Performance of Random Sampling for Computing
Low-rank Approximations of a Dense Matrix on GPUs

Théo Mary
Université de Toulouse,
UPS-IRIT, France

Piotr Luszczek
University of Tennessee,
Knoxville, Tennessee, U.S.A.

ABSTRACT

A low-rank matrix approximation plays an important role
in many applications. To compute a low-rank approxima-
tion of a dense matrix, a common approach uses the QR
factorization with column pivoting (QRCP). Though the re-
liability and efficiency of QRCP have been demonstrated,
this deterministic approach requires costly communication
at each step of the factorization. Since such communication
is becoming increasingly expensive on modern computers,
an alternative approach based on random sampling, which
can be implemented using communication-optimal kernels,
is becoming attractive. To study its potential, in this paper,
we compare the performance of random sampling with that
of QRCP on an NVIDIA Kepler GPU. Our performance re-
sults demonstrate that random sampling can be up to 13
times faster than the deterministic approach for computing
the approximation of the same accuracy. We also present the
parallel scaling of the random sampling over multiple GPUs,
showing a speedup of 3.8 over three Kepler GPUs. These
results demonstrate the potential of the random sampling as
an excellent computational tool for many applications, and
its potential is likely to grow on computers with a higher
communication cost.

1. INTRODUCTION

A low-rank matrix approximation plays an important role
in a number of areas of study which include theoretical com-
puter science, numerical linear algebra, statistics, applied
mathematics, data analysis, machine learning, and physical
and biological sciences. In many cases, by taking advan-
tages of their low-rank properties, we can reduce the com-
putational and storage requirements of manipulating such
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matrices, or reduce the complexity of analyzing the given
dataset. One standard algorithm to extract a low-rank ap-
proximation of a dense matrix A is based on the QR factor-
ization with column pivoting (QRCP) [3]. After k steps of
QRCP, we obtain a rank-k approximation of A:

AP =~ Q R, 1
m X n mxk kxn 1)

where @ has orthonormal columns, R is an upper triangular
matrix, and the pivots P are selected to reveal the numerical
rank of A. Though QRCP has been shown to be efficient
and reliable in practice, this deterministic approach requires
significant communication at each step of the factorization,
where the communication includes the synchronization and
the data transfer between the parallel processing units, as
well as the data movement through the local memory hierar-
chy. In comparison to arithmetic operations, such commu-
nication is becoming increasingly expensive on the modern
computers and even more so on the emerging computers —
clearly, it is critical to consider this hardware trend when
designing high-performance software.

To address these recent hardware trends, the algorithms
based on random sampling have been gaining attention [11,
18, 14, 8, 12]. These algorithms first sample a subspace
which approximates the range of the matrix A, and then ex-
tract the approximation of A from a low-rank approximation
of the sampled matrix. The main reason for the increasing
attention is that the sampled matrix can be computed in a
communication-optimal fashion. In addition, the dimension
of the sampled matrix is typically much smaller than the
dimension of A and computing its low-rank approximation,
even using a standard deterministic algorithm, requires only
marginal computational and communication cost. As a re-
sult, compared to the deterministic approach, random sam-
pling may better utilize the modern architecture, especially
of a large-scale parallel computers with a high communica-
tion cost.

In this paper, we study the potential of the random sam-
pling by first comparing its performance with that of QRCP
on a GPU and then studying its parallel scaling on shared-
memory multicore CPUs with multiple GPUs. Our perfor-
mance results demonstrate that the random sampling can
be up to 12.8 times faster than QRCP with one GPU, while



Notation | Description
m X n | dimension of of the coefficient matrix A
k | target rank of A
p | oversampling dimension
£ | total sampling dimension (i.e. £ =k + p)
q | number of power iterations
ng | number of available GPUs
A(i) | submatrix of A distributed on the i-th GPU
Aj and Aj,.j, | j-th and ji-th through j2-th columns of A

Figure 1: Notations used in this paper.

obtaining good parallel scaling over the multiple GPUs.

Main contributions

We outline the main contributions of this paper.

e We investigate the potential of random sampling on
a GPU, namely when and how large performance im-
provement can be obtained over the traditional deter-
ministic QRCP. Thus, this paper provides the insights
on when the random sampling may be beneficial for
the users.

e Although the algorithm is not novel, it is gaining atten-
tion to address many challenges on the emerging com-
puters, and, to the best of our knowledge, we haven’t
found any detailed implementation or performance re-
port of random sampling. Hence, our primary focus is
to improve the robustness of the algorithm in practice
(e.g., integrating power iterations and adaptive step
sizes into the adaptive scheme) such that it can be
used in many applications.

e Therefore, the paper describes our implementation in
details (e.g., orthogonalization kernels), and although
GPU kernel details were outside of the scope for this
paper, the GPU kernels developed for these studies are
state-of-the-art and will eventually be released as part
of the numerical linear algebra package MAGMA®.

The rest of the paper is organized as follows: first, in Sec-
tions 2 and 3, we review the QRCP and random sampling
algorithms, respectively. Then, in Section 4, we describe our
GPU implementations of the algorithms and its extension to
utilize multiple GPUs. Next, in Section 5, we provide the
performance model of the algorithms to discuss the poten-
tial of the algorithms in more general contexts. Finally, after
discussing the experimental setups in Section 6, we present
our numerical results, GPU kernel performance, and the per-
formance of the random sampling with static and adaptive
sampling sizes in Sections 7 through 10. We provide our fi-
nal remarks in Section 11. Figure 1 lists the notations that
will be used in the rest of this paper.

