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Performance of Optical Spatial Modulation in

Indoor Multipath Channel
Hammed G. Olanrewaju, Student Member, IEEE, John Thompson, Fellow, IEEE,

and Wasiu O. Popoola, Senior Member, IEEE

Abstract—In this paper, the performance of optical spatial
modulation (OSM) in the indoor multipath optical wireless
channel is investigated. Multipath propagation of the transmitted
signal results in the temporal dispersion which causes intersymbol
interference (ISI) especially in high-speed communications. OSM
schemes have been investigated in line-of-sight (LOS) channels.
However, given the recent trend in Gigabits per second commu-
nication, there is need to investigate the impact of the neglected
higher-order reflections. Two variants of OSM are explored
as case studies: optical space shift keying (OSSK) and spatial
pulse position modulation (SPPM). The multipath-induced ISI
is modelled to account for the spreading of the transmitted
signal, and the analytical upper bound on the symbol error
rate of both OSM schemes in multipath channel is derived.
The derived analytical bounds are validated by closely matching
simulation results. Furthermore, using the spatial distributions of
the multipath-induced power penalty, the LOS channel response
and the delay spread across the room, we demonstrate how the
interaction between these parameters impacts error performance.
Multipath-induced ISI has a significant adverse impact on the
performance of OSM schemes, particularly on the detection of
the activated transmitter as the incurred ISI can alter the channel
gain of the received symbol.

Index Terms—Wireless optical communication, spatial modu-
lation, multipath, intersymbol interference, optical MIMO.

I. INTRODUCTION

Optical wireless communication (OWC) has emerged as a

promising candidate technology for the next generation high-

speed wireless networks, complementing the existing radio

frequency system with its huge bandwidth resource. Other

potential benefits of OWC include energy and cost efficiency,

simple front-end devices and system components, and insus-

ceptibility to electromagnetic interference which makes it suit-

able for sensitive environments including hospitals, aircraft,

power plant, among others [1]–[4].

Widely known modulation schemes for OWC include on-off

keying (OOK), different variants of pulse position modulation

(PPM) and pulse amplitude modulation (PAM) [1], [3]. In

order to enhance system capacity/reliability, multiple-input

multiple-output (MIMO) techniques have been used to cre-

ate parallel communication channels by exploiting additional

degree of freedom, such as space and emitted colour of

the optical sources and field of view of detectors [5], [6].

Conventional MIMO systems utilize all the transmit units
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(TXs) to simultaneously send multiple data streams in order to

achieve multiplexing or transmit-diversity gain. In [7], spatial

modulation (SM) is introduced as a MIMO technique which

activates only one of the TXs at any given time. The SM

scheme encodes part of the total bits transmitted per symbol on

the index of the activated TX, while the rest are conveyed by

the transmitted digital signal modulation. SM has emerged as

a low-complexity MIMO technique with a potential to support

high data rate and energy-efficient wireless communication [8].

A detailed comparison of optical SM (OSM) technique with

other MIMO techniques such as repetition coding (RC) and

spatial multiplexing (SMUX) is available in [9]. In addition,

different variants of OSM have been reported for OWC [10]–

[15]. The differences in these variants include, but are not

limited to, the number of TXs that are activated concurrently,

and the type of digital signal modulation that is transmitted

by the activated TXs.

Most investigations on SM-based indoor OWC have con-

sidered performance evaluation in additive white Gaussian

noise channel using line-of-sight (LOS) channel response only.

That is, the CIR has just a single tap [11], [12], [16]–

[18]. The assumption of LOS channel is suitable for low-

speed transmission systems, where the symbol duration is long

enough to capture the delayed signals arriving after multiple

reflections from the room surfaces. However, in recent times,

high-speed Gigabits per second (Gbps) optical wireless data

communications have been demonstrated [19], [20]. Due to

the shorter symbol duration in high-speed communication,

the multipath propagation of the transmitted signal causes

temporal dispersion, otherwise known as pulse spreading. The

spreading of the transmitted pulse constitutes intersymbol in-

terference (ISI) which degrades the performance of the system

[1], [21]. Moreover, several works on indoor optical channel

modelling have reported the significance of multiple reflections

from room surfaces [22]–[24]. Thus, the assumption of an

LOS channel represents an inaccurate estimation of the system

performance metric such a signal-to-noise ratio (SNR) and

error rates. It is therefore imperative to examine the validity

of the assumption of LOS, and to explore the neglected effect

of higher order reflections.

In this paper we investigate the performance of the OSM

technique in an indoor multipath OWC channel by considering

two variants of OSM - optical space shift keying (OSSK) and

spatial pulse position modulation (SPPM) - as case studies.

The SPPM scheme [12] employs the concept of OSM to

enhance the spectral efficiency of PPM while still retaining the

latter’s power efficiency. The spectral efficiency is improved by
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combining OSSK with PPM, and encoding additional informa-

tion bits in the spatial domain of the TXs. In addition, OSSK

and SPPM, like other OSM schemes, have the advantage

of avoiding interchannel interference since only one TX is

activated during any symbol duration.

This work provides the following novel contributions: (1)

to the best of our collective knowledge, we present, for

the first time, a model of the multipath-induced ISI in an

OSM technique. This model accounts for the spreading of the

transmitted signal due to multiple reflections from the room

interior surfaces. (2) Using our ISI model, we provide the error

performance analysis of SPPM in indoor multipath channel,

deriving an analytical upper bound on the symbol error rate

(SER) of the multipath propagation of SPPM. In addition,

we show that the standard SER for the LOS propagation of

SPPM, as presented in [12], can be obtained as a special case

from our derived expression for SER in multipath propagation.

(3) Furthermore, we extend the error performance analysis to

derive the probability of symbol error for the OSSK scheme

under multipath and LOS propagations. To verify the analyti-

cal model, we simulate the system performance in an indoor

multipath channel with LOS and second-order reflections. The

theoretical results are validated by closely matching simulation

results. As indoor OWC networks are to provide full coverage

and mobility, we explore the spatial distribution of system

performance parameters such as channel path gain, delay

spread and multipath-induced power penalty. By evaluating the

performance across the entire coverage area, we demonstrate

how the channel response and multipath-induced ISI impact

on the error performance.

