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A cognitive radio network (CRN) with a cooperative spectrum sensing scheme is considered. 	is CRN has a primary user and
multiple secondary users, some of which are malicious secondary users (MSUs). Energy detection at each SU is performed using
a �-norm detector with � ≥ 2, where � = 2 corresponds to the standard energy detector. 	e MSUs are capable of perpetrating
spectrum sensing data falsi
cation (SSDF) attacks. At the fusion center (FC), an algorithm is used to suppress these MSUs which
could be either an adaptiveweighing algorithmor one of the following: Tietjen-Moore (TM) test or Peirce’s criterion.	is is followed
by computation of a test statistic (TS) which is a random variable. In this paper, we assume TS to have either a Gamma or a
Gaussian distribution and calculate the threshold accordingly. We provide closed-form expressions of probability of false alarm
and probability of miss-detection under both assumptions. We show that Gaussian assumption of TS is more suited in presence of
an SSDF attack when compared with the Gamma assumption. We also compare the detection performance for various values of �
and show that � = 3 along with the Gaussian assumption is the best amongst all the cases considered.

1. Introduction

	e increase in demand for high-data-rate communication
over wireless channels has fueled research in many possi-
ble directions. Some of these include developing spectrally
e�cient modulation schemes, channel codes that approach
capacity, and many such techniques. In this context, one of
the prime areas of research is cognitive radio, which enables
e�cient use of wireless spectrum [1]. Wireless spectrum
is a scare resource, and a study carried out in the United
States revealed the ine�cient utilization of this resource [2].
	e scanning of spectrum brought into light the following
observations: some bands of the spectrum were completely
unoccupied and some other bands were used only sparingly,
while some were heavily occupied. Spectrum holes are those
frequencies in the spectrum, which have been allocated to
a user, but are not in use at that point in time-frequency
and geographic area [3]. For a superior utilization of the
spectrum, it was proposed that users can be permitted to use

spectrum holes. 	e user who is allocated the spectrum is
the licensed user and also known as the primary user (PU),
whereas the user, who uses the spectrum when PU is not
using it, is known as a secondary user (SU). SU employs
cognition at the receiver in order to detect the PU and adapts
its parameters accordingly.Hence, SU acts as a cognitive radio
(CR) which is aware of its environment.

	e presence of a PU and several SUs forms a cognitive
radio network (CRN). In a network of cognitive radios, it is
obvious that the detection of PU can be made more reliable
by providing cooperation amongst SUs. 	is is cooperative
spectrum sensing (CSS) approach [4].	ere are various types
of cooperative sensing methods like centralized, distributed,
and relay-assisted cooperative spectrum sensing. Centralized
cooperative spectrum sensing consists of a fusion center (FC),
which gathers information from all the SUs and makes a
hypothesis on the presence or absence of PU.

	e objectives of a cognitive radio are e�cient use of
spectrum along with highly reliable communication. Tomeet
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these objectives, the CR must sense the spectrum to 
nd
opportunities. 	e CR can employ various signal processing
techniques such as feature detection, energy detection (ED),
and cyclostationary approach to detect the PU [5].

	ough cooperative sensing performed by several users
has the advantage of providing a more reliable decision about
the PU, there is also the disadvantage of presence ofmalicious
secondary users (MSUs). In the spectrum sensing process,
an MSU can alter the cooperative decision by transmitting
false signal leading to incorrect decision of presence of PU.
Such attacks are known as spectrum sensing data falsi
cation
(SSDF) attacks [6], leading to Byzantine failure.

Various types of SSDF attacks are analyzed for a CR
network (CRN) in the literature which include sel
sh SSDF,
interference SSDF, and confusing SSDF [6]. 	e 
rst type of
attack is the sel
sh SSDF or “always yes” attack. In this attack,
anMSU continuously transmits a signal indicating that PU is
present and then uses the spectrum without letting other SUs
to use it. In an interference SSDF or “always no” attack, an
MSU continuously transmits a low energy signal indicating
the absence of a PU. In this case, other SUs start using the
spectrum and cause interference to the PU when the PU is
on. Similarly, in case of a confusing SSDF attack, the MSU
confuses other SUs by indicating the presence or absence of
PU with certain probability.

