

randomness. This is especially true when parents are 

selected in a pure random manner. In this case, it is 

obvious that the parents will, most probably, produce a 

"child" of rather poor quality. This kind of behaviour 

may be viewed as one of the most pessimistic factors 

related to the traditional crossover operators. In order 

to try to overcome these difficulties, innovative cross-

over procedures should be proposed. In this paper, we 

introduce such a non-ordinary crossover − we call it 

"µ-crossover" (or shortly ΜX). This name can be 

thought of as a derivative from the term "multiple 

parent crossover", i.e. "crossover based on µ parents". 

So, the heart of the new crossover is generation of the 

offspring by means of several parents. The details of 

this crossover are discussed below. 

The main criterion for high quality ΜX operator is 

the ability of inheritance of the features contained in 

all the parents that take part in generation of the 

offspring. Which way we can implement this crite-

rion? Our idea is to use so-called desirability measures 

for the elements of a solution∗. Let µ be the number of 

the solutions-parents (i.e. chromosomes in the context 

of GA) to produce a solution-offspring. The solution is 

organized as a certain permutation π = (π(1), π(2), ..., 

π(n)), where π(i) denotes the position (also called a 

locus) that the element i (also called a gene) is 

assigned to. Then, the desirability information can be 

maintained in a matrix D of size n × n, where the entry 

dij is simply equal to the number of times that the 

element, i.e. gene i is assigned to the position, i.e. 

locus j = π(i) in the parents (i.e. the set that consists of 

µ chromosomes). The following are the simple 

properties of the entries of D: 1) 0 ≤ dij ≤ µ, i, j = 1, 2, 

..., n; 2) ∑ , j = 1, 2, ..., n; 3) , i = 1, 

2, ..., n. Naturally, the larger the value of d
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is desirable that π(i) is set to j (π(i) = j) in the 

offspring. Let ( )ji =)(offsprPr π  denote the probability 

that the gene i will be assigned to the locus j in the 

offspring πoffspr. We assume that this probability is 

equal to the aspect ratio 

parents

)(that  ji

ofnumber

 timesof

    

    number =π
, that is, 

( )
µ
ijd

i

) 1=

)(Pr( offspr i =

πPr offspr

Pr
1

∑
=

n

j

π

ji ==)(

( )(offspr = ji

. Then, it is obvious from the 

properties (2), (3) that: 1) ∑ , 

j = 1, 2, ..., n (this means that, in the offspring’s 

chromosome, every locus will necessary be associated 

with one of the genes); 2) similarly, 

, i = 1, 2, ..., n (this means that 

every gene will be associated with one of the loci). 

Taking the above facts into account, a natural way to 

create a gene i (i.e. to obtain a locus for the current 

gene i) is to choose such a number j (among those not 

yet chosen) that 
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=
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 Note that this idea has some similarities with the 

adaptive memory principle (see [7] for more details). 
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course, if the gene is assigned to the same locus in all 

the parents, then this gene remains at the same locus 

for the offspring.) This process is to be continued until 

all the genes are assigned to their loci. The detailed 

template of the resulting multiple parent crossover 

procedure (in the Pascal-language like notation) is 

presented Figure 1. The memory size and time comp-

lexity of this crossover is O(n2). An illustrative 

example of ΜX is shown in Figure 2. It should be 

noted that ΜX offers some degree of randomization. 

Randomness is achieved by the existence of many 

variants for choosing different sequences of the genes. 

 

function ΜX(parents, µ); // µ-crossover // 

  // input: parents − the structure, i.e. the matrix containing the parents, µ − the number of parents // 

  // output: π − the resulting offspring (permutation) produced by µ parents //   // output: π − the resulting offspring (permutation) produced by µ parents // 

  D := 0;   D := 0; 

  for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1;   for i := 1 to µ do for j := 1 to n do D(j, parents(i, j)) := D(j, parents(i, j)) + 1; 

  I := {1, 2, ..., n}; J := ∅;   I := {1, 2, ..., n}; J := ∅; 
  repeat // continue until the offspring is created //   repeat // continue until the offspring is created // 

    choose i ∈ I;     choose i ∈ I; 

        ),(maxarg:)(
,...,2,1

jiDi

Jj
nj

∉
=

= ),(maxarg:)(
,...,2,1

jiDi

Jj
nj

∉
=

=π ; 

    // ties (i.e. situations when more than one j satisfying the given equation exist) are broken in a random 

way // 

    I := I \ { i }; J := J ∪ { π(i) } 

  until I = ∅; 

  return π 
end. 