The rest of the paper is organized as follows: the de-

scriptions of the SPPM and the OSSK schemes are given

in Section II, while the system models for both schemes,

as well as the configuration of the indoor OWC multipath

channel are provided in Section III. In Section IV, we present

a model to account for the impact of the multipath-induced

ISI on the OSM schemes. The error performance analysis

in multipath and LOS indoor OWC channels is given in

Section V. The results of the performance evaluation are

presented and discussed in Section VI, and our concluding

remarks are given in Section VII.

II. DESCRIPTION OF OSM SCHEMES

This section provides a brief description of the two variants

of OSM technique studied in this paper, i.e., SPPM and OSSK.

A. Spatial pulse position modulation (SPPM)

Considering an optical MIMO system with Nt optical trans-

mit units (TXs), i.e., light emitting diodes (LEDs), by using the

SPPM signaling scheme [12], only one of the TXs is activated

in a given symbol duration, while the rest of the TXs are

idle. The activated source transmits an L-PPM signal pattern,

where L denotes the number of time slots (chips) in a symbol

duration. At the transmitter, the information bits transmitted

per data symbol are grouped into two parts: the spatial bits and

the signal bits. The spatial bits determine the index (position)

of the TX that will be activated while the signal bits determine
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Fig. 1: An illustration of SPPM encoding using Nt=4 LEDs and L=4.

the position of the pulse in the PPM signal. Thus, using Nt

TXs and L pulse positions, the total number of information

bits transmitted per data symbol is M=log2(NtL). The first

log2(Nt) most significant bits constitute the spatial bits, while

the remaining log2(L) bits constitute the signal bits. The

SPPM scheme is further illustrated in Fig. 1 for the case

of Nt=4, L=4. For instance, to transmit the symbol ‘13’

with binary representation ‘1101’, the two most significant

bits, ‘11’, are used to select ‘LED 4’, while the last two bits,

’01’, indicate that the pulse will be transmitted in the second

time slot of the 4-PPM pulse pattern.

B. Optical space shift keying (OSSK)

The OSSK scheme can be seen as a subset of the SPPM

scheme. As in SPPM, only one TX is activated during a given

symbol duration in OSSK. However, the activated TX does not

transmit any digital signal modulation. Rather, a rectangular

pulse of constant peak optical power is emitted for the entire

symbol duration. Thus, in OSSK, the data symbol is encoded

solely in the index of the activated TX. With Nt TXs, a total of

M=log2(Nt) bits are transmitted per symbol. An illustration

of the OSSK signalling scheme with 4 LEDs is depicted in

Fig. 2. Two information bits are transmitted per symbol, and

the first two bits, ‘01’, are sent by activating ‘LED 2’.

C. Symbol detection at the receiver

As the signal emitted by the activated TX propagates

through an OWC channel to the receiver (RX), due to the

different spatial locations of the TXs, each TX introduces

a specific “channel signature” i.e., the channel impulse re-

sponse (CIR), that makes its emitted signal unique at the RX

compared to the same signal emitted by any other TX. The

more different the channel signatures are from each other, the

more identifiable the signals from each TX become at the

RX [9], [14]. At the RX, the demodulation unit exploits the

unique signatures associated with each TX to estimate the

transmitted symbols. The CIRs of the Nt TXs are assumed

to be known at the RX. This can be obtained by sending

pilot symbols prior to the transmission of the data symbols.

Based on the estimated CIRs, the demodulator performs a

maximum likelihood detection (MLD) by considering all the

possible combinations of CIRs (i.e., the TX indices) and

digital modulation symbols (PPM symbols), and makes a

decision in favour of the combination associated with the



SUBMITTED PAPER 3

y(t) = RPt

N∑

λ=1

λL−1∑

k=(λ−1)L

xk δ(t− kTc) ⊗ pT(t) ⊗ ĥtλ(t) ⊗ pR(t) + z(t), 0≤ t ≤NT (2)
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Fig. 2: An illustration of OSSK encoding using Nt=4 LEDs.

lowest Euclidean distance from the actual received signal. For

the OSSK scheme, the MLD is based on the CIRs (i.e., the

TX indices) only.

III. SYSTEM MODEL

In this section, using the SPPM scheme as a reference,

the system model for the transmission and detection of data

symbols is presented. In addition, the configuration of the

indoor OWC multipath channel is provided.

A. SPPM System Model

Let x = {c1, . . . , cN} denote a sequence of N consecu-

tively transmitted SPPM symbols. The nth symbol, cn, is

transmitted by activating the LED tn to transmit a pulse

in slot ℓn of the L−PPM signal, where tn ∈ [1, Nt] and

ℓn ∈ [0, L− 1]. Moreover, each symbol is a length-L binary

chip sequence written as cn = {c0n, . . . , cqn, . . . , cL−1
n }, and

with a chip rate of 1/Tc, where the duration of each PPM

time slot Tc = T/L, and T is the SPPM symbol period. The

entries of cn are such that cqn=1 if q = ℓn (since the pulse

is transmitted in slot ℓn), otherwise cqn=0. Therefore, the

serialised length-LN chip sequence for the N sequentially

transmitted symbols can be expressed as:

x =
{
c01, . . . , c

L−1
1 , . . . , c0n, . . . , c

L−1
n , . . . , c0N , . . . , c

L−1
N

}

= {x0, x1, . . . , xk, . . . , xLN−1}. (1)

In (1), xk of the sequence x corresponds to the chip cqn where

k = (n− 1)L+ q. The transmitted L−PPM optical signal is

obtained by passing the chip sequence x through a unit-energy

rectangular pulse-shaping (transmitter) filter pT(t) of duration

Tc. The resulting signal is then scaled by the peak transmitted

optical power Pt.

