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Neural networks are now a prominent feature of materials science with rapid progress in all

sectors of the subject. It is premature, however, to claim that the method is established. There are

genuine difficulties caused by the often incomplete exploration and publication of models. The

assessment presented here is an attempt to compile a loose set of guidelines for maximising the

impact of any models that are created, in order to encourage thoroughness in publication to a

point where the work can be independently verified.
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Introduction
Neural networks have proved to be powerful and
popular in dealing with complex problems of the type
typical in materials science.1–6 Indeed, as pointed out by
Abrahart et al.,7 aside from materials science, there are
reviews or extended summaries of the applications of
networks in the fields of hydrological sciences,8 atmo-
spheric sciences,9 civil engineering,10 process engineer-
ing11 and structural engineering.12 This reflects the
generic nature of the method.

However, the way in which the method is applied
varies widely and it would be useful to assess the
advantages and disadvantages of the different
approaches and the way in which the results are
presented and published. It has previously been pointed
out, when discussing neural networks in the hydro-
sciences,8 that in many cases the model building process
is described poorly, making it difficult to assess the
optimality of the results obtained. The purpose here is to
assess the value of neural networks published in the
context of materials science. The authors begin by
describing the basic principles of such networks in order
to highlight aspects which increase the generic value of
the networks and related publications. Details of the
neural network method itself are available elsewhere, for
example.1–4,8,9

There are many methods for creating a neural
network model, but the essential principles are as
follows. A complicated problem is identified in which
the relationships between the dependent and indepen-
dent variables are not clear, although simple qualitative
trends may be understood. It is sometimes the case that
these trends may be justified by analytical expressions
which are scientifically rigorous but limited in their
scope. One example is the irradiation hardening of steels

in which it is obvious that the defects introduced by
radiation damage must contribute to strength, but it is
not at all clear how the myriad of solutes present in the
steel influence the extent of hardening.13 It is known that
thermal activation plays a role in the accumulation of
hardening defects, and it can reasonably be assumed
that this manifests via an Arrhenius term exp(2Q/kT).
But the detailed effect of temperature is not fully
represented by this ‘rigorous’ parameter, since other
influences, such as the solubility of species under a
neutron flux, also depend on temperature and other
factors.

Once the problem is defined, the data are compiled
into a set which is used to create a non-linear regression
or classification model in the form of a neural network.
The process does not at the outset require an assumption
of the form of the relationship: the latter is discovered
during the training procedure. The final model is a
mathematically transparent set consisting of the func-
tion and the coefficients needed to implement the
function.

Purpose
It is appropriate to attempt neural network analysis
when the problem presented is so complex that a
rigorous treatment is impossible and yet, a quantitative
treatment is needed. Consider for example, fracture;
there exist the well defined concepts of fracture
mechanics with clear relationships between stress and
crack dimensions through a parameter known as
‘fracture toughness’. The toughness can be measured
and used in engineering design. But access to a
comprehensive description of the chemical composition,
processing parameters and structure of a material, does
not enable the toughness to be predicted. In other
words, there is no way of using the theory of fracture
mechanics to quantitatively design a material with a
specified resistance to brittle fracture.

On the other hand, there exist vast quantities of
fracture toughness data as a function of many variables
from the myriad of quality control and research
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experiments. These experimental data can be assembled
and investigated by creating a neural network model.
The advantage is that the effect of large numbers of
input variables can be studied and visualised quantita-
tively. At the same time, it is possible to account for
arbitrary interactions between the variables, thus reveal-
ing trends which differ according to the position in the
input space where calculations are carried out. This kind
of exploration of the relationships is simply not possible
in qualitative analysis or when the problem is reduced to
fewer variables. It is immensely satisfying to be able to
discover fundamental relationships and structure within
vast arrays of ill understood data.

To summarise, the purpose of neural network analysis
is to enable the quantitative expression and under-
standing of very complicated problems.

Uncertainty
It is particularly important to consider two kinds of
error when the performance of neural networks is
assessed.

Noise results in a different output for the same set of
inputs when the experiment is repeated. This is because
there are variables which are not controlled so their
influence is not included in the analysis. Suppose that a
model has been created in such a way that overfitting has
been avoided (neural networks are so powerful that they
can in principle predict the data on which they have been
trained, perfectly (zero noise), even when this is not
justified. Procedures are therefore used to avoid fitting
to noise in the data, see, for example, Refs. 2 and 4). The
noise in the output can be assessed by comparing the
predicted values yj of the output using this well fitted
network, against those measured tj, for example,

ED!
X

j

tj{yj

� �2
(1)

ED should be expected to increase if important input
variables have been excluded from the analysis.

