
Performance of Low-Latency HTTP-based Streaming Players
Bo Zhang

 Brightcove, Inc
 Boston MA USA

 bzhang@brightcove.com

Thiago Teixeira
 Brightcove, Inc.
 Boston MA USA

 tteixeira@brightcove.com

Yuriy Reznik
 Brightcove, Inc.
 Seattle WA USA

 yreznik@brightcove.com

ABSTRACT
Reducing end-to-end streaming latency is critical to HTTP-based
live video streaming. There are currently two technologies in this
domain: Low-Latency HTTP Live Streaming (LL-HLS) and Low-
Latency Dynamic Adaptive Streaming over HTTP (LL-DASH).
Many players support LL-HLS and/or LL-DASH protocols,
including Apple’s AVPlayer, Shaka player, HLS.js Dash.js, and
others. This paper is dedicated to the analysis of the performance
of low-latency players and streaming protocols. The evaluation is
based on a series of live streaming experiments, repeated using
identical video content, encoders, encoding profiles, and network
conditions, emulated by using traces of real-world networks.
Several performance metrics, such as average stream bitrate, the
amounts of downloaded media data, streaming latency, as well as
buffering and stream switching statistics are captured and reported
in our experiments. These results are subsequently used to describe
the observed differences in the performance of LL-HLS and LL-
DASH-based players.

CCS CONCEPTS
• Multimedia information systems → Multimedia streaming

KEYWORDS
HTTP Adaptive Streaming, HLS, DASH, Low-Latency live
streaming, Video players, Performance evaluation

ACM Reference format:
Bo Zhang, Thiago Teixeira, and Yuriy Reznik. 2021. Performance of Low-
Latency HTTP-based Streaming Players. In Proceedings of ACM
Multimedia Systems conference (MMSys’21). ACM, New York, NY, USA, 6
pages. https://doi.org/10.1145/1234567890

1 INTRODUCTION
The operation under unknown or changing network conditions has
been one of the most fundamental challenges that adaptive bitrate
streaming systems have been trying to solve since their birth in the
1990s [20-22]. This challenge still exists today, although in a
somewhat simplified setting, allowed by the use of HTTP-based
Adaptive Streaming (HAS) architectures [23, 39-47]. In such
architectures, the network adaptation logic resides in streaming
clients, effectively driving the selection and loading of segments of
media streams. In the past decade, many advanced methods have
been proposed for the design of stream selection algorithms. This
includes throughput-based methods [39-40], buffer-level-based
heuristics [31-43], control-theoretic approaches [44-45], as well as
machine-learning algorithms [5-6].

However, the comparison of different network adaptation
algorithms presents a technical challenge. Some of the proposed
algorithms have only been evaluated in a simulated environment
using very basic bandwidth throttling tools in web browsers. Such
tools can only control video players’ download bandwidth at the
application layer and have no means for accurately simulating
highly fluctuating network bandwidth changes or packet loss
statistics present, for example, in mobile networks.

To better evaluate HAS systems, references [29-34] proposed
frameworks for measuring video streaming Quality of Experience
(QoE) using real networks or fine-controlled network links. For
instance, Talon et al. [29] have implemented several HAS players
and evaluated them in a campus network from different
performance perspectives. Ayad et al. [32] took a similar approach
and conducted a practical and in-depth evaluation of HAS players.
Particularly, the authors of [32] have built an experimental
framework emulating wired network links using Netem and Linux
Traffic Control (TC). Their experimental study and code-level
analysis revealed how different HAS players operate in detail. This
study was limited to the use of wired networks, however.
References [33-35] have proposed a framework for automating
video streaming testing and QoE evaluation. The framework
integrates with the Mobile Broadband Networks in Europe
(MONROE) project. The players run in docker containers with
managed network connections and the environment metadata
collection functionalities that are built into MONROE nodes. The
framework enables running experiments on a cloud infrastructure.
These proposed frameworks, however, focus more on automation
and simplification of player evaluation, but they do not ensure a fair
comparison of different players, because there is no guarantee that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys 21, September 28–October 1, 2021, Istanbul, Turkey
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8434-6/21/09.
https://doi.org/10.1145/3458305.3478444

356

MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey B. Zhang et al.

different players experience the same network conditions. Raca et
al. [31] have proposed DASHbed, a framework for simulating
large-scale empirical evaluation of DASH players. However, the
mobile network traces it relies upon [48] have limited sampling
granularity and thus don’t capture the essential fine-grain dynamics
of such networks.

