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ABSTRACT 
Reducing end-to-end streaming latency is critical to HTTP-based 
live video streaming. There are currently two technologies in this 
domain: Low-Latency HTTP Live Streaming (LL-HLS) and Low-
Latency Dynamic Adaptive Streaming over HTTP (LL-DASH). 
Many players support LL-HLS and/or LL-DASH protocols, 
including Apple’s AVPlayer, Shaka player, HLS.js Dash.js, and 
others. This paper is dedicated to the analysis of the performance 
of low-latency players and streaming protocols. The evaluation is 
based on a series of live streaming experiments, repeated using 
identical video content, encoders, encoding profiles, and network 
conditions, emulated by using traces of real-world networks. 
Several performance metrics, such as average stream bitrate, the 
amounts of downloaded media data, streaming latency, as well as 
buffering and stream switching statistics are captured and reported 
in our experiments. These results are subsequently used to describe 
the observed differences in the performance of LL-HLS and LL-
DASH-based players. 
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1 INTRODUCTION 
The operation under unknown or changing network conditions has 
been one of the most fundamental challenges that adaptive bitrate 
streaming systems have been trying to solve since their birth in the 
1990s [20-22]. This challenge still exists today, although in a 
somewhat simplified setting, allowed by the use of HTTP-based 
Adaptive Streaming (HAS) architectures [23, 39-47]. In such 
architectures, the network adaptation logic resides in streaming 
clients, effectively driving the selection and loading of segments of 
media streams. In the past decade, many advanced methods have 
been proposed for the design of stream selection algorithms. This 
includes throughput-based methods [39-40], buffer-level-based 
heuristics [31-43], control-theoretic approaches [44-45], as well as 
machine-learning algorithms [5-6].  

However, the comparison of different network adaptation 
algorithms presents a technical challenge. Some of the proposed 
algorithms have only been evaluated in a simulated environment 
using very basic bandwidth throttling tools in web browsers. Such 
tools can only control video players’ download bandwidth at the 
application layer and have no means for accurately simulating 
highly fluctuating network bandwidth changes or packet loss 
statistics present, for example, in mobile networks. 

To better evaluate HAS systems, references [29-34] proposed 
frameworks for measuring video streaming Quality of Experience 
(QoE) using real networks or fine-controlled network links. For 
instance, Talon et al. [29] have implemented several HAS players 
and evaluated them in a campus network from different 
performance perspectives. Ayad et al. [32] took a similar approach 
and conducted a practical and in-depth evaluation of HAS players. 
Particularly, the authors of [32] have built an experimental 
framework emulating wired network links using Netem and Linux 
Traffic Control (TC). Their experimental study and code-level 
analysis revealed how different HAS players operate in detail. This 
study was limited to the use of wired networks, however. 
References [33-35] have proposed a framework for automating 
video streaming testing and QoE evaluation. The framework 
integrates with the Mobile Broadband Networks in Europe 
(MONROE) project. The players run in docker containers with 
managed network connections and the environment metadata 
collection functionalities that are built into MONROE nodes. The 
framework enables running experiments on a cloud infrastructure. 
These proposed frameworks, however, focus more on automation 
and simplification of player evaluation, but they do not ensure a fair 
comparison of different players, because there is no guarantee that 
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different players experience the same network conditions. Raca et 
al. [31] have proposed DASHbed, a framework for simulating 
large-scale empirical evaluation of DASH players. However, the 
mobile network traces it relies upon [48] have limited sampling 
granularity and thus don’t capture the essential fine-grain dynamics 
of such networks. 

To ensure a more accurate and fair evaluation of different 
players, in this paper we introduce a custom evaluation framework, 
incorporating the Mahimahi network emulator [19, 36-38]. Our 
framework guarantees a fair comparison of different players by 
replaying the same network traces across all the playback sessions. 
This allows the comparison of multiple players side by side under 
the same conditions. The Mahimahi network simulator can 
accurately emulate mobile network links using the physical 
network traces recorded from different mobile operators. 
Specifically, in this study, we will use network traces from T-
Mobile and Verizon 4G LTE networks [19]. 