2. QR WITH COLUMN PIVOTING

To compute the low-rank approximation (1), the most-
widely used algorithms are the variants of the QR factoriza-
tion with column pivoting (QRCP) [3]. In this algorithm,
the column with the largest norm is selected as a pivot at
each step of the Householder QR factorization. Though the
algorithm is not guaranteed to reveal the numerical rank, it

http://icl.utk.edu/magma/

is widely used because of its algorithmic simplicity and its
efficiency and reliability in practice. In addition, it is possi-
ble to cheaply downdate the column norms at each step of
the factorization, reducing its computational overhead over
the standard Householder QR factorization.

A column-based QRCP uses BLAS-2 matrix-vector oper-
ations to update each column of A. On modern computers,
the data movement is expensive, and the BLAS-2 kernels ob-
tain only a small fraction of the hardware peak performance,
limiting the performance of the column-based QRCP. To im-
prove the data locality, a block-based QRCP [16] first fac-
tors a subset of the remaining columns of A (referred to as
a panel), and then updates the trailing submatrix using the
accumulated transformations at once. Since the trailing sub-
matrix can be updated using BLAS-3 matrix-matrix opera-
tions, the block-based algorithm can exploit better data lo-
cality and obtain a higher performance. This BLAS-3 based
QRCP is implemented in LAPACK?, referred to as QP3, and
widely used in practice. It is also possible to compute a
truncated version of QP3 by returning after factoring the &
columns of A.

Unfortunately, QP3 still performs about half of its floating-
point operations (flops) using BLAS-2, and requires a syn-
chronization to select a pivot at each step of the panel fac-
torization. In addition, the round-off errors could accumu-
late and the downdated column norms could significantly
diverge from the actual norms [16]. When this occurs, the
trailing submatrix is immediately updated using the current
Householder transformations and the column norms are re-
computed. If the column norms need to be frequently re-
computed, then the computational overhead could become
significant. In addition, the frequent norm recomputation
leads to poorer data locality since the column norms are
computed using BLAS-1 vector-vector operations, and the
trailing submatrix is updated using the smaller blocks.

3. RANDOM SAMPLING

Random sampling first samples a subspace that approx-
imately spans the range of A and generates its orthogonal
basis vectors @ Then, the low-rank approximation of A
is given by A ~ B@, where B = A@T. It is also possi-
ble to compute the low-rank approximation of the form (1)
based on the QRCP of the sampled matrix B. Specifically,
the random sampling algorithm for computing (1) takes the
following three steps:

1. Sampling (Step 1): Generate the sampled matrix B:

B = Q A,
fxn £xm mxmn

where 2 is referred to as an ¢ X m sampling matrix. A
popular sampling matrix €2 includes a Gaussian ran-
dom matrix and a FFT matrix [8].

2. QRCP (Step 2): Compute a QRCP factorization of
the sampled matrix B:

BP ~ @ (}/%1;1@ §k+1:n>
= @ﬁl;k (Ik ﬁf}cﬁlﬁ-ln)
= BPi.x (Ik ﬁ;iékJrln) .

’http://www.netlib.org/lapack/




Require: m x n matrix A.

: > Step 1: Gaussian sampling

: Q:=PRNG({,m), where L =k +p
B:=QA,C:=]]

B :=POWER(A, B,C,1,¢4,q)

> Step 2: QRCP

[Q, R, P] := QRCP(B)

> Step 3: QR

: [Q,R]A:: QR(APUC)

T:= R;;lch+l:n

: R:=R (Ik T)

: return Q, R, P such that AP ~ QR.

: > POWER(A, B,C, j,k, q)
:forl,2,..., gdo

> Orthogonalization

Bj;k = BOI‘th(Bl;]'_l, Bj;k)
Bjik := QR(Bj:x)

> Matrix-matrix multiply
Cj:k = Bj:kAT

> Orthogonalization

Cj.x := BOrth(Ci.j_1,Cjx)
10: Cj;k = QR(CJk)

11: > Matrix-matrix multiply
12: B]';k = Cj;kA

13: end for

14: return B and C.

— =
LRSI RPN 2O © 03 JUs W

Figure 2: Random sampling algorithm, where
PRNG(¢,m) returns an ¢ x m Gaussian random ma-
trix, (@, R] := QR(B) and [Q, R, P] := QRCP(B) re-
turn the QR and QRCP factors of B (i.e., QR = B
and BP = QR), respectively, and V := BOrth(B, Q)
orthogonalizes B against Q (i.e., V7Q = 0).

Thus, we have

3. QR (Step 3): Compute the QR factorization of AP;.x:
APy, = QR. (3)
Thus, combining (2) and (3), we obtain

AP = Q R,
mxn mxk kxn

where R =R (Ik ﬁf}cﬁkﬂn)

In practice, oversampling the matrix improves the robust-
ness of the algorithm, and hence, the dimension of the sam-
pled matrix B is given by ¢ = k + p, where p is a small
constant known as an oversampling parameter. In addition,
the dimension of B is often much smaller than that of A (i.e.,
{ < m, eg., £ =064 and m = 50,000 in our experiments),
and the cost of the deterministic QRCP factorization of B
is marginal to the total cost. Hence, the overall cost of the
algorithm is typically dominated by the first step of com-
puting the sampled matrix B, which can be computed using
communication-optimal kernels that exhibit high data local-
ity and parallelism.

