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Simple Summary: The poor prognosis of advanced hepatocellular carcinoma (HCC) warrants
a personalized approach. Our objective was to assess the value of imaging phenomics for risk
stratification and prognostication of HCC. We performed a meta-analysis of manuscripts published
to January 2023 on MEDLINE and showed that imaging phenomics is an effective solution to predict
prognosis or treatment response in patients with HCC.

Abstract: Background: Primary liver cancer is the sixth most commonly diagnosed cancer and the
third leading cause of cancer death. Advances in phenomenal imaging are paving the way for
application in diagnosis and research. The poor prognosis of advanced HCC warrants a personalized
approach. The objective was to assess the value of imaging phenomics for risk stratification and
prognostication of HCC. Methods: We performed a meta-analysis of manuscripts published to
January 2023 on MEDLINE addressing the value of imaging phenomics for HCC risk stratification
and prognostication. Publication information for each were collected using a standardized data
extraction form. Results: Twenty-seven articles were analyzed. Our study shows the importance
of imaging phenomics in HCC MVI prediction. When the training and validation datasets were
analyzed separately by the random-effects model, in the training datasets, radiomics had good MVI
prediction (AUC of 0.81 (95% CI 0.76–0.86)). Similar results were found in the validation datasets
(AUC of 0.79 (95% CI 0.72–0.85)). Using the fixed effects model, the mean AUC of all datasets
was 0.80 (95% CI 0.76–0.84). Conclusions: Imaging phenomics is an effective solution to predict
microvascular invasion risk, prognosis, and treatment response in patients with HCC.

Keywords: hepatocellular carcinoma; imaging phenomics; radiomics; risk stratification and prognostication

1. Introduction

Primary liver cancer is the sixth most commonly diagnosed cancer and the third
leading cause of cancer death worldwide in 2020, with approximately 906,000 new cases
and 830,000 deaths [1]. Hepatocellular carcinoma (HCC) accounts for 75%–85% of cases [1],
and incidence rates continue to increase rapidly, by about 3% per year in women and 4%
per year in men [2]. It is the fourth most common malignancy and the third leading cause
of tumor-related death in China [3]. Due to its highly aggressive nature, HCC is one of the
deadliest primary cancers, with a 5-year survival rate of 10% or less [4].

The poor prognosis of advanced HCC warrants a personalized approach that advances
in the discovery of new surrogate biomarkers. Therefore, there is an unmet need to
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develop novel, reliable tools that can accurately diagnose tumors at an early stage, predict
patient prognosis, and dynamically monitor treatment response, in order to improve the
clinical outcome of HCC. The tools should also be available and affordable for patients
and the health care system. The development of imaging phenomics as a surrogate for
genomic and transcriptomic analysis might be one of the most appropriate solutions with
minimal new investment. This could revolutionize HCC diagnosis, patient stratification,
and personalized treatment.

In this regard, the objective of this article was to assess the value of imaging phenomics
for microvascular invasion risk stratification and prognostication of HCC.

2. Materials and Methods

We performed a meta-analysis of studies on the prognostic value of imaging phe-
nomics in microvascular invasion risk stratification and prognostication of hepatocellular
carcinoma published to January 2023. This meta-analysis follows Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 recommendations and is
registered under the number CRD42023386763 (PROSPERO).

2.1. Search Strategy

On 1 January 2023, the PubMed (MEDLINE) database was queried to identify po-
tentially relevant articles using the below search strategy and inclusion/exclusion criteria
(Table 1). We chose to focus the study on this database because of the many high-quality ar-
ticles referenced and easily accessible. Two reviewers screened each record and each report.
We also screened the reference lists of the included studies, and relevant systematic reviews
and meta-analyses. All of the records from these searches were imported via EndNote into
Rayyan (a free web application for screening abstracts) to proceed with the screening.

Table 1. Search terms.