In recent years, reducing the latency of live streaming has 
received tremendous interest in both the research community and 
the industry. DVB low-latency DASH [10] was the first effort in 
the low-latency HAS domain which has later evolved into the low-
latency DASH/CMAF recommendation [9]. Apple also released 
the Low-Latency HLS specification [7] in 2020. The low-latency 
DASH and HLS technologies share many common design 
principles: first, divide a whole video segment into smaller chunks, 
then deliver a segment as soon as the first chunk becomes available 
to download. In this way, a player can start rendering a segment 
right after its first chunk is received. As more chunks are produced, 
they are sent to the players one by one. As a result, the latency is 
reduced from one whole segment long (e.g., 10 seconds for legacy 
v3 HLS) to only one chunk long (e.g., a few hundred milliseconds). 

Considering that low-latency streams are delivered chunk by 
chunk, and a much smaller buffer is available at the client-side, 
estimating the network bandwidth and making stream adaptation 
decisions becomes more challenging. Recent methods proposed to 
address these challenges include references [24-27] as well as 
references [5,6]. The last two references describe LoL and L2All 
machine-learning-based algorithms prototyped and included in the 
DASH.js streaming player [4]. Other variants of low-latency 
adaptation algorithms can be found in LL-HLS streaming players 
such as HLS.js [1], Shaka player [2], and Apple’s AVPlayer [3]. 

This paper is dedicated to the evaluation of low-latency DASH 
and HLS players and their respective ABR adaptation algorithms 
in a common evaluation framework, ensuring an accurate and fair 
comparison. In Section 2, we will describe our evaluation setup. In 
Section 3, we will present and discuss the results of our 
measurements. In Section 4, we will drive conclusions. 

2 EXPERIMENT SETUP 

2.1 Streaming Tool-Chains 
The overall diagrams of the tool-chains that we used for LL-HLS 
and LL-DASH streaming are shown in Figures 1 and 2 
respectively. To generate LL-HLS streams we used Apple’s HLS 

reference tools [8] and FFmpeg [13]. To generate LL-DASH 
streams we used OBS studio [12], FFmpeg [13], and node-gpac-
dash [14]. Additional details about our setups can be found in [17-
18]. The LL-HLS stream was served dynamically by an NGINX 
web server [15]. The LL-DASH stream was served dynamically by 
node-gpac-dash [14]. 

As shown in Figures 1 and 2, the input video streams were sent 
to the low-latency packagers (mediastreamsegmenter [8] for LL-
HLS, and FFmpeg [12] for LL-DASH). The outputs of low-latency 
packagers are the chunked video segments and manifest files 
informing the players on how to consume the streams in low-
latency mode. Next, the output stream files are served by the low-
latency media servers (lowLatencyHLS.php [8] for LL-HLS, node-
gpac-dash [14] for LL-DASH) to players in a chunked manner.  

On the player side, the web-based players run on the Chrome 
browser, and the iOS native player (HLS) runs on the AVPlayer 
framework on iOS. The Chrome browser and the AVPlayer run 
inside the Mahimahi container and connect to the media server via 
an emulated virtual network interface. 

2.2 Test Content and Encoding Parameters  
As a test video sequence, we used a 1080p version of the Big Buck 
Bunny [11] video. This sequence was looped to enable continuous 
testing. For streaming, 3 live transcoded variant streams have been 
subsequently generated, with parameters listed in Table 1. 

To minimize fluctuations of encoding bitrates from their 
declared targets, constant bitrate (CBR) encoding mode has been 
utilized. To minimize encoding delays, H.264 encoder operating in 
Baseline profile has been used. Lookahead processing disabled. 

Figure 1: Tool-chain used for testing of LL-HLS players 

Figure 2: Tool-chain used for testing of LL-DASH players 
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The segment lengths and fragment durations were set to 4 sec and 
1 sec, respectively, matching the default values used in Apple’s 
streaming tools for LL-HLS [8]. The same encoding parameters 
have been used for the generation of both LL-DASH and LL-HLS 
streams. 

The overall session duration that we used to test the 
performance of each player under each network was 10 minutes. 
Given selected chunk and fragment durations, this has allowed 
about 600 chunks or equivalently 150 segments to be downloaded 
per session. 

