Henry Ford Health Henry Ford Health Scholarly Commons

Emergency Medicine Articles

Emergency Medicine

7-8-2020

Performance of PCR/electrospray ionization-mass spectrometry on whole blood for detection of bloodstream microorganisms in patients with suspected sepsis

Kristoffer Strålin

Richard E Rothman

Volkan Özenci

Kieron Barkataki

David Brealey

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/ emergencymedicine_articles

Recommended Citation

Strålin K, Rothman RE, Özenci V, Barkataki K, Brealey D, Dhiman N, Poling L, Kurz MC, Limaye AP, LoVecchio F, Lowery K, Miller LG, Moran GJ, Overcash JS, Parekh A, Peacock WF, Rivers EP, Sims M, Stubbs AM, Sundqvist M, Ullberg M, and Carroll KC. Performance of PCR/electrospray ionization-mass spectrometry on whole blood for detection of bloodstream microorganisms in patients with suspected sepsis. J Clin Microbiol 2020.

This Article is brought to you for free and open access by the Emergency Medicine at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Emergency Medicine Articles by an authorized administrator of Henry Ford Health Scholarly Commons.

Authors

Kristoffer Strålin, Richard E Rothman, Volkan Özenci, Kieron Barkataki, David Brealey, Neelam Dhiman, Lara Poling, Michael C. Kurz, Ajit P. Limaye, Frank LoVecchio, Kristin Lowery, Loren G. Miller, Gregory J. Moran, J Scott Overcash, Amisha Parekh, W Frank Peacock, Emanuel P. Rivers, Matthew Sims, Amy M. Stubbs, Marin Sundqvist, Måns Ullberg, and Karen C. Carroll Journal of Clinica

Performance of PCR/electrospray ionization-mass spectrometry on whole blood for detection of bloodstream microorganisms in patients with suspected sepsis

Kristoffer Strålin^a*, Richard E. Rothman^b, Volkan Özenci^c, Kieron Barkataki^d, David Brealey^e, Neelam Dhiman^f, Lara Poling^g, Michael C. Kurz^h, Ajit P. Limayeⁱ, Frank LoVecchio^j, Kristin Lowery^g, Loren G. Miller^k, Gregory J. Moran¹, J. Scott Overcash^m, Amisha Parekhⁿ, W. Frank Peacock^o, Emanuel P. Rivers^p, Matthew Sims^q, Amy M. Stubbs^r, Marin Sundqvist^s, Måns Ullberg^c, Karen C. Carroll^t

^aDepartment of Infectious Diseases, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden

^bDepartment of Emergency Medicine, Johns Hopkins University Hospital and the Johns

Hopkins University School of Medicine, Baltimore, MD, USA

^cDepartment of Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden

^dDepartment of Emergency Medicine, Kern Medical Center, Bakersfield, CA, USA

^eDivision of Critical Care and NIHR Biomedical Research Centre at University of College

London Hospitals NHS Foundation Trust, London, United Kingdom

^fMolecular Infectious Diseases, med fusion/Quest Diagnostics, Lewisville, TX, USA

^gAthoGen testing, Carlsbad, CA, USA

^hDepartment of Emergency Medicine, University of Alabama School of Medicine,

Birmingham, AL, USA

ⁱUniversity of Washington, Seattle, WA, USA

^jUniversity of Arizona, Maricopa Medical Center, Phoenix, AZ, USA

УСМ

ournal of Clinica Microbiology ^kLundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA

¹Department of Emergency Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA ^meStudySite, Sharp Chula Vista, San Diego, CA, USA

ⁿDepartment of Emergency Medicine, New York Methodist Hospital, New York, NY, USA

^oBaylor College of Medicine, Houston, TX, USA

^pDepartments of Emergency Medicine and Surgery, Henry Ford Hospital, Detroit, MI, USA

^qBeaumont Health, Royal Oak and Oakland University William Beaumont School of

Medicine, Rochester, MI, USA

^r Department of Emergency Medicine, Truman Medical Center, University of Missouri-Kansas City, MO, USA

^sDepartment of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden

'The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, MD, USA

*Corresponding author: Kristoffer Strålin, kristoffer.stralin@ki.se

MOL

41 ABSTRACT

42	Blood culture (BC) often fails to detect bloodstream microorganisms in sepsis. However,
43	molecular diagnostics hold great potential. The molecular method PCR/electrospray
44	ionization-mass spectrometry (PCR/ESI-MS) can detect DNA from hundreds of different
45	microorganisms in whole blood. The aim of the present study was to evaluate the performance
46	of this method in a multicenter study including 16 teaching hospitals in the USA (n=13) and
47	Europe (n=3). First, on 2,754 contrived whole blood samples, with or without spiked
48	microorganisms, PCR/ESI-MS produced 99.1% true positive and 97.2% true negative results.
49	Secondly, among 1,460 patients with suspected sepsis (sepsis-2 definition), BC and PCR/ESI-
50	MS on whole blood were positive in 14.6% and 25.6% of cases, respectively, with the
51	following result combinations: BC+/PCR/ESI-MS-, 4.3%; BC+/PCR/ESI-MS+, 10.3%; BC-
52	/PCR/ESI-MS+, 15.3%; and BC-/PCR/ESI-MS-, 70.1%. Compared with BC, PCR/ESI-MS
53	showed the following sensitivities (coagulase-negative staphylococci not included): Gram-
54	positive bacteria, 58%; Gram-negative bacteria, 78%; and Candida species, 83%. The
55	specificities were > 94% for all individual species. Patients treated with prior antimicrobial
56	medications (n=603) had significantly increased PCR/ESI-MS positivity rates compared with
57	patients without prior antimicrobial treatment, 31% vs 22% (p<0.0001), with pronounced
58	differences for Gram-negative bacteria and Candida species. In conclusion, PCR/ESI-MS
59	showed excellent performance on contrived samples. On clinical samples, it showed high
60	specificities, moderately high sensitivities for Gram-negative bacteria and Candida species,
61	and elevated positivity rates during antimicrobial treatment. These promising results
62	encourage further development of molecular diagnostics on whole blood for detection of
63	bloodstream microorganisms in sepsis.
64	

KEYWORDS: Sepsis, Bacteremia, direct detection, PCR/ESI-MS

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

Journal of Clinical Microbiology

66

INTRODUCTION 67

68	The World Health Organization (WHO) recently recognized sepsis as a global health priority,
69	as it is a common and severe disease that can often be cured with adequate treatment,
70	including appropriate antimicrobial therapy [1, 2]. In order to enable targeted antimicrobial
71	therapy with maximum effect, and avoid unnecessary use of broad-spectrum antimicrobials,
72	the microbiological diagnosis of sepsis should be established [3]. However, even in patients
73	with known bacterial sepsis, blood culture (BC) often provides negative results [4]. For
74	improved detection of bloodstream pathogens, a number of commercial molecular methods
75	have been developed [5]. Unfortunately, most methods are limited by a narrow spectrum of
76	detectable microorganisms (e.g. T2 Bacterial panel; T2 Biosystems) [6] or suboptimal
77	sensitivity (e.g. the LightCycler SeptiFast test, Roche) or specificity (e.g. the Magicplex
78	Sepsis Real-time test, Seegene; the Karius test, Karius) [5, 7]
79	Based on the PCR/electrospray ionization – mass spectrometry (PCR/ESI-MS) technology,
80	Abbott (Carlsbad, California) developed the IRIDICA BAC BSI Assay with capacity to detect
81	DNA from >200 different microorganisms in whole blood samples [8]. Previous clinical
82	diagnostic studies have shown promising results with PCR/ESI-MS positive detections
83	typically exceeding BC positive results [9, 10]. However, the previous studies of PCR/ESI-
84	MS on whole blood have been too small to enable evaluation on individual microorganisms
85	and to compare the performance of the method on patients with and without prior
86	antimicrobial medication [11].
87	
88	The aims of the present study were 1) to test PCR/ESI-MS on blood samples spiked with
89	known microorganisms (contrived specimens), and 2) to compare PCR/ESI-MS on whole
90	blood with BC in patients with suspected sepsis, in a large multicenter study. The study was

УCM

ournal of Clinica

91 the basis for an application to the US Food and Drug Administration (FDA) regarding the

92 IRIDICA BAC BSI Assay. However, Abbott withdrew the FDA application and ceased

93 producing IRIDICA instruments and IRIDICA test kits in 2017.