Considering an OWC system with a single RX, the CIR

of the subchannel from the jth TX to the RX is denoted by

ĥj(t), j=1, . . . , Nt, and it includes the LOS and the multipath

components. Also, ĥj(t) is assumed to be fixed, positive,

and of finite duration [21]. The matched filter (MF) receiver

architecture employs a unit-energy receiver filter pR(t), which

is matched to pT(t). Hence, for the N transmitted symbols,

the received electrical signal at the output of the receiver filter

is given by (2). Where δ(.) is the Dirac delta function and ⊗
denotes the convolution operation. The parameter R is the

responsivity of the photodetector (PD), while ĥtλ(t) is the

CIR of LED tλ which is activated to send the signal of the

λth symbol. The quantity z(t) is the additive Gaussian noise

at the receive filter output. Considering a Silicon PIN PD, z(t)
results from the ambient light shot noise and the thermal noise

in the receiver [1]. By defining the combined impulse response

of the channel, the transmitter and receiver filter as:

htλ(t) = pT(t) ⊗ ĥtλ(t) ⊗ pR(t) , (3)

the receive filter output in (2) can thus be expressed as:

y(t) = RPt

N∑

λ=1

λL−1∑

k=(λ−1)L

xk htλ(t− kTc) + z(t). (4)

The output of the MF for each of the L slot/chip of the

transmitted symbols is obtained by sampling at the chip rate

1/Tc. The sampled version of the received signal is given by:

ym = RPt

N∑

λ=1

λL−1∑

k=(λ−1)L

xk htλ
(
(m− k)Tc

)
+ zm

= RPt

N∑

λ=1

λL−1∑

k=(λ−1)L

xk h
m−k
tλ

+ zm, (5)

where hm−k
tλ

= htλ
(
(m − k)Tc

)
is the Tc-spaced sampled

version (discrete-time (DT) representation) of the combined

impulse response, and zm=z(mTc) are the noise samples in

each time slot.

For the nth received SPPM symbol, the MF samples corre-

sponding to its L slots/chips are expressed as:

rn = sn +wn

{rn,q}(L−1)
q=0 = {sn,q + wn,q}(L−1)

q=0 , (6)

where {wn,q}(L−1)
q=0 are the L Gaussian noise samples with

variance σ2
w and {sn,q}(L−1)

q=0 are the received signal samples

in the absence of noise. By using (1), {rn,q}(L−1)
q=0 are obtained

from ym by substituting m = (n − 1)L + q. Therefore, the

magnitude of the noise-free signal samples for the nth symbol

are obtained from (5) as:

sn,q = RPt

n∑

λ=1

λL−1∑

k=(λ−1)L

xk h
(n−1)L+q−k
tλ

. (7)

The receiver makes decisions on the received symbol by

determining the pulse position and the TX index combination

which gives the minimum Euclidean distance metric from the

received signal samples. That is, the estimate of the pulse

position ℓ̂n and the TX index t̂n are given by:

[ℓ̂n, t̂n] = argmax
q,tn

fn(rn|sn)= argmax
q,tn

[D (rn, sn)] (8)
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The probability density function of rn conditioned on sn is:

fw(rn|sn) =
1

(2πσ2
w)

L/2
exp

[
−‖rn − sn‖2

2σ2
w

]
, (9)

and the Euclidean distance metric is defined as

D (rn, sn) = ‖rn − sn‖2. (10)

where ‖·‖ represents the Euclidean norm. This decision pro-

cess is equivalent to determining the pulse position of the

transmitted PPM signal from ℓ̂n = argmaxq [rn,q], and esti-

mating the TX index that gives the signal with the minimum

Euclidean distance from the MF sample in slot ℓ̂n [12].

B. Indoor Multipath Channel

In the indoor OWC channel, the transmitted optical signal

experiences multipath propagation due to multiple reflections

from room surfaces and other objects. The multipath CIR is

obtained from simulation which is performed based on the

ray-tracing algorithm in [22], [25]. The simulated channel

consists of an LOS path and second-order reflections from

the room surfaces. These reflections are typically diffuse in

nature and are modeled as Lambertian [25]. We consider four

LEDs in an empty area with the dimensions: (5 × 5 × 3)m,

as shown in Fig 3. The setup configuration is designed in

line with other papers on optical channel modelling [22], [23].

The configuration can however be varied to any dimension or

number of sources without any loss of generality. The angle

of irradiance and incidence of light rays are denoted by θ
and ψ respectively, while l represents the distance covered

as the optical radiation travels from one point to another, as

shown in Fig 3. The simulation parameters used are provided

in Table I [22]. The receiver (RX) location is varied to different

coordinates across the floor of the coverage area. The values of

reflectivity, ρ, are obtained from the typical measured values

for different interior materials [23].

The root mean square (RMS) delay spread, τrms, is a

measure of the pulse spreading, and thus, the ISI experienced

in indoor multipath channel [1], [21]. Therefore, in this work,

τrms is used to quantify the amount of dispersion experienced

in the multipath channel, and it is given by [1]:

τrms =

√√√√
∫∞

−∞
(t− τ)2 ĥ2(t) dt
∫∞

−∞
ĥ2(t) dt

. (11)

The mean delay spread, τ , is obtained from:

τ =

∫∞

−∞
t ĥ2(t) dt

∫∞

−∞
ĥ2(t) dt

. (12)

For a multiple transmitter system, the overall delay spread

of the system is defined as: τrms = max
[
{τ jrms}Nt

j=1

]
, where

τ jrms is the RMS delay spread of the multipath link between

the jth TX and the RX. Furthermore, the CIRs of all the TXs

are normalised such that for the TX with the best path gain,

its impulse response has unity area [22]. That is,

max
1≤j≤Nt

[∫ ∞

0

ĥj(t)

]
=1. (13)
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Fig. 3: Geometry of ray-tracing in an indoor OWC channel.

TABLE I:
OWC CHANNEL SIMULATION PARAMETERS

Parameter Value

LED half angle 60
◦

PD field of view 85
◦

PD Area (cm2) 1.0
Gain of optical filter 1.0
Concentrator index 1.5
ρwall, ρceiling, ρfloor 0.83, 0.48, 0.63

Transmitters’
coordinate (m)

TX1 - (1.25,1.25,3)
TX2 - (1.25,3.75,3)
TX3 - (3.75,1.25,3)
TX4 - (3.75,3.75,3)

With this assumption, if the LOS and all the multipath compo-

nent signals are captured within a single symbol duration, then,

for the TX with the best channel gain, the received optical

power is equal to the transmitted optical power Pt.