Search keywords

(imaging data extraction OR radiomics AND hepatocellular carcinoma
AND microvascular invasion) NOT ([animals]/lim NOT

[humans]/lim) NOT ([Conference Abstract]/lim OR [Letter]/lim OR
[Note]/lim OR [Editorial]/lim)

Period To January 2023

2.2. Identification of Relevant Published Studies

We identified all studies that assessed the prognostic value of imaging phenomics in
hepatocellular carcinoma. Studies were eligible for inclusion if they (1) were retrospective or
prospective; (2) assessed imaging phenomics; (3) reported pathological analysis of tumors
including MVI information; and (4) reported the association with cancer prognosis or
response to treatment. However, it was restricted to HCC, and no other disease indications
were investigated. In addition, the following exclusion criteria were applied: only abstracts
available, studies not in the English language, non-human studies, diagnostic studies,
editorial style reviews, abstracts and posters, conference papers, case reports, and studies
with high-risk populations susceptible to having HCC but without overt HCC.

Two reviewers examined each title, keywords, and abstract and then selected full-text
articles according to the pre-specified eligibility criteria.

2.3. Data Extraction

A predesigned data collection form was prepared to extract the relevant information
from the selected studies including study location (defined as Eastern Asia, Western Europe,
North America, and North Africa; location of international RCTs was determined according
to the primary investigator); number of involved centers (either single or multicenter);
presence of a university-affiliated center; funding source (profit, non-profit, or mixed);
date of journal publication; type of journal (i.e., radiological or clinical), median journal
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impact factor in the 2 years before publication, the first author’s name, study objectives
(including essential information such as the aim of the study and the characteristics of
the study population), sample size, and performance. Furthermore, for each study, the
method (e.g., tissue type), directions of the associations, and, when possible, the reported
measures of associations (e.g., correlation analysis, hazard ratio (HR), odds ratio (OR),
receiver operating characteristics (ROC), and confidence interval (CI) were reported. When
applicable, effect sizes were included. Data extraction was performed independently by
two seniors. To control its quality, the results were compared, and disagreements were
resolved by a third senior.

2.4. Outcome Assessment and Statistical Methods

Regarding the possible heterogeneity of the studies, we sought to pool the results using
a random-effects meta-analysis model. However, it was not feasible to pool all the data due
to limited data, differences in exposure and outcomes, and input parameters. Finally, we
selected studies from imaging phenotyping subgroups that disclosed the univariate impact
of patient outcome, MVI (microvascular invasion), with a 95% CI, and organized forest
plots to quantify the importance of imaging phenomics in HCC MVI prediction.

Meta-analysis was carried out using the methodology part of Review Manager 5.3,
Cochrane’s meta-analysis software [5], and R statistical software with package Metafor [6].
The subgroup statistical analysis is summarized in the below steps:

2.4.1. Assessment of Risk of Bias

Since the included studies were observational cohort studies of prognostic factors, the
QUIPS (Quality in Prognosis Studies) tool was used [7]. It allows for quality assessment in
six domains: study participation, study attrition, prognostic factor measurement, outcome
measurement, adjustment for other prognostic factors, and statistical analysis/reporting.

2.4.2. Data Synthesis and Analysis

The outcome measure for the meta-analysis was incident MVI in individuals compared
to non-MVI. The effect measures reported in the included studies were area under the
curve (AUC). The results were pooled, and an overall estimate of AUC was obtained
using a mixed-effects model. It is necessary to consider the study heterogeneity during
data extraction and the statistical heterogeneity measured by the I2 statistic. Publication
bias was evaluated using the visual inspection of funnel plots. The prognostic factor
with sufficient data and homogeneity between studies to carry out the meta-analysis was
radiomics signatures extracted from the liver after the injection of a contrast agent.

2.4.3. Assessment of Publication Bias

Data preparation: For all of the presented studies, the following parameters were in-
cluded in the analysis to assess the potential bias (author, year, country). For the parameter
of interest: (1) the estimation of the effect AUC; (2) sample size; and (3) CI were integrated
into the raw data. Since the random effect modeling of the parameter of interest requires
the standard error, this was computed from the equation below:

CIupper = AUC + t*SE

where CIupper is retrieved from the relevant publication and t = 1.92. In each study, training
and independent validation cohorts were separated and considered different, but shared
the same study parameters (author, year, country) for exploring the potential source of
publication bias.