Malicious user detection is addressed in [7] in which
the authors use outlier-detection schemes. 	ese schemes
assign outlier factors to SUs using biweight and biweight scale
method which are recursivemethods to suppress the outliers.
	e performance is compared using plots of additional prob-
ability of false alarm versus additional probability of miss-
detection. In [8], Grubb’s methods I and II along with Dixon’s
test are analyzed, for “always yes” SSDF attack in order to
remove MSUs. 	e authors have shown that Dixon’s test
performs better for removal a single MSU; however, it cannot
remove more than one MSU. 	e analysis is performed by
plotting the receiver operating characteristics (ROC). In [9],
removal ofmultiple outliers is addressed usingTietjen-Moore
(TM) test [10] and Shapiro-Wilk (SW) test. 	e TM test is
an extension of Grubb’s test for multiple outlier detection. In
[11], the authors address removal of MSUs using a weighted
adaptive algorithm in which weights are assigned to all the
SUs and iteratively updated. It shown that this algorithm
performs better than the one in [7].

An improved energy detector (IED) or a�-norm detector
for cognitive radios is proposed in [12] and it is shown to
perform better than the standard ED for various values of�. 	e test statistic (TS) is the summation of �th power of
received values and the probability density function (pdf)
of the TS is approximated as Gamma pdf. �-norm detector
is used in CRN in the following papers: [13] analyzes the
performance of diversity systems and provides closed-form
expressions; in [14], performance of CSS is analyzed with�-norm detector and optimal number of SUs is found
out; in [15], the authors have combined �-norm detector
with another improved energy detector and analyzed the
performance on generalized �-] fading channel.

In this paper, a CRN with interweave mode of operation
is considered in the presence of some SUs and MSUs. In

the interweave mode of operation, the SU opportunistically
uses the spectrum by detecting spectrum holes. 	e IEEE
802.22 standard [16] proposes the use of cognitive radios for
rural broadband wireless access, and the PHY layer is based
on OFDM/OFDMA. Since OFDM splits the entire spectrum
into narrow band channels, each of which can be considered
additive white Gaussian noise channel (AWGN), this paper
assumes AWGN channel model.

	e scenario considered is as follows: a cognitive radio
network is considered which has one PU, some SUs, and
MSUs.	e number ofMSUs is assumed a small percentage of
the total number of SUs. 	is CRN employs CSS. All the SUs
and MSUs sense the channel and transmit their quantized
energy values to the FC.	ese energy values are �th power of
the received signal, where � is an arbitrary positive constant.
At FC, one of the following algorithms is executed to suppress
the MSUs: (1) TM test, (2) Peirce’s criterion, and (3) adaptive
weighing. A�er the removal of MSU data from the received
energy values, the energy values are summed to form a
global test statistic (TS). 	is global TS is compared with the
threshold to make a decision on the PU. 	e following
assumptions are made: (i) at FC, the energy values from SUs
are combined to form a global TSwhich forms a randomvari-
able; (ii) the global TS is assumed to have either aGamma or a
Gaussian distribution and the threshold is calculated accord-
ingly. 	e Gamma assumption of global TS follows [12].

In this paper, a uni
ed performance analysis of MSU
detection schemes is provided. Following is the summary:
(i) closed expressions of probability of false alarm and
probability of miss-detection are provided for MSU removal
scheme which uses �-norm detector using assumption of
Gamma pdf of TS. (ii) It is observed that, in an SSDF attack,
the Gaussian assumption suits the system better than the
Gamma assumption. 	is is so since the �-norm detector
improves the performance of most of schemes while using
the Gaussian assumption for TS, whereas use of Gamma
assumption for TS does not improve performance of the �-
norm detector. (iii) In the entire set of observations, it is seen
that TM test performs equally well as the adaptive weighing
algorithm, whereas Peirce’s criterion performs worse than
both of these for suppression of multiple malicious users.

	e paper is organized as follows. Section 2 describes the
system model of CRN. In Section 3, the algorithms for
MSU suppression are described. Section 4 describes the
observations and results and Section 5 provides the conclu-
sions.

