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Performance of Intra-Chip Wireless Interconnect
Using On-Chip Antennas and UWB Radios

Mei Sun, Yue Ping Zhang, Guo Xin Zheng, and Wen-Yan Yin, Senior Member, IEEE

Abstract—An intra-chip wireless interconnect system using
on-chip antennas and ultrawideband (UWB) radios that operates
in 22–29 GHz is studied in this paper. The on-chip antennas are
meander monopoles of axial length 1 mm in silicon technology.
A unique wireless channel is formed between a pair of on-chip
transmit and receive antennas. The channel is characterized up
to an interconnect distance of 40 mm. The system performance is
evaluated in terms of bit-error-rate (BER) under the assumptions
of perfect system synchronization and signal corruption from
thermal and switching noises. As expected, the system perfor-
mance degrades with interconnect distance and data rate. It
achieves a better BER on the 5-�� �� Si substrate than that on
the 10-� �� Si substrate.

Index Terms—Bit-error-rate (BER), intra-chip wireless inter-
connect, on-chip antenna, ultrawideband (UWB) radio.

I. INTRODUCTION

S EMICONDUCTOR technologies continuously scale down
feature size to improve the speed of operation while en-

abling much higher degree of integration. However, this scaling
implies much greater challenge of wired interconnect because
wire width and space are greatly reduced and fundamental ma-
terial limits are approaching [1]. In order to circumvent this
problem, the wireless interconnect using on-chip antennas has
been proposed. It uses radio waves rather than metal wires to
communicate among cores within a chip (intra-chip) or among
chips within a module (inter-chip) [2]–[5].

With the transmission data rate grows linearly with channel
bandwidth, the intra-chip wireless interconnect using on-chip
antennas and UWB radios appears to have a great advantage
to achieve the intra-chip high data transmission for future ul-
tralarger scale integration (ULSI) [6]. Literature survey shows
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that research on intra-chip wireless interconnect is being under-
taken through the following stages.

The first stage is the design and measurement of on-chip an-
tennas. The dipole antennas are usually preferred because they
are differential and can adequately reject common-mode noise
and interfering signals generated by other circuits on the same
silicon substrate as proved by experiments in [6]. However, un-
available differential testing facilities limit the measurement to
26.5 GHz. There is no such limitation for monopoles. Recently
a study reported in [7] also reveals that the vertically-excited
monopole has better performance than the horizontally-excited
dipole in silicon technology. It implies the monopole also has
its advantages to be used for intra-chip wireless interconnect.

The second stage is the characterization of the intra-chip
radio channel using on-chip antennas. In the frequency domain,
the transmission gain is widely used as a channel parameter
and measures to improve it are intensively investigated. For
example, Kim and O found that the transmission gain of dipoles
has higher value on the silicon-on-sapphire (SOS) substrate
than those on the bulk and silicon-on-insulator (SOI) substrate
[8]. The bulk silicon substrate is lossy due to the low resistivity;
while the high resistivity substrate has a lower substrate loss and
therefore a higher transmission gain as proved by S. Watanabe
et al. [9]. It was also found that the interference structures may
increase or decrease the transmission gain depending on their
layouts [10], [11]. In the time domain, the path loss and delay
spread are used as intra-chip radio channel parameters as firstly
examined by Zhang et al. [12]. Based on the frequency domain
study, for an intra-chip radio channel with Si integrated dipoles
Kim et al. proposed a intuitive plane wave model to explain the
propagation mechanisms [13]. Based on both frequency- and
time-domain studies, Zhang et al. analyzed the different types
of propagation waves over the intra-chip channel [12]. Nev-
ertheless, propagation mechanisms of the intra-chip wireless
channel still needs further studying and particularly modeling.