2.4.4. Modeling

Mixed-effects modeling: Differences in the methods and sample characteristics may
introduce variability (“heterogeneity”) among the true effects. One way to model the
heterogeneity is to treat it as purely random. This leads to the random-effects model, given
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by θi = µ + ui, where ui ∼ N (0, τ2). Therefore, the true effects are assumed to be normally
distributed with mean µ and variance τ2. The goal is then to estimate µ, the average true
effect, and τ2, the amount of heterogeneity among the true effects. Alternatively, we can
include one or more moderators (study-level variables such as author, year, and country)
in the model that may account for at least part of the heterogeneity in the true effects. This
leads to the mixed-effects model, where the analysis aims to examine to what extent the
moderators included in the model influence the size of the average true effect.

3. Results

We identified 362 articles via a PubMed database search. A summary of the study
selection process is summarized in Figure 1. Finally, 36 studies were included following
the above inclusion criteria, addressed imaging phenomics, and HCC prognosis to predict
the prognosis and response to the treatment of HCC.

Figure 1. Flow diagram of the study selection process.

3.1. Description of Radiomics Prediction

For each eligible study, a detailed description of radiomics prediction of patient
outcome (Tables 2 and 3) and its prediction of underlying pathology (Tables 4–6) was
reported. It included the study objectives, sample size (both on the training and validation
sets), and their performance.
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Table 2. Performance of radiomics approaches (using CT features to predict patient outcome).

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set) Performance (Validation Set)
[95%CI] [95%CI]

Wei et al. 2021 [8]
To identify a new radiomics signature using imaging

phenotypes and clinical variables for risk prediction of
OS after stereotactic body radiation therapy.

167 data were split into training
(75% of 4-folds), validation

(25% of 4-folds) and testing fold (1-fold)

c-indices nested cross-validation scheme:
- radiomics: 0.579 (95%CI: 0.544–0.621)

- clinical: 0.629 (95%CI: 0.601–0.643)
- image input: 0.581 (95%CI: 0.553–0.613)

- combined models: 0.650 (95%CI: 0.635–0.683)

Shan et al. 2019 [9] To predict early recurrence after surgical or ablation. 109 47
PT-RO: AUC 0.80 [0.72, 0.89] PT-RO: AUC 0.79 [0.66, 0.92]
T-RO: AUC 0.82 [0.74, 0.90] T-RO: AUC 0.62 [0.46, 0.79]
PT-E: AUC 0.64 [0.56, 0.72] PT-E: AUC 0.61 [0.47, 0.74]

Yuan et al. 2019 [10] To predict early recurrence after curative ablation. 129 55
Portal venous phase

model + clinicopathological factors.
Portal venous phase

model + clinicopathological factors.
C-index: 0.792 [0.727–0.857] C-index: 0.755 [0.651–0.860]

Guo et al. 2019 [11] To predict recurrence of HCC after liver transplantation. 93 40 C-index of 0.785 [0.674–0.895] C-index of 0.789 [0.620–0.957]

Ning et al. 2019 [12] To predict early recurrence
(at least 1-year FU). 225 100 AUC: 0.818 [0.760–0.865] AUC: 0.719 [0.621–0.805]

Xu et al. 2019 [13] To predict PFS and OS. 495 - OR: 2.34
Median PFS: 49.5 vs. 12.9 months; median OS: 76.3 vs. 47.3 months

Cai et al. 2019 [14] To predict post-hepatectomy liver failure. 80 32 AUC: 0.822 [0.726–0.917] AUC: 0.762 [0.576–0.948]

Akai et al. 2018 [15] To predict random survival forest. 127 -
Predicted individual risk (P = 1.1 × 10−4 for DFS, 4.8 × 10−7 for OS).

The only unfavorable prognostic factors were high predicted risk (HR = 1.06 per 1%
increase, P = 8.4 × 10−8) and vascular invasion (HR = 1.74, P = 0.039).