When the singular values of the matrix A decay slowly,
the sampled matrix generated by the above algorithm may

contain a significant amount of noise. To reduce the amount
of noise, ¢ iterations of the power method may be applied:

B=QA(ATA)".
This yields the following error bound on the approximation,
HAP - QR” S C(p7 Q)l/(2q+1) Ok+1,

where o4+1 denotes the (k+1)-th largest singular value of A,
and c(p, ) is a constant that depends on the oversampling
parameter p and the sampling matrix  [8]. Since the con-
dition number of B increases exponentially with ¢, to main-
tain the numerical stability in practice, the sampled matrix
is orthogonalized after each application of A and AT [15].
Figure 2 shows the pseudocode of the resulting algorithm.

In this paper, we focus on the fixed-rank problem to com-
pute a rank-k approximation for a user-specified input pa-
rameter k. Alternatively, the fixed-accuracy problem seeks
for a low-rank approximation whose approximation error is
less than a user-specified tolerance . Figure 3 shows the
pseudocode of our adaptive sample size scheme (adaptive-£),
which integrates the power iteration into the adaptive scheme
for solving the fixed-accuracy problem by gradually increas-
ing the size of the sampled subspace [8]. At each step of
the adaptive-£ scheme, the sampled subspace is expanded by
adding a new set of orthogonal basis vectors Byy1.x which are
generated by the power iteration. To maintain the numerical
stability, during each power iteration, after performing the
matrix-matrix multiplication with A (or A7), the new vec-
tors By, (or Cj.x) are orthogonalized against the previous
vectors Bi.j—1 (or C1:j—1, e.g., using the Classical or Modi-
fied Gram Schmidt [7]), in addition to being orthogonalized
against each other (e.g., using the Householder QR [7] or
Cholesky QR [17]).

To reduce the cost of computing the approximation error,
|A — AB&BMH, where Bj., stores the orthonormal basis
vectors of the current sampling subspace, on Line 15, the
adaptive-£ scheme estimates it by & = ||Q2(A — ABL,B1.0)|.
This error estimate satisfies the following bound,

2
14— ABYBre|| < caay| =&, (4)

with probability 1 — min(m,n)c;f""c, where cqq is a fixed
constant [8]. Once the sampled matrix B is computed through
the adaptive-f scheme, the low-rank approximation can be
computed by Steps 2 and 3 of random sampling.

Since the computed error € is pessimistic, though the fi-
nal approximation error is less than the user-specified e,
the adaptive scheme generally generates a sampled subspace
whose dimension is greater than necessary. This induces
the computational and storage overheads. In addition, com-
pared to performing the matrix-matrix multiply with the fi-
nal subspace all at once (e.g., fixed-rank problem), incremen-
tally performing the matrix-matrix multiply with a smaller
subspace at each step of the adaptive scheme often obtains
lower performance. We study the performance of this adap-
tive scheme in Section 10.

4. IMPLEMENTATION

We now describe our GPU implementation of the random
sampling algorithm of Figure 2. For Step 1 of the algorithm,
we experimented with two types of sampling:



Require: Input: m x n matrix A.
1: Initialize:
:=0, Q:=1[], and linc := f(¢, Linit)
e.g., f(é, éznc) = Ez’nc or ginit —+ E

2: Q := PRNG(¥ine, m)

3: B:=QA, and C := |

4: repeat

5: > Expand sampled subspace

6: k:=0+"YVine

7 [B,C] := POWER(A, B,C,{ + 1,k,q)
8: Bot1:k = QR(Bey1:k)

9: {:=k

10: > Generate new vectors

11: line = f(£,Linc)

12: Q := PRNG(lsnc, m)

13: Big1:k := QA, where k := €+ line

14: > Compute approximation error

15:  &:=|Bes1:k — Ber1.u Bl Bu|
such that £~ ||A — ABT,,B1.¢||

16: untile < ¢

17: return B := By

Figure 3: Adaptive scheme to compute sampling
subspace.

e Gaussian sampling: For Line 2 of Figure 2, we used
the cuRAND library of NVIDIA to generate a Gaussian
matrix € (matrix whose entries follow the standard
normal distribution A(0,1) with mean 0 and standard
deviation 1). The sampling step then takes the form
of a matrix-matrix multiply which is implemented us-
ing the general matrix-matrix multiply (GEMM) ker-
nel from cuBLAS of NVIDIA.

e FFT sampling: we used the cuFFT library of NVIDIA
to generate the sampled matrix B by applying an FFT
transformation to A. Like many other FFT imple-
mentations, cuFFT obtains better performance for data
sizes that are powers of two. Hence, in our experi-
ments, we padded the matrix A with zeroes such that
its leading dimension becomes the next power of two.

