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Performance of Power-Controlled Wideband 
Terrestrial Digital Communication 

Andrew J. Viterbi, Fellow, IEEE, Audrey M. Viterbi, Member, IEEE, and Ephraim Zehavi, Member, IEEE 

Abstract-Performance of a wideband multipath-fading terres- 
trial digital coded communication system is treated. The analysis 
has applications to a cellular system employing direct sequence 
spread spectrum CDMA with M-ary orthogonal modulation on 
the many-to-one reverse (user-to-base station) link. For these 
links, pqwer control of each multiple access user by the cell 
base station is a critically important feature. This is implemented 
by measuring the power received at the base station for each 
user and sending a command to either raise or lower reverse 
link transmitted power by a fixed amount. Assuming perfect 
interleaving, the effect of the power-control accuracy on the 
system performance is assessed. 

I. INTRODUCTION 

N terrestrial wireless transmission for cellular, mobile, and I personal communication services, the channel is subject 
to time varying carrier amplitude and phase. While, in nar- 
rowband channels, the multipath propagation causes carrier 
signal cancellation (by equal-delay opposite phase paths) and 
consequent deep fades, wideband signals suffer from much 
shallower fading with multiple paths appearing as interference 
often separated in time. With spread spectrum code division 
multiple access (CDMA) techniques, the multiple paths can 
be demodulated individually by a “RAKE-type” receiver and 
combined prior to a decision, thus minimizing interference 
and mitigating fading further. Finally, in systems employing 
multiple base stations or cell sites, generally referred to as 
cellular systems, power control, which is desirable or required 
to control other-user interference, also serves to mitigate 
shadowing when the control is sufficiently rapid. 

This paper deals with the many-to-one reverse links from 
multiple access users to a cellular base station. Assuming the 
classical multipath-fading model, for which there is ample 
experimental evidence for wideband signals [l], [2], and 
a conventional direct-sequence spread-spectrum waveform, 
error performance is determined for a convolutionally coded 
M-ary orthogonal modulation with noncoherent envelope- 
detector matched filter demodulation. Effects of shadowing, 
typically modeled as log-normally distributed multiplicative 
interference, is mitigated through the use of power control 
whose performance is also analyzed. 
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However, the main purpose of power control is to maintain 
all users’ signal energy received at the base station nearly 
equal in the spread spectrum which is shared in common. 
Since each user’s signal appears as interference to all other 
users, the total capacity of the system [3] depends on tight 
power control. Another benefit is that each user transmits only 
as much energy as is required to maintain a given level of error 
performance; hence, its overall transmitted energy is kept at a 
minimum, thus prolonging battery life in portable transmitters. 

11. CHARACTERIZATION OF SPREAD SPECTRUM CDMA 
COMMUNICATION SYSTEM AND MULTIPATH- FADING CHANNEL 

The end-to-end communication system block diagram (as 
shown in Fig. 1) can be subdivided into five components: 

the encoder-interleaver-waveform generator; 
the spreading processors, D/A converters (impulse mod- 
ulation), shaping filters, upconverter, and power ampli- 
fier; 
the multipath channel; 
the downconverter, matched filter, despreader, A/D con- 
verter (sampler); and 
The multiple demodulator-deinterleaver-soft decision de- 
coder. 

The spread spectrum modulator (b) is as described in [4]. 
The shaping filters are typically finite impulse response (FIR) 
digital filters to which the receiver filters are matched (mirror 
image impulse response and conjugate transfer function). Their 
purpose is to contain the transmitted energy in the allocated 
wideband spectrum of bandwidth W, which is the inverse of 
T,, the spreading sequence switching time, generally called the 
chip time. The power amplifier has its output power controlled 
digitally as described in a later section. 

To streamline the diagram, all two-component (I and Q) 
signals are represented as complex quantities and the cor- 
responding (two-component) branches are shown as double 
lines. Thus, the quadrature spreading by multiplication by the 
independent pseudorandom (PN) sequences, the two-branch 
baseband filters H (  f ) ,  and the upconverting carrier multipliers 
are all treated in this way. 