Zheng et al. 2018 [16] To predict postoperative recurrence and survival. 212 107 HR: 2.387 [1.321–4.310] HR: 3.236 [1.416–7.407]

Kim et al. 2018 [17] To predict survival with
TACE (pretreatment CT). 88 - The combined model was a better predictor of survival (HR 19.88; p < 0.0001).

Zhou et al. 2017 [18] To predict the early recurrence (≤1 year) of HCC. 215 No

AUC of 0.82 [0.76–0.87], sensitivity of
0.79, and specificity of 0.70. NA

The AUC of the combined model was
0.84 [0.78–0.88], with the sensitivity

being 0.82 and specificity 0.71.

Yang et al. 2022 [19] To predict MVI status. 198 85
AUC of 0.909, accuracy of 96.47%, sensitivity of 90.91%, specificity of 97.30%,

positive predictive value of 83.33%, and negative predictive value of 98.63% in the
testing cohort.

Liu et al. 2021 [20] To estimate MVI preoperatively. 216 93 AUC: 0.98, Accuracy: 0.95, Sensitivity
0.91, Specificity: 0.97

AUC: 0.82, Accuracy: 0.68, Sensitivity
0.96, Specificity: 0.56

Xu et al. 2022 [21]
To develop a novel nomogram to predict MVI and
patients' prognosis based on radiomic features of

contrast-enhanced CT.
295 126 AUC of 0.793 (0.714–0.874) AUC of 0.750 (0.666–0.834)

Liu et al. 2021 [22] To investigate the predictive value of computed
tomography radiomics for MVI in solitary HCC ≤5 cm. 124 61

The radiomics model exhibited a better correction and identification ability in the
training and validation groups [area under the curve: 0.72 (95% confidence interval:

0.58–0.86) and 0.74 (95% confidence interval: 0.66–0.83), respectively].

Zhao et al. 2022 [23]
To investigate the influence of different region of interest

(ROI) sizes on CT-based radiomics model for MVI
prediction in HCC

In the training set, the sensitivity, specificity, and area under the curve (AUC) of OROI were 0.759, 0.806, and 0.855, respectively.
The AUC values of Plus2 (0.979) and Plus3 (0.954) were higher than that of OROI. The AUC values of Plus1 (0.802), Plus4 (0.792),
and Plus5 (0.774) were not significantly different from those of OROI. In the validation set, the sensitivity, specificity, and AUC

value of OROI were 0.640, 0.630, and 0.664, respectively. The AUC value of Plus3 was 0.903, which was higher than that of OROI.
The AUC values of Plus1 (0.679), Plus2 (0.536), Plus4 (0.708), and Plus5 (0.757) were not significantly different from that of OROI

(P > 0.05).
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Table 2. Cont.

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set) Performance (Validation Set)
[95%CI] [95%CI]

Cozzi et al. 2016 [24] To predict local response and OS treated with VMRT 138 No

Model 1 energy p < 0.05,
AUC 0.66 [0.56–0.77]

NAModel-2 GLNU p < 0.05,
AUC 0.64 [0.53–0.75]

After elastic net regularization,
with only compacity significant to

Cox model fitting, AUC = 0.80
Yi-Quan et al. 2021 [25] To predict MVI preoperatively 110 110 0.980 (CI 0.959–0.993) 0.906 (CI 0.821–0.960)

PT-RO = peritumoral radiomics; T-RO = tumoral radiomics; PT-E = peritumoral enhancement; AUC = area under the curve; OR = odd ratio; PFS=progression free survival;
OS = overall survival; DFS = disease free survival; HR = hazard ratio, VMRT = Volumetric-modulated arc therapy.

Table 3. Performance of radiomics approaches (using MR features to predict patient outcome).

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set)
[95%CI]

Performance (Validation Set)
[95%CI]

Zhang et al. 2019 [26] To predict early recurrence
Gadoxetic acid-enhanced MR (1-year follow-up). 108 47 AUC: 0.844 [0.769–0.919]

Chen et al. 2022 [27]
To develop and validate radiomics scores and a nomogram of
gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid
enhanced MRI for preoperative prediction of MVI in sHCC.

94 100

The AUC of HBP was 0.979, 0.970, and 0.803, respectively, and the
AUC of DWI was 0.971, 0.816, and 0.801 (p < 0.05), respectively.