The sampling step B = 2A consists of two steps, projection
and sampling:

B = S 11 A
£xn Ixm mXxXm mxn

where II represents the projection matrix, S is the row se-
lection matrix which randomly selects £ rows from II or IIA,
and hence the sampling matrix  is given by Q = SII.
There are two sampling schemes, full and pruned sampling,
which lead to different computational costs. In the full sam-
pling scheme, the projected matrix IIA is first computed,
and then ¢ rows are selected, while in the pruned sampling
scheme, the sampling matrix §2 is first computed, and then
applied to A, or the £ rows are directly sampled from A (e.g.,
pruned FFT). Since only a small number of rows are selected
through random sampling, compared to the full sampling
scheme, the pruned sampling scheme may significantly re-
duce the computational cost. For Gaussian sampling, the
random sampling matrix € is also Gaussian. Hence, we im-
plement the pruned sampling scheme by first generating an

{-by-m Gaussian matrix 2 using cuRAND, and then comput-
ing the sampled matrix B through a matrix-matrix multiply
(i.e., B = QA). The flop count of this pruned sampling is
O(mnf), while O(m?>n) flops are needed for a full Gaussian
sampling.

The pruned FFT only computes the £ selected rows and re-

quires a fewer flops compared to the full FFT (i.e., O(mnlog(¥))

instead of O(mnlog(m))). However, compared to the Gaus-
sian sampling, the reduction in the flop count is less (i.e.,
a factor of O(log(m)/log(¢)) instead of O(m/¢)). In ad-
dition, since the execution time of FFT is not a function
of only flop count (e.g., data access), the reduction in the
execution time using the pruned FFT could be much less
than O(log(m)/log(¢)), or the execution time could even
increase. Though we provide a performance comparison of
Gaussian and FFT sampling in Section 9, cuFFT does not
support pruned FFT, and in this paper, we focus on Gaus-
sian sampling, for which more theoretical work has been
established [8].

Previously, the performance of several tall-skinny orthog-
onalization schemes on GPUs have been studied [19]. The
results of the studies can be applied, on Lines 3 and 5 of
the power iteration in Figure 2, to orthogonalize the £ X n
and £ x m short-wide matrices B and C, respectively (i.e.,
¢ < min(m,n)). In this paper, we focus on the Cholesky QR
(CholQR) factorization [17] that obtains high performance
based on BLAS-3 operations and can be implemented with
minimum communication [5]. Specifically, CholQR com-
putes the QR factorization of a matrix B in the following
three steps®:

(i) Form a Gram matrix G; i.e., G = BBT.

(ii) Compute the Cholesky factor R of the Gram matrix G;
i.e., RTR := G, where R is upper-triangular with non-
negative diagonals.

(ili) Compute the orthogonal matrix @ by the backward-
substitutions; i.e., Q = R™7B.

Similarly, on Line 10, CholQR is used to compute the QR
factorization of the short-wide matrix C.

Classical and modified Gram Schmidt procedures (CGS
and MGS, respectively) [7] are other well-known orthogo-
nalization algorithms. While CGS orthogonalizes each col-
umn of the matrix against the previous columns one at a
time, MGS orthogonalize each column against all the pre-
vious columns at once. Hence, MGS and CGS are based
on BLAS-1 and BLAS-2 operations, respectively, and their
performance is often lower than the BLAS-3 based CholQR.
In addition, though the Householder QR (HHQR) [7] is an
unconditionally accurate orthogonalization scheme, its per-
formance is limited by the BLAS-1 and BLAS-2 operations,
which obtain only a fraction of the GPU peak performance.
In Section 8, we study the performance of these orthogonal-
ization schemes. Though CholQR was stable in our experi-
ments, it can be unstable for an ill-conditioned matrix A or
for other choices of the parameters (e.g., k and p). This nu-
merical issue may be overcome by reorthogonalizing the ma-
trices, using HHQR for orthogonalizing B or when CholQR
fails, using the Communication-Avoiding HHQR [5, 2], or

3This is the adaptation of CholQR to compute the LQ fac-
torization of the short-wide matrix B.
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Figure 4: Illustration of CholQR on two GPUs,
where the dashed lines show the matrix distribu-
tion.

using mixed-precision arithmetic in CholQR [20]. Orthog-
onalization procedures for a stable and efficient implemen-
tation of the random sampling algorithm are part of our
current research focus.

At Step 2, QRCP of the sampled matrix B is computed
using the truncated QP3 on a GPU (on Line 6). Then,
the tall-skinny QR factorization of the matrix AP;.; is com-
puted using CholQR on the GPU (on Line 8). Finally, the
upper-triangular matrix R is generated by the triangular
solve and triangular matrix-multiply on the GPU (Lines 9
and 10). Since the dimension of the sampled subspace is
much smaller than that of A, the computational and com-
munication costs at Steps 2 and 3 are of lower order than
that of the first step to generate the sampled subspace. We
provide the computation and communication costs of each
step in Section 5.

Finally, to utilize multiple GPUs, the matrix A is dis-
tributed in a 1D block row format among the GPUs such
that each GPU owns about the same number of rows (i.e.,
the i-th GPU owns the block row A;) of size c-by-n, where
¢ = m/ng and ny is the number of available GPUs). Both
matrices 2 and C' are distributed in the same 1D block col-
umn format as that of AT. Then, on Line 3 of random
sampling or on Line 12 of the power iteration, the i-th GPU
computes the partial result B(;y of the sampled matrix B by
performing the local matrix-matrix multiplication of Q; or
C;) with Ay, respectively (e.g., By = C)Awy). Next,
the CPU accumulates the partial results B; to form the
¢ x n sampled matrix B (i.e., B := 3. B;)). Since the
dimension of B is small (i.e., £ < n < m), we compute the
QR factorization of B on the CPU (using either CholQR or
HHQR), and the resulting orthogonal matrix is copied to the
GPU such that it is duplicated on each GPU. Finally, each
GPU performs its local matrix-matrix multiply to compute
the sampled matrix C which is distributed in the same 1D
block column format as that of A” (i.e., C;) :== BA(TZ-)).