The classical model for multipath is a delay line, with delays 
corresponding to discernable paths each scaled by a complex 
random variable with Rayleigh distributed amplitude and 
uniformly distributed phase. The incremental delays Tk - ~ k - 1  

must be larger than T,, the inverse of the spread spectrum 
bandwidth W, in order for the multipath components to be 
distinguishable (those that are not distinguishable combine 
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Fig. 1. Overall link system diagram. (a) Encoder-interleaver-waveform generator. (b) Spectrum spreaders-shaping filters-upconverter. (c) Multipath 

channel model. (d) Downconverter- matched filter-despreaders. (e) Envelope correlators- metric calculator-deinterleaver-decoder. 

randomly, thereby giving rise to the Rayleigh distributed 
amplitudes and uniform phases of the scale factors). Thus, 
the overall complex transfer function of the m-component 
multipath channel is 

m 

ak exp(i@ - 2ni fOTk)  
k = l  

It is assumed that the distinguishable individual path delays 
can be measured. Of course, in a mobile or otherwise chang- 
ing propagation environment, these delays must be tracked; 
also, some will disappear after time while new ones appear. 
However, these will vary slowly compared to the bit rate, and 
hence can be accurately estimated and tracked. Amplitudes and 

phases, on the other hand, will vary more rapidly and are not 
estimated, but rather are taken to be independent, identically 
distributed variables constant at least over each transmitted 
orthogonal waveform. 

The optimum receiver for such a channel [5] is as shown 
in Fig. l(d). After downconversion and matched filtering by 
H* (f), the received signal is despread independently for each 
multipath component by multiplying by the quadrature spread- 
ing sequences delayed by an amount equal to the delay of 
that multipath component. Thus, the demodulator is effectively 
replicated m-fold, once for each significant multipath delay. 
To line up the multipath components after despreading, each 
must be delayed by a complementary amount TO - T k ,  where 
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TO is greater than any of the path delays. This is generally 
called a "RAKE" receiver [6] .  Sampling and A/D conversion 
can be performed after the despreading or before, provided in 
the latter case that the received signal is oversampled to the 
accuracy of the delay measurements. 

The form of the demodulator-decoder [Fig. l(e)] depends on 
the choice of coder-modulator1 [Fig. l(a)]. Since amplitudes 
and phases can be assumed to remain essentially constant over 
a few bit times, this suggests the use of M-ary orthogonal 
waveforms whose time duration is no greater than the 
duration over which the fading amplitudes and phases remain 
virtually unchanged. Using binary waveforms only, such 
M-ary orthogonal waveforms can be generated using 
Hadamard or Walsh functions [4] whose duration is M chip 
times of the PN sequence, or any multiple thereof. Thus, if the 
input bit rate is R, and the code rate of the preceding encoder 
is T ,  using M chip times per orthogonal waveform implies that 
the bandwidth would be W = l/Tc = RM/(log,M)r.  The 
bandwidth can be expanded by any multiple of this quantity 
by making each symbol of the Hadamard-Walsh function be 
I chips long. Thus, the ratio of bandwidth-to-bit rate, usually 
called the processing gain, is 

W / R  = IM/(log2 M ) T ,  where I is any integer. 

As a specific example, with M = 64 orthogonal waveforms 
and T = 1/3, W / R  can be made any multiple of 32; with 
I = 4, the processing gain is 128 or 21 dB. 

111. SIGNAL STATISTICS, METRIC CALCULATION, 
AND SOFT-DECISION DECODER PERFORMANCE 

The output of each envelope-detector correlator pair in 
Fig. l(e) is a nonnegative random variable z with probability 
density function 

p p  = e-z/(s+l) 1 

if the correlator corresponds to the correct signal sent 

P;"' = e- ' ,  if the correlator corresponds 
to one of the M - 1 other (incorrect) signals 

where it is assumed that automatic gain control (AGC) has 
normalized the noise variance to unity, and S is the normalized 
mean received energy per path. Thus, if E is the total received 
energy per orthogonal waveform summed over all m equal 
average energy paths, and No is the additive noise density, 
including other-user spread signals [3], [4], then 