94

95

96 MATERIALS AND METHODS

97 Study design and settings

This was a prospective, multicenter, observational cohort study, with patients enrolled and 98 99 samples collected from December 2014 through March 2016 at 16 teaching hospitals in three 100 countries; USA (n=13; Baylor College of Medicine, Houston, TX; Harbor-UCLA Medical 101 Center, Torrance, CA; Henry Ford Hospital, Detroit, MI; Johns Hopkins Hospital, Baltimore, 102 MD; Kern Medical Center, Bakersfield, CA; Maricopa Medical Center, Phoenix, AZ; New York Methodist Hospital, New York, NY; Olive View-UCLA Medical Center, Sylmar, CA; 103 104 eStudySite, Sharp Chula Vista, San Diego, CA; Truman Medical Center, Kansas City, MO; 105 Beaumont Hospital, Royal Oak, MI; University of Alabama, Birmingham, AL; University of 106 Washington, Seattle, WA); Sweden (n=2; Karolinska University Hospital, Stockholm and 107 Örebro University, Örebro); and the United Kingdom (n=1; University College London 108 Hospitals, London). 109 The study also included four clinical testing sites, each with an installed IRIDICA PCR/ESI-110 111 MS system, that included Johns Hopkins Hospital, Baltimore, MD, USA; Karolinska 112 University Hospital, Stockholm, Sweden; med fusion, Lewisville, TX, USA; and AthoGen 113 testing, Carlsbad, CA, USA.

114

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

ournal of Clinica

115

116

117

118 **Contrived Whole Blood Specimens** 119 120 EDTA whole blood lots were collected by Ibis Biosciences, Abbott from 110 healthy adults, 121 500 mL from each subject. The whole blood lots were pre-screened for contaminating bacterial DNA using the IRIDICA BAC BSI Assay, and contaminated lots were excluded. 122 123 Each whole blood lot was split into aliquots of 5 mL that were spiked with culture-quantified 124 stocks of 50 different microorganisms (see Table S1 in Supplemental material). 125 For each microorganism the limit of detection (LOD) was determined. Whole blood aliquots 126 127 were spiked with microorganisms at 3-10 different concentrations (5 samples at each 128 concentration). The lowest concentrations for which all samples were PCR/ESI-MS positive were then used in a confirmation analysis of additionally 20 spiked samples. The confirmed 129

Clinical whole blood samples from enrolled study patients were collected and stored at -70°C

and later sent to the clinical testing sites for analysis with PCR/ESI-MS (IRIDICA BAC BSI).

In addition, the clinical testing sites also analyzed contrived specimens with PCR/ESI-MS.

130 LOD was defined as the lowest concentration (CFU/mL) for which the detection rate was at 131 least 95% (minimum of 19/20 valid replicates). In Supplementary Table S1, the confirmed 132 LODs of 50 microorganisms are presented.

133

134 It is well known that the concentration of bacteria in the bloodstream varies among patients 135 with bloodstream infection [12]. Thus, in order to reflect a patient scenario with different 136 bloodstream concentrations of microorganisms, whole blood aliquots were spiked to the 137 following target levels: $1.5 \times \text{LOD}$ (25 alignots), $3 \times \text{LOD}$ (15 alignots), $10 \times \text{LOD}$ (10 138 aliquots). Altogether, 50 contrived blood samples of each of 50 microorganisms were made, 139 totaling 2,500 specimens.

ournal of Clinica

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

Accepted Manuscript Posted Online

ournal of Clinica

In addition, from the pre-screened EDTA whole blood lots from healthy adults described
above, Ibis Biosciences provided 254 specimens without spiked microorganisms (negative
contrived specimens).

144

140

145 **Patients**

Patients aged ≥ 6 years presenting to the emergency department or who were being cared for in the hospital's intensive care unit (ICU) or other similar units with suspected sepsis

according to the sepsis-2 definition, i.e. suspected bloodstream infection and a diagnosis of

systemic inflammatory response syndrome (SIRS) [13], motivating standard of care BC, were

150 eligible for inclusion. The SIRS diagnosis required at least two of the following SIRS criteria;

body temperature > 38°C or < 36°C, heart rate > 90 beats/minute, respiratory rate > 20/min or

a PaCO₂ < 32 mm Hg, and white blood cell count of > 12,000 cells/ μ L or < 4,000 cells/ μ L.

153 The single exclusion criterion was previous enrollment in the study. Data on antimicrobial

medication taken within 14 days prior to enrollment was collected from each patient's record

shortly after enrollment by chart review.

156 From each study patient, at least 10 mL whole blood was collected in 1-2 EDTA tubes for

157 testing with PCR/ESI-MS, concurrently with standard of care BC.

158

159 PCR/ESI-MS

160 PCR/ESI-MS (IRIDICA BAC BSI) was performed at the clinical testing sites according to the 161 manufacturer's instructions. The assay was designed to identify unique DNA sequences from 162 >200 different bacteria and fungi for species level identification, as well as the antibiotic 163 resistance markers *mecA*, *vanA*, *vanB*, and *bla*_{KPC}. A negative control was included in every 164 run and a positive control was included at least once per day of analysis. Four different

	165	positive controls, supplied by ZeptoMetrix Corporation (Buffalo, NY), were used on a
	166	rotating basis, i.e. whole blood samples spiked with either methicillin-resistant
	167	Staphylococcus aureus (MRSA) bundled with Candida albicans, vancomycin-resistant
	168	Enterococcus faecium (VRE), vancomycin-resistant Enterococcus faecalis, or carbapenem-
	169	resistant Klebsiella pneumoniae (KPC). The analytic procedure was run in two separate
	170	rooms, one room for sample preparation and DNA extraction, and the other room for PCR,
	171	desalting, and mass spectrometry. Assay turnaround time was approximately 8 h, and system
	172	throughput was 5 patient samples at a time, permitting a maximum of 15 samples per 24
	173	hours. Operating the IRIDICA system required one full-time laboratory technologist.
,	174	
	175	Briefly, 5 mL of whole blood were lysed using the IRIDICA bead-beater. DNA was extracted
	176	with the IRIDICA DNA Prep Kit, using the automated extraction system. Purified DNA in
	177	buffer was automatically distributed by the IRIDICA sample prep into 16-well IRIDICA BAC
	178	BSI Assay Strips containing PCR reagents and primers for 18 PCR reactions. PCR was
	179	performed on the IRIDICA Thermal Cycler using a preloaded PCR amplification protocol.
	180	After PCR amplification, the IRIDICA BAC BSI assay strips were loaded onto the IRIDICA
	181	desalter, which purified DNA to remove substances that may interfere with mass
	182	spectrometry. Following desalting, plates were loaded onto the IRIDICA mass spectrometer.
	183	Purified amplicons were injected one well at a time into an electrospray ionization time-of-
	184	flight mass spectrometer for determination of the molecular mass of the amplicons. The
	185	resulting information was used for species identification by automated database comparison,
	186	as previously described [8].
	187	The IRIDICA BAC BSI Assay Strip contained an internal control template at a known
	188	concentration, that generated a control amplicon. The ratio between the amplicon of the
	189	sample DNA and that of the control amplicon was reported as a "level", which represented a
	190	semi-quantitative marker of the DNA content of the sample.