To ensure a more accurate and fair evaluation of different
players, in this paper we introduce a custom evaluation framework,
incorporating the Mahimahi network emulator [19, 36-38]. Our
framework guarantees a fair comparison of different players by
replaying the same network traces across all the playback sessions.
This allows the comparison of multiple players side by side under
the same conditions. The Mahimahi network simulator can
accurately emulate mobile network links using the physical
network traces recorded from different mobile operators.
Specifically, in this study, we will use network traces from T-
Mobile and Verizon 4G LTE networks [19].

In recent years, reducing the latency of live streaming has
received tremendous interest in both the research community and
the industry. DVB low-latency DASH [10] was the first effort in
the low-latency HAS domain which has later evolved into the low-
latency DASH/CMAF recommendation [9]. Apple also released
the Low-Latency HLS specification [7] in 2020. The low-latency
DASH and HLS technologies share many common design
principles: first, divide a whole video segment into smaller chunks,
then deliver a segment as soon as the first chunk becomes available
to download. In this way, a player can start rendering a segment
right after its first chunk is received. As more chunks are produced,
they are sent to the players one by one. As a result, the latency is
reduced from one whole segment long (e.g., 10 seconds for legacy
v3 HLS) to only one chunk long (e.g., a few hundred milliseconds).

Considering that low-latency streams are delivered chunk by
chunk, and a much smaller buffer is available at the client-side,
estimating the network bandwidth and making stream adaptation
decisions becomes more challenging. Recent methods proposed to
address these challenges include references [24-27] as well as
references [5,6]. The last two references describe LoL and L2All
machine-learning-based algorithms prototyped and included in the
DASH.js streaming player [4]. Other variants of low-latency
adaptation algorithms can be found in LL-HLS streaming players
such as HLS.js [1], Shaka player [2], and Apple’s AVPlayer [3].

This paper is dedicated to the evaluation of low-latency DASH
and HLS players and their respective ABR adaptation algorithms
in a common evaluation framework, ensuring an accurate and fair
comparison. In Section 2, we will describe our evaluation setup. In
Section 3, we will present and discuss the results of our
measurements. In Section 4, we will drive conclusions.

2 EXPERIMENT SETUP

2.1 Streaming Tool-Chains
The overall diagrams of the tool-chains that we used for LL-HLS
and LL-DASH streaming are shown in Figures 1 and 2
respectively. To generate LL-HLS streams we used Apple’s HLS

reference tools [8] and FFmpeg [13]. To generate LL-DASH
streams we used OBS studio [12], FFmpeg [13], and node-gpac-
dash [14]. Additional details about our setups can be found in [17-
18]. The LL-HLS stream was served dynamically by an NGINX
web server [15]. The LL-DASH stream was served dynamically by
node-gpac-dash [14].

As shown in Figures 1 and 2, the input video streams were sent
to the low-latency packagers (mediastreamsegmenter [8] for LL-
HLS, and FFmpeg [12] for LL-DASH). The outputs of low-latency
packagers are the chunked video segments and manifest files
informing the players on how to consume the streams in low-
latency mode. Next, the output stream files are served by the low-
latency media servers (lowLatencyHLS.php [8] for LL-HLS, node-
gpac-dash [14] for LL-DASH) to players in a chunked manner.

On the player side, the web-based players run on the Chrome
browser, and the iOS native player (HLS) runs on the AVPlayer
framework on iOS. The Chrome browser and the AVPlayer run
inside the Mahimahi container and connect to the media server via
an emulated virtual network interface.

2.2 Test Content and Encoding Parameters
As a test video sequence, we used a 1080p version of the Big Buck
Bunny [11] video. This sequence was looped to enable continuous
testing. For streaming, 3 live transcoded variant streams have been
subsequently generated, with parameters listed in Table 1.

To minimize fluctuations of encoding bitrates from their
declared targets, constant bitrate (CBR) encoding mode has been
utilized. To minimize encoding delays, H.264 encoder operating in
Baseline profile has been used. Lookahead processing disabled.

Figure 1: Tool-chain used for testing of LL-HLS players

Figure 2: Tool-chain used for testing of LL-DASH players

357

Performance of Low-Latency HTTP-based Streaming Players MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

The segment lengths and fragment durations were set to 4 sec and
1 sec, respectively, matching the default values used in Apple’s
streaming tools for LL-HLS [8]. The same encoding parameters
have been used for the generation of both LL-DASH and LL-HLS
streams.

The overall session duration that we used to test the
performance of each player under each network was 10 minutes.
Given selected chunk and fragment durations, this has allowed
about 600 chunks or equivalently 150 segments to be downloaded
per session.