Figure 1. Pseudo-code of the template of the µ-crossover 

 

 
Current population (population size: 5) 

 

 

Offspring 

Desirability matrix 
 

Suppose that the genes are picked up in the following order:

7, 3, 1, 8, 2, 6, 5, 4, 9. 

Then, the offspring’s chromosome is created as follows: 
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4 3 6 7 1 2 9 8 5 

4 3 6 7 1 9 5 8 2 

4 6 3 1 7 5 9 2 8 

4 7 3 1 8 5 9 6 2 

5 6 3 1 2 4 9 7 8 

 

0 0 0 4 1 0 0 0 0 

0 0 2 0 0 2 1 0 0 

0 0 3 0 0 2 0 0 0 

3 0 0 0 0 0 2 0 0 

2 1 0 0 0 0 1 1 0 

0 1 0 1 2 0 0 0 1 

0 0 0 0 1 0 0 0 4 

0 1 0 0 0 1 1 2 0 

0 2 0 0 1 0 0 2 0 
 

4 6 3 7 1 5 9 8 2 

 

Figure 2. Example of producing of the offspring in µ-crossover (µ = 5) 

The multiple parent crossover distinguishes one-

self for the one more important feature. As long as the 

number of parents in the crossover, µ, is equal to the 

current population size, PS, there no need in any 

selection procedure: the selection is "hidden" in the 

crossover itself; in the other words, ΜX performs the 

functions of both selection and recombination. This 

variant (i.e. µ = PS) was used in our implementation. 

In order to increase the performance of GA even 

more, the crossover can be applied more than once at 

the same generation. In our implementation, the 

number of ΜXs per one generation is controlled by 

the parameter Noffspr (# of offspring per generation). 

The remaining components of the hybrid genetic 

algorithm for the grey pattern problem are identical to 

those of HGA for the quadratic assignment problem, 

except the specific cases discussed below. The frame-

work of this algorithm (entitled as HGA-ΜX-TS) is 

presented in Figure 3. The details can be found in 

[17]. Remind that the outstanding performance of 

HGA for the QAP was achieved by exploiting the idea 

of genetic-tabu search, i.e. combining the genetic ope-

rators with the enhanced tabu search (TS) procedure − 
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as a local improvement (post-crossover) algorithm. 

The details of the TS procedure are described in [18]. 

One important modification should be mentioned. It is 

related to the performance of the tabu search, more 

precisely, the exploration of neighbourhoods (i.e. the 

sets of neighbouring solutions of the current solu-

tions), as well as the calculation of the differences in 

the objective function values. A lot of the computa-

tions can be shorten and simplified (consequently, the 

large amount of computer’s (CPU) time may be saved) 

due to the very special character of the matrix A in the 

grey pattern problem, as shown in [22]. For this 

problem, the exploration of the neighbourhood in the 

TS procedure is restricted to the interchange of one of 

the first m elements (black points) with one of the last 

n − m elements (white points). Therefore, the 

neighbourhood size decreases to O(m(n − m)), instead 

of O(n2) for the ordinary QAP. In addition, the 

calculation of the differences in the objective function 

values becomes more faster because the matrix A is 

consisting of entries 0 and 1 only. So, instead of the 

standard formula of calculation difference in the 

objective function values when exchanging the ith and 

jth elements in the current permutation 
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is used. As a result, the TS algorithm complexity is re-

duced from O(n3) to O(m2(n − m)). As the TS pro-

cedure is invoked many times during the execution of 

HGA, the overall effect is even more evident, 

especially, in the cases when m << n. All these 

favourable circumstances allowed to treat very large 

problems (n = 256) with reasonable CPU times (see 

Section 3). 