Good calibration and discrimination of the radiomics and clinical
combined nomogram model were exhibited in the testing and two
external validation cohorts (C-index of HBP and DWI were 0.971,

0.912, 0.808, and 0.970, 0.843, 0.869, respectively).

Chen et al. 2021 [28]

To determine the best model for predicting MVI of HCC using
conventional gadolinium-ethoxybenzyl-diethylenetriamine

pentaacetic acid (gadoxetate disodium)-enhanced MRI
features and radiomics signatures with machine learning.

188 81
ADC value, non-smooth tumor margin, and 20-minute T1

relaxation time showed diagnostic accuracy with AUC values of
0.850, 0.847, and 0.846, respectively (p < 0.05 for all).

Kim et al. 2019 [29] To predict the early and late recurrence of single HCC
gadoextic acid-enhanced MR (<2 years vs. >2 years). 128 39

Combined clinicopathologic-radiomic model with 3-mm border
extension showed highest c-index: 0.716 [0.627–0.799];

clinicopathologic model: 0.696 [0.557–0.799].
Hui et al. 2018 [30] To predict early recurrence (730 days). 50 - 84% accuracy

Chong et al. 2021 [31] To predict preoperative MVI and RFS. 230 99 C-indices of 0.700 (0.638–0.763)/C-indices of 0.673 (0.570–0.776)
AUCs: 0.920 (0.861–0.979)

AUC = area under the curve; CI = confidence interval. MVI = microvascular invasion. RFS = recurrence-free survival.
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Table 4. Performance of radiomics approaches (CT underlying pathology).

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set)
[95%CI]

Performance (Validation Set)
[95%CI]

Liao et al. 2019 [32] To associate with CD8+ T cells 100 42 AUC 0.751 [0.656–0.846] AUC 0.705 [0.547–0.863]

Ni et al. 2019 [33] To diagnose MVI. 148 58 The AUCs of the 21 methods ranged from
0.63 to 0.88.

Mokrane et al. 2019 [34] To diagnose HCC in cirrhotic patients
with indeterminate liver nodules. 142 36 AUC: 0.70 [0.61–0.80] AUC: 0.66 [0.64–0.84]

Xu et al. 2019 [13] To associate with MVI. 495 - AUC: 0.909 in training/validation. AUC: 0.889 (test setting).
Bakr et al. 2017 [35] To associate with MVI. 28 - Slight to moderate agreement (Cohen's kappa range: 0.03 to 0.59)
Ma et al. 2019 [36] To associate with MVI. 110 47 C-indices: 0.827 C-indices: 0.820

Peng et al. 2018 [37] To associate with MVI 184 120 C-index 0.846 [0.787–0.905] C-index 0.844 [0.77–0.915]
MVI = microvascular invasion; AUC = area under the curve; CI = confidence interval.

Table 5. Performance of radiomics approaches (MR underlying pathology).

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set)
[95%CI]

Performance (Validation set)
[95%CI]

Gao et al. 2019 [38] To associate with pathological grading
(non-contrast MR). 125 45 AUC: 0.909 AUC: 0.800

Wu et al. 2019 [39] To differentiate HCC and hepatic
hemangioma (non-contrast MR). 295 74 AUC: 0.86 AUC: 0.89

Chen et al. 2019 [40] To associate with immuno-score in HCC
(with Gd-EOB-DTPA MR). 150 57

The combined radiomics-based clinical
model AUC: 0.926 [0.884–0.967]

The combined radiomics model AUC:
0.904 [0·855–0·953].

Confirmed

Wu et al. 2019 [41] To associate the grade of HCC with
non-contrast-enhanced MR. 125 45

Clinical factor AUC: 0.600
Radiomics signatures AUC: 0.742

the combined clinical and radiomics signature AUC: 0.800

Gd-EOB-DTPA = gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid; AUC = area under the curve; CI = confidence interval.
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Table 6. Performance of radiomics approaches (US underlying pathology).