191 Blood cultures

192	BC was collected as standard of care. One or two sets of BC bottles were collected, each of
193	the sets consisting of one aerobic and one anaerobic bottle. The standardized and accredited
194	blood culture systems of each study hospital were used. Identification and susceptibility
195	testing of the species were performed according to the local laboratory standards, including
196	matrix-assisted laser desorption ionization time-of-flight mass spectrometry, VITEK2
197	(BioMérieux, Durham, NC, USA), and disc diffusion and E-test gradient diffusion. No
198	information about blood volume in the BC bottles was available.
199	
200	Statistics
201	An IBM SPSS Statistics (20.0) software was used for statistical analyses. Chi-square and
202	Fisher's exact tests were used for comparison of proportions and Mann-Whitney U test was
203	used for comparison of independent groups. A p-value <0.05 was considered significant.
204	
205	Ethics
206	The study was approved by an ethical board at each study site and was conducted according
207	to the requirements of the individual country's laws and regulations and the Declaration of
208	Helsinki. All study participants provided written informed consent.
209	
210	
211	RESULTS

212

9

JCM

Journal of Clinical Microbiology

MOL

213	Table S1 in Supplemental material shows the confirmed LOD for individual microorganisms.
214	There was no significant difference between the LODs of Gram-positive and Gram-negative
215	bacteria, median 48 CFU/mL (interquartile range [IQR], 16-128 CFU/mL) versus median 32
216	CFU/mL (IQR, 16-64 CFU/mL), p=0.24. However, the LODs of Candida species, median 8
217	CFU/mL (IQR, 6-12 CFU/mL), were significantly lower than those of Gram-positive
218	(p=0.012) and Gram-negative bacteria (p=0.016). It should be noted that coagulase-negative
219	staphylococci (CoNS) had high LODs, e.g. Staphylococcus epidermidis 256 CFU/mL.
220	The results of PCR/ESI-MS on 2,500 positive contrived specimens are shown in Table S2 in
221	Supplemental material. PCR/ESI-MS identified the inoculated organism (true positive result)
222	in 2,477 cases (99.1%) and detected other organisms (false positives) in 33 cases (1.3%). The
223	false positive results included Cutibacterium acnes (n=7), Nocardia farcinica (n=4),
224	Escherichia coli (n=3), S. aureus (n=3), S. epidermidis (n=3), and 9 other species with 1 or 2
225	positive results each (see Table S2, Supplemental material).
225 226	positive results each (see Table S2, Supplemental material). Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative
226	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative
226 227	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of C .
226 227 228	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of <i>C. acnes, Nocardia</i> species, <i>E. coli, S. aureus, Staphylococcus lugdunensis, Micrococcus</i>
226 227 228 229	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of <i>C. acnes, Nocardia</i> species, <i>E. coli, S. aureus, Staphylococcus lugdunensis, Micrococcus</i> species, and <i>Mycobacterium</i> species.
226 227 228 229 230	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of <i>C.</i> <i>acnes, Nocardia</i> species, <i>E. coli, S. aureus, Staphylococcus lugdunensis, Micrococcus</i> species, and <i>Mycobacterium</i> species. There were 255 contrived samples with microorganisms with known resistance markers (143
226 227 228 229 230 231	Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of <i>C. acnes, Nocardia</i> species, <i>E. coli, S. aureus, Staphylococcus lugdunensis, Micrococcus</i> species, and <i>Mycobacterium</i> species. There were 255 contrived samples with microorganisms with known resistance markers (143 <i>mecA</i> , 35 <i>vanA</i> , 43 <i>vanB</i> , and 34 <i>bla</i> _{KPC}). All of these resistance markers were correctly
226 227 228 229 230 231 232	 Among 254 negative contrived specimens, the PCR/ESI-MS system reported true negative results in 247 cases (97.2%). False positive results were noted in 7 cases, one of each of <i>C. acnes, Nocardia</i> species, <i>E. coli, S. aureus, Staphylococcus lugdunensis, Micrococcus</i> species, and <i>Mycobacterium</i> species. There were 255 contrived samples with microorganisms with known resistance markers (143 <i>mecA</i>, 35 <i>vanA</i>, 43 <i>vanB</i>, and 34 <i>bla</i>_{KPC}). All of these resistance markers were correctly detected by PCR/ESI-MS. Among 1,143 contrived samples spiked with microorganisms

236 Patients

toget dian
rty-o
th BC
R/ES
e resu taine
nong
thin 1
ivira
sults

Altogether, 1,501 patients were included in the study, see flowchart (Fig.1). They had a

median age of 54 years (range 6-96 years), and 625 patients (41.6%) were females.

239 Forty-one patients had PCR/ESI-MS results that were either invalid (n=33) or not comparable

240 with BC results (n=8), meaning the microorganisms reported by BC were not part of the

241 PCR/ESI-MS organism reporting list. These patients were omitted from the study, and thus

the results of 1,460 patients were used in the final analyses. Two sets of BC bottles were

obtained in 995 patients (68.2%), one set was obtained in 465 patients (31.8%).

Among 1,460 study patients, 603 patients (41.3%) had received any antimicrobial medication within 14 days prior to enrollment (antibiotics in 555 patients, antifungals in 79 patients, and antivirals in 114 patients).

247

248 Results of blood culture and PCR/ESI-MS in patients and clinical samples

249	In the study group of 1,460 patients with suspected sepsis, a microorganism was detected by
250	either BC or PCR/ESI-MS or both in 437 patients (29.9%), i.e. by BC in 213 patients (14.6%)
251	and by PCR/ESI-MS in 374 patients (25.6%). The following result combinations were noted:
252	BC+/PCR/ESI-MS- (n=63), BC+/PCR/ESI-MS+ (n=150), and BC-/PCR/ESI-MS+ (n=224),
253	see Fig. 2A. Table 1 shows the combined results of PCR/ESI-MS and BC. Concordant
254	negative results were noted in 1,023 patients. Fully concordant positive results (identical
255	specimens detected by BC and PCR/ESI-MS) were noted in 113 patients, of which 109
256	patients had concordant single microorganisms and 4 patients had concordant multiple
257	microorganisms. Among 150 BC+/PCR/ESI-MS+ patients, fully discordant results (different
258	species detected by BC and PCR/ESI-MS) were noted in 8 cases (5.3%). Fig. 2B shows
259	combined positive results of BC and PCR/ESI-MS among patients with two sets of BC bottles
260	and one set of BC bottles, respectively. As noted, the BC positivity rate was similar between

<u>S</u>

JCM

261	the two categories of patients (15% and 14%), but BC positivity and PCR/ESI-MS positivity
262	combined were significantly more common among patients with one set of BC bottles.
263	Among 25 patients with BC positive for CoNS with two sets of BC bottles analyzed, CoNS
264	was detected in both BCs in 8 cases and in just one BC in 17 cases.
265	Fig. 3 shows the combined positive results of BC and PCR/ESI-MS for Gram-positive and
266	Gram-negative bacteria. As noted, positive BC rate was similar between Gram-positive
267	(7.8%) and Gram-negative bacteria (7.7%). However, as noted in Fig. 3, BC positivity and
268	PCR/ESI-MS positivity combined was significantly more common for Gram-negative than
269	for Gram-positive bacteria. In addition, PCR/ESI-MS positivity was significantly more
270	common for Gram-negative than for Gram-positive bacteria, 243/1,460 (16.6%) vs 145/1,460
271	(9.9%), p<0.0001. The same pattern was noted for individual microorganisms, see Fig. 4 and
272	Table S3 in Supplemental material.
273	All non-aureus staphylococci observed in the study were categorized as CoNS, and included
274	S. epidermidis, Staphylococcus hominis, Staphylococcus capitis, Staphylococcus
275	haemolyticus. CoNS were detected by BC in 45 patients (3.1%) and by PCR/ESI-MS in 10
276	patients (0.68%) (Fig. 4), p<0.0001.
277	Candida species were detected by BC in 6 patients (0.41%) and by PCR/ESI-MS in 23
278	patients (1.6%), p=0.0028, see Fig. 4.
279	
275	
280	Sensitivities and specificities of PCR/ESI-MS compared with blood culture
281	When results for individual species were considered (CoNS not included), the sensitivity of
282	PCR/ESI-MS compared with BC was 71% (144/203) overall, 58% (45/77) for Gram-positive

bacteria, 78% (94/120) for Gram-negative bacteria, and 83% (5/6) for *Candida* species. The

ournal of Clinica

ournal of Clinica

284 specificities were > 94% for all individual species. Table 2 shows sensitivities and

285 specificities for the most frequently detected microorganisms.