2.3 Streaming Players  
We have evaluated 6 implementations of low-latency streaming 
players. For LL-HLS, we used HLS.js [1], Shaka player [2], and 
Apple’s AVPlayer [3]. For LL-DASH, we used Dash.js with three 
different low-latency ABR algorithms: Dash.js original [4], Dash.js 
with LoL algorithm [5], and Dash.js with L2All algorithm [6]. We 
have implemented simple test applications for all the players. The 
applications were built using the latest player SDK releases as 
available in December 2020. 

2.4 Performance Metrics  
The reporting of metrics indicative of live streaming latency, 
playback speed, and re-buffering events has been instrumented in 
the video player applications.  Other metrics such as stream bitrate, 
video resolution, and media data downloaded have been derived 
from the streaming servers’ access logs. The processing of all 
collected metrics was done offline.   

The player’s streaming latency was calculated by following the 
method described in [9], which is common for both LL-DASH and 
LL-HLS. Essentially, at any time point, we take the difference 
between the elapsed presentation time and the elapsed wall clock 
time, from the beginning of a streaming session (Eq. 1): 𝑃𝐿 =  (𝑊𝐶 –  𝑊𝐶𝐴)  − (𝑃𝑇 –  𝑃𝑇𝐴)/𝑇𝑆              (Eq. 1) 

where PL represents the live Presentation Latency, WC and PT 
represent the current Wall Clock time and the current Presentation 
Time, respectively. WCA and PTA represent the beginning wall 
clock time and the beginning presentation time, respectively. For 
LL-DASH, the above values have been obtained from the 
ProducerReferenceTime [9] element embedded in an MPD file, and 
W3C HTML5 video currentTime API [16], and/or a DASH MPD 
file. For LL-HLS, these values have been derived from the HLS 
m3u8 file and currentTime API. 

The number of re-buffering events and the players’ playback 
speed have been obtained by using the waiting event API [13] and 
the playbackRate API [13] respectively.  

The playback speed variation is calculated as the Euclidean 
distance of all the measured playback speeds relative to the native 
speed (which equals 1): 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = ଵ௡ ට∑௜ୀଵே (𝑠௜ − 1)ଶ     (Eq 2) 

The parameter N used in this formula denotes the number of 
playback speed measurements conducted during the session. 

All other metrics including stream bitrate, video resolution, 
media data downloaded, number of bitrate switches have been 
derived from the server logs. The full list of metrics collected in our 
test system is summarized in Table 2. 

2.5 Performance Metrics  
We used the Mahimahi network emulator [19] to emulate various 
network conditions at the network interface level. Mahimahi is 
essentially a Linux container that can run an application inside of 
it. An application inside Mahimahi connects to the outside world 
through a virtual network interface that sends and receives bytes 
according to the running downlink and uplink traces. This way, the 
capacity of the network interface is limited by the running trace. 
We used traces that have been recorded from real-world mobile 
networks. When we run the test players inside Mahimahi, the player 
download speed is limited by the capacity of the virtual interface. 
Unlike using bandwidth throttling features in web browsers, 
Mahimahi provides more faithful network emulation by using real-
world traces and throttling bandwidth at the network interface level. 
Additionally, the same network traces are replayed for all the test 
sessions. This allows a fair comparison of different players.  

We have evaluated the test players using two 4G-LTE network 
traces from T-Mobile and Verizon respectively [19]. We provide 
visualizations of these traces in Figure 3. In Table 3 we further list 
basic statistics associated with them. We note that these network 
traces are quite challenging, capturing cases of mobile handoffs and 
other forms of impairments that may happen in practice. 

Table 3: Network bandwidth statistics 

Bandwidth statistics   T-Mobile     Verizon   
Average bitrate (kbps) 1607.43 1323.97 
St. deviation of bitrate (kbps)   1147.60 1075.80 
Minimum bitrate (kbps) 148.5 1.178 
Maximum bitrate (kbps) 7545 5433 

Table 2: List of performance metrics collected 

Metrics  Impact domain(s) 
Streaming bitrate (kbps) Efficiency, QoE 
Video resolution (height) QoE 
Streaming latency (sec) Latency, QoE 
Variation of playback speed  QoE 
Frequency of stream switches QoE 
Frequency of rebuffering events QoE 
Downloaded media data (Mbytes) Efficiency 
Media objects (chunks or segments) downloaded Efficiency 

 