2. System Model

A CRN with a PU, � SUs, and an FC is considered. � SUs
cooperate amongst each other. It is assumed that, out of �
SUs, � users are malicious where � ≫ M. All SUs sense
the presence of PU based on the received signal at SU and
send their quantized estimates of signal energy to the FC
through error-free control channels. 	e FC takes a decision
on whether the primary is present or not based on these
received signal values. 	e channels between PU and SU are
assumed to be AWGN. 	e presence or absence of a PU is
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a hypothesis testing problem. Hypothesis H0 corresponds
to the absence of PU, whereas hypothesis or outcome H1
corresponds to the presence of PU.

2.1. Processing at SU. 	e corresponding signals at any SU are
given as follows:

H0: �� (	) = 
� (	) , � = 1, . . . , �;
H1: �� (	) = �� (	) + 
� (	) , � = 1, . . . , �. (1)

In (1), ��(	) is the received signal at each SU. 
�(	) is additive
white Gaussian noise (AWGN) with zero mean and variance2� . In the absence of the primary signal, only noise is received.��(	) is the PU signal which is assumed to be Gaussian with

zero mean and variance 2� . Hence, the average signal-to-

noise ratio is snr = 2� /2� . At each of the SU a�er sampling
the signal, � samples are used to estimate the PU signal. 	is
forms the local TS using a �-norm detector. At �th SU, the
local TS is formed in the following way:

�� = �−1∑
�=0

(������ (�)����� )� . (2)

In (2), � is an arbitrary positive constant [12]. It should be
noted that � = 2 corresponds to the standard ED.

2.2. Processing at FC. At the FC, the quantized energy values
from all SUs 
rst 
ltered using an algorithm for MSU
suppression and then are combined using either equal gain
combining (EGC) or weighted combining to create a global
TS. 	e global TS is described in the next section. In case
of a standard ED, the statistics of �� in (2) are computed
in [17] as normal distribution. However, in the case of a �-
norm detector, the pdf of�� is approximate. In [12], this pdf
is approximated by a Gamma distribution whose mean and
variance are computed.When � ≫ 1, CLT assumption can be
invoked and the Gaussian distribution is used to approximate
this pdf in [13].

In this paper, we assume �� to be a Gamma random
variable whose mean and variance are given by the following
[12]:

H0: �0 = �2�/2√� Γ(� + 12 ) ;
H0: 20 = �2�Γ (� + 1/2)√(�) − �2�� Γ2 (� + 12 ) , (3)

underH0 and

H1: �1 = �2�/2√� Γ(� + 12 ) (√1 + snr)� ;
H1: 21

= �(2 + 2snr)�√(�) (Γ (� + 12) − Γ2 ((� + 1) /2)√� ) ,
(4)

underH1. In (3) and (4), snr is the average SNR.

2.3. Related De�nitions. 	e local TS in (2) is compared
with threshold  in order to detect the presence of PU. 	e
important metrics for any hypothesis testing problem are

!� = Pr (H1 | H0) = Pr (�� >  | H0) , (5)

!	 = Pr (H0 | H1) = Pr (�� <  | H1) , (6)

!
 = Pr (H1 | H1) = Pr (�� >  | H1) . (7)

In (5), the probability of false alarm (!�) is de
ned,
whereas (6) de
nes probability of miss-detection (!	). Prob-
ability of detection (!
) is de
ned by (7).

3. Algorithms for MSU Suppression

At the FC, algorithms for MSU suppression fall into the
category of nonadaptive and adaptive algorithms, some of
which are described below.