286

287 Results in patients with and without antimicrobial medication prior to enrollment

288 Fig. 5 shows the results of BC and PCR/ESI-MS in patients without and with any prior

289 antimicrobial medication. The BC positivity rate tended to be lower for patients with prior

antimicrobial medication (13%, 77/603) than for those without prior antimicrobials (16% 290

291 136/857), p=0.099 (Fig. 5A). However, patients treated with prior antimicrobials had

292 significantly higher BC positivity and PCR/ESI-MS positivity combined for any

293 microorganism (Fig. 5A) and for Gram-negative bacteria (Fig. 5C), but not for Gram-positive

294 bacteria (Fig. 5B), than patients without prior treatment. Accordingly, the PCR/ESI-MS rate

295 was significantly higher for patients with than for patients without prior antimicrobials, for

296 any microorganism (p<0.0001) and for Gram-negative bacteria (p<0.0001), but not for Gram-

297 positive bacteria (p=16).

298 Fig. 6 presents the detection rates of individual microorganisms in patients with and without

299 prior antimicrobial medication. E. coli was clearly the most commonly detected

300 microorganism in both categories. This bacterium, as well as Enterococcus species,

301 Enterobacter species, and Bacteroides species were significantly more often detected by BC

302 and/or PCR/ESI-MS in patients who received treatment than in patients without prior

303 antimicrobial medication (p < 0.05 in all cases; Fig. 6). They were also more often detected by

304 PCR/ESI-MS alone (p<0.05 in all cases).

305 Fig. 7 shows that administration of prior antifungal medication was strongly associated with

306 PCR/ESI-MS positivity for *Candida* species. Prior antifungal medication was also strongly

307 associated with BC positivity for *Candida* species, 2.5% vs 0.29% (p=0.038).

1000		
_ 0		
10		
-	~	•
1000	-	ŝ
Contrast.		1
	8	ĺ
÷	<u> </u>	
đ	-Nor	
Ū	olo	
Ę	iolog	
of Clir	bioloc	
of Clir	biolog	
l of Clir	obioloc	
al of Clir	robioloc	
ial of Clir	crobioloc	
nal of Clir	icrobioloc	
rnal of Clir	Aicrobioloc	
urnal of Clin	Microbiolog	
urnal of Clir	Microbiolog	
ournal of Clir	Microbiolog	
lournal of Clir	Microbiolog	

308

309	Semi-quantitative results of Staphylococcus aureus and Escherichia coli DNA
310	The semi-quantitative levels of S. aureus and E. coli DNA, produced by the PCR/ESI-MS system,
311	were studied as one representative each for Gram-positive and Gram-negative microorganisms.
312	The levels were significantly higher for BC+/PCR/ESI-MS+ results than for BC-/PCR/ESI-MS+
313	results for both microorganisms (Fig. 8).
314	
315	Resistance markers in clinical samples
316	Among 1,460 study patients, PCR/ESI-MS detected resistance markers combined with
317	relevant bacteria in 29 cases, i.e. mecA in 18 cases and vanA in 11 cases. No patient was
318	PCR/ESI-MS positive for <i>vanB</i> or bla_{KPC} together with relevant bacterial species.
319	The mecA positive cases were PCR/ESI-MS+ for S. aureus in 10 cases and PCR/ESI-MS+ for
320	CoNS in 8 cases. Among 10 patients with PCR/ESI-MS+ for S. aureus and mecA, BC was
321	positive for S. aureus in 7 cases, including 3 cases with MRSA and 4 cases of methicillin-
322	susceptible S. aureus.
323	Among 11 patients with PCR/ESI-MS+ for vanA and E. faecium, two were BC positive for E.
324	faecium; one with VRE and one with vancomycin- susceptible E. faecium.
325	$bla_{\rm KPC}$ was identified by standard laboratory methods in a BC isolate of K. pneumoniae. The
326	corresponding patient's whole blood sample was PCR/ESI-MS+ for K. pneumoniae, but
327	PCR/ESI-MS- for $bla_{\rm KPC}$.
328	
329	DISCUSSION

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

JCM

Journal of Clinical Microbiology

330	This is the largest study of PCR/ESI-MS performed on either contrived samples or clinical
331	samples. The study showed excellent results of PCR/ESI-MS performed on contrived
332	samples, with very few false negative or false positive results. Evaluation of whole blood
333	samples from patients with suspected sepsis found that PCR/ESI-MS was more often positive
334	than BC, and that trend was more pronounced in those receiving prior antimicrobial
335	medication. While the specificity of PCR/ESI-MS was high relative to BC, sensitivities varied
336	between species, but were generally higher for Gram-negative than for Gram-positive
337	bacteria.
338	It is well known that the BC positivity rate in a sepsis population increases with the number of
339	BC bottles analyzed. Thus, the fact that the patients with one set of BC bottles had almost as
340	high BC positivity rate as patients with two sets of BC bottles (Fig. 2B) indicates that the
341	population with one set may have had a higher rate of true bloodstream infection. A higher
342	frequency of bloodstream infection could be a reason for the high rate of PCR/ESI-MS+
343	results among patients with one BC set collected (Fig. 2B). An alternative possible reason
344	could be more false positives in this patient group. The obvious difference between those with
345	one and two BC sets suggests a possibly biased or unrepresentative sample population.
346	The low rate of PCR/ESI-MS positivity for CoNS in the study (Fig. 4) was unexpected.
347	However, it could perhaps be explained by the high LODs of PCR/ESI-MS for CoNS (Table
348	S1 in Supplemental material).
349	Seven previous studies of PCR/ESI-MS on 5 mL whole blood samples [9, 10, 14-18] reported
350	BC positivity rates of 5.4-34% and PCR/ESI-MS positivity rates of 10.6-37% [19]. Of these
351	studies, there were higher rates of PCR/ESI-MS positive results (versus BC) seen in 5 studies
352	[9, 10, 14, 16, 18] and more BC positive results (versus PCR/ESI-MS) in 2 studies [15, 17]. In
353	the largest previous study (n=616) by Vincent et al. [10], BC was positive in 11% and

PCR/ESI-MS was positive in 37% of the cases. In the present study, BC was positive in
14.6% and PCR/ESI-MS was positive in 25.6% of patients.