Now, to perform CholQR of C' on multiple GPUs, each
GPU first computes the local matrix-matrix multiply, G ;) :=
C(i)Cg;), and then sends the result to the CPU, where the

Gram matrix G = Z?:gl G(;y is computed. The Cholesky
factor R of the matrix G is then computed on CPU. Fi-
nally, the CPU broadcasts the Cholesky factor R to all the
GPUs, and each GPU independently performs the substitu-
tion, Q(i) = RiTC’(i) (i.e., QR = C). Figure 4 illustrates
our multi-GPU CholQR implementation.

Finally, for Steps 2 and 3 of random sampling, the trun-
cated QP3 of the sampled matrix B, and the triangular solve
and multiply to compute R are performed on a GPU (on
Lines 6, 9, and 10), while the QR factorization of APy is
computed based on the multi-GPU CholQR (on Line 8).

S. PERFORMANCE MODEL

Figure 5 compares the computational and communication

#flops #words
Random sampling
Sampling (Gaussian) | O(mnt) O(mmnt/M/2)
Sampling (FFT) O(mnlog(m)) O(mnlog(m)/log(M))
Iter. (mult.) O(mnlq) O(mmnlq/M*/2)
Tter. (orth.) O((m +n)2q) O((m +n)t2q/M*/?)
QRCP O(nf?) O(nt?)
QR O(me?) O(me2 /M1/2)
Total O(mnl(1+2q)) | O(mnl(1 + 2q)/M/?)
QP3 O(mnk) O(mnk)
CAQP3 O(mn(m+n)) | O(mn2/M/2)

Figure 5: Computation and communication costs on
one GPU.

costs of our random sampling implementation on one GPU
with those of QP3 and its communication-avoiding vari-
ant [4]. Here, the computational and communication costs
are measured, respectively, based on the flop count and the
words transferred between the two levels of the local memory
hierarchy, where the the size of the fast memory is M.

e Sampling (Step 1): The sampling is either based on an
FFT or a matrix-matrix multiply, and both can use a
communication-optimal kernel [10].

e Power iteration (Step 1): each iteration performs two
matrix-matrix multiplies and orthogonalization of two
matrices, one with the dimension ¢ x m and the other
with the dimension ¢ x n. Communication-optimal or-
thogonalization procedures [5, 17] exist, which can be
used for this step.

e QRCP (Step 2): since the sampled subspace is small
compared to the global space (i.e., £ < m), this step
only has a marginal computational and communication
costs. Our implementation is based on the standard
QP3 algorithm, but a communication-optimal variant
of QP3 [4] can be used for this step.

e QR (Step 3): just as for the power iteration, a communication-

optimal orthogonalization procedure can be used for
this step.

Thus, both the computation and communication costs
on one GPU are dominated by the matrix-multiply kernel.
The performance model can be extended to multiple GPUs,
where the matrix-multiply kernel remains the bottleneck
with #flops = O(%;%’)) and #words = O(mU129)y 1g),

ng]\/fl/2

6. EXPERIMENTAL SETUPS

In the following four sections, we studied the accuracy
and performance of random sampling using three different
matrices A. The first two matrices A were generated by
A= XYY with randomly generated orthogonal matrices X
and Y, and a diagonal matrix 3 shown in Table 1. The last
matrix comes from the International Hapmap Project [1].
We used the latest bulk release (as of August 1, 2014). Each
row of A corresponds to a specific nucleotide basis and a
column corresponds to an individual from a specific popula-
tion. We extracted the data using the first five chromosomes
and from four different populations: Utah residents with
Northern and Western European ancestry, Gujarati Indians



Matrix Name

POWER EXPONENT HAPMAP
ai (i+1)73 10710 —
) 1 1 9.9e+03
Ok+1 8e-06 1.3e-05 5e+02
k(A) 1.3e+05 7.9e4-04 2e4-01
m 500,000 500,000 503,783
n 500 500 506
k 50 50 50
D 10 10 10
l 60 60 60

Table 1: Test matrices.

| QP3 | ¢=0 g=1 q=2

POWER 4.47e-05 | 9.08e-05 4.59¢-05 4.45e-05
EXPONENT | 2.69e-05 | 5.18e-05 2.69e-05 2.69e-05
HAPMAP 5.99e-01 | 9.86e-01 8.74e-01 8.18e-01

Figure 6: Approximation error norm ||[AP—QR||/| A].

in Houston, Texas, Japanese in Tokyo, Japan, and Yoruban
in Ibadan, Nigeria. Computing a low-rank approximation
on such data can be used for population clustering [6, 13].

In Section 7, we first compare the approximation errors of
QP3 and random sampling using the fixed parameters shown
in Table 1. Then, in Section 8, we study the performance of
the GPU kernels, and in Section 9, we study the performance
of random sampling over ranges of parameters (i.e., m =
2,500 ~ 50,000, n = 500 ~ 5,000, £ = 32 ~ 512, and ¢ =
0 ~ 12). Finally in Section 10, we discuss the performance of
the adaptive scheme for solving the fixed-accuracy problem.
To the best of our knowledge, this is the first experimental
studies of the adaptive scheme. All the experiments were
conducted in the 64-bit double precision.