The third stage is the performance evaluation of the intra-chip
wireless interconnect using on-chip antennas and UWB radios.
Using the discrete UWB pulse forming networks, sampling os-
cilloscope, and bit error rate tester (BERT), K. Kimoto et al.
presented the experimental data transmission characteristics of
the intra-chip wireless interconnect using 6 mm long integrated
linear dipole antennas at 13.5 Gbps and found that the BER per-
formance was [14]. However, no theoretical analysis
was presented.

The fourth stage is the circuit implementation of the intra-
chip wireless interconnect, which is probably the most chal-
lenging stage. With a single-chip CMOS UWB transmitter for
intra-chip wireless interconnect presented in [15], it is believed
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that the implementation of the real intra-chip wireless intercon-
nect using on-chip antennas and UWB radios in a single chip is
becoming more and more feasible with high-frequency silicon
technologies and ever-increasing chip size for intra-chip com-
munication.

In this paper, we study an intra-chip wireless interconnect
using on-chip meander monopole antennas and UWB radios
that operates in 22–29 GHz in silicon technology. Section II
presents the on-chip meander antenna performance. Section III
characterizes the intra-chip wireless channel. Section IV
evaluates the intra-chip wireless interconnect performance.
Finally, Section V summarizes the conclusions. From antenna
to system, we go through the three stages of studies and provide
a methodology to analyze the intra-chip wireless interconnect
both in channel prorogation mechanism and theoretical perfor-
mance evaluation aspects.

II. ON-CHIP MEANDER ANTENNA

The on-chip meander monopole is used as transmit antenna
(TA) and receive antenna (RA) for intra-chip wireless inter-
connect with varied at 2.5, 5, 10, 20, 30, and 40 mm as
shown in Fig. 1(a). With its wire folded back and forth the
antenna resonance is found in a much more compact structure
than can otherwise be obtained. Fig. 1(a) shows its top view
photograph. The axial length of the antenna is 1 mm. The test
ground-signal-ground (GSG) pads are squares of 80 by
80 . The width of the line elements is 10 . The antenna
was fabricated using the NTU 1.2- CMOS process on
silicon wafers of high resistivity 5- and low resistivity
10- , respectively. Fig. 1(b) shows its cross sectional view.
It is seen that an oxide layer of thickness 2 was grown on
the silicon substrate of thickness 633 to increase isolation
and an aluminum layer of thickness 2 was used to form the
antenna [16].

Fig. 2(a) shows the simulated and measured return losses as
a function of frequency for the fabricated on-chip meander an-
tennas. The simulation was made using the Zeland IE3D soft-
ware package. The measurement was conducted on wafer with
Cascade Microtech coplanar Probes and an HP8510XF network
analyzer. It is seen that the locations of the resonance dips agree
well for both high and low resistivity cases. They are at 23 and
18 GHz for the 5- Si and 10- Si substrates, respec-
tively. The feature size of our meander antenna is about 2.5
mm. Based on the exact simulations from the IE3D, it is found
that the guided wavelengths at 23 GHz in the 5- Si sub-
strate and at 18 GHz in the 10- Si substrate of Fig. 1(b)
are both about 5 mm. This indicates that the origin of these res-
onant frequencies comes from the half-wavelength resonance.
Also note that there are differences between the simulated and
measured return loss values. This is because in the measure-
ment the probe station was connected to the on-chip meander
antenna. However, the probe effect was not included in the IE3D
model as no detailed information on the probe was available.
The probe ground enhanced the on-chip ground pads, changed
the impedance matching conditions, and caused the differences.
Further note from Fig. 2(a) that for the 5- Si substrate the
measured 6-dB impedance bandwidth is 22–32 GHz and for the
10- Si substrate the measured 8-dB impedance bandwidth

Fig. 1. On-chip meander antenna: (a) top view photograph with probe touching
illustration, (b) cross-sectional view of the test vehicle, (c) IE3D model, and (d)
photograph of the wafer under test.

is 15–31 GHz. The return loss results are both larger than 6 dB
from 22–29 GHz, indicating an acceptable matching to a 50-
source.