3.1. Nonadaptive Algorithms. In this case, at FC, all of the
SSDF attacks are considered as an outlier-detection problem,
since the energy of the MSU is extremely higher/lower than
that of the SU as assumed in [6–8]. Outlier detection is also
a hypothesis testing problem where the null hypothesis is
absence of any outlier and the alternative hypothesis is the
presence of one or more outliers. Two algorithms are con-
sidered, namely, Peirce’s criterion and the TM test which are
described below.

3.1.1. Peirce’s Criterion. Peirce’s criterion [18] has been used to
eliminate the outlier data and does notmake any assumptions
on signi
cance level as in other tests. 	e decision is taken
based on the number of MSUs and total number of users. To
eliminate the outlier values for data set �1,�2, . . . ,��, the
following operations are performed. Initially, the mean and
standard deviation of the data set are calculated. " represents
ratiomaximum allowable deviation of ameasured value from
data mean value to the standard deviation. Hence, " = |�� −�	|max/, where �	 is mean of data. " is obtained from
a table provided by Peirce [18] assuming a single doubtful
observation (or assuming a single outlier initially, though
there can be more). Following this, maximum allowable
deviation |��−�	|max = " is calculated. For any suspicious
data, |�� − �	| is obtained. A measurement is eliminated if|�� − �	| > |�� − �	|max. 	e above steps are repeated
assuming two outliers, assuming original mean, standard
deviation, and number ofmeasurements.	e calculations are
repeated by increasing the number of outliers, until no more
data measurements need to be eliminated.

3.1.2. TM Test. TM test was proposed by Tietjen and Moore
in [10] and it is an iterative implementation of Grubb’s test. It
consists of two Grubb-type statistics: one to address removal
of upper and lower outliers and the other to address removal
of bidirectional outliers. Consider data set �1,�2, . . . ,��
and order it according to increasing values. Assuming that the
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number of outliers in the data set is estimated and denoted by#, the 
rst statistic for calculating upper outliers is given by

��, = ∑�−��=1 (�� −��)2∑��=1 (�� −�)2 , (8)

where�� = ∑�−��=1 ��/(� − #) and� is the mean of the full
sample. Similarly, the TS for calculating lower outliers is

��,� = ∑��=�+1 (�� −�∗�)2∑��=1 (�� −�)2 , (9)

where�∗� = ∑��=�+1��/(� − #). For a pre
xed signi
cance

value, the critical value (CV) is obtained from the table in
[10]. If ��, < CV, # data values are upper outliers and are
eliminated from the data set. Similarly, if ��,� < CV, # data
values are lower outliers and are eliminated from the data
set. Hence, a single test is needed to eliminate all outliers
simultaneously without the need of repetition.

3.1.3. Global Test Statistic. 	e global TS at FC for the
nonadaptive algorithms is formed by using EGC in the
following manner:

&̃ = 1� �∑�=1��, (10)

where�� is de
ned in (2).

3.2. Adaptive Algorithms

3.2.1. Adaptive Weighing Algorithm Using Standard ED. A
particular algorithm [11] is considered in which MSU sup-
pression is addressed by assigning an adaptive weight to each
of the SU.	e algorithm is described here.	e local TS used,

��,�� = �−1∑
�=0

(������ (�)����)2 , (11)

calculated at each SU, has a central Chi-square distribution
under H0 and noncentral Chi-square pdf under H1. 	e
mean and variance of this local TS are given in [17]. 	e
weighted or global TS is given by

&̃� = 1� �∑�=1'�,���,�,��. (12)

In (12), � denotes iteration index and '�,� denotes the
weight applied to each of the SU and ��,�,�� is given in

(11). Hypothesis testing is performed by comparing &̃� with
threshold  0,�c. Each weight is '�,� = *(-�,�), where * is
monotonically decreasing function and assumed as a raised
cosine function. Initial value of -�,� is set to 0 and it increases
to unity forMSUs as the algorithm proceeds, indicating a loss
of credibility. Accordingly, the weight is calculated using *

function. At FC, &̃� is assumed to have a Gaussian pdf. 	e

mean and variance of &̃� depend on the weighing factors.
Closed-form expression for threshold and probability of false
alarm and probability of miss-detection are provided in [11]
which are given below:

 0,�� = 2� (√2�� 4−1 (!�,��) + �) , (13)

!�,�� ( 0,��) = 4(( 0,�� − �0,��)��0,�� ) , (14)

!	,�� ( 0,��) = 1 − 4(( 0,�� − �1,��)��1,�� ) . (15)

In (14), �� is the factor arising out of weighted combining.�0,�� and0,�� aremean and variance of theGaussian random
variable (r.v.)��,�,��. 	ese are expressed as follows:

H0: �0,�� = �2� ;
H0: 20,�� = 2�4� , (16)

underH0 and

H1: �1,�� = �2� (1 + snr) ;
H1: 21,�� = 2�4� (1 + 2snr) , (17)

underH1 [11].

3.2.2. Adaptive Weighing Algorithm Using �-Norm Detector

(A) Gamma Assumption of the Global Test Statistic. �-norm
detector in (2) is used along the adaptive weighing scheme in
order to perform the suppression of MSUs. As described in
the systemmodel, the quantized data sent by each SU to FC is
modeled asGamma r.v. withmean and variance in (3) and (4).
	e e�ect of quantization is neglected for computing mean
and variance. In case of the adaptive weighing scheme, this
data is weighted using the combining scheme and the global
TS is

&̃� = 1� �∑�=1'�,���,�. (18)

It is shown, in [11], that weights '�,� converge to unity for all
the honest SUs and converge to zero for MSUs. Hence, EGC
assumption can be used. Apart from that, we also assume
that all energy values are i.i.d Gamma r.v.s. 	e indepen-
dence assumption is justi
ed since the sources of energy are
independent. Hence, using result of Moschopoulos [19], we

conclude that &̃�, for� ≫ �, has a Gamma pdf whosemean
and variance are given by

H0: ��,0 = ��2�/2√� Γ(� + 12 ) ;
H0: 2�,0 = �� 2�√� (Γ(� + 12) − 1√�Γ2 (� + 12 )) , (19)
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underH0 and

H1: ��,1 = ��2�/2√� Γ(� + 12 ) (√1 + snr)� ;
H1: 2�,1
= �� (2 + 2snr)�√� (Γ(� + 12) − 1√�Γ2 (� + 12 )) ,

(20)

under H1. In this case, assuming the threshold as  01, !� in
(5) is expressed as

!� = Pr (&̃� >  01 | 70)
= Γ( ��Γ2 ((� + 1) /2)Γ ((2� + 1) /2)√� − Γ2 ((� + 1) /2) ,

 01�√�Γ ((� + 1) /2)2�/2 (√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2))) .
(21)

In (21), Γ(8, 9) is the upper incomplete Gamma function [20].
	e proof of (21) is provided inAppendix.	e threshold from
(21) is

 01 = 2�/2 (√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2))�√�Γ ((� + 1) /2)
⋅ Γ−1 (!�) ,

(22)

where !� is a 
xed value decided by the system requirement.
Similarly, the probability of miss-detection de
ned in (6)

is given by

!	 = 1 − Pr (&̃� >  01 | 71) = 1
− Γ( ��Γ2 ((� + 1) /2)Γ ((2� + 1) /2)√� − Γ2 ((� + 1) /2) ,

 01�√�Γ ((� + 1) /2)2�/2 (1 + snr)�/2 (√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2))) .
(23)

	e proof of (23) is provided in Appendix.