Table 1: Encoding profile parameters 

Parameter Rendition 1 Rendition 2 Rendition 3 
Bitrate (kbps) 279 925 1253 
Frame rate (fps) 30 30 30 
Video resolution (pels) 320x180 640x360 768x432 
Seg. duration (sec) 4 4 4 
Chunk duration (sec) 1 1 1 
Video codec H.264 H.264 H.264 
Video codec profile Baseline Baseline Baseline 
Media format ISOBMFF ISOBMFF ISOBMFF 
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Figure 3: Network bandwidth traces used in the experiments 

3 THE RESULTS 

3.1 Results for Verizon 4G LTE network 
First, we review the results obtained by using traces of the Verizon 
4G LTE network. Table 4 offers summary metrics. The dynamics 
of changes of bitrates and latencies achieved by LL-HLS players 
are illustrated in Figure 4 and Figure 5 respectively. 

Based on Figure 5, we note, that the latency of the Shaka player 
was almost flat across the entire session, with an average value of 
7.28 seconds. This is higher than the 4.32 seconds achieved by the 
HLS.js but is significantly lower than the 15.96 seconds achieved 
by the AVPlayer. Even though HLS.js has lower average latency, 
its behavior across the session is not stable: it varies very 
significantly, producing large spikes of latency in the mid-session. 
Such spikes, in our view, should be avoided.  

When latency varies, a player has to play faster or slower than 
the stream’s native speed to stay on the stream’s live edge. This is 
evidenced by the playback speed variation numbers reported in 
Table 4. The lower values of playback speed variation are 
indicative of better QoE. 

Based on Figure 5, we also note that AVPlayer was able to 
stream at low latency (about 4.8 seconds) in the first 260 seconds. 
When the first major bandwidth fluctuation hit (i.e., time interval 
[250 - 340] in Figure 3), AVPlayer experienced buffer underruns 
and was not able to maintain low latency after re-buffering and 
resuming the playback. The latency went up to 12 seconds, then to 
17 seconds until the end.  

In terms of streaming bitrate (cf. Figure 4), we note that Shaka 
player has achieved the highest average value (1228 kbps) over the 
10 minutes session, followed by AVPlayer (1136 kbps) and HLS.js 
(849 kbps). As also seen from Figure 4, the Shaka player was able 
to stream at the highest bitrate most of the time while HLS.js often 
hesitated to switch up to higher bitrates, or it switched down to 
lower bitrates when other players still stuck to higher bitrates. This 
can be seen particularly in the time interval [350 – 470]. In general, 
a higher average bitrate should result in better QoE to viewers. 

Next, we note that the Shaka player has the lowest number of 
bitrate switches, only twice in 10 minutes. AVPlayer switched 130 
times, most of which happened during the time interval [470 - 570]. 
During this time, the available bandwidth was not only low but also 

fluctuated significantly (Figure 3). In reaction to the dynamic 
network condition, AVPlayer adapted quickly by switching bitrate 
for almost every segment it downloaded. Though AVPlayer was 
prompt in switching up to a higher bitrate when the available 
bandwidth allows, it was forced to switch back to lower bitrate 
when the bandwidth dropped. Generally, overly frequent switching 
may hurt QoE. 

Another important QoE factor is the number of buffer 
underruns and consequently re-buffering events. AVPlayer 
recorded the least re-buffering events, however, this is because its 
average live latency (15.96 seconds) was much higher than the 
other two. Higher latency means more buffering, and higher 
resilience to bandwidth fluctuation. HLS.js and Shaka players were 
playing closer to the stream’s live edge, as a result, they are more 
prone to re-buffering (36 times for HLS.js, 12 times for Shaka 
player) than AVPlayer. Among these three, Shaka player seems to 
achieve a better balance between latency and re-buffering. 