Fig. 2(b) and (c) shows the simulated far-field radiation pat-
terns in the azimuth and elevation planes at 25 GHz, taking RA
with denoted coordinate system of Fig. 1(a) as an example. It is
noted that in the elevation plane, the radiation patterns, both co-
and cross-polarizations can only be obtained for the upper hemi-
sphere because the electromagnetic model assumes infinite ex-
tension of the ground plane. As expected, for both high and low
resistivity cases, the maximum co-polarization radiation occurs
in the 0 direction. In addition, the cross-polarization is found
weaker than the co-polarization radiation, especially for high
resistivity case. In the azimuth plane, for both high and low re-
sistivity cases the maximum co-polarization radiation occurs in
the direction and the cross-polarization radiations are
found to be more than 30 dB weaker than the co-polarization
radiations.

Fig. 2(d) shows the simulated antenna gain values as a func-
tion of frequency. The IE3D calculates a gain value as times
the ratio of an antenna’s radiation intensity in a given direction
to the total power accepted by the antenna. As expected, the
higher gain is achieved for high resistivity case. The gain values
obtained here will be used to model the transmission coefficient
between the TA and RA in the Part B of Section III. In addition,
it is noted that the simulated radiation efficiency from 22 to 29
GHz is 60 77% for the 5- Si substrate and 9 14%
for the 10- Si substrate, respectively.
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Fig. 2. Performance of the on-chip meander antenna: (a) return loss, (b) az-
imuth plane (YZ-plane, � � �� ) radiation patterns at 25 GHz, and (c) eleva-
tion plane (XY-plane, � � �� ) radiation patterns at 25 GHz, and (d) gains.

III. CHARACTERIZATION OF INTRA-CHIP WIRELESS CHANNEL

A unique intra-chip wireless channel is formed between the
TA and RA. The TA and RA pairs, each the mirror image of
the other, were layout in a test vehicle with the T-R separation
distance varied at 2.5, 5, 10, 20, 30, and 40 mm. The cross
sectional view of the test vehicle is the same as in Fig. 1(b). The
test vehicle was fabricated on both 10- and 5- 6-in
p-type silicon wafers and measured to characterize the intra-
chip wireless channel as shown in Fig. 1(d) [16]. The sensitivity
limit of the measurement system is about 70 dBm. It is found
that the received signal for the 10- Si substrate case can not
be distinguished from the noise when the separation distance
is up to 20 mm. While for the 5- Si substrate case the
effective transmission still can be supported up to a distance of
40 mm. The time domain analysis in the Part C of this section
will give the explanation on it.

A. Frequency-Domain Measurement

A transfer function is defined in the frequency domain for
the intra-chip wireless channel as the ratio of the signal applied
to the TA to the signal received by the RA. Fig. 3 shows the
measured on the 10- and 5- Si substrates. It is
seen that both amplitude and phase of the transfer function
fluctuate with frequency. As expected the amplitudes of are
higher for the 5- Si substrate than those for the 10-
Si substrate at the same interconnect distance. The loss of the
intra-chip wireless channel depends on the chip substrate resis-
tivity. The higher the resistivity is, the lower the loss is [9].

The propagation rather than the reactive coupling plays an im-
portant role in the intra-chip wireless transmission. This mech-
anism is supported by Fig. 3(c) and (d) that shows the relation-
ship between the phase delay and frequency. To our knowledge,
if reactive coupling played the key role, the phase delay would
either keep constant over frequency or follows the sum of a few

functions of frequency. In addition, the speed of electro-
magnetic wave is extracted by the phase variation and
the T-R distance variation as follows [16]:

(1)

The calculated speed is , where
is the speed in free space. The effective relative permittivity

is further estimated as . It is very close to
the silicon relative permittivity of signifying that the
dominant medium supporting the wave propagation is the sil-
icon substrate. This agrees well with the conclusion in [17]. For
the antenna formed on a substrate with it is expected

times more power radiated into the substrate than into free
space [18].