(B) Gaussian Assumption of the Global Test Statistic. To
derive the corresponding  0, !�, and !	 under the Gaussian
assumption of global TS, (3) and (4) are substituted in (13),
(14), and (15), respectively. 	e corresponding expressions
for threshold, probability of false alarm, probability of miss-
detection are

 0 = 1√� (�Γ(1 + �2 ) + 4−1 (!�)√�Γ (� + 1/2)� ) ,
!� = 4(  0 − �� (2�/2/√�) Γ ((� + 1) /2)√�� (2�/√�) (Γ (� + 1/2) − (1/√�) Γ2 ((� + 1) /2))) ,
!	 = 1 − 4( ( 0 − �� (2�/2/√�) Γ ((� + 1) /2) (√1 + snr)�)√�

√(�� (2 + 2snr)� /√�) (Γ (� + 1/2) − (1/√�) Γ2 ((� + 1) /2))) .
(24)

4. Observations and Discussion

Monte Carlo simulations are performed for a CRN using CSS
considering � = 40 SUs and � = 3 malicious users. A
random input signal with BPSK modulation is considered
and an “always yes” attack is assumed.	e average SNR (snr)
varies in the range −16 to −4 dB.	e number of samples used
for detection is 
xed to � = 40. 	e probability of false alarm
is 
xed to!� = 0.01 for some of the simulations.	e data sent
by SUs to FC is quantized to 8 bits. For various simulations,
the value of � is considered in the range 2 ≤ � ≤ 6, where� = 2 corresponds to the standard ED. 	ough [12] does

not provide any maximum value �, in the simulations in
[12], maximum of � = 10 is used. Further, the Monte Carlo
simulations are compared with theoretical results which are
derived in (21) and (23).

Figure 1 shows the plot of SNR versus !	 with a Gaussian
assumption of global TS and using a standard ED as well

as IED with a 
xed !� = 0.01. For any �, it is observed
that the TM test and the adaptive weighing method of
MSU suppression perform better and are almost close to
the theoretical !	 in [11], whereas Peirce’s criterion performs
slightly worse than the adaptive weighing and TM test.
Hence, with Gaussian pdf assumption, the �-norm detector
performs better with respect to a standard ED.

Figure 2 shows the comparative performance of SNR
versus !	 for a CRN with 3 MSUs with � = 2, 3 and 
xed!� = 0.01 using Gamma assumption for of global TS. Similar
to the Gaussian assumption, in this case too, the TM test and
adaptive method perform close to theoretical !	 derived in
(23). For the adaptive weighing algorithm as well as statistical
tests, the corresponding plots for � = 2 lie below that of � = 3
indicating that, in case of Gamma pdf assumption of global
TS, standard ED performs better than �-norm detector. 	is
can be attributed to the fact that the input energy values
of the FC consists of certain outliers making the Gaussian
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Figure 1: Probability of miss-detection (!	) versus SNR for� = 3.� = 2, 3with 
xed probability of false alarm (!�) = 0.01 andGaussian
assumption of pdf of global TS.
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Figure 2: Probability of miss-detection (!	) versus SNR for� = 3.� = 2 and 3 with 
xed probability of false alarm (!�) = 0.01 and
Gamma assumption of pdf of global TS.

assumption of global TS more appropriate than the Gamma
assumption.

An ROC is a plot of !	 versus !
 and indicates the
performance of any detection scheme. An ROC curve of any
good detection scheme should lie above 9 = � line. Figure 3
plots the ROC of a standard and �-norm detector assuming� = 3 and an average SNR of snr = −10 dB under Gaussian
pdf assumption of global TS. It is observed that, under the
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Figure 3: ROC at snr = −10 dB for � = 3, � = 2, and � = 3 with
Gaussian pdf assumption of global TS.
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Figure 4: ROC at snr = −10 dB for � = 3, � = 2, and � = 3 with
Gamma pdf assumption of global TS.

Gaussian assumption,�-normdetector performs betterwhen
compared with standard ED for most cases. 	e TM test and
adaptive method performwell and are close to the theoretical
curve. 	e standard ED performs better for Peirce’s criterion
with Gaussian assumption.

Figure 4 plots the ROC curve for the same parameters
as before and with a Gamma pdf assumption of global TS.
However, with the Gamma assumption, it is observed that
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Figure 5: ROC for� = 3, � = 2, 3, 4, 5, and � = 6 using Gaussian
assumption of global TS for theoretical case.

standard ED performs better than �-norm detector (� = 3)
for all the algorithms except for the Peirce’s criterion.