2.3 Streaming Players
We have evaluated 6 implementations of low-latency streaming
players. For LL-HLS, we used HLS.js [1], Shaka player [2], and
Apple’s AVPlayer [3]. For LL-DASH, we used Dash.js with three
different low-latency ABR algorithms: Dash.js original [4], Dash.js
with LoL algorithm [5], and Dash.js with L2All algorithm [6]. We
have implemented simple test applications for all the players. The
applications were built using the latest player SDK releases as
available in December 2020.

2.4 Performance Metrics
The reporting of metrics indicative of live streaming latency,
playback speed, and re-buffering events has been instrumented in
the video player applications. Other metrics such as stream bitrate,
video resolution, and media data downloaded have been derived
from the streaming servers’ access logs. The processing of all
collected metrics was done offline.

The player’s streaming latency was calculated by following the
method described in [9], which is common for both LL-DASH and
LL-HLS. Essentially, at any time point, we take the difference
between the elapsed presentation time and the elapsed wall clock
time, from the beginning of a streaming session (Eq. 1): 𝑃𝐿 = (𝑊𝐶 – 𝑊𝐶𝐴) − (𝑃𝑇 – 𝑃𝑇𝐴)/𝑇𝑆 (Eq. 1)

where PL represents the live Presentation Latency, WC and PT
represent the current Wall Clock time and the current Presentation
Time, respectively. WCA and PTA represent the beginning wall
clock time and the beginning presentation time, respectively. For
LL-DASH, the above values have been obtained from the
ProducerReferenceTime [9] element embedded in an MPD file, and
W3C HTML5 video currentTime API [16], and/or a DASH MPD
file. For LL-HLS, these values have been derived from the HLS
m3u8 file and currentTime API.

The number of re-buffering events and the players’ playback
speed have been obtained by using the waiting event API [13] and
the playbackRate API [13] respectively.

The playback speed variation is calculated as the Euclidean
distance of all the measured playback speeds relative to the native
speed (which equals 1): 𝑝𝑙𝑎𝑦𝑏𝑎𝑐𝑘𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = ଵ௡ ට∑௜ୀଵே (𝑠௜ − 1)ଶ (Eq 2)

The parameter N used in this formula denotes the number of
playback speed measurements conducted during the session.

All other metrics including stream bitrate, video resolution,
media data downloaded, number of bitrate switches have been
derived from the server logs. The full list of metrics collected in our
test system is summarized in Table 2.

2.5 Performance Metrics
We used the Mahimahi network emulator [19] to emulate various
network conditions at the network interface level. Mahimahi is
essentially a Linux container that can run an application inside of
it. An application inside Mahimahi connects to the outside world
through a virtual network interface that sends and receives bytes
according to the running downlink and uplink traces. This way, the
capacity of the network interface is limited by the running trace.
We used traces that have been recorded from real-world mobile
networks. When we run the test players inside Mahimahi, the player
download speed is limited by the capacity of the virtual interface.
Unlike using bandwidth throttling features in web browsers,
Mahimahi provides more faithful network emulation by using real-
world traces and throttling bandwidth at the network interface level.
Additionally, the same network traces are replayed for all the test
sessions. This allows a fair comparison of different players.

We have evaluated the test players using two 4G-LTE network
traces from T-Mobile and Verizon respectively [19]. We provide
visualizations of these traces in Figure 3. In Table 3 we further list
basic statistics associated with them. We note that these network
traces are quite challenging, capturing cases of mobile handoffs and
other forms of impairments that may happen in practice.

Table 3: Network bandwidth statistics

Bandwidth statistics T-Mobile Verizon
Average bitrate (kbps) 1607.43 1323.97
St. deviation of bitrate (kbps) 1147.60 1075.80
Minimum bitrate (kbps) 148.5 1.178
Maximum bitrate (kbps) 7545 5433

Table 2: List of performance metrics collected

Metrics Impact domain(s)
Streaming bitrate (kbps) Efficiency, QoE
Video resolution (height) QoE
Streaming latency (sec) Latency, QoE
Variation of playback speed QoE
Frequency of stream switches QoE
Frequency of rebuffering events QoE
Downloaded media data (Mbytes) Efficiency
Media objects (chunks or segments) downloaded Efficiency

Table 1: Encoding profile parameters

Parameter Rendition 1 Rendition 2 Rendition 3
Bitrate (kbps) 279 925 1253
Frame rate (fps) 30 30 30
Video resolution (pels) 320x180 640x360 768x432
Seg. duration (sec) 4 4 4
Chunk duration (sec) 1 1 1
Video codec H.264 H.264 H.264
Video codec profile Baseline Baseline Baseline
Media format ISOBMFF ISOBMFF ISOBMFF

358

MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey B. Zhang et al.