B. Frequency-Domain Modeling

The IE3D is used for frequency-domain modeling in the
range where the interested separation distance is comparable
to the wavelength. However, with increased distance between
elements compared with wavelength the high-oscillating part
of the subintegral in method of MOM matrix elements makes
standard integration procedures inapplicable [19], which makes
IE3D inaccurate. A statistical ray-tracing model is then devel-
oped for this frequency range. Fig. 4 shows a simplified ray
tracing model in accordance with the Fig. 1(b). The rays which
travel through the top oxide layer are neglected because the
oxide thickness is negligibly small compared to a wavelength.
The bottom ground plane or metal chuck of a probe station
makes the rays reflect off it. The th path traveled by the th
ray with the transmit angle of picked by the RA has the gain
as follows:

(2)
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Fig. 3. Measured channel transfer function � : (a) amplitude for the 10-����
Si substrate, (b) amplitude for the 5-����� Si substrate, (c) phase for the
10-���� Si substrate, and (d) phase for the 5-����� Si substrate.

where , , , and represent the Fresnel’s reflection and
transmission coefficients at the th planar interface, used for dif-

Fig. 4. The simplified ray tracing model.

ferent ray direction as shown in Fig. 4. They are calculated using
two polarizations cases [20]. is the path length traveled by the
wave through the th layer. is the T-R separation distance. is
the complex propagation constant in the th layer. The transfer
function between TA and RA then can be calculated by (3)
using the statistical method for rays, where and
are the simulated gains for TA and RA, respectively, as shown
in Fig. 2(d). The limit is the observation limit as shown in Fig. 4.
As seen the simulated transfer function is , dependant

(3)

The modeling results of the amplitude of are presented in
Fig. 5(a) and (b) for both low and high resistivity Si cases. It
is found that the modeling results agree with 10 measurements
data averaged values. This confirms the mechanism behind this
modeling as presented in [16]. That is in the frequency range
where the separation distance is relatively comparable with
wavelength the IE3D EM simulator can model this case well.
However in the frequency range where the separation distance
is relatively larger than wavelength the statistical ray-tracing
model is more accurate because the multiple propagation paths
(rays) are supported by the intra-chip wireless channel. This
causes the fluctuations in the amplitudes of the transfer function
as clearly shown in Fig. 3(a) for 10 mm and (b) for 40 mm
separation distance. The intra-chip wireless channel can thus
be regarded as a frequency-selective channel.

C. Time-Domain Analysis

The channel impulse response is firstly obtained by the In-
verse discrete Fourier transform (IDFT) of the measured transfer
function . The wide measurement frequency ensures a fine
time domain resolution. Based on it, the received power delay
profile, path loss and delay spread are obtained for analysis.

The received power delay profile peak for the antenna pair
on 10- Si substrate has been found to be heavily attenu-
ated by more than two orders of magnitude as compared to that
for antennas on 5- Si substrate. In addition, with a noise
floor set to 10 dB above average noise [12] the received power
delay profile is entirely buried in noise when the TA-RA separa-
tion increased to a limit which is found as 20 mm for 10-
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Fig. 5. Modeling results compared with averaged measurement results for the
amplitude of � : (a) 10-���� Si substrate and (b) 5-����� Si substrate.

Si substrate and 40 mm for 5- Si substrate, respectively.
For brevity no plots are presented here. Because the transmit-
ting power and receiving sensitivity of our measurement set up
are limited, we can only choose the useful data within these dis-
tance limits to analyze and further reveal the channel propaga-
tion mechanism.