IV. MODELLING ISI DUE TO MULTIPATH PROPAGATION

Without loss of generality, let the DT combined multipath

impulse response for the TXs, hj for j = 1, . . . , Nt, have

equal number of taps, K > 1. For the purpose of this

analysis, this assumption can be implemented by zero-padding

the impulse response of the TXs with a smaller number of

taps. Then, the expression in (7) represents a convolution

of the transmitted chip sequences from the first to the nth

symbol with the DT combined impulse response of the TX

that is activated to convey each symbol. This convolution

operation implies that the pulse transmitted in any of the L
slots/chips of a symbol will spread into other time slots. That

is, due to multipath propagation, the samples of any non-zero

chip will interfere with the samples of other chips within the

same symbol (intrasymbol interference) and the chips in other

adjoining symbols (intersymbol interference) [21]. The term

ISI used in this work refers to the collective effect of these

two interference cases. In the following derivation, we present

a model to account for the ISI incurred in a desired symbol

due to the pulse spreading from other symbols.

Let hij for i = 0, . . . , (K − 1), denote the amplitude of the

(i+1)th tap of the DT combined channel response of the jth
TX. By defining the tap index as a non-negative integer in

the range: 0 ≤ i ≤ K−1, then, the limits of the second

summation function in (7) must satisfy the condition that:

0 ≤ (n− 1)L+ q − k ≤ K − 1. (14)
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That is,
(
(n−1)L+q−K+1

)
≤ k ≤ (n−1)L+q. Therefore,

the limits of (7) are re-defined to satisfy (14), and we obtain:

sn,q = RPt

n∑

λ=1

kmax∑

k=kmin

xk h
(n−1)L+q−k
tλ

, (15)

where

kmin = max [(λ− 1)L, (n− 1)L+ q−K+1]

kmax = min [(λL− 1), (n− 1)L+ q].
(16)

The functions max[α1, α2] and min[α1, α2] find the maximum

and the minimum respectively between two quantities α1 and

α2. Furthermore, for a DT impulse response with K taps, the

number of slots/chips of the previously transmitted symbol(s)

that are likely to interfere with the desired symbol is (K−1).

Hence, the number of possible ISI symbols is NISI=
⌈
(K−1)

L

⌉
,

where ⌈·⌉ denotes the ceiling function.

Consider a sequence of the first n consecutively transmitted

symbols, x = {c1, . . . , cn}, where n=NISI+1, the nth sym-

bol, cn, is the desired symbol received in the current symbol

duration while the sequence xISI = {c1, . . . , cn−1} represents

the (n − 1) previously transmitted symbols that are likely to

interfere with symbol cn. We refer to this interfering symbols

as the ISI symbols. For slot q of symbol cn, i.e., cqn, let dn,q

denote a sequence of K chips consisting of the chip cqn and

the (K−1) previously transmitted chips which can constitute

ISI. By using (15), the sequence dn,q is written as:

dn,q = {dK−1
n,q , dK−2

n,q , . . . , din,q, . . . , d
0
n,q}

=
{{
xk

}kmax

k=kmin

}n

λ=1
. (17)

Similarly, the sequence of the magnitude of the DT channel re-

sponse for chip cqn and the previously transmitted (K−1) chips

is given by:

βββn,q = {βK−1
n,q , βK−2

n,q , . . . , βi
n,q, . . . , β

0
n,q}

=
{{
h
(n−1)L+q−k
tλ

}kmax

k=kmin

}n

λ=1
. (18)

As an illustration, considering the case of L=4 and K=7,

then, NISI=2 and n=3. The chips of the desired symbol c3
and the ISI symbols, c1 and c1, are depicted in Fig. 4. For the

second slot/chip, c13, of the desired symbol, using (16), (17)

and (18), the sequences d3,1 and βββ3,1 are obtained as:

d3,1 = {d63,1, d53,1, . . . , d03,1} = {x3, x4, . . . , x9} (19)

βββ3,1 = {h6t1 , h
5
t2 , h

4
t2 , h

3
t2 , h

2
t2 , h

1
t3 , h

0
t3}. (20)

Using (17) and (18), the magnitude of the noise-free signal

sample received in slot q of the nth symbol, as given by (15),

can be expressed in term of the sequences dn,q and βββn,q as:

sn,q = RPt

K−1∑

i=0

din,q β
i
n,q

= RPt d
0
n,q β

0
n,q + RPt

K−1∑

i=1

din,q β
i
n,q, (21)

for q ∈ [0, L − 1]. The first term of (21), i.e.,

sDn,q=RPt d
0
n,q β

0
n,q , represents the magnitude of the ISI-

Fig. 4: A sample of chip sequence, dn,q , consisting of the chips of the desired
symbol c3 and the chips of symbols c1 and c2 that are likely to cause ISI.
L= 4, K = 7 and n= 3. The shaded chips represent the pulse position of
each symbol, i.e, the non-zero chips.

free signal sample without noise. The second term,

sISIn,q=RPt

∑K−1
i=1 din,q β

i
n,q , accounts for the multipath-

induced ISI introduced by the previously transmitted symbols.

To simplify the error performance analyses that follow, we

define the parameters:

Gn,q = d0n,q β
0
n,q (22)

Ĝn,q =

K−1∑

i=1

din,q β
i
n,q, (23)

where Gn,q is the DT channel response of the ISI-free signal

sample, while Ĝn,q is the combined DT channel responses of

the interfering signal samples.