Figure 3: Network bandwidth traces used in the experiments

3 THE RESULTS

3.1 Results for Verizon 4G LTE network
First, we review the results obtained by using traces of the Verizon
4G LTE network. Table 4 offers summary metrics. The dynamics
of changes of bitrates and latencies achieved by LL-HLS players
are illustrated in Figure 4 and Figure 5 respectively.

Based on Figure 5, we note, that the latency of the Shaka player
was almost flat across the entire session, with an average value of
7.28 seconds. This is higher than the 4.32 seconds achieved by the
HLS.js but is significantly lower than the 15.96 seconds achieved
by the AVPlayer. Even though HLS.js has lower average latency,
its behavior across the session is not stable: it varies very
significantly, producing large spikes of latency in the mid-session.
Such spikes, in our view, should be avoided.

When latency varies, a player has to play faster or slower than
the stream’s native speed to stay on the stream’s live edge. This is
evidenced by the playback speed variation numbers reported in
Table 4. The lower values of playback speed variation are
indicative of better QoE.

Based on Figure 5, we also note that AVPlayer was able to
stream at low latency (about 4.8 seconds) in the first 260 seconds.
When the first major bandwidth fluctuation hit (i.e., time interval
[250 - 340] in Figure 3), AVPlayer experienced buffer underruns
and was not able to maintain low latency after re-buffering and
resuming the playback. The latency went up to 12 seconds, then to
17 seconds until the end.

In terms of streaming bitrate (cf. Figure 4), we note that Shaka
player has achieved the highest average value (1228 kbps) over the
10 minutes session, followed by AVPlayer (1136 kbps) and HLS.js
(849 kbps). As also seen from Figure 4, the Shaka player was able
to stream at the highest bitrate most of the time while HLS.js often
hesitated to switch up to higher bitrates, or it switched down to
lower bitrates when other players still stuck to higher bitrates. This
can be seen particularly in the time interval [350 – 470]. In general,
a higher average bitrate should result in better QoE to viewers.

Next, we note that the Shaka player has the lowest number of
bitrate switches, only twice in 10 minutes. AVPlayer switched 130
times, most of which happened during the time interval [470 - 570].
During this time, the available bandwidth was not only low but also

fluctuated significantly (Figure 3). In reaction to the dynamic
network condition, AVPlayer adapted quickly by switching bitrate
for almost every segment it downloaded. Though AVPlayer was
prompt in switching up to a higher bitrate when the available
bandwidth allows, it was forced to switch back to lower bitrate
when the bandwidth dropped. Generally, overly frequent switching
may hurt QoE.

Another important QoE factor is the number of buffer
underruns and consequently re-buffering events. AVPlayer
recorded the least re-buffering events, however, this is because its
average live latency (15.96 seconds) was much higher than the
other two. Higher latency means more buffering, and higher
resilience to bandwidth fluctuation. HLS.js and Shaka players were
playing closer to the stream’s live edge, as a result, they are more
prone to re-buffering (36 times for HLS.js, 12 times for Shaka
player) than AVPlayer. Among these three, Shaka player seems to
achieve a better balance between latency and re-buffering.

Finally, we look at the amount of downloaded data by the
players in 10 minutes sessions. Shaka player downloaded 587
media objects, all of them were video chunks which means Shaka
player maintained low latency throughout the session. Since 600
chunks should be downloaded in 10 minutes, Shaka skipped 13
chunks. AVPlayer downloaded 669 media objects including 611
chunks and 58 whole segments. The whole segments were
downloaded when AVPlayer was not able to download partial
chunks on the live edge, and fell back to download earlier whole
segments. HLS.js downloaded 662 chunks and 11 whole segments.
Unlike Shaka player, AVPlayer and HLS.js downloaded more than
600 media objects. In terms of downloaded data in bytes, Shaka
downloaded 90.16 MB, more than HLS.js (85.36 MB) because of

Table 4: Summary of players metrics – Verizon 4G LTE

Metrics LL-HLS players LL-DASH players
HLS.js Shaka AVplayer DASH.js LoL L2All Avg. bitrate (kbps) 849 1228 1136 1165 595 1073 Avg. height (pixels) 328 426 404 410 262 387 Avg. latency (secs) 4.32 7.28 15.96 3.71 3.2 3.9 Var. playback speed 3.97 0 0 0.19 0.39 0.44 # of switches 48 2 130 6 29 3 # of rebufferings 36 12 2 5 79 56 Downloaded MBs 85 90 99 88 45 81 Downloaded objects (chunks + segments) 673 (662+ 11) 587 (587 + 0) 669 (611 + 58) 152 151 152