It is observed that when the Gaussian assumption is used
for the global TS, the performance of the system improves
as � increases from two to three, whereas, for � > 3,
the performance of the system starts reducing. 	is is also
observed from Figure 5 in which � = 2 to 6 are considered.
It is seen that the maximum value of � for which !
 is
maximized is � = 3. It should be noted that � = 2
corresponds to a standard ED.

Figure 6 plots the ROC curves for the Gamma and
Gaussian pdf assumption of global TS using the theoretical
formula for low values of probability of false alarm, that is,
for !� ≤ 0.11 which are to be used in practice [21]. 	e
IEEE 802.22 standards have given the sensing requirements
on !� and !
 which are !� ≤ 0.1 and !
 ≥ 0.9 [21]. It is
observed that �-norm detector gives a better probability of
detection only when the Gaussian assumption of global TS is
invoked for computation of threshold. If Gamma distribution
is assumed in the threshold computation, then the standard
energy detector performs better. Similarly, using Gaussian
assumption of global TS, � = 3 gives the best performance
for practical values of !�.
5. Conclusion

In this paper, a CRN with CSS was considered which
consisted of multiple malicious users capable of perpetrating
SSDF attacks. In such a scenario, the problem of malicious
user suppression was dealt with. Either of these algorithms,
namely, Peirce’s criterion or the TM test or an adaptive
weighing algorithm, was used for the malicious user sup-
pression which was preceded by either a standard or �-norm
ED. Closed-form expressions of probability of false alarm
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Figure 6: ROC for� = 3, � = 2, 3, and � = 4 for theoretical case
and !� ≤ 0.11.
and probability of miss-detection for the adaptive weighing
algorithm with a �-norm detector were computed under
the assumption of a Gamma or Gaussian distribution of the
test statistic. Performance comparison of these algorithms
indicated that the Gaussian assumption for distribution of
test statistic suited this setup as compared to the Gamma
assumption in presence of an SSDF attack. Assuming a Gaus-
sian distribution of test statistic, the performance improved
as � is increased from two to three but degraded for higher
values of �. From the observations, we concluded that � =3 with Gaussian assumption of the TS provided the best
performance when various values of � were considered.
In the entire set of observations, it was seen that TM test
performs equally well as the adaptive weighing algorithm
for suppression of multiple malicious users, whereas Peirce’s
criterion could not meet up with the performance.

Appendix

Proof for Probability of False Alarm

	e pdf and cumulative distribution function (CDF) of a
Gamma random variable N� with the following parameters,
shape � and scale O, is given by [19]

P�� (9�) = 9�−1� Q−��/�Γ (�) O� , (A.1)

R�� (9) = S (�, 9/O)Γ (�) . (A.2)

	e mean and variance ofN�, respectively, areT [N�] = �O,
Var (N�) = �O2. (A.3)
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	e de
nition of probability of false alarm from (5) is

considered. Since &̃� is a sum of � random variables which

have Gamma distribution, the pdf of &̃� is also Gamma

according to [19]. 	e mean and variance of &̃� from (19) are
considered.Hence, underH0, the shape and scale parameters

for &̃� are
�0 = ��Γ2 ((� + 1) /2)[√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2)] ,
O0 = 2�/2�√� (√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2)Γ ((� + 1) /2) ) . (A.4)

Using (A.4) in (A.2), we obtain the probability of false alarm
in (21).

Similarly, the probability of miss-detection can be
obtained by using the de
nition in (6). 	e corresponding

mean and variance of &̃� underH1 are given by (20). Hence,

underH1, the shape and scale parameters for &̃� are
�1 = ��Γ2 ((� + 1) /2)[√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2)] ,
O1
= (2 + 2snr)�/2�√� (√�Γ ((2� + 1) /2) − Γ2 ((� + 1) /2)Γ ((� + 1) /2) ) .

(A.5)

Using (A.5) in (A.2), we obtain the probability of false alarm
in (23).
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