Author/Year Study Objectives Training Set
Sample Size

Validation Set
Sample Size

Performance (Training Set)
[95%CI]

Performance (Validation set)
[95%CI]

Hu et al. 2019 [42] To associate with MVI in HCC
(contrast-enhanced ultrasound). 341 141 AUC: 0.731 [0.647, 0.815]

Yao et al. 2018 [43] To diagnose HCC and predict PD-1,
Ki67, and MVI. 177

AUC: 0.94 [0.88-0.98] for benign and malignant classification, AUC: 0.97 [0.93–0.99]
for malignant subtyping, AUC: 0.97 [0.89–0.98] for PD-1 prediction, AUC: 0.94
[0.87–0.97] for Ki-67 prediction, and AUC: 0.98 [0.93–0.99] for MVI prediction.

MVI = microvascular invasion; AUC = area under the curve; CI = confidence interval.
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3.2. Subgroup Analysis on Radiomics Prediction of MVI

MVI is defined as the presence of micrometastatic HCC emboli within the vessels of
the liver, and is a critical determinant of early recurrence and survival [44]. According to
bias evaluation, seven studies were extracted from imaging phenotyping groups that had
disclosed the univariate impact of MVI measured by histopathology. The evaluation of bias
was performed. For mixed-effects models (i.e., models with cohort type as moderator), the
plot shows the individual residual post modeling on the x-axis against the corresponding
standard errors (Figure 2A) and sampling variance or standard error (Figure 2A). A vertical
line indicates the estimate based on the model. A pseudo confidence interval region was
drawn around this value with bounds equal to ±1.96 SE, where SE is the standard error
value from the y-axis (assuming level = 95). The two graphics clearly showed a potential
study bias (non-symmetrical funnel plots) that would violate assumptions for fixed and
random effect modeling strategies. Taking this into consideration, a mixed effect modeling
was more appropriate.
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Figure 2. Funnel plots: Individual residual post-modeling on the x-axis against the corresponding
standard errors (y-axis, in decreasing order) (A) and sampling variance or standard error (B). NB. In
the absence of publication bias and heterogeneity, the points form a funnel shape, with the majority
of the points falling inside of the pseudo-confidence region with bounds θ ± 1.96SE, where θ is the
estimated effect or outcome based on the fixed-effects model and SE is the standard error value from
the y-axis.

According to the influence diagnostics, Figure 3A shows a plot of the externally
standardized residuals as a function of each of the studies. Highlighted is the potential
influence point. Figure 3B shows a plot of the leave-one-out estimates of the amount
of heterogeneity (a) and leave-one-out values of the test statistics for heterogeneity (a)
as a function of each of the studies. Highlighted in red is the potential influence point
(study). The point-of-influence analysis shows that there is one study (Yao et al. 2018) that
is potentially an outlier; however, the study needs to be looked at more closely to analyze
the characteristics of the cohort and see if we do have a subgroup of patients, and whether
it is potentially interesting to represent them with more studies specifically selected with
the characteristics of this cohort.

NB. The presence of outliers is highlighted in each exploratory analysis graphic. Re-
moval of these outlier studies would reduce the amount of heterogeneity and increase the
precision of the estimated average outcome. However, before removing those studies, an
investigation is needed to determine the reason for the unusual results. Outliers and influ-
ential cases can reveal patterns that may lead to new insights about the study characteristics
that could act as potential moderators.

Finally, Figure 4 shows QQ (quantile–quantile) plots for the effect normality assumption.
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Figure 3. Plot of the influence diagnostics. (A) Plot of the externally standardized residuals as a
function of each of the studies. Potential influence point. (B) Plot of the leave-one-out estimates of
the amount of heterogeneity (a) and leave-one-out values of the test statistics for heterogeneity (b) as
a function of each of the studies (optimal value = 100). Potential influence point.

Figure 4. QQ plots for the effect normality assumption (mixed-effects models).

NB. Normal QQ are useful in meta-analyses to check various aspects and assumptions
of the data. Ideally, the points in the plot should fall on a diagonal line with a slope of 1,
going through the (0,0) point. Deviations from this may indicate that (1) the (residual)
heterogeneity in the actual effects is non-normally distributed, (2) there are subgroups
in the data (that are not adequately modeled by any moderators already included in the
model), and/or (3) that publication bias is present.