Table 5: Summary of players metrics – T-Mobile 4G LTE
Metrics LL-HLS players LL-DASH players

HLS.js Shaka AVplayer DASH.js LoL L2All Avg. bitrate (kbps) 783 1043 1037 1225 537 1251 Avg. height (pixels) 311 378 378 426 248 432 Avg. latency (secs) 5.82 4.48 7.78 3.06 1.78 2.28 Var. playback speed 3.62 0 0 0.23 1.62 0.42 # of switches 50 8 72 4 28 0 # of rebufferings 43 18 1 1 69 13 Downloaded MBs 156 81 92 93 42 94 Downloaded objects (chunks + segments) 965
(743

+ 222) 621
(621
+ 0) 703

(698
+ 5) 151 152 151

359

Performance of Low-Latency HTTP-based Streaming Players MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

its higher average stream bitrate, less than AVPlayer (98.52 MB)
because of fewer downloaded media objects.

Next, we switch our attention to the LL-DASH players. The
dynamics of changes of bitrates and latencies achieved by such
players are illustrated in Figure 6 and Figure 7 respectively.

As can be observed from Table 4 and Figure 6, the original
Dash.js player achieved a much higher stream bitrate (1165 kbps)
than LoL (595 kbps), and L2ALL (1073 kbps) variants. LoL had
significantly more bitrate switches (29 times) than Dash.js (6 times)
and L2ALL (3 times). LoL achieved the lowest average bitrate and
the number of bitrate switches. However, as seen from Figure 7,
LoL was also able to achieve a lower average latency (3.2 seconds)
than Dash.js (3.71 seconds) and L2ALL (3.9 seconds). The LoL
player re-buffered 79 times, which is higher than L2ALL (56 times)
and the original Dash.js (5 times).

The original Dash.js also had the lowest playback speed
variation (0.19). In terms of downloaded data, all three LL-DASH
players downloaded about 150 objects, all of them were whole
segments. This is because LL-DASH players depend on the
streaming servers to push segments chunk by chunk using
HTTP/1.1 chunked transfer encoding [9], instead of requesting
individual chunks as LL-HLS players do. In other words, LL-
DASH players only request whole segments. Finally, we observe
that the number of segments downloaded by all LL-DASH players
was almost the same and that the total amounts of data downloaded
were proportional to the average bitrates used by such players.

3.2 Results for T-Mobile 4G LTE network

We next review the results obtained by using traces of the T-Mobile
4G LTE network. Table 5 offers summary metrics. The dynamics
of changes of bitrates and latencies achieved by LL-HLS players
are illustrated in Figure 8 and Figure 9 respectively.

Based on Table 5 and Figure 8, we notice that Shaka player and
AVPlayer have achieved higher average bitrates than HLS.js. This
can be observed in multiple intervals in Figure 8, where HLS.js
seems struggling to select the right bitrate while other players were
able to play at higher bitrates.

Based on Figure 9, we also note that HLS.js and Shaka players
have achieved lower latency than AVPlayer. The latency line of
AVPlayer was low and flat for more than half of the session but
went up higher towards the end. Like when the Verizon trace was
used, HLS.js had variable latency throughout the session. Shaka
player had both lower and more stable latency (averaged at 7.78
seconds) when compared to the other two.

We also note that HLS.js downloaded a lot more media objects
(965) during the session than the other two players, and also more
than itself when the Verizon trace was used. This is probably due
to more re-buffering events and bitrate switches it had experienced
in the T-Mobile network. Because of more media object
downloads, HLS.js also downloaded more bytes (155.54 MB).

In terms of the number of re-buffering and bitrate switches, the
Shaka player again experienced fewer re-buffering events (18
times) and the least switches (only 8 times). Finally, HLS.js had a
large value of playback speed variation due to its highly variable
latency. It was observed several times that HLS.js had to play at 1.5
times speed to catch up to the live edge.

Figure 4: Bitrate over time – LL-HLS / Verizon 4G

Figure 5: Live latency over time – LL-HLS / Verizon 4G

Figure 6: Bitrate over time – LL-DASH / Verizon 4G

Figure 7: Live latency over time – LL-DASH / Verizon 4G

360

MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey B. Zhang et al.