Since the condition numbers of the sampled matrices B
and C increase exponentially with ¢, the approximation er-
ror diverged without orthogonalization. To avoid the nu-
merical issue, in our experiments, we orthogonalized both
sampled matrices using CholQR with one full reorthogo-
nalization, which made the sampling algorithm stable. All
the codes were compiled using the C++ GNU compiler gcc
(version 4.4.7) and the NVIDIA compiler nvcc (CUDA ver-
sion 6.0.1), with the optimization flag -03, and linked to
threaded MKL (version 10.3). We conducted our experi-
ments on two eight-core Genuine Intel(R) 2.60GHz CPUs
and three NVIDIA Tesla K40c GPUs.

7. NUMERICAL RESULTS

In Figure 6, we compare the approximation errors of the
deterministic QP3 and the random sampling using the fixed
values of the parameters shown in Table 1. Though the ap-
proximation error decreased with the number of iterations,
random sampling without power iteration (i.e., ¢ = 0) ob-
tained the approximation with the same order of error as
QP3. These results were obtained for an oversampling equal
to p = 10. Without oversampling (i.e., p = 0), the error
norm was about an order of magnitude greater. In addition,
a greater oversampling (e.g., p = 20 or 50) could further
improve the accuracy, but with a smaller factor (i.e., the
constant factor C(£, p) is roughly proportional to p~/2 [8]).

T , B o S i o e g e =1
—H— CholQR SETTEEE
CGS
—7— HHQR
—&—MGS
10° | —*—QP3

10" t

Gflop/s
& E

10"

0o~ 10000 20000 30000 40000 50000
Number of Rows (m)

Figure 7: Performance of QP3 and tall-skinny QR.

These numbers are reported for Gaussian sampling, but FFT
sampling gave the approximation errors of the same order.

8. KERNEL PERFORMANCE

Before studying the performance of random sampling in
the next section, in this section, we study the performance
of our GPU kernels which are used for random sampling.
First, to study the cost of the QP3 factorization, in Fig-
ure 7, we compare the QP3 performance with the perfor-
mance of other orthogonalization algorithms on the GPU,
i.e., Householder QR (HHQR), Cholesy QR (CholQR), and
the classical and modified Gram Schmidt (CGS and MGS).
For our performance studies, we focused on the tall-skinny
matrices (i.e., m > n), and varied the number of rows while
fixing the number of columns in A (i.e., m = 2,500 ~ 50, 000
while n = 64). In the figure, we see that HHQR was about
5x faster than QP3, indicating the cost of column piv-
oting. In addition, BLAS-3 based CholQR obtained the
speedups of up to 33.2 and an average speedup of 30.5 over
HHQR, demonstrating the cost of the intra GPU communi-
cation associated with the BLAS-1 and BLAS-2 operations
required by HHQR. The figure also shows that due to the
intra GPU communication, HHQR, which uses both BLAS-
1 and BLAS-2, was faster than MGS but slower than CGS
because our MGS and CGS perform most of their flops using
BLAS-1 and BLAS-2, respectively.

Next, in Figure 8, we compare the performance of the full
FFT sampling with the performance of the matrix-matrix
multiply (GEMM) used for the pruned Gaussian sampling.
For the row sampling in Figure 8(a) (i.e., B = Q A), we
varied the dimension of the sampled matrix B from ¢ =
32 to 512 for a fixed 50,000 x 2,500 input matrix A (i.e.,
sampling about 0.06 to 1.02% of the rows of A). In the
figure, we also show the peak performance for the double-
precision flop (i.e., 1,430 Gflop/s) and the peak performance
based on the memory bandwidth (i.e., 288 GB/s, assuming
blocksize of 512). The matrix-matrix multiply used for the
pruned Gaussian sampling exhibits a regular memory access
pattern and a high level of data parallelism. Hence, it can
be optimized for the intra GPU communication and obtain
a near peak performance (i.e., about 1,200 Gflop/s). As a
result, since the multiplication requires O(mnf) flops, for
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Figure 8: Performance of pruned Gaussian and full FFT sampling.

a large enough sampling size, the sampling time increases
linearly with the sampling size . On the other hand, the
full FFT sampling performs only O(mnlog(m)) flops (e.g.,
log(m) ~ 15.6 when m = 50,000). As a result, compared
to the matrix-matrix multiply, though its performance is
often lower (e.g., about 135 Gflop/s in our experiments),
the full FFT sampling can be as fast as the pruned Gaussian
sampling, and it was faster when ¢ > 192. This can be seen
in the figure as the Gflop/s of the pruned Gaussian sampling
becomes greater than the “effective” Gflop/s of the full FFT
sampling, which is computed as the ratio of the number of
flops required for the pruned Gaussian sampling over the full
FFT sampling time. The figure also shows that the matrix-
vector multiply (GEMV), which is used to implement CGS,
HHQR, and QP3, obtains much lower performance than the
matrix-matrix multiply.

Similarly, Figure 8(b) compares the performance of the
full FFT column sampling with the pruned Gaussian column
sampling (i.e., B = Q AT). Again, the Gaussian sampling
obtained the near peak performance, but the full FFT was
faster when ¢ > 128. For the rest of the paper, we focus on
the pruned Gaussian (row) sampling with a small sampling
size since more theoretical work has been established for the
Gaussian sampling [8].