An interesting finding of the present study was that although the BC positivity rate for Gram-356 357 positive and Gram-negative bacteria was similar (7.8% and 7.7%), the PCR/ESI-MS positivity rate was significantly higher for Gram-negative than for Gram-positive bacteria 358 359 (Fig. 3). Accordingly, the sensitivity of PCR/ESI-MS compared to BC was higher for Gram-360 negatives (78%) than for Gram-positives (58%). The reason for this difference is not clear. A 361 possible explanation could be different loads of bacterial DNA in the bloodstream during sepsis. However, the PCR/ESI-MS semi-quantitative levels did not differ significantly 362 363 between Gram-negative and Gram-positive bacteria, as illustrated by S. aureus and E. coli in Fig. 8. Similarly, Ziegler et al. [20] found comparable PCR cycle thresholds of bacterial 364 365 DNA in whole blood from patients with Gram-positive and Gram-negative bloodstream 366 infection, using the LightCycler SeptiFast test. Another possible explanation could be 367 different LODs. However, the present study could not find any general difference in LODs 368 between Gram-positives and Gram-negatives (Table S1 in Supplemental material). Thus, the 369 reason for the difference remains unclear. An interesting finding, however, was that the 370 difference between Gram-negative and Gram-positive detections with PCR/ESI-MS was 371 predominantly noted in patients receiving prior antimicrobial medication (Fig. 5B and 5C). 372 The design of this study enabled analysis of the importance of prior antimicrobial medication 373 on the results of BC and PCR/ESI-MS. Similar to previous studies [21, 22], patients with 374 prior antimicrobials tended to have lower BC positivity rates than patients not receiving antimicrobials (Fig. 5A). However, PCR/ESI-MS was significantly more often positive in 375 376 patients with than in patients without antimicrobials and consequently, the combined results 377 of BC and PCR/ESI-MS was more often positive in patients with than in patients without

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

378 379 5C) but was not noted for Gram-positive bacteria (Fig. 5B). Notably, differences were observed between individual Gram-negative species (Fig. 6). Prior 380 381 antimicrobial medication was associated with higher combined positivity rates (BC and PCR/ESI-MS) for E. coli, Enterobacter species, and Bacteroides species, but not for 382 383 Klebsiella species. Among Gram-positives, Enterococcus species was more common in 384 patients with prior antimicrobials (Fig. 6). This was an unexpected pattern, as we expected 385 patients with prior antimicrobials to have decreased PCR/ESI-MS positivity rate in line with decreased BC positivity rate. The reason for this pattern is not known. It could perhaps reflect 386 387 that the cases with and without prior antimicrobials represent different patient populations. Prior antimicrobial medication is, based on clinical practice patterns, likely associated with an 388 389 increased likelihood of true infection, and to inpatient care prior to enrollment. Bloodstream ournal of Clinica 390 infections with *Enterobacter* species and *Enterococcus* species have been associated with 391 long hospital durations prior to onset [23]. However, the unexpected pattern with more 392 PCR/ESI-MS positives in patients with prior antimicrobials could also be caused by false 393 positive PCR/ESI-MS results, possibly due to contamination during the extraction step, which 394 could perhaps be more problematic with Gram-negative species. Candida DNA was detected by PCR/ESI-MS significantly more often than Candida species 395 396

was detected by BC (Fig. 4), similar to the performance of the commercial T2Candida test 397 (T2 Biosystems, Lexington, Massachusetts) [24]. By both BC and PCR/ESI-MS, detection of 398 Candida species was linked to prior antifungal medication (Fig. 7). As antifungal medication is usually based on microbiological findings and/or clinical suspicion of fungal infection, this 399 400 link can reasonably be interpreted as a support for BC-/PCR/ESI-MS+ results for Candida 401 species, which would have important value in clinical practice.

prior antimicrobials (Fig. 5A). This pattern was pronounced for Gram-negative bacteria (Fig.

MOL

Journal of Clinical Microbiology

402	A very important question is whether BC-/PCR/ESI-MS+ results represent true infections. It
403	should be noted that in the present study 2.8% of the negative contrived samples were false
404	positive with PCR/ESI-MS. This could represent contamination or false positivity due to non-
405	microbial components or microbial cell free DNA within the blood [25]. Unfortunately, the
406	present study was not designed to evaluate the clinical relevance of BC-/PCR/ESI-MS+
407	results, as clinical data apart from SIRS data was not collected. However, there are some
408	important findings from previous studies that should be mentioned. Jordana-Lluch et al. [26]
409	identified 80 BC-/PCR/ESI-MS+ microorganisms, of which 41 microorganisms (51%)
410	correlated with clinical findings. In another study, the same group [16] identified 84 BC-
411	/PCR/ESI-MS+ microorganisms, of which 42 micro-organisms (50%) had support from
412	clinical findings. In a European ICU sepsis study [27] (a subgroup study of [10]), the 28-day
413	mortality was found to be higher in patients with BC-/PCR/ESI-MS+ results than in patients
414	with BC-/PCR/ESI-MS- results (42% vs. 26%, p=0.001). This association with disease
415	severity may perhaps be due to true bloodstream infection in a substantial proportion of cases
416	with BC-/PCR/ESI-MS+ results. Proper evaluation of the clinical relevance of BC-/PCR/ESI-
417	MS+ results, requires additional studies designed to evaluate PCR/ESI-MS with detailed
418	clinical data, and should include severely ill patients without infections.
419	
420	The present study design with BC as the reference standard enabled proper analysis of
421	diagnostic sensitivity. Overall, the sensitivity of PCR/ESI-MS was 71%, which is similar to
422	the pooled sensitivity of 66% that was recently found in the meta-analysis of Huang et al.
423	[28]. This suboptimal clinical sensitivity combined with the low frequency of false-negative
424	results among contrived specimens, indicate that a substantial proportion of patients with
425	bloodstream infection may have bloodstream concentrations of microorganisms below the

426 LODs of the microorganisms. The 5 species with the highest sensitivities compared with BC

MOL

Journal of Clinical Microbiology

427	in the present study, i.e. Streptococcus pyogenes, E. faecium, E. coli, Klebsiella oxytoca, and
428	Pseudomonas aeruginosa (sensitivities >92%; Table 2), all had low PCR/ESI-MS LODs (8-
429	16 CFU/mL; Table S1, Supplemental material). As it has been reported that patients with
430	bloodstream infection may have as little as 1-10 CFU/mL of circulating microorganisms [25],
431	the LODs of PCR/ESI-MS may not be clinically optimal for many microorganisms.
432	Accordingly, the concentrations of microorganisms used in the contrived specimens of the
433	present study may have been too high to mimic clinically relevant concentrations. Thus, due
434	to the suboptimal sensitivity, PCR/ESI-MS cannot be used to "rule-out" bloodstream
435	infection.
436	
437	A disadvantage with PCR/ESI-MS and other molecular methods is the limited information
438	provided about antimicrobial susceptibility. The IRIDICA PCR/ESI-MS panel contains only
439	four resistance markers (mecA, vanA, vanB, and bla _{KPC}). However, on contrived whole blood
440	samples spiked with microorganisms with known presence or absence of resistance in the
441	present study, PCR/ESI-MS showed great performance regarding the resistance markers. On
442	clinical samples, 10 patients were PCR/ESI-MS positive for S. aureus and mecA, but only 3 of
443	them had culture-proven MRSA in their bloodstream. Accordingly, 11 patients were
444	PCR/ESI-MS+ for <i>E. faecium</i> and <i>vanA</i> , but only one of them had culture-proven VRE in the
445	bloodstream. These results were not conclusive, as we do not have any additional
446	microbiological data on the patients apart from BC and PCR/ESI-MS. Thus, there is a need
447	for additional evaluations and, in particular, a need for new sensitive methods to determine
448	antimicrobial susceptibility.
449	
450	At the end of 2014, the PCR/ESI-MS IRIDICA BAC BSI Assay was CE marked and

451 became commercially available for in-vitro diagnostics in Europe. When it was used in routine practice in addition to BC at Karolinska University Hospital [29] it detected BC-452 /PCR/ESI-MS+ microorganisms that were considered to be clinically relevant [30]. However, 453 454 in April 2017, Abbott withdrew their application to the FDA regarding the IRIDICA BAC 455 BSI Assay and ceased producing IRIDICA instruments and IRIDICA test kits [29]. Since then, PCR/ESI-MS has not been commercially available. Still, the present study and previous 456 457 PCR/ESI-MS studies [9, 10, 16, 18] show that in patients with suspected sepsis, bacterial DNA is detected in blood more often than viable bacteria are detected by BC, especially in 458 patients pre-treated. This is encouraging and supportive of the value for further advancing 459 460 new molecular diagnostics for clinical practice, critical for improved detection of bloodstream 461 microorganisms, with important downstream implications for improved patient outcomes [5]. Such development is further motivated by the WHO resolution on sepsis [1] and their global 462 463 action plan on antimicrobial resistance [31].

with microorganisms of different concentrations enabled solid conclusions regarding the
analytic performance of PCR/ESI-MS. Secondly, the large number of clinical samples
enabled comparisons between Gram-positive and Gram-negative bacteria and performance
analysis of individual microorganisms. Third, data on prior antimicrobial medication was
collected shortly after enrollment, enabling a comparison between patients with and without
prior antimicrobial treatment. Altogether, the study provided new knowledge about bacterial
DNA in the bloodstream of patients with suspected sepsis.