Assuming, as we have, that all m paths are mutually indepen- 
dent, the sum of all m paths for the correct signal correlator 

'Use of a binary convolutional encoder with interleaving prior to M-ary 
orthogonal waveform selection is superior to encoding the M-ary orthogonal 
waveforms directly without binary symbol interleaving, as demonstrated in 
Appendix 11. 

y = cy=l Zk has probability density which is the m-fold 
convolution of that for each path, p c ( z ) ,  

For each of the incorrect signal correlators, it is the m-fold 
convolution of p i  ( z )  

For the sake of comparison, we also consider the case of only 
one unfaded path, for which it is well known that, for fixed 
signal energy E, 

fF(y) = e-y . (2b) 

The probability that an error is made by the maximum likeli- 
hood detector, which results when one of the M - 1 random 
variables y? corresponding to an incorrect signal exceeds that 
for the correct signal, as derived from (1) or (2), is well 
known [7], [8]. However, the soft decision decoder operates 
not only on the decision of which y j  is maximum, but also 
on their relative magnitudes. To reduce complexity (of both 
implementation and analysis), we consider only the magnitude 
of the maximum correlator output 

y = Max yj . 

The input to the soft decision decoder is this value along 
with the index of y, which is a binary sequence of length 
log, M representing the (hard) decision symbols. Note that 
upon deinterleaving, the value of y (soft decision) must be 
attached to each (deinterleaved hard decision) symbol of the 
index, which shall be denoted x. 

The optimum choice of binary metrics, based only on the 
value of y and any one of the binary symbols x to which it 
pertains, is obtained from the two joint likelihood functions of 
y and x, given that it did and did not correspond to what was 
sent. These are, respectively, 

P(Y,XlX) = fC(Y>FI(Y)'-l 
+ ( M / 2  - l)fI(Y)Fc(Y)FIM-2(Y) 1 (3a) 

P(Y, XP) = (M/2>fr(y)Fc(y)FIM-2(Y) (3b) 

where x = 0 or 1 and ?f is its complement,* and fc(y) 
and f~ (y) are given by (1) or (2). Fc( y) and PI( y) are the 
corresponding distribution functions, their indefinite integrals. 
Note that fc(y) and Fc(y) depend also on E and E in the 
faded and unfaded cases, respectively. . 

The expression (3b) follows from the fact that the density 
function of the largest of (M - 1) incorrect signal measured 

*Alternately, if we take z to be +1 or -1 (or any multiple thereof) andf  its 
negative, then the joint densities could be denoted as the four one-dimensional 
densities p ( f y l r  = fl), where y > 0. 
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Fig. 2. Log-likelihood ratio ( E / N o  = 10 dB; M = 64). 

energies, when it is greater than the correct signal measured 
energy, is (M - l ) f r ( y ) F y - 2 ( y ) F c ( y ) ,  and conditioned on 
this, a symbol error (T mistaken for x) occurs with probability 

The expression (3a) follows from the fact that a symbol 
can be correct in either of two disjoint events: if the correct 
decision is made, in which case the correct signal energy 
is greatest with density f ~ ( y ) F ~ ( y ) ~ - l  ; or if the incorrect 
decision is made (with density as given above) but the binary 
symbol is nonetheless correct, which occurs with probability 

Given the observable y with density function given by (3a) 
and (3b), the optimum metric is the log-likelihood function, 
formed from the ratio of (3a) and (3b). 

M/[2(M - 1>1. 

( M / 2  - l ) / ( M  - 1). 

(4) 

L(y)  is plotted in Fig. 2 for M = 64 and E/No = 10 dB for 
the unfaded signal case, and for the m-path fading case for 
m = 1,2  and 4 with  NO = 10 dB. 

Using this ideal soft metric, which requires knowledge of 
E in the unfaded case and 5’ = (E/No)/m in the faded cases, 
the performance parameter 2 for a soft decision decoder (see 
Appendix I) then becomes 

Using (1) or (2) and (9, for a range of E/No and E/No = 
mS, Z was integrated numerically for the unfaded case and 
for multipath-fading with m = 1,2 ,  and 4. 