Finally, we look at the amount of downloaded data by the 
players in 10 minutes sessions. Shaka player downloaded 587 
media objects, all of them were video chunks which means Shaka 
player maintained low latency throughout the session. Since 600 
chunks should be downloaded in 10 minutes, Shaka skipped 13 
chunks. AVPlayer downloaded 669 media objects including 611 
chunks and 58 whole segments. The whole segments were 
downloaded when AVPlayer was not able to download partial 
chunks on the live edge, and fell back to download earlier whole 
segments. HLS.js downloaded 662 chunks and 11 whole segments. 
Unlike Shaka player, AVPlayer and HLS.js downloaded more than 
600 media objects. In terms of downloaded data in bytes, Shaka 
downloaded 90.16 MB, more than HLS.js (85.36 MB) because of 

Table 4: Summary of players metrics – Verizon 4G LTE 

Metrics LL-HLS players LL-DASH players 
HLS.js Shaka AVplayer DASH.js LoL L2All Avg. bitrate (kbps) 849 1228 1136 1165 595 1073 Avg. height (pixels)  328 426 404 410 262 387 Avg. latency (secs) 4.32 7.28 15.96 3.71 3.2 3.9 Var. playback speed  3.97 0 0 0.19 0.39 0.44 # of switches 48 2 130 6 29 3 # of rebufferings 36 12 2 5 79 56 Downloaded MBs 85 90 99 88 45 81 Downloaded objects (chunks + segments)  673  (662+ 11) 587 (587 + 0) 669 (611 + 58) 152 151 152 

Table 5: Summary of players metrics – T-Mobile 4G LTE 
Metrics LL-HLS players LL-DASH players 

HLS.js Shaka AVplayer DASH.js LoL L2All Avg. bitrate (kbps) 783 1043 1037 1225 537 1251 Avg. height (pixels)  311 378 378 426 248 432 Avg. latency (secs) 5.82 4.48 7.78 3.06 1.78 2.28 Var. playback speed  3.62 0 0 0.23 1.62 0.42 # of switches 50 8 72 4 28 0 # of rebufferings 43 18 1 1 69 13 Downloaded MBs 156 81 92 93 42 94 Downloaded objects (chunks + segments)  965 
(743 

+ 222) 621 
(621 
+ 0) 703  

(698  
+ 5) 151 152 151 

 

359



Performance of Low-Latency HTTP-based Streaming Players MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey 
 

 

its higher average stream bitrate, less than AVPlayer (98.52 MB) 
because of fewer downloaded media objects. 

Next, we switch our attention to the LL-DASH players. The 
dynamics of changes of bitrates and latencies achieved by such 
players are illustrated in Figure 6 and Figure 7 respectively. 

As can be observed from Table 4 and Figure 6, the original 
Dash.js player achieved a much higher stream bitrate (1165 kbps) 
than LoL (595 kbps), and L2ALL (1073 kbps) variants. LoL had 
significantly more bitrate switches (29 times) than Dash.js (6 times) 
and L2ALL (3 times). LoL achieved the lowest average bitrate and 
the number of bitrate switches. However, as seen from Figure 7, 
LoL was also able to achieve a lower average latency (3.2 seconds) 
than Dash.js (3.71 seconds) and L2ALL (3.9 seconds). The LoL 
player re-buffered 79 times, which is higher than L2ALL (56 times) 
and the original Dash.js (5 times). 

The original Dash.js also had the lowest playback speed 
variation (0.19). In terms of downloaded data, all three LL-DASH 
players downloaded about 150 objects, all of them were whole 
segments. This is because LL-DASH players depend on the 
streaming servers to push segments chunk by chunk using 
HTTP/1.1 chunked transfer encoding [9], instead of requesting 
individual chunks as LL-HLS players do. In other words, LL-
DASH players only request whole segments. Finally, we observe 
that the number of segments downloaded by all LL-DASH players 
was almost the same and that the total amounts of data downloaded 
were proportional to the average bitrates used by such players. 

3.2 Results for T-Mobile 4G LTE network 

We next review the results obtained by using traces of the T-Mobile 
4G LTE network. Table 5 offers summary metrics. The dynamics 
of changes of bitrates and latencies achieved by LL-HLS players 
are illustrated in Figure 8 and Figure 9 respectively.  

Based on Table 5 and Figure 8, we notice that Shaka player and 
AVPlayer have achieved higher average bitrates than HLS.js. This 
can be observed in multiple intervals in Figure 8, where HLS.js 
seems struggling to select the right bitrate while other players were 
able to play at higher bitrates.  

Based on Figure 9, we also note that HLS.js and Shaka players 
have achieved lower latency than AVPlayer. The latency line of 
AVPlayer was low and flat for more than half of the session but 
went up higher towards the end. Like when the Verizon trace was 
used, HLS.js had variable latency throughout the session. Shaka 
player had both lower and more stable latency (averaged at 7.78 
seconds) when compared to the other two.  