Forest plots were demonstrated (Figure 5) to quantify the importance of imaging
phenomics in HCC MVI prediction. When the training and validation datasets were
analyzed separately by the random-effects model, it showed that radiomics had good MVI
prediction in the training datasets with a mean AUC of 0.81 (95% CI 0.76–0.86). Similar
results were found in the validation datasets, having a mean AUC of 0.79 (95% CI 0.72–0.85).
Using the fixed effects model, the mean AUC of all datasets was 0.80 (95% CI 0.76–0.84).
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Figure 5. Radiomics prediction of microvascular invasion using mixed-effects modeling [13,33,35–37,42,43].

4. Discussion

Our study shows the importance of imaging phenomics in HCC MVI prediction.
When the training and validation datasets were analyzed separately by the random
effects model, in the training datasets, radiomics had good MVI prediction (AUC of
(0.81 95% CI 0.76–0.86)). Similar results were found in the validation datasets (AUC of
0.79 (95% CI 0.72–0.85)). Using the fixed effects model, the mean AUC of all datasets was
0.80 (95% CI 0.76–0.84). In the literature, radiomics has produced encouraging results
associated with underlying histopathology [13,32–37,40–43] or accurately predicted patient
clinical outcome [9–18,24,26,30]. Although this method is still in its infancy, its unique
ability to examine a tumor, its surrounding tissue, and liver parenchyma as a whole allows
for an intra-tumoral heterogeneity and extra-tumor microenvironment to be observed,
which permits radiology to move beyond the tumor size to other “hidden” features to
be discerned with quantitative approaches. Many radiomics studies have focused on the
relationship between imaging features and clinical characteristics including recurrence,
treatment response after therapeutic agents, and the survival of people with HCC. Shan and
colleagues performed feature analysis on the tumor lesion for tumoral radiomics (T-RO)
and the peritumoral area for peritumoral radiomics (PT-RO) with pretreatment multiphase
liver CT images. They found that the CT-based PT-RO model effectively predicted the early
recurrence of HCC compared with the T-RO model and the conventional imaging feature
peritumoral enhancement [9]. Other radiomics features based on CT texture have also been
reported, suggesting the value of radiomics as a surrogate to predict the patients’ early
recurrence and survival after curative therapy including ablation, volumetric modulated
arc therapy, surgical resection, and liver transplantation [9–16,18]. For the intermediate
stage, a study of 88 patients treated with TACE found that the radiomics approach com-
bined with clinical characteristics could effectively predict the patients’ survival (HR of
19.88, p < 0.0001) [17]. These findings might be explained with CT radiomics studies,
which demonstrated the accurate diagnosis of the presence of MVI on the pathologic
specimen [13,33,35–37,45].

Recently, Liujun et al. showed, in a meta-analysis of twenty-two studies with 4129 patients,
that radiomics was a promising noninvasive method that has high preoperative diagnostic
performance for MVI status [46]. The pooled sensitivity, specificity, and area under the
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receiver AUC were 84% (95% CI: 81, 87), 83% (95% CI: 78, 87), and 0.90 (95% CI: 0.87, 0.92).
These results are consistent with Lv et al. [45] and Zhong et al. [47], who found in a system-
atic review and meta-analysis an AUC of 0.85 (95% CI 0.82–0.89), 0.87 (95% CI 0.83–0.92),
and 0.74 (95% CI 0.67–0.80) for the CT, MR, and ultrasound radiomics models, respectively.

Radiomics scores that could predict the infiltration of tumor-infiltrating CD8+ T cells
were developed (AUC: training set 0.75, 95% [CI] 0.66–0.85; validation set 0.71, 95% [CI]
0.55–0.86) [32], which might be useful in identifying potential people with HCC who
can benefit from immunotherapies, although the score should be further validated in
large-scale prospective cohorts. The first radio-genomic study of HCC performed in
2007 [48] combined 28 imaging features and reconstructed gene models, representing
78% of the global gene expression profiles, revealing cell proliferation, liver synthetic
function, and patient prognosis. Correlating specific imaging features with underlying
genotypes might allow imaging to be used as a surrogate for expression profiling or genome
sequencing when tissue samples are unavailable. Another study showed that some imaging
traits (infiltrative pattern and macrovascular invasion) were associated with proliferative
signatures and the CK19 signature [49].