From 2, according to Appendix I, we obtain the following 
parametric relationship between required E/No and code rate 
T for any a = ro/r > 1. 

- - - 
Eb/NO - E/NO - E/NO 

- E/NO 

- -- 
a a r l o g 2 M  rolog2M 

- 

- 
[l - log,(l + Z)]  log, M ’ 
where E/No = E/No,  unfaded 
and E/No = mS, multipath-fading . (7) 

This relation is plotted as solid curves in Fig. 3 for the 
unfaded cases and for fading with m = 1,2, and 4 multipath 
components, and for M = 64 orthogonal waveforms. 

Since a is established from the error probability requirement 
(a = 0.6 dB and 0.8 dB for the rate 1/2 and rate 1/3 codes, 
respectively3), required Eb/No can be obtained from Fig. 3 
by backing off a (in dB) from 1 / ~  (in dB), and, from this 
finding the corresponding (Eb/No) /a  (in dB) and finally 
adding a (in dB). With the a values noted, this represents 
&/No requirements of 4.9 dB and 5.2 dB for the unfaded 
case at rate 1 /2  and 1/3, respectively. For the three faded 
cases at rate 1/2, Eb/No requirements range from 7.0 dB to 
7.9 dB; at rate 1/3, Eb/No required ranges from 7.1 dB to 
7.5 dB. Hence, rate 1/3 is the better choice globally. 

Iv. PERFORMANCE BOUNDS FOR INTEGER METRICS 
While the optimum metric is the log-likelihood function 

L(y) given in (4) and shown in Fig. 2 for various fading and 
unfaded channels, practical implementation requires quanti- 
zation of the maximum energy y. Scaling any L(y) by an 
arbitrary amount does not affect decoder performance in any 
way, although quantization obviously does. A reasonable ap- 
proximation based on an 8-level quantizer, which uses integer 

For error probabilities of approximately 0.01 for 200-bit frames. 
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Fig. 3. Performance bound for m-path fading propagation (A4 = 64). 

representative values, utilizes the quantization thresholds at 
values of y : Bo = 0, el = 7, e2 = 9, e3 = 11, e4 = 
12, 6’5 = 13.5, 6)s = 15, 87 = 16.5, 68 = 00. This 
best approximates the metric L(y) for the two-path Rayleigh 
fading case but, as we shall see, performance is in no case 
degraded by more than 0.5 dB. 

Quantization converts the continuous binary-input channel 
described by p(y, ZIZ) and p(y, ZIT), into a binary-input dis- 
crete symmetric-output channel with transition probabilities 

P+k = P(Y1.I.) dY, IC = 1 1  2, * . .18 1 (sa) 

Oh 

P ( Y ,  ZIT) dy,  IC = 1,2 , .  . . , 8 .  (8b) 
p-k = I,, 

Note that, in this formulation, hard decisions correspond to a 
single level (IC = 1) with plus and minus unity metric and 

Substituting (3a) and (3b) into (8a) and (8b) and integrating 
eo = 0, el = oo. 

by parts yields 

Coded performance with an ideal interleaver can now be 
evaluated based on the Chernoff bound for this quantized 
channel. 

2 = Min E(e-’Y) 
S > O  

where y is the quantized energy metric which takes on 
integer value &(IC - l ) ,  where IC = 1,2, .  . . ,8. Thus, letting 
w = e-s (w < I), 

2 = Min E(wy) 
w < l  

for the soft quantizer4 considered here. 
As in the ideal unquantized case, Fa/No and r are related by 

(6) and (7) through 2, given by (10) in this case. The results 
are plotted as dotted lines in Fig. 3, where they are seen to 
degrade performance for the unquantized cases by never more 
than 0.5 dB. 

v. POWER CONTROL WITH IDEAL INTERLEAVING AND 
LQGNORMAL SHADOWING 

Given the integer metric demodulator described in the last 
section, a natural method of providing power control for a 
channel, in which the average energy varies slowly, is to take 
the quantized maximum M-ary signal demodulator energies 
(as before normalized by AGC so that the average noise-only 
energy is unity), sum them over N signal periods, and compare 
these with a threshold. If the threshold is exceeded, a command 
is sent via a (low data rate) command channel from the cell 
base station to lower the energy a given amount in decibels 
and otherwise to raise it by the same amount. It is assumed 
that the command to raise or lower is sent uncoded so as to 
minimize its delay, and hence is subject to a higher error rate. 