The present study has several strengths. First, the large number of contrived samples, spiked

473

464

465

The study also has limitations. First, the patient population was heterogenous, as the patients
were enrolled at different clinical sites, and were not consecutively enrolled. This design may

476	have allowed for bias between variables and may have caused lack of replicability. In
477	addition, due to the lack of a homogenous population, we could not evaluate the additive
478	value of PCR/ESI-MS for the etiologic spectrum of sepsis. Secondly, the lack of standardized
479	blood culturing may have introduced variability regarding blood culture results. Third,
480	standard microbiological tests apart from BC were not registered, and thus we could not
481	properly evaluate BC-/PCR/ESI-MS+ findings. Fourth, severity data apart from SIRS criteria
482	were not registered and thus we could not stratify patients according to the sepsis-3
483	classification. However, all patients had suspected sepsis according to the sepsis-2 definition,
484	with suspected bloodstream infection and at least 2 SIRS criteria.
485	
486	In conclusion, PCR/ESI-MS showed excellent performance on contrived whole blood
487	samples. On clinical samples, it showed high specificities, moderately high sensitivities for
488	Gram-negative bacteria and Candida species, and elevated positivity rates during
489	antimicrobial treatment. These promising results encourage further development of molecular
490	diagnostics on whole blood for detection of bloodstream microorganisms in sepsis.
491	
492	
493	ACKNOWLEDGMENTS

The study was designed and funded by Ibis Biosciences, a division of Abbott. Authors
acknowledge the Ibis team for the preparation of contrived specimen, study monitoring and
technical support. The authors wish to thank research and clinical microbiology laboratory
scientists who assisted with the study.

498 Potential conflicts of interest in addition to Abbott's above mentioned role in the present499 study:

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

MOL

Journal of Clinical Microbiology

500	R.E. Rothman has served on advisory panels for Ibis Biosciences, An Abbott Company,
501	Roche Molecular Systems Inc, Cepheid, Inflammatix, and Qvella Corporation; has been an
502	invited speaker for Roche Molecular Systems Inc.; and has had grant support for research
503	from Abbott and Cepheid.
504	D. Brealey has received payment from Abbott to do educational sessions.
505	L. Poling and K. Lowery were employees of Ibis Biosciences at the time of the study.
506	G.J. Moran has received consulting fees from Light AI and research grant support from
507	ContraFect and Nabriva Therapeutics AG.
508	E.P. Rivers has received funds for research and educational projects from Lajolla
509	Pharmaceuticals (Athos), Abbott, Alere Corporation, Spectral Diagnostics, Ferring
510	Pharmaceuticals, Inflammix, VICTASm.
511	M. Sims has served as an investigator on studies sponsored by Nabriva Therapeutics AG,
512	Sanofi Pasteur Inc., Curetis GmbH, Pfizer Inc., Merck and Co., Cidara Therapeutics Inc.,
513	Shire, ContraFect, Aridis Pharmaceuticals Inc., Epigenomics Inc., Genentech Inc., Finch
514	Therapeutics, Seres Therapeutics Inc., Diasorin Molecular, Janssen Research and
515	Development, NeuMoDx Molecular, Iterum Therapeutics International; and has been a
516	consultant for Paratek pharmaceuticals, Curetis GmbH, and Cutis Pharma.
517	K. Strålin, V. Özenci, K. Barkataki, N. Dhiman, M.C. Kurz, A.P. Limaye, F. LoVecchio, L.G.
518	Miller, J.C. Overcash, A. Parekh, W.F. Peacock, A.M. Stubbs, M. Sundqvist, M. Ullberg, K.C.
519	Carroll declare no conflicts of interest.
520	
521	

JON

REFERENCES 522

523		
524	1.	Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. 2017.
525		Recognizing Sepsis as a Global Health Priority - A WHO Resolution. N Engl J Med
526		377:414-417.
527	2.	Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS,
528		Lemeshow S, Osborn T, Terry KM, Levy MM. 2017. Time to Treatment and
529		Mortality during Mandated Emergency Care for Sepsis. N Engl J Med 376:2235-2244.
530	3.	Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar
531		A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus
532		DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De
533		Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones
534		AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall
535		JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh
536		J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr
537		CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer
538		M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga
539		WJ, Zimmerman JL, Dellinger RP. 2017. Surviving Sepsis Campaign: International
540		Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 45:486-
541		552.
542	4.	Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP. 1995. The
543		natural history of the systemic inflammatory response syndrome (SIRS). A

- 544 prospective study. JAMA 273:117-123.
- 5. Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. 2018. Emerging 545 Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev 31(2):e00089-17 546

Ō			
Accepted Manuscript Posted O			
of Po	547	6.	Nguyen MH, Clancy CJ, Pasculle AW, Pappas PG, Alangaden G, Pankey GA,
crip	548		Schmitt BH, Rasool A, Weinstein MP, Widen R, Hernandez DR, Wolk DM, Walsh
nus	549		TJ, Perfect JR, Wilson MN, Mylonakis E. 2019. Performance of the T2Bacteria Panel
Mg	550		for Diagnosing Bloodstream Infections: A Diagnostic Accuracy Study. Ann Intern
fed	551		Med 170:845-852.
cep	552	7.	Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T,
Ac	553		Christians FC, Venkatasubrahmanyam S, Wall GD, Cheung A, Rogers ZN,
	554		Meshulam-Simon G, Huijse L, Balakrishnan S, Quinn JV, Hollemon D, Hong DK,
	555		Vaughn ML, Kertesz M, Bercovici S, Wilber JC, Yang S. 2019. Analytical and
	556		clinical validation of a microbial cell-free DNA sequencing test for infectious disease.
	557		Nat microbiol 4:663-674.
	558	8.	Jordana-Lluch E, Gimenez M, Quesada MD, Ausina V, Martro E. 2014. Improving
linical ogy	559		the diagnosis of bloodstream infections: PCR coupled with mass spectrometry.
al of C crobiol	560		BioMed Res Internat 2014:501214.
Journal of Clinical Microbiology	561	9.	Metzgar D, Frinder MW, Rothman RE, Peterson S, Carroll KC, Zhang SX, Avornu
	562		GD, Rounds MA, Carolan HE, Toleno DM, Moore D, Hall TA, Massire C, Richmond
	563		GS, Gutierrez JR, Sampath R, Ecker DJ, Blyn LB. 2016. The IRIDICA BAC BSI

564 Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and 565 Candida in Blood. PLoS One 11:e0158186.