V. ERROR PERFORMANCE ANALYSIS

A transmitted symbol is correctly decoded if both the pulse

position and the TX index are correctly decoded. Thus, the

symbol error probability of SPPM is given by:

Pe,sym = 1− (Pc,tx × Pc,ppm) , (24)

where Pc,ppm is the probability of correctly decoding the PPM

pulse position and Pc,tx is the probability of correctly decoding

the index of the activated TX given that pulse position has

been correctly decoded. Considering that the desired symbol,

cn, is transmitted by activating the jth TX to send a pulse in

slot/chip µ of the L-PPM signal, i.e., tn , j and ℓn , µ, the

expressions for Pc,ppm and Pc,tx are derived as follow.

A. Probability of Correct Pulse Position Detection

The pairwise error probability (PEP) that the receiver de-

cides in favour of slot ν instead of slot µ, is the probability

that the magnitude of the received signal sample in slot ν is

greater than the magnitude of the sample in slot µ. That is,

PEPj
µ→ν = P[sn,ν + wn,ν > sn,µ + wn,µ]

= Q

(√
γs
2

[
Gn,µ + Ĝn,µ −Gn,ν − Ĝn,ν

])
. (25)

The notation P[·] represents the probability of occurrence,

Q(·) denotes the Marcum’s Q-function, and the symbol SNR,

γs=(RPt)
2/σ2

w. For the Nt equiprobable TXs which could be

activated to send the desired symbol, using the union bound

techniques [26] with equation (25), the probability of error in

detecting the pulse position is obtained as:

Pe,ppm≤
1

LNt

Nt∑

j=1

L−1∑

µ=0

L−1∑

ν=0
ν 6=µ

PEPj
µ→ν . (26)
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PEPj→κ
µ = P

[(
sISI,jn,µ + wn,µ

)2
>

(
sD,j
n,µ + sISI,jn,µ + wn,µ − sD,κ

n,µ

)2]
= Q



√
γs
4



(
Gj

n,µ −Gκ
n,µ

)
×
(
Gj

n,µ −Gκ
n,µ + 2Ĝj

v

)
∣∣∣Gκ

n,µ −Gj
n,µ

∣∣∣






. (29)

The average probability of error in pulse position detection

is obtained by averaging Pe,ppm over: (i) all the (Nt)
(n−1) pos-

sible combinations of LEDs, {tISI}={t1, . . . , tn−1}, that are

activated to send the ISI symbols, and (ii) all the L(n−1) com-

binations of chip sequences, {xISI} = {x0, . . . , xL(n−1)−1}
for the ISI symbols. Therefore, the probability of correct pulse

position detection is obtained as:

Pc,ppm = 1− 1

(LNt)(n−1)

∑

{tISI}

∑

{xISI}

Pe,ppm. (27)

B. Probability of Correct Transmitter Detection

For the desired symbol cn, for a correctly detected pulse

position, i.e., µ̂=µ, the PEP that the receiver decides in favour

of LED κ instead of j, is obtained as:

PEPj→κ
µ = P

[
D(rn,µ, s

D,j
n,µ) > D(rn,µ, s

D,κ
n,µ )

]

= P

[(
rn,µ − sD,j

n,µ

)2
>

(
rn,µ − sD,κ

n,µ

)2]
(28)

where sD,j
n,µ and sD,κ

n,µ , represent the expected noise- and ISI-

free magnitude of the MF sample for slot µ if the desired

symbol is sent by TXs j and κ respectively. By applying (6)

and (21) in (28), the PEP of the TX detection is given by (29).

Where Gκ
n,µ 6= Gj

n,µ, and the parameters Gj
n,µ and Ĝj

n,µ are

the values of Gn,µ and Ĝn,µ obtained from (22) and (23)

respectively when the desired symbol is sent by the jth LED.

Now, considering the Nt equiprobable TXs, the upper bound

on the probability of error in detecting the TX index is:

Pe,tx ≤ 1

Nt

Nt∑

j=1

Nt∑

κ=1
κ 6=j

PEPj→κ
µ . (30)

Similar to the case of the pulse position detection in Sec-

tion V-A, the probability of TX detection error obtained in (30)

is averaged over all the L possible positions of slot µ, over

all the possible combinations of the TXs that are activated to

send the ISI symbols, and over all the possible combinations

of chip sequences of the ISI symbols. Thus, the probability of

correctly detecting the TX index, conditioned on a correctly

detected pulse position, is obtained as:

Pc,tx = 1− 1

Ln(Nt)(n−1)

∑

{tISI}

∑

{xISI}

L−1∑

µ=0

Pe,tx. (31)

The expressions in (27) and (31) are used to evaluate (24)

in order to obtain the SER of SPPM in multipath channel.

C. Special Case of LOS Propagation of SPPM

For signal transmission involving only LOS propagation,

the DT combined impulse response of the TXs will have only

one tap, i.e., K = 1. As such, hj = h0j ∀j, where h0j is the

LOS DT channel response of the jth TX. Thus, NISI = 0,

n = 1 and the desired symbol: cn , c1. Also, (16) yields

k = kmin = kmax = q, and (17) and (18) reduce to:

dn,q = d01,q = xq = cq1, for q ∈ [0, L− 1] (32)

βββn,q = β0
1,q = h0t1 . (33)

Therefore, (22) and (23) yield:

G1,q = h0t1c
q
1; Ĝ1,q = 0. (34)

If the symbol c1 is conveyed by activating the TX j to

transmit a pulse in slot µ, then the transmitted chip sequence is

such that cq1 = 1 if q=µ, otherwise, cq1=0. Thus, G1,µ = h0j
and G1,q = 0, ∀q, q 6= µ. Hence, for LOS propagation, by

applying (34) in (25), the PEP that the receiver decides in

favour of slot ν instead of µ, is:

PEP
j

µ→ν = Q
(
G1,µ

√
γs

)
= Q

(
h0j

√
γs
2

)
. (35)

For L equally likely slots/chips, since the chip sequence of

the ISI symbols is empty, then the probability of correct pulse

position detection in an LOS scenario is:

PLOS
c,ppm = 1− (L− 1)

Nt

Nt∑

j=1

Q

(
h0j

√
γs
2

)
. (36)

Similarly, by using (34) in (29), the PEP that the receiver

decides in favour of TX κ instead of TX j, is given by:

PEP
j→κ

µ = Q

(√
γs
4

∣∣∣Gκ
1,µ −Gj

1,µ

∣∣∣
)
= Q

(∣∣h0κ − h0j
∣∣
√
γs
4

)
.