Thus, assuming a given average energy-to-noise level 
and summing N successive quantized normalized maximum 
energies 

N 

y = B(n) 
n=l 

4Note that for hard decisions (two levels with metrics fl) Z = 2 d m  
with 00 = 0 and 01 = co. 
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and comparing with the threshold 4, results in a probability of 
sending a command to lower energy equal to 

Each term of the sum is a discrete random variable which takes 
on the quantizer’s representative values, which, as above, are 
taken to be the eight integers k - 1 = 0 through 7, which 
occur with probability 

action immediately, the processing delay (plus the generally 
small propagation delay) introduces a lag (or latency) in the 
control loop of one measurement interval ( N  M-ary symbol 
transmissions). Now suppose that at the rth measurement 
interval, the transmitted signal energy is T, while the average 
received signal energy is 

E,. = T, - L, 

where L, is the channel propagation loss, all quantities being 
in decibels. Now because of the control and the one measure- 

- 
(19) 

Q k  = P r ( O k - l  < $ < & )  k = 1 , 2 , .  . . ,8  (12) 

where 8 k  are the quantization thresholds. These are readily 

ment interval delay, the transmitted energy at the (?- + 1)th 
interval is 

determined to be the unconditioned probabilities Tr+1 = Tr + C(Er-1)A (20) 

(13) where A is the fixed increment of increase or decrease in 
decibels and 

+1 

-1 

if an up command was received, 
with probability Pu 
if a down command was received, 
with probability PD 

(21) 

which are thus related to the transition (conditional) probabil- 
ities of (9) by 

C(E,-l)  = 
Q k  = P+k + p-k . 

Now letting 
a 

k = l  

where Pu and Po are given by (17) and (18), which in turn 
Q ( W )  E &kWk-’ (14) depend on through (13)-(15)- 

Further combining (19), (20), and (21) yields 
be the moment generating function of each fj  (n), the moment 
generating function of the sum Y = E,”==, $(n) is 

[ Q ( w ) I N  = Q ~ w ’  + * + Q F w ~ ~ .  

Finally, to compute (ll),  we must sum all the coefficients of 
this polynomial for terms whose powers have integer value 
greater than 4. We denote this as 

Clearly, the probability of sending a command to increase 
power is 

Pu = 1 - Pd. 

Finally, as noted, errors can occur in the command link 
with probability y. Since this is independent of the above 
expressions, the overall probability that the command to 
increase power is received by the transmitter (correctly or 
incorrectly) is 

(16) 

pU = (1 - y)pu + ypd = (1 - ) - (1 - 2y)Pd (17) 

while the command to decrease power is received by the 
transmitter with probability 

PD = (1 - y)pd + y p u  = + (1 - 2y)Pd. (18) 

Thus, Pu and PD can be determined from (13), (14), and (15). 
Throughout the following, the erroneous command probability 
y will be taken equal to 0.05. 
As assumed above, power control commands are determined 

on a measurement interval comprising N contiguous M-ary 
transmissions, over which the average received signal energy 
is taken to be constant. While it would be desirable to take 

We assume that the propagation loss, including distance and 
fading induced losses, exhibits independent random increments 
(as a Brownian motion). This would lead to unbounded 
variance if the control were not present. On the other hand, for 
a mobile user who may travel rapidly over a variety of terrains 
and is subject to blockages, the independent increment model 
is justifiable. In any case, with the control present, the received 
energy’s variance is always finite. 