10. Vincent JL, Brealey D, Libert N, Abidi NE, O'Dwyer M, Zacharowski K, 566

567 Mikaszewska-Sokolewicz M, Schrenzel J, Simon F, Wilks M, Picard-Maureau

- 568 M, Chalfin DB, Ecker DJ, Sampath R, Singer M 2015. Rapid Diagnosis of Infection in
- 569 the Critically III, a Multicenter Study of Molecular Detection in Bloodstream
- 570 Infections, Pneumonia, and Sterile Site Infections. Crit Care Med 43:2283-2291.
- 571 11. Vincent JL, Sampath R. 2016. The authors reply. Crit Care Med; 44:e315.

ournal of Clinica

ournal of Cli<u>nica</u>

- 572 12. Yagupsky P, Nolte FS. Quantitative aspects of septicemia. 1990. Clin Microbiol Rev 573 3:269-279.
- Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen, J, Opal, 574 13.
- 575 SM, Vincent, JL, Ramsay G. 2003. 2001 SCCM/ESICM/ACCP/ATS/SIS

International Sepsis Definitions Conference. Crit Care Med 31:1250-1256. 576

- 14. Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder 577 578 MR, Toleno DM, Metzgar D, Gutierrez JR, Massire C, Rounds M, Kennel
- NJ, Rothman RE, Peterson S, Carroll KC, Wakefield T, Ecker DJ, Sampath R. 2014. 579
- Improved sensitivity for molecular detection of bacterial and Candida infections in 580
- 581 blood. J Clin Microbiol 52:3164-3174.
- 582 15. Desmet, S, Maertens, J, Bueselinck, K, Lagrou, K. 2016. Broad-Range PCR Coupled with Electrospray Ionization Time of Flight Mass Spectrometry for Detection of 583 584 Bacteremia and Fungemia in Patients with Neutropenic Fever. J Clin Microbiol 54:2513-2520. 585
- 586 16. Jordana-Lluch, E, Rivaya, B, Marco, C, Gimenez, M, Quesada, MD, Escobedo, A, 587 Batlle M, Martró E, Ausina V. 2017. Molecular diagnosis of bloodstream infections in onco-haematology patients with PCR/ESI-MS technology. J Infect 74:187-194. 588
- 589 17. Tassinari, M, Zannoli, S, Farabegoli, P, Pedna, MF, Pierro, A, Mastroianni, A, Fontan 590 R, Luongo L, Sarnataro G, Menegatti E, Caruso A, Sambri V. 2018. Rapid diagnosis 591 of bloodstream infections in the critically ill: Evaluation of the broad-range PCR/ESI-

MS technology. PLoS One 13:e0197436.

593 18. Makristathis A, Harrison N, Ratzinger F, Kussmann M, Selitsch B, Forstner C, Hirschl 594 AM, Burgmann H. 2018. Substantial diagnostic impact of blood culture independent 595 molecular methods in bloodstream infections: Superior performance of PCR/ESI-MS. 596 Sci Rep 8:16024.

ournal of Clinica

ournal of Clinica Microbiology 597

598

19.

spectrometry. 2019. Expert Rev Mol Diagn 19:389-395. 599 600 20. Ziegler I, Josefson P, Olcén P, Mölling P, Strålin K. 2014. Quantitative data from the SeptiFast real-time PCR is associated with disease severity in patients with sepsis. 601 BMC Infect Dis 14:155. 602 603 21. Bloos F, Hinder F, Becker K, Sachse S, Mekontso Dessap A, Straube E, Cattoir V, Brun-Buisson C, Reinhart K, Peters G, Bauer M. 2010. A multicenter trial to 604 compare blood culture with polymerase chain reaction in severe human sepsis. 605 606 Intensive Care Med 36:241-247. 607 22. Scheer CS, Fuchs C, Grundling M, Vollmer M, Bast J, Bohnert JA, Zimmermann K, Hahnenkamp K, Rehberg S, Kuhn SO. 2019. Impact of antibiotic administration on 608 609 blood culture positivity at the beginning of sepsis: a prospective clinical cohort study. 610 Clin Microbiol Infect 25:326-331. 611 23. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. 612 Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309-317. 613 614 24. Clancy CJ, Pappas PG, Vazquez J, Judson MA, Kontoyiannis DP, Thompson GR 3rd, 615 Garey KW, Reboli A, Greenberg RN, Apewokin S, Lyon GM 3rd, Ostrosky-Zeichner 616 L, Wu AHB, Tobin E, Nguyen MH, Caliendo AM. 2018. Detecting Infections Rapidly 617 and Easily for Candidemia Trial, Part 2 (DIRECT2): A Prospective, Multicenter Study 618 of the T2Candida Panel. Clin Infect Dis 66:1678-1686. 619 25. Opota, O, Jaton, K, Greub, G. 2015. Microbial diagnosis of bloodstream infection: 620 towards molecular diagnosis directly from blood. Clin Microbiol Infect 21:323-331. 621

Özenci V, Strålin K. Clinical implementation of molecular methods in detection of

microorganisms from blood with a special focus on PCR electrospray ionization mass

622	26.	Jordana-Lluch E, Gimenez M, Quesada MD, Rivaya B, Marco C, Dominguez MJ,
623		Arméstar F, Martró E, Ausina V. 2015. Evaluation of the Broad-Range PCR/ESI-MS
624		Technology in Blood Specimens for the Molecular Diagnosis of Bloodstream
625		Infections. PLoS One 10:e0140865.
626	27.	O'Dwyer MJ, Starczewska MH, Schrenzel J, Zacharowski K, Ecker DJ, Sampath R,
627		Brealey D, Singer M, Libert N, Wilks M, Vincent JL. 2017. The detection of
628		microbial DNA but not cultured bacteria is associated with increased mortality in
629		patients with suspected sepsis-a prospective multi-centre European observational
630		study. Clin Microbiol Infect 23:208.
631	28.	Huang L, Lu B, Qin R, Sun L. 2018. PCR-ESI/MS for molecular diagnosis of
632		bloodstream infections directly from blood samples: a systematic review and meta-
633		Analysis. Clin Lab 64:1153-1161.
634	29.	Özenci V, Patel R, Ullberg M, Strålin K. 2018. Demise of polymerase chain
635		reaction/electrospray ionization-mass spectrometry as an infectious diseases diagnostic
636		tool. Clin Infect Dis 66:452-455.
637	30.	Strålin K, Patel R, Ullberg M, Özenci V. 2019. Reply to author. Clin Infect Dis
638		68:351. (Letter.)
639	31.	World Health Organization. 2015. Global action plan on antimicrobial resistance.
640		WHO Library Cataloguing-in-Publicatoin Data. (ISBN 978 92 4 150976 3). 68 th
641		World Health Assembly (WHA68/2015/REC/1).
642		
643		
644		

644

Journal of Clinical Microbiology

MOL

646 in patients with suspected sepsis

647

No. of organisms detected		All patients analyzed (n=1,460)	
PCR/ESI-MS	BC	No. of patients (%)	
0	0	1,023 (70)	
0	1	53 (3.6)	
0	≥2	10 (0.7)	
1	0	187 (13)	
1	1	114 ^a (7.8)	
1	≥2	8 ^b (0.5)	
≥2	0	37 (2.5)	
≥2	1	18 [°] (1.2)	
≥2	≥2	10 ^d (0.7)	

648

^a The same organism was detected by PCR/ESI-MS and BC in 109/114 cases. Four patients

650 were PCR/ESI-MS+ for Escherichia coli and BC+ for coagulase-negative staphylococci. One

patient was PCR/ESI-MS+ for *Candia albicans* and BC+ for *Bacteroides* species.

^b The organism detected by PCR/ESI-MS was also detected by BC in all 8/8 cases.

^c The organism detected by BC was also detected by PCR/ESI-MS in 15/18 cases. One

654 patient was BC+ for Peptostreptococcus species and PCR/ESI-MS+ for Bacteroides species

- and *Clostridium* species; one patient was BC+ for *Eggerthella lenta* and PCR/ESI-MS+ for
- 656 Bacteroides species and Fusobacterium species; and one patient was BC+ for Streptococcus
- 657 *anginosus* and PCR/ESI-MS+ for *Gemella morbillorum* and two anaerobic bacterial species.