Compared to CT imaging, the signal intensity of MRI is not easy to digitize or stan-
dardized for radiomic analyses. Nevertheless, several MRI-based studies are emerging, and
features derived from non-contrast MRI sequences could differentiate HCC pathological
grading [38,39,41]. In addition, a strong association between imaging features and immune
score on hepatobiliary phase imaging (combined radiomics-based clinical model, AUC,
0.93 (95% [CI] 0.88–0.97)) was reported, and both the validation cohort and calibration
curves showed good agreement [40]. However, MR imaging is more vulnerable to imaging
artifacts such as motion and magnetic susceptibility, and it is challenging in liver disease.
Thus, more efforts are needed to improve the reproducibility between different scanners
and repeatability, even with the same scanner.

Furthermore, radiomics feature analysis is a quantitative method that could assess
the tumor heterogeneity or liver parenchymal changes by exploring the distribution and
connection of pixel gray levels in the CT image or signal in the MRI. The conventional
radiomics workflow involves imaging acquisition, delineation, and segmentation of the
region of interest, the extraction of imaging features, mining data, and developing models
to associate with the underlying pathology or clinical outcomes. However, due to the
technical steps, there are remaining issues for clinical use and some common limitations
such as intra-observer and inter-observer variability, quality influenced by slice thickness
and machine acquisition parameters, some studies using only arterial phase and some
using multiphase imaging, single-center retrospective study, small sample size, or biases
related to the treatment method. As listed, first, variability is a critical issue related to
many factors such as the imaging acquisition protocol, method of segmentation, method
for extracting imaging features, and acquisition of clinical and pathological data. Moreover,
the intra- and inter-observer variability when radiologists delineate the liver lesion remains
an unresolved issue, as it is still challenging and time-consuming due to the indistinct
border of the tumors. Therefore, standardization and automatic segmentation in radiomics
are the keys if these methods gain broad adoption in clinical use. Second, many radiomic
studies are retrospective, with a small sample size. Therefore, it is important to have
independent validation with existing cohorts using larger datasets and “big data”, or
prospective validation studies with a pre-defined cut-off and statistical power. Third,
ideally, a prospective study design is preferable with harmonized treatment methods and
was conducted in a multicentral setting, which helps patient recruitment but at the cost of
increased protocols and data processing variability.

The prediction interval and distribution (0.80 (95% CI 0.76–0.84)) derived from the
analysis were acceptable in our study. However, our study was limited to the MEDLINE
database, which may be a limitation, although it offers many quality articles.

HCC demonstrates a complex genetic and epigenetic landscape. Therefore, drug
targeting a single aberrant pathway might not be adequate to regress tumor growth. Even
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targeting multiple pathways like sorafenib, a multikinase inhibitor of Raf, VEGFR, and
platelet-derived growth factor receptor-β, only increased the median overall survival by two
months in advanced HCC [50]. It took nearly ten years until the portfolio of effective drugs
finally expanded to cancer immunotherapy, and recent studies such as the positive phase III
study (IMbrave150) with the combination of atezolizumab (anti-PD-L1) and bevacizumab
(anti-angiogenesis) open a new era in the treatment of this deadly disease [51,52]. Radiomic
technology could play a key role and provide insights into a vast number of potential
targets for molecular targeted therapy, which helps to understand tumor biology and assist
clinicians in selecting the right therapeutic agents and evaluating the treatment response
earlier than the “wait and see if it shrinks” approach currently employed.

In turn, this underscores the urgent need for assembling large, curated clinical and
image data registries and robust AI methods that will reliably predict the diagnosis and
outcome to guide therapy based on specific HCC subtypes.

5. Conclusions

Imaging phenomics is an effective solution to predict microvascular invasion risk,
prognosis, and treatment response in patients with HCC.
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