The nonlinear difference equation (22) is reminiscent of 
similar differential equations for continuous control systems 
utilizing “bang-bang’’ control for which closed-form solutions 
for the probability densities are known. However, with discrete 
time and the closed-loop delay (of two intervals), standard 
analyses do not apply. We have instead resorted to simulation 
with the independent-increment driving function (L,+1 - L,) 
taken to be Gaussian (in decibels) with standard deviation c, in 
accordance with the log-normal shadowing assumption. Note 
that the probabilities of up and down commands depend on the 
instantaneous through (13) where FC is a function of as 
is evident from (la) and the preceding definition of S, or (2a). 

The results are shown in Fig. 4 for multipath-fading with 
m = 1,2, and 4, as well as for the unfaded case. In each 
case, N = 6 and the standard deviation of the independent 
increments L, - L,-1 is taken to be 0.5 dB as is the energy 
increment A. 

Also, in each instance, the probability that an up-down 
command is received incorrectly is taken to be y = 0.05. The 
threshold 4 in (11) and (15) is set so as to achieve a mean 
E/No = 10 dB, since by varying 4 we may vary the mean 
of the distribution at will. It is noteworthy that the probability 
density of FINO does not differ much among the four cases. 

- 
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It might be argued that the fading cases apply to very fast 
fading since the measurements are made on N successive 
(not interleaved) orthogonal signals and are assumed to be 
independent. On the other hand, the unfaded case could also 
be taken to be that for very slow fading where the energy 
remains constant over the N successive signal periods of 
the measurement, provided the time constant for the power 
control loop is much shorter than the bandwidth of the fading 
process. In the following, we shall take the power-controlled 
&,/NO distribution in multipath to be that for fast fading in 
each case, which is a slightly pessimistic assumption since the 
corresponding standard deviation is somewhat larger than for 
the fixed energy case. 

VI. CODED ERROR PERFORMANCE WITH IDEAL 
INTERLEAVING AND POWER CONTROL-CONCLUSIONS 

Performance is determined by the relationship between 
E/No and T ,  through (6) and (7), which are both functions 
of 2. With integer metrics, 2 is given by (10); but with the 
added effect of power control, each transition probability Pk, 

- 

which depends on E ,  must be replaced by its average. 

(E/No)p(~/No)d(~/No), k = fl, * * * ,8 

(23) 

where Pk(F/No) is given by (sa) and (9b) with fc(y) and 
Fc(y) being functions of FINO, and p (  ) is the density func- 
tion of the power-controlled E/No,  determined by simulation 
as shown in Fig. 4 for one choice of power control threshold 4. 

Fig. 5 shows (as solid lines) the result of this calculation for 
the power-controlled case for three settings of power control 
thresholds 4 for each of the faded and unfaded cases. Also 
- shown as dotted lines are the corresponding values for fixed 
Eb/No, as taken from Fig. 3. From this it is seen that power 
control degrades performance by less than 0.2 dB in each case. 

It is also apparent from Fig. 5 that, M = 64, choosing a 
rate 1/3 code with a backoff factor Q = 0.8 dB, as suggested 
in Appendix I to achieve Pf < 0.01, the resulting abscissa 
value for ( ~ / T ) / Q  is 4 dB. Then adding IY to the corresponding 
ordinate values leads to mean &/No = 6.1 dB for the unfaded 
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case and mean Eb/No = 7.4, 7.8, and 8.1 dB for m = 1-,2-, 
4-path multipath. 

Comparing with performance for optimum unquantized 
metrics (solid lines of Fig. 3), it is seen that the combined 
effect of quantization and power control degraded performance 
by no more than 0.6 dB. It should be emphasized in conclusion 
that all performance estimates were for the case of ideal 
interleaving between the encoder and the orthogonal waveform 
generator [Fig. l(a)]. With finite interleaving, performance 
will generally degrade, particularly in fading which is slow 
relative to the interleaving span, but more rapid than the 
response time of the power control loop. 