Notice that however this noise is measured, it is a
constant value. It does not help much in assessing the
behaviour of the model when extrapolating.

It is necessary particularly with neural networks, to
consider a second kind of uncertainty, which is due to
the modelling itself. It is likely in complex problems that
there may exist many mathematical functions which
adequately represent the same set of empirical data but
which behave differently in extrapolation. This differ-
ence in behaviour is characterised by a modelling
uncertainty. Figure 1 illustrates how a number of
different mathematical functions might adequately
represent the same data in the region designated, but
which behave differently in regions where data are
sparse or noisy. In the regions designated as ‘A’, the
modelling uncertainty is clearly large with a lot of
variance in the predictions of different functions. In
contrast, there is general agreement between the
different functions in the region designated ‘B’, where
data exist and the calculations might be more reliable.

Unlike the noise, the magnitude of the modelling
uncertainty is not constant, but varies as a function of
position in the input space. It is an excellent way of
identifying domains where further experiments are
needed to reduce uncertainty or where the predictions

should be used alongside an assessment based on other
techniques, known trends or experience, but always with
the insight given by the modelling uncertainty that
calculations are being carried out in a region where
knowledge is sparse.

The implication here is that it is not good practice to
simply create a best fit model which while avoiding
overfitting, minimises noise.2 A single model like this
cannot indicate the dangers of extrapolation as embo-
died in the modelling uncertainty.

Exploration
A neural network is a clearly defined and transparent
combination of a mathematical function and associated
coefficients; there is nothing ‘black box’ about the
technique as is sometimes implied. Indeed, the mathe-
matical framework could not be simpler. A complete
description of a typical network with i hidden units,
connecting the inputs xj to the output y is given by

y~
X

i

w
2ð Þ
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hi~ tanh
X
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where w and h represent weights. Neural networks are
useful because they are non-linear. This necessarily
makes the weights more difficult to interpret when
compared, for example, with the coefficients associated
with linear regression equations. Neural networks
routinely capture high order interactions between the
variables which are difficult to visualise from an
examination of the weights. This visualisation problem
is a feature of all non-linear methods, but is not a
limitation because it is simple to use the trained network
to make predictions, plot them, and to see how these
depend on various combinations of inputs.

Indeed, an exploration of the behaviour of the
network is essential to understand whether the known
physics of the problem has been captured correctly. The
exploration must also include extrapolation beyond the
data used to create the network, to see whether new
discoveries can be made. The term ‘prediction’ as used in
this paper refers particularly to the use of networks in

1 Illustration of how number of different functions might

adequately represent same set of known data
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extrapolation. No distinction is necessary in this context
between extrapolation and interpolation, since both
terms refer to calculations in domains where the data on
which the network is created are absent.

Dissemination
A great deal of scientific work is published in the form of
research papers which describe the problem, the method
and the outcomes, usually in sufficient detail to enable
the work to be reproduced. Research involving neural
network models is similarly published but the work
cannot be independently reproduced from the publica-
tion alone, because as will be seen later, neither the data
on which the model was created nor the coefficients
needed to reproduce the mathematical structure of the
network are available. A reader in general has to take
the work on trust, which clearly is not satisfactory from
many points of view.

This problem is not of course unique to neural
networks, but to most models which really heavily on
numerical computations. Modern technology in the
form of the World Wide Web provides an elegant
solution in that the numerical model itself or the data
can be archived and made available for scrutiny, as a
supplement to the normal research paper.

There are many pathways through neural network
models of complex phenomena, making it difficult to
comprehensively explore its behaviour. Dissemination of
the model itself has an additional advantage that it will
be exposed to a much wider audience with the potential
of applications not originally envisaged by the creators
of the model.

In the absence of thorough dissemination, a paper
describing a neural network has rather limited use. It is
of course a bonus for the authors in terms of the
visibility of their work; the publication will also contain
information about the approach and the problem being
tackled, which has the potential of being qualitatively
useful. However, any judgements must be made without
the ability to conduct calculations.

The ideal scenario would be to publish the paper in
the normal way and to make the model freely accessible
on the World Wide Web.

Experimental validation
Mathematical models in materials science fall into the
following categories:14

(i) those which lead to an unexpected outcome that
can be verified

(ii) those which are created or used in hindsight to
explain diverse observations

(iii) existing models which are adapted or grouped
to design materials or processes

(iv) models used to express data, reveal patterns, or
for implementation in control algorithms.