 

function HGA-ΜX-TS(A, B, n); // hybrid genetic algorithm using ΜX-crossover and tabu search // 

  // input: A, B − the matrices, n − the problem size; output: π∗ − the best solution (permutation) found // 

  // parameters: PS − the population size, Ngen − # of generations, Noffspr − # of offspring per generation, // 

  //         µ − the number of parents // 

  read A, B, n, PS, Ngen, Noffspr, µ; 

  create the initial population P ⊂ Π, where | P | = PS; 

  ; // π)(ππ
π

z
P∈

∗ = argmin:
∗ denotes the best so far solution // 

  for generation := 1 to Ngen do begin // generations cycle // 

    for child := 1 to Noffspr do begin  // offspring creation cycle // 

      select µ solutions, i.e. parents from P: these solutions are 

organized  

      as µ × n matrix entitled parents, where parents(i) denotes the ith parent,  

      and parents(i, j) is the jth element in the ith parent; 

      π& :=ΜX(parents, µ); // the offspring is created by applying the multiple parents crossover to µ 
parents // 

      improve π&  by using tabu search, get the resulting solution π• ; 
      add the improved permutation π•  to the population P; 

      if z(π•) < z(π∗) then π∗ := π• // save the best so far solution // 

    end; // for child ... // 

    cull the population P by removing Noffspr worst individuals; 

    if the level of diversity of P is below the predefined threshold 
then  

       make a "restart" 

  end; // for generation ... // 

  return π∗ 
end. 

Figure 3. Pseudo-code of the template of the hybrid genetic algorithm 
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3. Computational experiments 

Before extensive testing of HGA-ΜX-TS on the 

large grey pattern problems, we have conducted a 

small experiment to demonstrate the behaviour of the 

new proposed crossover operator. (A data instance 

with n = 9 compiled by A. Misevičius was used in this 

experimentation.) To show the possible benefits of the 

multiple parent crossover, we compared the results 

produced by our new crossover and the traditional 

two-parent crossover — namely the uniform (like) 

crossover due to Tate and Smith [24] (so far, this 

crossover and its modifications have been proven to 

be quite efficient). The results obtained from this ex-

periment are presented in Figure 4. They confirm the 

"aggressiveness" of the multiple parent crossover. It 

can be seen that ΜX enables to explore the solution 

space and to direct the search in promising regions 

quite efficiently. Multiple parents seem to be able to 

discover the "building blocks" — these blocks are of 

the highest importance in genetic search — surprising-

ly effectively. This can be seen clearly when com-

paring the results of ΜX and the two-parent crossover. 

Further, the more thorough computational experi-

ments have been carried out on a set of 62 instances of 

the grey pattern problem. For the instance family 

tested, the size of the instances is equal to 256, and the 

frames are of dimensions 16 × 16. The parameter m, 

i.e. the density of grey varies from 3 to 64. The 

instances are denoted by the name grey_16_16_m, 

where 2 ≤ m ≤ 64. Remind that, for these instances, 

the data matrix B remains unchanged, while the data 

matrix A is of the form , where 1 is a sub-

matrix of size m × m composed of 1s only [23]. All 

these instances were examined by our hybrid genetic 

algorithm with the multiple parent crossover. The goal 

was to find out how difficult are the grey pattern 

problems for HGA (which has been proven to be  
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extremely efficient for the QAP) and, especially, for 

ΜX. We focused on the average computation time 

needed to find the pseudo-optimal (best know) solu-

tions for these problems. Note that, for many instan-

ces, we performed several independent runs each 

consisting of 10 restarts of HGA-ΜX-TS. Various 

combinations of the values of the control parameters, 

which depend on the particular instance, are used in 

the different runs. The best CPU times obtained during 

these runs are given in Table 1. The ranges of the main 

parameter values for HGA-ΜX-TS are as follows: PS 

varies between 4 and 30; Ngen − between 2 and 100; 

Noffspr = 1. The number of parents in ΜX is equal to 

the population size PS in all the experiments. 

It can be viewed from Table 1 that the efficiency of 

HGA-ΜX-TS for the grey pattern problem is very 

promising. The results indicate that all the instances 

examined are most probably solved pseudo-optimally 

at really short CPU times. (There were only a 

negligible number of instances with relatively large 

CPU times. So far, we have no well-founded explana-

tions of these anomalies, except that the algorithm 

sometimes tends to converge (in fact, misconverge) to 

high-quality locally optimal solutions which may be 

quite "far" from a global optimum.) The performance 

of HGA-ΜX-TS for the particular instances is 

impressive indeed. For example, for the largest 

instance tested grey_16_16_64 (m = 64), less than 5 

seconds of 3GHz Pentium computer are enough to 

find a pseudo-optimal solution. We guess that the 

search time may be decreased even more by a careful 

tuning of the control parameters of HGA-ΜX-TS. 

The quality of the solutions obtained is also 

confirmed by the graphical illustrations. In Figure 5, 

we give twelve frames that correspond to the pseudo-

optimal solutions of the instances grey_16_16_53.. 

grey_16_16_64. So, the reader can grasp the quality of 

the obtained solutions from the visual point of view, 

too. 