An additional advantage of power control not discussed 
in this paper is that since each user’s power is individu- 
ally controlled, users which are disadvantaged by excessive 
multipath, as well as greater range or shadowing, can be 
given additional power to achieve a higher &/No ratio in 
excess of just what is required to equalize the received power 
for each user. Thus, power control affords the possibility of 
achieving a desired level of error probability for all users 
simply by varying EI,/No requirements. This increased &/No 
for selected users produces increased interference for other 
users, which ultimately limits the capacity of a given cell 
in terms of number of supportable users, as treated in [3]. 
However, when the total number of users is large, the number 
of disadvantaged users requiring higher &/No ratios will 
to some extent be offset by the number enjoying favorable 
propagation and hence lower &/No ratios. Thus, controlling 
power to achieve uniform error rates will on the average 
not severely impact average Eb/No and, consequently, the 
interference suffered by the collection of users which governs 
the overall user capacity. 

APPENDIX I 
GENERIC AND SPECIFIC PERFORMANCE OF BINARY 

CONVOLUTIONAL CODES ON MEMORYLESS CHANNELS 
No digital communication system is complete without for- 

ward error control (FEC) coding. With wideband spread spec- 
trum modulation, the coding redundancy is already present and 
consequently imposes no limitation on code rate. Moreover, 
FEC coding performance analysis is central to the design of the 
overall system; hence, a brief review of coding fundamentals 
is in order. 

For any symmetric memoryless channel, characterized by 
interference and fading which is independent from symbol to 
symbol, there is a large number of binary convolutional codes 
with constraint length K and rate T bits/symbol for which the 
L-bit frame5 error probability is upper bounded [7] by 

where the parameter TO is a function solely of the memoryless 
channel statistics given by 

7-0 = 1 - log,(l + 2)  ( A 4  

’The frame or packet is assumed to contain L - (IC - 1 )  bits followed by 
K - 1 “flush tail” zeros. 

where 
03 

2 = 1, dP(YIZ)P(Yl3 dY (A.3) 

with y being the channel (soft decision) output random variable 
and x = 0 or 1 and ?f its complement, being the binary channel 
inputs, with corresponding channel (conditional) transition 
probability density functions p(ylx) and p(yJZ). Any channel 
can be converted into a memoryless channel by providing 
a sufficiently large symbol interleaver after the encoder and 
prior to modulation, and a corresponding deinterleaver after 
demodulation but before the decoder. Unfortunately, these 
generic upper bounds are relatively loose. 

For a specific good convolutional code of constraint length 
K and rate r ,  a much tighter upper bound is provided by the 
expression [7] 

where T ( 2 )  is the code generating function and 2 is given 
by (A.3). Based on the convergence region of the generic 
bound (A.l) and other theoretical considerations, TO is often 
considered a practical limit on the code rate T of the binary 
convolutional code. Hence, for a specific code of rate T and 
constraint length K whose Pf is bounded in terms of its 
generating function T (  Z), we may express the bound (A.4) 
in terms of T O / T  by using the inverse of (A.2), 

2 = P T 0  - 1. 

Thus, in Fig. 6, for the two codes of constraint length K = 9 
and rates 1 / 2  and 1/3, whose shift register tap generators are, 
respectively, (753,561) and (557,663,711) in octal notation, 
the frame error probability bound is shown as function of 
a = T O / T  > 1 (in decibels). It appears that to achieve frame 
error rates below lo-’, which is the acceptable level for 
vocoded voice traffic, ct = 0.6 dB for the r = 1/2 code, 
and a = 0.8 dB for the T = 1/3 code6. 

Tighter bounds yet can be obtained, but these are more 
complex functions of all the memoryless channel transition 
probabilities and not just the TO parameter. 

APPENDIX I1 

CODES EMPLOYING INTERLEAVED-ORTHOGONAL SIGNALS 

Consider a convolutional code which directly selects an 
M-ary orthogonal signal. Let b bits be shifted into the register 
to select n successive M-ary signals, where both b and n are 
integers. Hence, the code has rate R = b/n bits/orthogonal 
signal and has 2’ branches emanating from each trellis node, 
with n orthogonal signals per branch. The generic L-bit frame 
error probability upper bound for a constraint length of bK 
bits is given by 

PERFORMANCE OF THE OPTIMUM M-ARY CONVOLUTIONAL 

6Even though it appears from this that the rate 1 /2  code is superior to the 
rate 1 /3  code for the same cy, performance depends on the Eb/No which is 
related to the TO parameter, as described above and shown in Fig. 3. 
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where 

RO = -logz( 1 + M - 1  2)  (B.2) 

and 2 is the Chernoff (Bhattacharyya) bound for orthogonal 
signals. Note that here both R and Ro can be greater than 1, 
while for M = 2, (B.2) reduces to (A.2). 