Most neural networks fall comfortably into the last
category, but as can be seen later, they are not limited to
that category. There are a few examples of new materials
emerging from neural network analysis and discovery of
a new phase. These latter achievements come from
experiments designed specifically to test network beha-
viour in domains where data do not exist.

Category 1 example
One case where neural network analysis has led to a
novel concept is illustrated in Fig. 2. Ordinary TRIP
assisted steels contain a microstructure which is pre-
dominantly allotriomorphic ferrite with the remainder
being carbide free bainite and carbon enriched retained
austenite. The latter undergoes martensitic transforma-
tion during deformation which prolongs the ability of
the steel to work harden, thus delaying plastic instabil-
ities. At the same time, the martensite strengthens the
microstructure. Silicon is a vital element in these steels,
in concentrations which are typically greater than
1 wt-%, because it prevents the precipitation of cemen-
tite during the formation of upper bainite and hence
allows the retention of austenite. A huge amount of
research has been conducted on these steels; the subject
is mature and the steels are commercially available and
indeed used in the automobile industry.

2 Properties and microstructure of d-TRIP steel:15 inset on left compares its properties (large dot) against published data

on ordinary TRIP assisted steels
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Silicon in the concentrations used can have undesir-
able consequences on the quality of the steel surface. For
this reason, a neural network based on published data
on ordinary TRIP assisted steels was created and
combined with a genetic algorithm to see whether an
alloy could be created with a low silicon concentration
but which still retains the austenite. As a result, a novel
concept in TRIP assisted steels was discovered, with a
microstructure consisting of d–ferrite dendrites and a
mixture of bainitic ferrite and carbon enriched retained
austenite (Fig. 2). The steel has been manufactured and
tested to reveal a tensile strength of about 1 GPa and a
uniform elongation of 23%.15

Category 2 example
The so called electrical steels are designed to be
magnetically soft so that hysteresis effects are mini-
mised. There are two essential classes of such steels,
those which are crystallographically textured to optimise
magnetic properties, and the cheaper varieties where the
grains are not oriented. In the latter case, it was
observed from a large number of commercial samples,
that there were significant variations in magnetic
permeability and power loss in spite of the fact that
only the silicon concentration varied (0?04–0?52 wt-%)
between the samples, all of which had insignificant
inclusion contents.16

The variations were imagined to be due to micro-
structure, so a neural network model was created with
grain size, crystallographic texture and silicon as inputs.
The necessary data were measured deliberately for the
purposes of neural network modelling. Interesting non-
linear trends were discovered and interpreted, which
explained, for example, the dependence of the optimum
grain size on the silicon concentration.

Category 3 example
There has been considerable research on modelling heat
and fluid flow during welding, one of the objectives of
which is to predict the shape of the weld pool as a
function of process parameters such as the welding
current, voltage and speed.17 The methods are computer
intensive and not practical enough to be applied in real
time by welding engineers.

One solution would be to train a neural network on
experimental data to reproduce the pool shape, with the
inputs consisting of welding parameters.18 The inputs
from three-wire submerged arc welds included plate
thickness, preparation angle and depth, wire parameters
(current, voltage angle, for three wires), speed, stickout
and spacings between wires. The output was the entire
weld bead profile.

Mishra and DebRoy19 adopted a different approach
in which numerical heat and fluid flow calculations of
weld geometry were used to train a neural network. The
inputs consisted of variables used in the numerical
calculations: arc characteristics (current, voltage, effi-
ciency, radius, power distribution factor), welding speed,
density, effective viscosity, effective thermal conductiv-
ity, solidus and liquidus temperatures, enthalpies at
transformation temperatures, specific heats, thermal
conductivity and the concentration of sulphur in steel
(known to have an influence via the Marangoni effect).
The output consisted of the weld penetration and width;
these two parameters are in the model assumed to define
the weld pool shape.

The trained network was then combined with a
genetic algorithm to find the domain of inputs which
would lead to the same pool shape, since the relationship
between pool shape and inputs may not be unique
within the limits of modelling error and the error in any
validation experiments.

The assembly of three kinds of models to achieve a
rapid algorithm for the solution of weld pool shape is
original and has been demonstrated experimentally to
reproduce weld pool shape.19

Mishra and DebRoy went on to claim that the input
and output variables of the neural network model they
created are consistent with the equations of conservation
of mass, momentum and energy since the original
database was generated using the heat and fluid flow
models which embody these conditions. Whether this is
the case remains to be demonstrated since the functional
form of the neural network is independent of the
conservation equations and the fitting of data is not in
any case perfect. It is nevertheless true that a better
network may result using as inputs, the same parameters
that control the numerical heat and fluid flow models.