Finally, we look at the behavior of LL-DASH players. The
dynamics of changes of bitrates and latencies achieved by such
players are illustrated in Figure 10 and Figure 11 respectively.

Based on Table 5 and Figure 10, we note that the original
Dash.js and L2ALL were able to pull content encoded at much
higher bitrates than LoL player: 1224.83 kbps and 1250.83 kbps vs
537.21 kbps respectively. LoL player used the lowest bitrate for the
majority of the session while the other two players were at the
highest bitrate.

Based on Table 5 and Figure 11, we also note that LoL and
L2All both have achieved lower latency than the original Dash.js
(3.06 seconds), at 1.78 seconds and 2.28 seconds, respectively. It
appears that these ABR algorithms seem to favor lower latency than
other metrics when choosing the bitrate.

In terms of media downloads, all three players have received
about 150 whole segments. The original Dash.js and L2ALL
downloaded more bytes for their higher average bitrate.

In terms of the number of re-buffering events and bitrate
switches, the original Dash.js performed the best among the three.
It had the lowest number of re-buffering events (only once) and
very few bitrate switches (only 4 times). Finally, the original
Dash.js had the smallest playback speed variation (0.23), lower
than LoL (1.62) and L2Aall (0.42).

In general, we observe that the original Dash.js had the best
performance among the three players. Though L2All performed
slightly better in bitrate, latency, and bitrate switch frequency, it
also has experienced more re-buffering events.

4 CONCLUSIONS
In this study, we have evaluated 6 different LL-HLS and LL-DASH
players, using multi-bitrate-encoded low-latency HLS and DASH
streams and network emulation process, employing traces obtained
for T-Mobile 4G LTE and Verizon 4G LTE networks.

We noted that both LL-HLS and LL-DASH systems were able
to operate at significantly lower latencies compared to the
traditional HLS and DASH streaming. Thus, in the majority of
cases, we have observed LL-DASH players can maintain latencies
in the range of 3-4 seconds, except for a couple of short segments
in streaming over the Verizon 4G network, when latencies have
increased to almost 20 seconds. For LL-HLS players, we have
observed somewhat broader variation in streaming latencies across
different player implementations, but with the majority of data
points fitting in the 4-10 second range.

However, we also noted many deficiencies in the behavior of
both LL-DASH and LL-HLS players when operating in our testing
framework. These include:

 high stream switching and buffering rates,
 the inability of some players to select high renditions,
 the inability of some players to maintain playback speed,
 more requests sent to the CDNs (especially for LL-HLS),
 the inability of some players to maintain low delay, etc.

Based on these observations, we believe that there is certainly more
work that still needs to be done to improve player algorithms and
other aspects of the system to make low-latency streaming more
robust and suitable for mass deployment in practice.

Figure 8: Bitrate over time – LL-HLS / T-Mobile 4G

Figure 9: Live latency over time – LL-HLS / T-Mobile 4G

Figure 10: Bitrate over time – LL-DASH / T-Mobile 4G

Figure 11: Live latency over time – LL-DASH / T-Mobile 4G

361

Performance of Low-Latency HTTP-based Streaming Players MMSys '21, Sept. 28-Oct. 1, 2021, Istanbul, Turkey

REFERENCES
[1] Hls.js player, https://github.com/video-dev/hls.js/
[2] Shaka player, https://github.com/google/shaka-player
[3] AVFoundation, https://developer.apple.com/av-foundation/
[4] Dash.js player, https://github.com/Dash-Industry-Forum/dash.js
[5] M. Lim, M. N. Akcay, A. Bentalab, A. C. Begen, R. Zimmermann, “When they

go high, we go low: low-latency live streaming in dash.js with LoL,” in Proc
ACM Multimedia Systems Conference (MMsys’20), Online, June 8-11, 2020.

[6] T. Karagkioules, R. Mekuria, D. Griffioen, A. Wagenaar, “Online Learning for
Low-Latency Adaptive Streaming,” in Proc ACM Multimedia Systems
Conference (MMsys’20), Online, June 8-11, 2020.