However, if M 2 2bK, the generic bound becomes the 
specific bound for the orthogonal convolutional code, since in 
this case each of the 2bK shift register tap combinations of 
the encoder can select a different orthogonal signal [4]. In this 
case, the bound (B.l) holds, but with7 

Ro = - log2 2 03-31 

or, equivalently, from (B.l) and (B.3) 

Fig. 7 is a plot of the frame error rate bound (B.1) as a 
function of 

a = Ro/R in decibels (B.4) 

for bK = 9 and8 b = 1,2 ,  and 3. It is noteworthy that the 
results are practically insensitive to the choice of b, but that 
to achieve Pf < 

70bviously, this is also the limit of (B.2) as M + w. In fact, (B. l )  and 
(B.3) are closely approximated even for M as small as 2 b K / 2 .  

8While only b = 1 and b = 3 are consistent with bK = 9, we also include 
6 = 2 in this comparison for completeness. A noninteger value of 6 could 
actually be implemented by puncturing a higher rate code. 

requires Q x 2 dB. 
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--+-- b=l biffsignal 

--C-- b=2 bitslsignal - b=3 bitslsignal 
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Fig. 7. Frame error rate as a function of Ro/R for K = 9 orthogonal 
convolutional codes. 

To compare with the binary interleaved case, it is necessary 
to compute 2 for orthogonal signals (which assumes the use 
of optimum likelihood function metria), 

where ya and Yb are the envelope-matched filter outputs for 
any two branches that are compared by the decoder, with 
pa(ya, yb) being the joint probability of the two outputs 
when ya corresponds to the correct decision, and conversely 
for Pb(ya, yb). Thus, for the m-component multipath fading 
channel', since 

y,"-l e--Y,/(l+s) m-1 

(m - l ) !  (1  + S)" (m - l ) !  
. Yb e-Yb pa(ya,yb) = ~ 

and pa (ya 1 Yb) is the same but with ya and yb interchanged, 

= [  l + s  Im. 
(1  + s / 2 y  

9See also [8] for the derivation of (B.5). 
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Fig. 8 
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. Performance of optimum convolutional codes for interleaved orthogonal signals on M-path multipath fading channel. 

Hence, from (B.3), we have that for orthogonal convolutional 
codes, 

l + s  Ro = -mlog, 

Hence, using (B.4), we have 

and, using the definition of S, 

From the parametric equations (B.7) and (B.8), Fb/No is 
obtained as a function of (m/R/(a))  and plotted in Fig. 8. 

From this it seems that it is possible to nearly optimize for 
both m = 2 and m = 4 multipath by choosing b = n = R = 1 
bit /signal = 1 bit/branch. To achieve Pf = lo-,, it is seen 
from Fig. 7 that CY = 2 dB. Then, for m = 4, (m/R)/cu = 
4 dB, while for m = 2, (m/R)/a = 1 dB, which implies from 
Fig. 8 that (Fb/NO)/a = 6.85 dB and 6.7 dB, respectively 
and, hence, with ideal metrics, 

- 
Eb/No = 8.85 dB for m = 4 

and 
- 
Eb/No = 8.7 dB for m = 2. 

These appear to be more than 1 dB greater than the values 
of i?b/No required for a binary code with interleaving as 
shown in Fig. 3. Thus, even though for a given K, the code 
is optimum for the signal set, interleaving is performed only 
to the level of orthogonal signals, while with an interleaved 
binary code, interleaving is performed on binary symbols 
of which there are log, M as many. This implies that the 
greater diversity provided by ideal interleaving at the binary 
symbol level improves performance significantly over ideal 
interleaving only of the orthogonal signals. 
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