Besides sampling, computing the orthogonal basis vec-
tors of the sampled subspace during the power iteration
can become expensive. Specifically, on Lines 5 and 10 of
POWER(A, B,C, j,k,q) in Figure 2, we compute the QR
factorization of the short-wide matrices B and C, respec-
tively. While Figure 7 shows the performance of CholQR
for tall-skinny matrices, Figure 9 shows the performance
for the short-wide matrices with the same number of rows
but with different numbers of columns (i.e., m = 64 and
n = 2,500 ~ 50,000). Again, CholQR showed excellent per-
formance, obtaining speedups of up to 106.4 and the average
speedup of 72.9 over HHQR.

Since the execution time of the random sampling is domi-
nated by the sampling and orthogonalization phases, we can
estimate the performance based on the performance results
in Figures 7 through 9. This allows us to evaluate the perfor-
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Figure 9: Performance of short-wide QR.

mance of random sampling on a target computer before im-
plementing the algorithm or to verify the performance of the
existing implementation. For instance, Figure 10 shows the
estimated performance of the random sampling and that of
the truncated QP3 for m = 2,500 ~ 50,000 with n = 2,500
and (4;p) = (64;10). We see that due to its communication
costs, QP3 could not fully utilize the computational power of
the GPU, and its performance was limited under 29 Gflop/s.
On the other hand, random sampling is expected to better
utilize the hardware, reaching 676 Gflop/s for ¢ = 1 and
489 Gflop/s for ¢ = 0. Hence, random sampling is expected
to obtain 23.8 or 17.1 times higher Gflop/s than QP3 when
q = 1 or 0, respectively. In addition, since random sampling
with ¢ = 1 performs roughly 3.6 times more flops than QP3,
we expect the random sampling to obtain the speedup of
23.8/3.6 = 6.7 over QP3.

9. PERFORMANCE RESULTS

We now study the performance of random sampling on two
eight-core Intel SandyBridge CPUs with an NVIDIA K40c
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Figure 10: Estimated Gflop/s of random sampling
and QP3.

GPU. First, Figure 11 shows the total execution time of ran-
dom sampling and QP3 with the same number of columns
but with different numbers of rows in A (i.e., n = 2,500 and
m = 2,500 ~ 50,000 with (k;p;q) = (54;10;1)). Both com-
putational and communication costs of both random sam-
pling and QP3 depend linearly on the number of rows, m (see
Figure 5), and their execution time also increased linearly
with m. However, the QP3 factorization time increased at
a faster rate (i.e., QP3 time =~ 9.34m107°% 4 0.0098, while
random sampling time ~ 1.15m107°% 4-0.0162). As a result,
random sampling obtained speedups of up to 6.6 and the
average speedup of 5.1 over QP3. For these experiments,
we performed one power iteration (i.e., ¢ = 1). We saw in
Figure 6 that even without power iteration (i.e., ¢ = 0), the
approximation error norm of random sampling was already
in the same order of magnitude as that of QP3. Without
power iteration, the random sampling obtained speedups of
up to 12.8 and the average speedup of 8.8. The speedup of
6.6 obtained for ¢ = 1 agrees with our estimate in Figure 10.

Figure 11 also shows that for a small m, the QRCP step
remained the bottleneck. However, for a large enough m,
the overall run time of random sampling was dominated by
the first step of computing the sampled matrix B. For exam-
ple, when m = 50, 000, about 78% of the total run time was
spent in the first step, which includes the generation of the
sampling matrix €2, the sampling time, the matrix-matrix
multiply in the power iteration, and the orthogonalization
(0.9, 28.3, 47.3, and 1.4% of the overall time, respectively).
The run time of random sampling was thus dominated by
the matrix-matrix multiply (i.e., about 75% of the overall
time). This is one of the main attractive properties of ran-
dom sampling since this BLAS-3 operation can be tuned to
exploit high data locality and parallelism, while QP3 per-
forms a half of its total flops using BLAS-2 that obtains
much lower performance (around 30 Gflop/s).

Figure 12 shows the QP3 and random sampling time with
different numbers of columns in A (i.e., n = 500 ~ 5,000
with m = 50,000 and (¢;p;q) = (64;10;1)). Again, com-
pared to the random sampling, the QP3 time increased much
quicker with the increase in the number of columns (i.e., QP3
time ~ 1.80n10~* 4 181.77, while random sampling time
~0.2119n1072 + 239.7). Similarly, Figure 13 shows the ex-
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Figure 11: Random sampling and QP3 time with
different numbers of rows, where “Sampling” and
“GEMM (iter)” in the legends corresponds to the
matrix-matrix multiply with the initial sampling
matrix 2 and the matrix-matrix multiplies during
the power iterations, respectively.

ecution time with varying target rank k (i.e., £ = 32 ~ 512
with (m;n) = (50,000;2,500) and (p;q) = (10;1)). The
QP3 time also increased quicker with the increase in the tar-
get rank (i.e., QP3 time ~ 0.81£10~2 —0.0235, while random
sampling time ~ 0.10¢1072 4 0.0227). At the end, random
sampling outperformed QP3 over large ranges of parameters.