Downloaded from http://jcm.asm.org/ on August 17, 2020 at Henry Ford Health System

658

Journal of Clinical Microbiology

MOL

Journal of Clinical Microbiology

- ^d The identical organisms were detected by PCR/ESI-MS and BC in 4/10 cases. At least one
- organism was detected by both PCR/ESI-MS and BC in 10/10 cases. 659

660 **TABLE 2** Sensitivity and specificity of PCR/ESI-MS compared with blood culture (BC) in

and/or BC are included

Species	Sensitivity	Specificity
	% (ratio)	% (ratio)
Gram-positive bacteria		
Staphylococcus aureus	70 (19/27)	99.2 (1,421/1,433)
Coagulase-negative staphylococci	11 (5/45)	99.6 (1,410/1,415)
Streptococcus mitis/pneumoniae	58 (7/12)	99.4 (1,440/1,448)
Streptococcus pyogenes	100 (4/4)	99.9 (1,455/1,456)
Streptococcus species	27 (3/11)	99.7 (1,445/1,449)
Enterococcus faecalis	57 (4/7)	99.7 (1,449/1,453)
Enterococcus faecium	100 (6/6)	98.8 (1,437/1,454)
Micrococcus species	0 (0/1)	99.6 (1,453/1,459)
Cutibacterium acnes	0 (0/1)	98.8 (1,442/1,459)
Nocardia species	0 (0/0)	98.9 (1,444/1,460)
Gram-negative bacteria		
Escherichia coli	93 (50/54)	94.4 (1,327/1,406)
Klebsiella pneumoniae	80 (20/25)	98.3 (1,411/1,435)
Klebsiella oxytoca	100 (4/4)	99.9 (1,454/1,456)
Enterobacter cloacae complex	80 (4/5)	99.0 (1,441/1,455)
Pseudomonas aeruginosa	100 (5/5)	99.7 (1,451/1,455)
Citrobacter freundii	0 (0/0)	99.6 (1,454/1,460)
Serratia marcescens	62 (5/8)	99.9 (1,451/1,452)

Haemophilus influenzae	0 (0/2)	99.7 (1,453/1,458)
Bacteroides fragilis/thetaiotaomicron	50 (1/2)	99.3 (1,448/1,458)
Fusobacterium nucleatum	0 (0/0)	99.6 (1,454/1,460)
Candida species		
Candida albicans	67 (2/3)	99.4 (1,448/1,457)
Candida glabrata	0 (0/0)	99.6 (1,454/1,460)

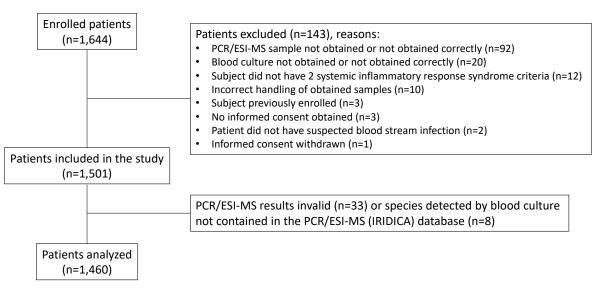
663

664

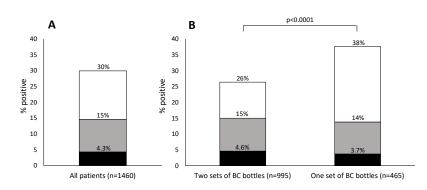
Journal of Clinical Microbiology

JCM

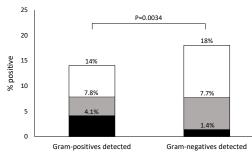
665	Figure legends
666	
667	FIG 1 Flow chart of study population
668	
669	FIG 2 Proportion of patients positive by blood culture (BC) and/or PCR/ESI-MS altogether
670	(A) and among patients with two sets and one set of BC bottles, respectively (B)
671	
672	FIG 3 Proportion of patients positive by blood culture (BC) and/or PCR/ESI-MS for Gram-
673	positive or Gram-negative bacteria
674	
675	FIG 4 Individual organisms detected by blood culture (BC) and PCR/ESI-MS
676	
677	FIG 5 Proportion of cases positive by blood culture (BC) and/or PCR/ESI-MS in patients
678	without (n=857) and with prior antimicrobial treatment (n=603), overall (A) and broken down
679	by Gram-positive (B) and Gram-negative (C) detections
680	
681	FIG 6 Proportion of patients without (A) and with (B) any prior antimicrobials, positive for
682	major individual bacteria. * indicates significant (p<0.05) differences regarding total
683	proportion of positives (BC and/or PCR/ESI-MS) between cases without and with prior
684	antimicrobials

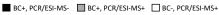

MOC

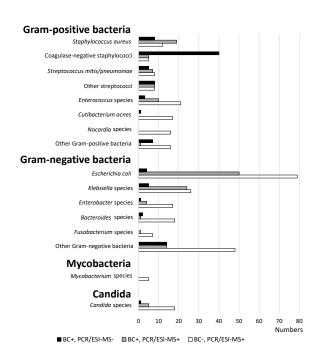
- 686 FIG 7 Proportion of patients positive for Candida species by blood culture (BC) and/or
- 687 PCR/ESI-MS, in relation to prior antimicrobial medication

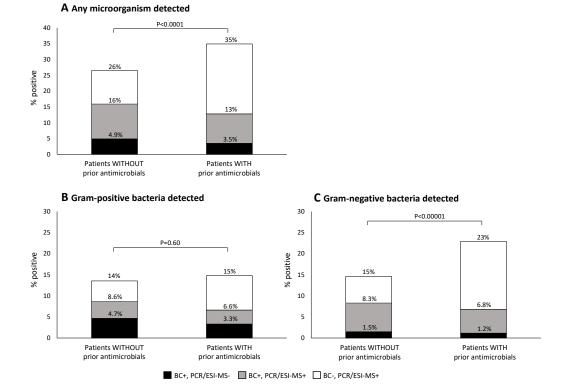

688

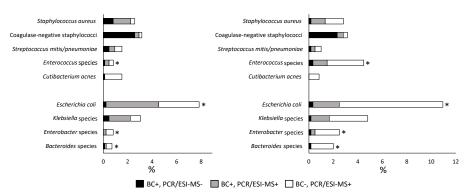
- 689 FIG 8 Semi-quantitative levels for Staphylococcus aureus DNA (A) and Escherichia coli
- 690 DNA (B) related to blood culture (BC) results in patients with PCR/ESI-MS positive for S.

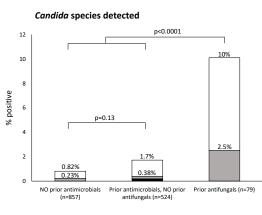

691 aureus and E. coli

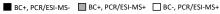


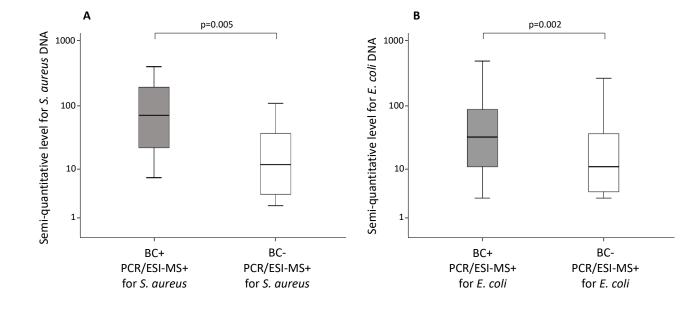











ō

A Patients WITHOUT prior antimicrobials (n=857) B Patients WITH prior antimicrobials (n=603)