We also note that HLS.js downloaded a lot more media objects 
(965) during the session than the other two players, and also more 
than itself when the Verizon trace was used. This is probably due 
to more re-buffering events and bitrate switches it had experienced 
in the T-Mobile network. Because of more media object 
downloads, HLS.js also downloaded more bytes (155.54 MB).  

In terms of the number of re-buffering and bitrate switches, the 
Shaka player again experienced fewer re-buffering events (18 
times) and the least switches (only 8 times). Finally, HLS.js had a 
large value of playback speed variation due to its highly variable 
latency. It was observed several times that HLS.js had to play at 1.5 
times speed to catch up to the live edge. 

 

Figure 4: Bitrate over time – LL-HLS / Verizon 4G 

 

Figure 5: Live latency over time – LL-HLS / Verizon 4G 

 

Figure 6: Bitrate over time – LL-DASH / Verizon 4G 

 

Figure 7: Live latency over time – LL-DASH / Verizon 4G 
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Finally, we look at the behavior of LL-DASH players. The 
dynamics of changes of bitrates and latencies achieved by such 
players are illustrated in Figure 10 and Figure 11 respectively. 

Based on Table 5 and Figure 10, we note that the original 
Dash.js and L2ALL were able to pull content encoded at much 
higher bitrates than LoL player: 1224.83 kbps and 1250.83 kbps vs 
537.21 kbps respectively. LoL player used the lowest bitrate for the 
majority of the session while the other two players were at the 
highest bitrate.  

Based on Table 5 and Figure 11, we also note that LoL and 
L2All both have achieved lower latency than the original Dash.js 
(3.06 seconds), at 1.78 seconds and 2.28 seconds, respectively. It 
appears that these ABR algorithms seem to favor lower latency than 
other metrics when choosing the bitrate.  

In terms of media downloads, all three players have received 
about 150 whole segments. The original Dash.js and L2ALL 
downloaded more bytes for their higher average bitrate.  

In terms of the number of re-buffering events and bitrate 
switches, the original Dash.js performed the best among the three. 
It had the lowest number of re-buffering events (only once) and 
very few bitrate switches (only 4 times). Finally, the original 
Dash.js had the smallest playback speed variation (0.23), lower 
than LoL (1.62) and L2Aall (0.42).  

In general, we observe that the original Dash.js had the best 
performance among the three players. Though L2All performed 
slightly better in bitrate, latency, and bitrate switch frequency, it 
also has experienced more re-buffering events. 

4 CONCLUSIONS 
In this study, we have evaluated 6 different LL-HLS and LL-DASH 
players, using multi-bitrate-encoded low-latency HLS and DASH 
streams and network emulation process, employing traces obtained 
for T-Mobile 4G LTE and Verizon 4G LTE networks.  

We noted that both LL-HLS and LL-DASH systems were able 
to operate at significantly lower latencies compared to the 
traditional HLS and DASH streaming. Thus, in the majority of 
cases, we have observed LL-DASH players can maintain latencies 
in the range of 3-4 seconds, except for a couple of short segments 
in streaming over the Verizon 4G network, when latencies have 
increased to almost 20 seconds. For LL-HLS players, we have 
observed somewhat broader variation in streaming latencies across 
different player implementations, but with the majority of data 
points fitting in the 4-10 second range.  

However, we also noted many deficiencies in the behavior of 
both LL-DASH and LL-HLS players when operating in our testing 
framework. These include:  

 high stream switching and buffering rates,  
 the inability of some players to select high renditions,  
 the inability of some players to maintain playback speed,  
 more requests sent to the CDNs (especially for LL-HLS),  
 the inability of some players to maintain low delay, etc.  

Based on these observations, we believe that there is certainly more 
work that still needs to be done to improve player algorithms and 
other aspects of the system to make low-latency streaming more 
robust and suitable for mass deployment in practice. 

 

Figure 8: Bitrate over time – LL-HLS / T-Mobile 4G 

 

Figure 9: Live latency over time – LL-HLS / T-Mobile 4G 

 

 

Figure 10: Bitrate over time – LL-DASH / T-Mobile 4G 

 

Figure 11: Live latency over time – LL-DASH / T-Mobile 4G 
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