[7] HTTP Live Streaming 2nd Edition, https://tools.ietf.org/html/draft-pantos-hls-
rfc8216bis-08, 2019

[8] Apple’s HTTP Live Streaming Tools, https://developer.apple.com/
documentation/http_live_streaming/about_apple_s_http_live_streaming_tools

[9] DASH Industry Forum, “Low-Latency Modes for DASH”,
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf

[10] ETSI technical specification, “MPEG-DASH Profile for Transport of ISO-
BMFF Based DVB Services over IP Based Networks”,
https://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.03.01_60/ts_10
328v010301p.pdf

[11] Blender Foundation, Big Buck Bunny video, https://download.blender.org/
[12] Open Broadcast Software, https://obsproject.com/
[13] FFMPEG, https://www.ffmpeg.org/
[14] DASH Low Latency Server, https://github.com/maxutility2011/node-gpac-dash
[15] NGINX web server, https://www.nginx.com/
[16] HTML5 video, https://www.w3.org/TR/2011/WD-html5-20110113/ video.html
[17] B. Zhang, “Setting up your Own Low-Latency HLS Server to Stream from any

Source Inputs”, https://bozhang-26963.medium.com/setting-up-your-low-
latency-hls-server-to-stream-from-any-source-inputs-de1e757a6688

[18] B. Zhang, “Low-Latency DASH Streaming Using Open-Source Tools”,
https://bozhang-26963.medium.com/low-latency-dash-streaming-using-open-
source-tools-f93142ece69d

[19] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, H.
Balakrishnan, “Mahimahi: accurate record-and-replay for HTTP,” in Proc.
USENIX Annual Technical Conference (USENIX ATC '15), Santa Clara, CA,
July 8-10, 2015.

[20] D. Wu, Y. Hou, W. Zhu, Y-Q. Zhang, and J. Peha, "Streaming video over the
internet: approaches and directions," IEEE Trans. CSVT, vol. 11, no. 3, 2001, pp.
282-300.

[21] G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik, "Video
coding for streaming media delivery on the internet," IEEE Trans. CSVT, vol.
11, no. 3, 2001, pp. 269-281.

[22] B. Girod, M. Kalman, Y.J. Liang, and R. Zhang, "Advances in channel-adaptive
video streaming," Wireless Comm. and Mobile Comp., vol. 2, no. 6, 2002, pp.
573-584.

[23] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, R. Zimmermann, “A Survey
on Bitrate Adaptation Schemes for Streaming Media Over HTTP,” in IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, 2019, pp. 562-585.

[24] A. Bentaleb, A. Begen, S. Harous, R. Zimmermann, “Data-Driven Bandwidth
Prediction Models and Automated Model Selection for Low Latency,” IEEE
Transactions on Multimedia, August 2020.

[25] A. Bentaleb, C. Timmerer, A. C. Begen, R. Zimmermann, “Bandwidth prediction
in low-latency chunked streaming,” in Proc. ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV '19),
Amherst, MA, June 21, 2019, pp. 7–13.

[26] A. Bentaleb, C. Timmerer, A. C. Begen, R. Zimmermann, “Performance
Analysis of ACTE: A Bandwidth Prediction Method for Low-latency Chunked
Streaming,” ACM Transactions on Multimedia Computing, Communications,
and Applications, vol 16, no. 2s, 2020.

[27] I. Ozcelik, C. Ersoy, “Low-Latency Live Streaming Over HTTP in Bandwidth-
Limited Networks,” IEEE Communications Letters, vol. 25, no. 2, 2021, pp. 450-
454.

[28] K. Durak, M. Akcay, Y. Erinc, B. Pekel, A. C. Begen, “Evaluating the
Performance of Apple’s Low-Latency HLS,” in Proc. IEEE Int. Workshop on
Multimedia Signal Processing (MMSP’20), September 21-24, 2020, pp.1-6.

[29] D. Talon, L. Attanasio, F. Chiariotti, M. Gadaleta, A. Zanella, M. Rossi,
“Comparing DASH Adaptation Algorithms in a Real Network Environment,” in
European Wireless 2019; 25th European Wireless Conference, 2019.

[30] C. Storck, F. Figueiredo, “A Performance Analysis of Adaptive Streaming
Algorithms in 5G Vehicular Communications in Urban Scenarios,” in Proc. of
IEEE Symposium on Computers and Communications (ISCC), 2020, pp.1-7.

[31] D. Raca, Y. Sani, C. J. Sreenan, J. J. Quinlan, “DASHbed: a testbed Framework
for Large Scale Empirical Evaluation of Real-Time DASH in Wireless
Scenarios,” in Proc. ACM Multimedia Systems Conference (MMSys’19),
Amherst, MA, June 18 - 21, 2019, pp285–290.