Table I lists the path loss that represents the power at-
tenuation due to the intra-chip wireless channel for both resis-
tivity cases. It is found from Fig. 6 that scatter values are
fitted well by the equation shown in the figure with quite small

, where , , are the path loss factor, reference dis-
tance and intercepted at respectively. is a zero-mean
Gaussian-distributed random variable in dB with standard de-
viation . It is noted that is significantly lower than the free-
space value of 2, implying the signal is not carried through the
space wave. The spherical behavior of space wave with distance
further enhances this conclusion. Leaky wave is not considered
due to that it decreases exponentially over the intra-chip channel
thus contributes negligibly to the received signal. Guided wave
is realized via the reflection within the wafer and attenuated
greatly due to the lossy wafer, especially for larger T-R dis-
tance. Surface wave occurs near the interface between the air
and wafer. Thus it is believed that surface wave constitutes the
dominant contribution as T-R distance increases because of its
cylindrical characteristics. With the ratio of substrate thickness
and the free-space wavelength is 0.045 at 22–29 GHz the

TABLE I
PATH LOSS VERSUS DISTANCE

Fig. 6. Path loss and delay spread versus log distance.

more energy is expected to be carried by surface wave than by
space wave as analyzed in [21]. This conclusion is further en-
hanced by the observation of the first arrival signal peak, which
excludes the possibilities of its transmission through space wave
and reflected wave [12]. As a result, it can be summarized that
space wave contributes negligibly to the received signal and sur-
face wave is the dominant path of received signal. Integrated
antennas for intra-chip communications should be designed to
launch effectively the surface wave rather than space wave.

Fig. 6 also shows the delay spread over the log T-R distance.
As seen it is generally increases with the distance, signifying
that the received signal energy spreads over a longer time span
with increased distance [12].

IV. PERFORMANCE OF INTRA-CHIP WIRELESS INTERCONNECT

An intra-chip wireless interconnect system is simulated
using the on-chip meander antennas and UWB radios in silicon
technology. No experimental verification is made. It operates
over a 7-GHz bandwidth from 22–29 GHz. This higher UWB
band is preferable because it has higher transmission gain and
is less contaminated by the switching noise coupling from the
on-chip digital circuitry. The pulse position modulation scheme
is adopted in the UWB radio. The BER performance of the
intra-chip wireless interconnect system is evaluated according
to the approach described in [22] with the following parameters:
the receiver gain and noise figure are 20 and 15 dB, respec-
tively; the switch noise is 10 dB lower than the thermal noise;
and the implementation loss is 4 dB. The targeted highest data
rate is 3.33 Gbps as limited by the designed PPM signal frame
width [22]. As expected, the BER performance degrades with
interconnect distance and data rate. It achieves a better BER on
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the 5- Si substrate than that on the 10- Si substrate.
For example, the interconnect on the 5- substrate can
support a data rate of 3.33 Gbps with a up
to a distance of 40 mm with the average transmitted power
of 0 dBm; while the interconnect on the 10- substrate
can support the same data rate with a up to a
distance of 10 mm with the same transmitted power.

V. CONCLUSION

The on-chip meander monopole antennas of axial length 1
mm were fabricated in silicon technology. They were measured
and simulated in terms of return loss, radiation patterns and
gains. The acceptable matching at 22–29 GHz was obtained.

A unique wireless channel is formed between a pair of
on-chip transmit and receive antennas. It was experimentally
characterized up to an interconnect distance of 40 mm and its
mechanism was analyzed in both frequency and time domains.
Based on the analysis in frequency domain it is concluded
that the intra-chip wireless channel shows the frequency-se-
lective characteristic. Based on the analysis in time domain it
is concluded that propagation of radio waves over intra-chip
channels is mainly realized with surface wave rather than space
wave. These important characteristics provide some insights
to the intra-chip wireless channel mechanism thus provide the
guidance for intra-chip wireless system design.

The intra-chip wireless interconnect system using the on-chip
meander antennas and UWB radios that operate in 22–29 GHz
was finally evaluated in terms of BER under the assumptions
of perfect system synchronization and signal corruption from
thermal and switching noises. As expected, the BER perfor-
mance degrades with interconnect distance and data rate. It
achieves a better BER on the 5- Si substrate than that on
the 10- Si substrate.
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