It would be interesting to investigate using the theory
behind the heat and fluid flow models, whether it is in
fact possible to obtain the same pool shape for different
parameters. In other words, would a genetic algorithm
be relevant unless there was imprecision in the neural
network model?

There are in fact a number of other examples in the
literature where physically based models are integrated
with neural networks. For example, the work of Santos
et al. in which a heat transfer model was combined with
neural network based algorithms to improve the
manufacturing strategy of the continuous casting of
steel billets and blooms.20

Category 4 example
The precursor to a neural network analysis is the
compilation of the necessary dataset. The data are often
assembled from diverse published sources and the
process itself is instructive in that it highlights the
variables necessary to describe the outcome. For
example, the creep rupture stress of steels has in neural
network models been associated with some 50 variables
in a dataset with more than 5000 experiments21–25 and
the Charpy toughness of weld metals with some 22
variables in a dataset consisting of more than 1900
experiments.26–28

It is inconceivable that the influence of individual
variables (let alone the interactions between variables)
can be perceived in such complex databases by a
qualitative analysis on it. Neural networks are wonder-
ful tools for discovering patterns in precisely these
circumstances.

One such discovery led to the recognition that weld
metal Charpy toughness deteriorates when a steel
containing a high manganese concentration is alloyed
with nickel. This is contrary to the general impression in
literature that nickel improves the toughness of ferritic
steels. It turns out that for weld metals, this latter
statement is only true when the manganese concentra-
tion is low, as illustrated in Fig. 3. This pattern was first
recognised from a neural network model29 and the
physical basis of the nickel–manganese interaction was
explained in subsequent work.30–34 What happens is that
in special circumstances when the difference between
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the bainite start and martensite start temperature
diminishes, it is possible to generate very coarse regions
of coalesced–bainite which are bad for toughness.

It is unlikely that the existence of this detrimental
phase in high strength steel weld deposits would have
been revealed without the creation of a neural network
model which uncompromisingly accounts for the full
range of variables that influence the Charpy toughness
and which can be examined quantitatively to reveal
patterns.

Assessment of performance
On the basis of the preceding discussion, the authors
now proceed to assess a range of publications on neural
networks, focusing on a limited number of publications
over the period 2005–7, but selecting others on an ad hoc
basis in order to illustrate the method. The purpose of
this exercise is to highlight the optimum method for
presenting neural network models such that the well
established principles of scientific publishing are
respected while at the same time, the models pay proper
respect to uncertainties and dissemination.

The marking scheme is presented in Table 1. The first
achievement is of course to do the work necessary to
assemble the data and to create a network. Such a
network must be considered potentially unreliable unless
its behaviour and predictions are explored, both within
the domain of the training data and beyond. The term

‘prediction’ in this context means conducting calcula-
tions in a regime where data do not exist.

The trends revealed by the network should be inter-
preted in terms of the known science of the problem. It is
possible that a network captures false correlations and
these can render it unsafe in application.

Some of the predictions of the network may be
usefully investigated by conducting specific experiments.
As described in the earlier part of this paper, such
investigations may lead to novel materials science.

It is important to realise that the extrapolation of a
network cannot be satisfactorily explored without an
indication of modelling uncertainty. In a non-linear
model, extrapolation cannot be defined as being out of
the range of the training data unless the latter are
absolutely uniformly distributed in the input space.
Modelling uncertainty, however it is calculated, must be
considered an essential feature of neural networks.

Finally, for reasons already discussed, the dissemina-
tion of the model or data is vital for scientific progress
and independent verification.

Our assessment of publications in this context is listed
in Table 2. It is evident that the majority of models are
not disseminated, meaning that the resulting papers are
of use mostly to their authors. It is surprising that many
attempts at neural network modelling do not include the
exploration of the model as described above. Similarly,
there is little consideration of modelling uncertainties.

Summary
Neural networks have had a significant impact on the
development of materials and associated processes. This
is because they represent a transparent and quantitative
method which is able to deal with sophisticated
problems typical in materials science.

It is obvious, however, that to exploit the full
potential of the technique, it is necessary to think about
the best method for publishing the results, with
particular attention being paid to dissemination and
modelling uncertainties. Neither of these is difficult to
achieve.

It is important also to study the behaviour of the
network in domains where knowledge does not exist, i.e.
to use the models to make bold predictions which form
the basis for experiments and the discovery of new
phenomena. Indeed, the performance of a network is
most useful to researchers in domains where the
modelling uncertainty is greatest. An alternative way
of stating this is that new experiments are only necessary
when the network predicts that the uncertainty is large.
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