 

 

 

 

 

 

 

 

 

 

 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

2 5 7 8 6 3 9 1 4 125578 

8 7 9 2 4 5 6 3 1 132120 

 

4 7 2 8 3 5 9 1 6 

 

4 7 2 8 6 3 9 1 5 121034 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

2 5 7 8 6 3 9 1 4 125578 

 

4 7 2 8 6 3 9 1 5 

 

4 9 2 6 8 5 7 1 3 118180 

4 7 2 8 6 3 9 1 5 121034 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

(a)

Initial (improved) population 

1st offspring 

Population after crossover and improvement:

2nd generation 

2nd offspring 

Population after crossover and improvement:

3rd generation 

(Pseudo-)optimal solution 
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4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

2 5 7 8 6 3 9 1 4 125578 

5 7 9 2 4 8 6 3 1 132120 

 

5 7 2 1 4 8 9 3 6 

 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

2 5 7 8 6 3 9 1 4 125578 

5 7 9 2 4 8 6 3 1 132120 

 

2 7 1 8 3 5 9 6 4 

 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

2 5 7 8 6 3 9 1 4 125578 

2 7 1 5 4 3 6 8 9 131536 

 

4 7 2 5 3 9 1 6 8 

 

.......................................... 

 

4 7 2 6 3 9 1 8 5 121476 

4 7 2 6 3 9 1 8 5 121476 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

4 3 9 8 1 5 7 2 6 125376 

 

4 6 2 5 3 7 1 8 9 

 

4 1 2 6 3 5 7 9 8 118592 

4 7 2 6 3 9 1 8 5 121476 

4 7 2 6 3 9 1 8 5 121476 

4 7 2 6 3 9 1 8 5 121476 

4 6 2 5 7 3 9 1 8 124142 

 

.......................................... 

 

4 1 2 6 3 5 7 9 8 118592 

4 1 2 6 3 5 7 9 8 118592 

4 1 2 6 3 5 7 9 8 118592 

4 1 2 6 3 5 7 9 8 118592 

4 1 2 6 3 5 7 9 8 118592 

Parents 

3rd offspring 

Population after crossover and improvement:

5th generation 

Parents 

5th offspring 

Population after crossover and improvement:

6th generation 

Population at 11th generation 
 

It can be seen that, eventually, the algorithm

has prematurely converged without finding the

(pseudo-)optimal solution 

(b)

Figure 4. Comparison of the genetic processes by using the multiple parent crossover (a) and 2-parent crossover (b).  

Note. The elements (items) that correspond to "building blocks" (i.e. the elements that are likely to be contained in the 

optimal solution) are printed in bold face 

Table 1. Results of the experiments for grey pattern problems 

Instance  

name 
Best known value

 
Time

‡
 

Instance  

name 
Best known value

 
Time

‡
 

grey_16_16_3  7810  0.0 grey_16_16_34  4560162 a 5.1 

grey_16_16_4  15620  0.0 grey_16_16_35  4890132 a 6.3 

grey_16_16_5  38072  0.0 grey_16_16_36  5222296 a 3.4 

grey_16_16_6  63508  0.0 grey_16_16_37  5565236 a 3.9 

grey_16_16_7  97178  0.0 grey_16_16_38  5909202 a 1.6 

grey_16_16_8  131240  0.0 grey_16_16_39  6262248 a 1.9 

grey_16_16_9  183744 a 0.1 grey_16_16_40  6613472 a 1.6 

grey_16_16_10  242266 a 0.0 grey_16_16_41  7002794 a 0.9 

grey_16_16_11  304722 a 0.1 grey_16_16_42  7390586 a 1.5 

Initial population 

Parents 

1st offspring 

Population after crossover and improvement:

2nd generation 

Parents 

2nd offspring 

Population after crossover and improvement:

3rd generation 
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21 

Instance  

name 
Best known value

 
Time

‡
 

Instance  

name 
Best known value

 
Time

‡
 

grey_16_16_12  368952 a 0.1 grey_16_16_43  7794422 b 6.6 

grey_16_16_13  457504 a 0.1 grey_16_16_44  8217264 b 18 

grey_16_16_14  547522 a 0.1 grey_16_16_45  8674910 c ∼130 

grey_16_16_15  644036 a 0.1 grey_16_16_46  9129192 c ∼90 

grey_16_16_16  742480 a 0.1 grey_16_16_47  9575736 a 6.7 

grey_16_16_17  878888 a 0.3 grey_16_16_48  10016256 a  4.1 

grey_16_16_18  1012990 a 0.2 grey_16_16_49  10518838 b 7.1 

grey_16_16_19  1157992 a 0.3 grey_16_16_50  11017342 a 8.9 

grey_16_16_20  1305744 a 0.4 grey_16_16_51  11516840 b 12.5 

grey_16_16_21  1466210 a 0.7 grey_16_16_52  12018388 b 11.9 

grey_16_16_22  1637794 a 0.6 grey_16_16_53  12558226 a 14 

grey_16_16_23  1820052 a 0.5 grey_16_16_54  13096646 b 8.9 

grey_16_16_24  2010846 a 0.9 grey_16_16_55  13661614 b 19 

grey_16_16_25  2215714 b 5.5 grey_16_16_56  14229492 b 5.8 

grey_16_16_26  2426298 c ∼50 grey_16_16_57  14793682 b 5.0 

grey_16_16_27  2645436 a 1.6 grey_16_16_58  15363628 b 3.7 

grey_16_16_28  2871704 a 1.7 grey_16_16_59  15981086 a 7.3 

grey_16_16_29  3122510 a 1.4 grey_16_16_60  16575644 a 5.5 

grey_16_16_30  3373854 a 0.9 grey_16_16_61  17194812 b 4.8 

grey_16_16_31  3646344 a 1.2 grey_16_16_62  17822806 b 6.1 

grey_16_16_32  3899744 a 0.9 grey_16_16_63  18435790 a 2.6 

grey_16_16_33  4230950 a 1.3 grey_16_16_64  19050432 a 4.6 

‡ time (in seconds of 3GHz Pentium computer) needed to find the best known solution (BKS) under condition that all  

 the 10 restarts out of 10 succeeded in finding the BKS; 

 the optimality of these values has been proven by Drezner [6]; 
a reference: Taillard, Gambardella, 1997 [23]; b reference: Misevicius, 2003 [16]; c reference: Misevicius, 2003 [15]. 

 

4. Concluding remarks 

In this paper, we proposed a hybrid genetic algo-

rithm that involves the innovative solution recombina-

tion operator − the so-called multiple parent crossover 

(ΜX). ΜX is distinguished for the important fact that 

the offspring derives the information from many 

parents − this is a quite contrast to the classical cross-

over operators where the inheritance of the informa-

tion by the child is limited to two parents only. This 

original recombination operator coupled with other 

components of the hybrid genetic-tabu search resulted 

in a powerful optimization tool − the algorithm HGA-

ΜX-TS. HGA-ΜX-TS was applied to the special case 

of the quadratic assignment problem, the grey pattern 

problem. The results obtained show promising perfor-

mance of HGA-ΜX-TS. Sixty two instances of the 

grey pattern problem have been solved to pseudo-

optimality at surprisingly short computational times 

with few exceptions. Some of these pseudo-optimal 

solutions were brought out in the graphical representa-

tion form. 

Our ΜX crossover is very aggressive and robust. 

Still, there is a room for the further enhancements. 

This is especially true due to the fact that some disad-

vantages of ΜX might be observed by performing 

more thorough experiments. One of the shortcomings 

is the loss of the diversity, especially, in the cases 

when the genetic search progresses and the individuals 

of the population tend to become very similar to each 

other. Consequently, if the degree of the diversity of 

the population is low, then the child produced by ΜX 

will, most likely, be just a copy of one of the parents. 

To overcome these (and other) difficulties, some 

improvements of the proposed ΜX are possible: 

a) incorporating the additional knowledge by 

constructing the desirability matrix, for example, the 

fitness (cost) of the individuals (solutions); b) adding 

noise (or some sort of fuzziness) to the desirability 

matrix; c) experimenting with the different numbers of 

the parents and/or population sizes. All these and, 

possibly, other extensions could be proper directions 

of the future research. 
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(c) (d) 

(f) (e) 
 

Figure 5. Examples of grey frames of densities 53/256 (a), 54/256 (b), 55/256 (c), 56/256 (d), 57/256 (e), 58/256 (f) (Part I) 
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(k) (l) 

 

Figure 5. Examples of grey frames of densities 59/256 (g), 60/256 (h), 61/256 (i), 62/256 (j), 63/256 (k), 64/256 (l) (Part II) 
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