(37)

Hence, the probability of correctly decoding the TX index,

conditioned on a correctly decoded pulse position, is:

PLOS
c,tx = 1− 1

Nt

Nt∑

j=1

Nt∑

κ=1
κ 6=j

Q

(∣∣h0κ − h0j
∣∣
√
γs
4

)
. (38)

By combining (36) and (38), the SER for an SPPM scheme

involving only LOS propagation is given by (39). The expres-

sion in (39) matches the standard expression for the SER of

SPPM in LOS-only propagation as in [12, Eq. (23)].

D. Special Case of OSSK in Multipath Channel

In this section, the error performance analysis for SPPM

presented above is applied to derive the theoretical SER of

OSSK in indoor OWC multipath channel. In OSSK, since

L=1, then each symbol has just a single chip/slot, i.e., q = 0
and thus, cu , c0u, ∀u. Considering an n consecutively
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PLOS
e,sym ≤ 1 −


1−

1

Nt

Nt∑

j=1

Nt∑

κ=1
κ 6=j

Q

(∣∣h0κ − h0j
∣∣
√
γs
4

)

×


 (L− 1)

Nt

Nt∑

j=1

[
1

L− 1
−Q

(
h0j

√
γs
2

)]
 . (39)

transmitted OSSK symbol, x={c1, . . . , cn}, the serialised

sequence of the transmitted chips/symbols is written as:

x = {x0, x1, . . . , xk, . . . , xn−1}
= {c01, c02, . . . , c0u, . . . , c0n}, (40)

where k , u− 1, i.e., xk = c0k+1. Using the ISI model devel-

oped for SPPM in Section IV, for the DT combined impulse

responses with (K ≥ 1) taps, the number of ISI symbols is

equal to the number of interfering chips, and it is given by

NISI=K−1. Considering that the nth OSSK symbol, c0n, is

the desired symbol received in the current symbol duration,

where n = NISI + 1 = K, then xISI = {c01, c02, . . . , c0n−1}
represents the (K − 1) previously transmitted ISI symbols.

Therefore, the sequence dn,q in (17), reduces to:

dn = {dK−1
n , dK−2

n , . . . , d0n} =
{{
xk

}kmax

k=kmin

}n

λ=1
. (41)

Using L=1 and q = 0 in (16), we obtain:

kmin = max [λ− 1, n−K] (42a)

kmax = min [λ− 1, n− 1]. (42b)

Now, since in (41), 1≤λ≤n, then λ−1 ≤ n−1 and therefore,

(42b) yields kmax = λ− 1. Moreover, given that each symbol

has just one chip, then k = kmin = kmax = λ−1. This implies

that in (42a), max [λ−1, n−K] = λ−1. Hence, λ−1 ≥ n−K
and λ ≥ n−K + 1. Therefore, (41) becomes:

dn =
{
xλ−1

}n

λ=n−K+1
(43)

Similarly, the sequence of the DT combined channel response

corresponding to the desired and the ISI symbols is given by:

βββn= {βK−1
n,q , βK−2

n,q , . . . , β0
n,q} =

{
hn−λ
tλ

}n

λ=n−K+1
. (44)

Let the desired symbol, cn be sent by activating TX j,
i.e., tn , j. By using (43) and (44), the noise- and ISI-free

magnitude of the MF sample for the desired symbol, is:

sDn = RPt d
0
n β

0
n = GnRPt. (45)

and the ISI contributed by the previously transmitted symbols

is expressed as:

sISIn = RPt

K−1∑

i=1

din β
i
n = ĜnRPt. (46)

By combining (45) and (46), the magnitude of the received

sample for the desired symbol is:

rn = sDn + sISIn + wn = RPt

(
Gn + Ĝn

)
+ wn, (47)

and the PEP that the receiver decides in favour of TX κ instead

of j, is given by:

Pj→κ = P
[
D(rn, s

D,j
n ) > D(rn, s

D,κ
n )

]
. (48)

Therefore,

Pj→κ= Q



√
γs
4



(
Gj

n−Gκ
n

)
×

(
Gj

n−Gκ
n + 2Ĝj

n

)

∣∣∣Gκ
n−Gj

n

∣∣∣




(49)

where Gκ
n 6= Gj

n. Since signal modulation is not transmitted

by the activated TX in OSSK, then, a transmitted symbol is

correctly decoded if the TX index detected correctly. Thus, the

symbol error probability of an OSSK scheme is equal to the

probability of error in detecting the TX. Now, considering the

Nt equally likely TXs, by averaging over all the (Nt)
(K−1)

possible combinations of the TXs that can be activated to send

the ISI symbols, {tISI}={t1, . . . , tK−1}, the average symbol

error probability of an OSSK scheme in multipath channel is:

POSSK
e,sym ≤ 1

(Nt)K

∑

{tISI}

Nt∑

j=1

Nt∑

κ=1
κ 6=j

Pj→κ. (50)

For the LOS propagation of the OSSK scheme, by setting

K=1, we obtain Ĝj
n=0, and the SER is given by:

POSSK,LOS
e,sym ≤ 1

Nt

Nt∑

j=1

Nt∑

κ=1
κ 6=j

Q

(∣∣h0κ − h0j
∣∣
√
γs
4

)
. (51)

VI. RESULTS AND DISCUSSIONS

The results of the performance evaluation of the SPPM and

the OSSK schemes in indoor multipath channel are presented

in this section. The analytical results are obtained by using

the theoretical expressions derived in Sections V, and these

are validated by simulation results obtained using MATLAB.

To illustrate the performance of SPPM and without any

loss of generality, we consider: Nt=[2, 4] and L=[2, 8], RX

coordinate: (x, y, z)=(1.8, 2, 0)m, and the TX coordinates as

provided in Table I. For a fair comparison, the system is

designed to achieve equal bit rate for all values of L. For

the case of Nt=2, using transmitters TX1 and TX4, the plots

of the SER against the SNR per bit, γb=γc/M , are depicted

in Fig. 5. It can be seen that the derived upper bound on the

SER of SPPM in multipath channel is closely matched by the

simulation results, and thus validates our theoretical derivation.