[32] I. Ayad, Y. Im, E. Keller, S. Ha, “A Practical Evaluation of Rate Adaptation
Algorithms in HTTP-based Adaptive Streaming”, Elsevier Computer Networks
vol. 133, 2018, pp. 90-103

[33] C. Midoglu, A. Zabrovskiy, O. Alay, D. Holbling-Inzko, C. Griwodz, C.
Timmerer, “Docker-Based Evaluation Framework for Video Streaming QoE in
Broadband Networks,” in Proc. ACM International Conference on Multimedia,
Nice, France, 21 - 25 October 2019, pp. 2288–2291.

[34] B. Taraghi, A. Zabrovskiy, C. Timmerer, H. Hellwagner, “CAdViSE: Cloud-
based Adaptive Video Streaming Evaluation Framework for the Automated
Testing of Media Players,” in Proc ACM Multimedia Systems Conference
(MMsys’20), Online, June 8-11, 2020.

[35] A. Zabrovskiy, E. Kuzmin, E. Petrov, C. Timmerer, C. Mueller, “AdViSE:
Adaptive Video Streaming Evaluation Framework for the Automated Testing of
Media Players,” in Proc ACM Multimedia Systems Conference (MMsys’17),
Taipei, Taiwan, June 20-23, 2017.

[36] A. Mondal, B. Palit, S. Khandelia, N. Pal, J. Jayatheerthan, K. Paul, N. Ganguly,
Sandip Chakraborty, “EnDASH - A Mobility Adapted Energy Efficient ABR
Video Streaming for Cellular Networks,” in Proc. IFIP Networking Conference,
2020, pp. 127-135.

[37] G. Ribezzo, L. D. Cicco, V. Palmisano, S. Mascolo, “A DASH 360° immersive
video streaming control system,” in Internet Tech. Letters, vol. 3, no. 5, 2020.

[38] S. Sengupta, N. Ganguly, S. Chakraborty, P. De, “HotDASH: Hotspot Aware
Adaptive Video Streaming using Deep Reinforcement Learning,” in Proc IEEE
International Conference on Network Protocols (ICNP’18), 2018, pp.165-175.

[39] Jiang, V. Sekar, H. Zhang, “Improving Fairness, Efficiency, and Stability in
HTTP-based Adaptive Video Streaming with FESTIVE,” in IEEE/ACM
Transactions on Networking, vol. 22, no. 1, Feb. 2014, pp. 326-340.

[40] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, D. Oran, “Probe and Adapt:
Rate-Adaptation for HTTP Video Streaming at Scale,” IEEE Journal on Selected
Areas in Communications, Vol. 32, No. 4, April 2014, pp. 719-733.

[41] K. Spiteri, R. Urgaonkar, R. K. Sitaraman, “BOLA: Near-Optimal Bitrate
Adaptation for Online Videos,” in Proc. Annual IEEE International Conference
on Computer Communications (INFOCOM’16), 2016, pp. 1-9.

[42] T. Huang, R. Johari, N. Mckeown, M. Trunnell, M. Watson, “A Buffer-based
Approach to Rate Adaptation: Evidence from a Large Video Streaming Service,”
in Proc. ACM SIGCOMM, 2014, pp. 187–198.

[43] K. Spiteri, R. Sitaraman, D. Sparacio, “From Theory to Practice: Improving
Bitrate Adaptation in the DASH Reference Player,” ACMTrans. Multimedia
Comput. Commun. Appl., vol. 15, no. 2s, Article 67, 2019.

[44] S. Hesse, "Design of scheduling and rate-adaptation algorithms for adaptive
HTTP streaming," in Proc. SPIE 8856, Applications of Digital Image Processing
XXXVI, 88560M, 2013.

[45] C. Zhou, X. Zhang, L. Huo, and Z. Guo, "A control-theoretic approach to rate
adaptation for dynamic HTTP streaming," in Proc. Visual Comm. Image
Processing (VCIP’12), San Diego, CA, 2012, pp. 1-6.

[46] X. Yin, A. Jindal, V. Sekar, B. Sinopoli, “A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP,” SIGCOMM Comput.
Commun. Rev. no. 45, vol. 4, 2015, pp. 325–338.

[47] T. Huang, C Ekanadham, A. Berglund, Z. Li, “Hindsight: evaluate video bitrate
adaptation at scale,” in Proc. ACM Multimedia Systems Conference (MMSys'19),
Amherst, MA, June 18 - 21, 2019, pp 86–97.

[48] D. Raca, J. Quinlan, A. Zahran, and C. Sreenan. “Beyond throughput: A 4G LTE
dataset with channel and context metrics,” in Proc. ACM Multimedia Systems
Conference (MMSys ’18), New York, NY, USA, 2018, pp 460–465.

362