Figure 14 compares the QP3 run time with that of the
random sampling with different numbers of power iterations
(i.e., ¢ = 0 ~ 12). As expected, we see that the run time
of random sampling increases linearly with ¢, and that ran-
dom sampling outperforms QP3 for up to twelve iterations
(i.e., ¢ < 12). We note that for our test matrices, the ran-
dom sampling without iteration (i.e., ¢ = 0) computed an
approximation whose error norm is in the same order of
magnitude as QP3.

Finally, Figure 15 shows the parallel strong scaling of ran-
dom sampling over three Kepler GPUs, using the fixed pa-
rameters (m;n) = (150, 000; 2, 500) and (¢; p; q) = (64;10;1).
On two and three GPUs, the respective parallel speedups of
the matrix-matrix multiply were about 2.8 and 5.1. These
superlinear speedups are due to the fact the chunks A(;) on
each GPU get less tall and skinny w hen the number of GPUs
ng grows, and e found that the efficiency of the GPU GEMM
kernel increases as the matrix becomes closer to square: it is
around 440, 630 and 760 Gflop/s with 1, 2, and 3 GPUs (i.e.,
m/ng = 150,000, 75,000, and 50, 000), respectively. With
the communication optimal CholQR, inter-GPU communi-
cations only represented 1.6% of total time for two GPUs,
and 4.3% for three GPUs. In the end, random sampling ob-
tained an overall speedup of about 2.4 and 3.8 on two and
three GPUs, respectively.

10. ADAPTIVE PERFORMANCE

Figure 16 shows the convergence of the error estimate &
computed at each step of the adaptive-f scheme. For this
experiment, we used the 50,000 x 2,500 EXPONENT matrix,
and computed its low-rank approximations without power
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Figure 13: Random sampling and QP3 time with
different target ranks.

iteration (i.e., ¢ = 0). Each line corresponds to a different
static parameter ¢;,., the amount by which the subspace
size is increased at each iteration (i.e., f(4,linc) = Llinc).
We started with the same initial subspace size (i.e., finit =
8), and iterated until the error estimate & was smaller than
10712 (ie., e = 10712).

In the figure, the dashed black line shows the actual er-
rors ||A — AQTQ||2, which were one or two order of magni-
tude less than the error estimates €, which are the proba-
bilistic estimates, satisfying (4). For example, with a fixed
probability of failure, 7, the constant ceq in (4) is given
by caa = (7/min(m,n))~*/%ne where (y/min(m,n)) < 1.
Thus, a larger value of the parameter ¢;,. decreases the con-
stant cqq, making the error estimate € less pessimistic. This
can be observed in Figure 16, where the error estimates &
with £;n. = 8 were slightly larger and worse than the esti-
mates with a larger value of ¢;,.. In addition, a larger value
of static £;nc has a greater chance of overestimating the sam-
pling size which would satisfy the tolerance e. This increases
the computation and storage costs of the random sampling.

Figure 17 shows the same convergence of the error esti-
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Figure 14: Random sampling and QP3 time with
different numbers of iterations.
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mate € but now with respect to the elapsed time in second.
We see that the convergence is slower using a smaller value
of £inc. This is because the performance of the GPU kernel
degrades for a smaller dimension of the input matrices (see
Figure 18). Hence, there is a trade-off when selecting the
static parameter £;n.: a larger ¢;n. improves the efficiency
of the GPU kernels, but it increases the chance of overesti-
mating the size of the required sampling subspace. One po-
tential solution is to adjust the parameter ¢;,. based on the
convergence of the error estimates. For example, we show
the result of simple linear interpolation of the previous two
steps to select the next ;.. It works well for this particular
matrix, but we are working on other adaptive schemes based
on the performance and numerical measurements gathered
over the previous adaptive steps and power iterations.

11. CONCLUSION

In this paper, we compared the performance of a deter-
ministic QRCP with that of a random sampling algorithm on
a GPU. While QRCP requires synchronization and commu-
nication at each step of the factorization, random sampling
can be implemented using communication-optimal kernels.
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Our performance results on an NVIDIA Kepler GPU demon-
strated that the random sampling can obtain a speedup of
up to 12.8 over QRCP, while achieving a comparable approx-
imation accuracy. We then studied the parallel scaling of the
random sampling over multiple GPUs, and showed that the
random sampling can obtain a nearly-linear speedup over
three GPUs. Due to its communication efficiency, we ex-
pect the performance benefits of random sampling to in-
crease on a computer with higher communication cost, like
a distributed-memory computer. The GPU kernels devel-
oped for this studies will be released as a part of the MAGMA
software package. Hence, our primary focus was to improve
the performance and robustness of the algorithm in practice
so that it can be used in many applications.

To improve the performance and stability of random sam-
pling, we are studying other orthogonalization schemes in-
cluding Communication-Avoiding QR [5] and mixed-precision
CholQR [20], and an adaptive scheme based on the numer-
ical properties of the matrices at run time. We plan to
study the performance of our implementation for real ap-

einc
8 16 32 48 64
Gflop/s | 123.3 | 247.0 | 489.5 | 597.8 | 778.5

Figure 18: Performance of GEMM used for adaptive
scheme.

plications and compare it with other algorithms including
the communication-avoiding QP3 [4]. In particular, we will
investigate other error measurements (e.g., clustering errors)
to better understand the quality of the approximation com-
puted by different algorithms.
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