The SER values greater than 1, as well as the slight deviations

observed between the theoretical and simulation results at

SER > 10−2, is due to the union bound technique used in

the analysis. The closed form expression derived in Section V

can therefore be used to study the performance of SPPM in

more realistic indoor channel taking into account the multiple

reflections of the transmitted signal. Moreover, the analytical

framework can be easily extended to explore the performance

of other OSM schemes in multipath channels.
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Fig. 5: Error performance of SPPM in LOS and multipath channel. Nt = 2,
L = [2, 8]. τrms = 0.14Tc and 0.29Tc for L=2 and L=8 respectively.
LOS channel gains: [h0

1, h
0
4] = [1, 0.3866].

At the specified TXs and RX locations, τrms = 2.32 ns,

which is equivalent to 0.14Tc and 0.29Tc for L=2 and L=8
respectively. Note that delay spread, τrms, as a function of Tc,

amounts to the significance of the ISI, and not the actual value

of the coherence time of the channel. For example, τrms=0
means Tc is greater than channel coherence time, and thus,

no ISI at all. However, τrms>0 indicates the presence of ISI

and Tc is less than the channel coherence time. Due to the

dispersion experienced in multipath channel, a higher value of

SNR is required to achieve a given SER in multipath compared

to LOS propagation. The increase in SNR is required to

overcome the multipath-induced ISI. We define SNR penalty,

∆γb=γb,MP−γb,LOS, where γb,LOS and γb,MP represent the

SNR required to achieve a given value of SER under LOS and

propagation respectively. For a representative SER of 10−5,

due to ISI, multipath propagation incurs an SNR penalty of

about 6.5 dB and 5.5 dB for L=2 and L=8 respectively.

Similarly, the error performance plots for case of Nt=4
are shown in Fig. 6. It is observed that the degradation

in performance is more pronounced for Nt = 4 compared

to Nt = 2. This is not unexpected because as the total

number of TXs increases, the denser the spatial constellations

become and the wider the variation in the magnitude and

the extent of the ISI caused by the previously transmitted

symbols. In particular, the denser constellations implies that

SNR requirement will increase substantially. Moreover, as

Nt increases, the requirement for distinct channel response

for all the TXs becomes more stringent. Thus, due to ISI,

there is an increasing likelihood that a small alteration in the

actual channel response of the transmitted symbol will result

in wrong TX detection. This is why for the case of Nt = 4
shown in Fig. 6, even at high SNR where the limiting effect of

the noise has been greatly reduced, the alteration of channel

response due to ISI can cause the receiver to repeatedly decode

some sets of symbols erroneously, and this keeps the SER at

an irreducible level.

Using the derived SER for OSSK scheme (see Section V-D),

the SER plots for the case Nt = 2 are shown in Fig. 7. The

RMS delay spread is normalised by the symbol duration T ,
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Fig. 6: Error performance of SPPM in LOS and multipath channel. Nt = 4,
L = [2, 8]. τrms = 0.12Tc and 0.29Tc for L = 2 and L = 8 respectively.

LOS channel gains: {h0
j}

Nt

j=1 = [1, 0.6365, 0.5448, 0.3866].
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Fig. 7: Error performance of OSSK in LOS and multipath channel. Nt = 2,
τrms = 0.14T and 0.29T . LOS channel gains: [h0

1, h
0
4] = [1, 0.3866], SNR

per bit, γb=γs/M .

and the SER plots for LOS propagation and two different

symbol rates are shown. The derived analytical upper bound

is closely matched by the simulation results. As expected, as

the data rate increases, the error performance of the system

degrades. This is due to the fact that as the data rate increases,

the symbol duration reduces, and thus the ISI caused by the

spreading of the transmitted pulse becomes more significant.

In Fig. 8, the SNR, γb,MP, required to achieve SER of 10−5

in multipath channel is plotted against the normalised RMS

delay spread, τrms/Tc. For this case, Nt=2, L=[2, 4, 8] and

RX coordinate: (x, y, z)=(0.6, 1.8, 0) m. The OSSK scheme

and all the SPPM configurations are implemented with the

same bitrate and average transmitted optical power. As L
increases from 2 to 8, SPPM benefits from the increasing

energy efficiency in terms of SNR. However, the SNR penalty

incurred in multipath channel also increases due to the increas-

ing bandwidth requirement. Moreover, As L increases, the

duration of each PPM time slot decreases, and as a result, the

probability of intrasymbol interference due to pulse spreading

increases. Thus, the energy saving achieved by using a given

value of L can be lost to multipath penalty if the delay

spread exceeds a certain threshold. For instance, in Fig. 8,
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Fig. 8: SNR, γb,MP, required to achieve SER of 10−5 in multipath channel
versus RMS delay spread divided by chip duration Tc. The lines represent
fifth-order polynomial fits to the data (Markers) for each scheme.

for τrms > 0.35Tc and τrms > 0.38Tc, the SNR required for

L = 8 exceeds those L = 4 and L = 2 respectively.

In SM, correct symbol detection requires an accurate detec-

tion of the TX index, hence, the system performance is highly

dependent on the identifiability of the multiple channels. In

Fig. 9, we illustrate how this impacts on the performance in

multipath channels. For an SPPM configuration with L=8,

using a pair of TXs at different positions, Fig. 9 depicts

the SNR required to attain an SER of 10−5 in LOS and

multipath channels. Also included in Fig. 9, is the SNR

penalty suffered in the multipath channel compared to the LOS

channel. The normalised LOS path gain of the four TXs are:

{h0j}Nt

j=1 = [1, 0.6365, 0.5448, 0.3866]. It is observed that for

both LOS and multipath channels, as the difference between

the channel responses of the two TXs narrows, the required

SNR increases. However, the increase in SNR is significantly

higher for multipath than for LOS channels. For instance,

the difference between the required SNR for the gain sets

A ([h01, h
0
2] = [1, 0.6365]) and C ([h01, h

0
4] = [1, 0.3866]) is

about 3 dB for the LOS channel compared to about 14 dB for

multipath channel. The higher SNR requirement in multipath

can be attributed to the fact the ISI incurred in multipath

channel also alters the actual channel response for the received

signal, thereby making the received symbol appear as though it

had been sent by another TX. Thus, even if the pulse position

can be estimated from the received amplitude when compared

to the unfilled slots, the multipath-induced ISI could still cause

erroneous TX detection. For less distinct channel responses,

the incurred ISI can readily overcome the path gain difference

to cause transmitter detection errors. As an example, for case D

with a gain difference of
∣∣h02 − h03

∣∣ = 0.0917, TX2 can be

wrongly detected as TX3 if the combined gains of all the

interfering samples exceed about half of this gain difference.

Hence, even at high SNR, the SER reaches an irreducible

level because the receiver continues to decode the TX index

of some sets of symbols erroneously. This corroborates the

widely reported dependence of OSM schemes on path gain

dissimilarity [9], [27], and highlights the significant adverse

impact of multipath ISI on the system performance.

As indoor OWC networks are to provide coverage and
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Fig. 9: SNR requirement in LOS and multipath channel for different TX pairs.
Nt = 2, L = 8.

mobility, we explore the spatial distribution of system per-

formance parameters such as channel response, delay spread

and multipath-induced power penalty across the entire area of

the room. The SPPM system has Nt = 2 (TX1 and TX4)

and L = 8, and the RX is positioned at different locations

across the room. The spatial distributions of ∆γb and τrms

are shown in Fig. 10a and 10b respectively. Also, Fig. 10c

shows the absolute difference, ∆h, between the normalised

LOS channel response of both TXs, i.e., ∆h =
∣∣h01 − h04

∣∣.
Given the symmetry of the configuration, similar plots can be

obtained for TX2 and TX3. As observed in Fig. 10, multipath

propagation make impacts differently at different locations.

The delay spread is highest if the RX is positioned in the

vicinity of any of the two TXs. This is because if the RX

is located close to TX1 for example, then even though TX1

will have a low value of τrms, the value of τrms will be high

for TX4 because it is farther from the RX. Thus, as shown

in Fig. 10a, the SNR penalty in the vicinity of the both TXs

are very high due to the increase in multipath-induced ISI.

Along the centre of the room where the RX is equidistant from

both TXs, τrms has a relative lower value (about 1.7 ns, see

Fig. 10b). However, because the LOS channel responses are

identical in this area of the room, 0.1 ≤ ∆h ≤ 0 (see Fig. 10c),

the corresponding value of ∆γb shown in Fig. 10a is very high.

In fact, the SER lies in the range: 0.02 < SER ≤ 0.5. This

observation is not unexpected since SM techniques, like most

MIMO techniques, are highly dependent on the identifiability

of the multiple channels. As an SM technique, SPPM performs

better when both ∆h and the individual channel response

values are optimized [12], [27].

To further demonstrate the how the interaction between

channel response and multipath-induced ISI impacts on the

performance, we extract the 2-dimensional plots in Fig. 11

from the contour plots of Fig. 10. The receiver is positioned

at different points along the y-axis, while the x coordinate

is fixed at 2.0 m. Figure 11a depicts ∆h and τrms on the

left and right y-axis respectively. Figure 11b depicts the plot

of γb,LOS and γb,MP required to achieve a representative

SER of 10−5. In Fig. 11, it is observed that in the range:

0 ≤ Y ≤ 2 m, as ∆h reduces from 0.8 to 0.56, γb,LOS

reduces gradually from about 23 dB to its lowest value of

15 dB. In this same range, however, the graph of γb,MP, shows
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receiver locations along the y-axis at X = 2.0 m. Nt = 2 and L = 8.

a trend that follows τrms rather than ∆h. This is indicated

by the similarity between the slopes of the graphs for γb,MP

and τrms. On the contrary, in the range: 2 ≤ Y ≤ 3, even

though τrms continued to decrease from about 2.2 to 1.6 ns,

γmp
b shows an opposite trend by increasing from about 21 dB

into the region of irreducible SER (0.02 < SER ≤ 0.5).

The observed trend for γb,MP is similar to that of γb,LOS,

and this indicates the dominance of the ∆h component over

the multipath ISI. As ∆h decreases, the dissimilarity between

the channel responses reduces, thereby making the transmitted

symbol indistinguishable at the receiver. The performance of

SPPM is largely dictated by the channel response values and

the difference between these values. However, the ISI caused

by multipath dispersion can adversely impact the identifiability

of the subchannels by altering the channel response values.

VII. CONCLUSION

In this work, using SPPM and OSSK as case studies, the

performance of optical SM in an indoor multipath channel has

been studied. A model of the multipath-induced ISI in an OSM

technique is presented. The model accounts for the spreading

of the transmitted signal due to multiple reflections from room

surfaces. The ISI model is then used to derive the analytical

upper bounds on the SER of SPPM and OSSK under multipath

propagation. Using a simulated indoor multipath channel with

LOS and second-order reflections from the room surfaces,

our theoretical derivations are validated by closely matching

simulation results. The analysis presented in this work can

be adopted to study the performance of OSM schemes in

more realistic indoor channel taking into consideration the

impact of the multipath propagation of the transmitted sig-

nal. the Multipath-induced ISI has significant impact on the

performance of OSM schemes particularly on the detection

of the activated transmitters. The incurred ISI can alter the

actual channel response of the received symbol, thus making

it appear as though it had been sent by a different transmitter.

In addition, to demonstrate how multipath propagation affects

coverage and mobility, we presented the spatial distribution of

channel response, RMS delay spread and multipath-induced

SNR penalty across the room. Results show how multipath

propagation impacts system performance at different locations.

The performance of SPPM is largely dictated by the channel

response values and the difference between these values.

However, the ISI caused by multipath dispersion can adversely

impact the identifiability of the multiple channels by altering

the channel response values.
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