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codes and soft decision of decoded bits [3]. 
re, this work has shown that the BCH block turbo 

to evaluate the performance of block turbo codes 

11, we present two methods for the constuction 
codes and in section 111, we describe the soft 

decoding algorithm and give some results of RS soft decoding. 
In section IV, we give the soft decision algorithm derived from 
the theoretical Log-Likelihood-Ratio and in section V we 
describe the iterative algorithm for decoding RS product codes. 
Section VI and VI1 are dedicated to simulation results of BER 
function of signal to noise ratio for different RS turbo codes 
over Gaussian and Rayleigh channels while in section WI we 
discuss the results of RS turbo codes. 

11. CONSTRUCTION OF PRODUCT CODE 
11.1. Reed-Solomon codes 
RS codes are BCH codes with non binary elements 

belonging to GF q = 2" . Each q-ary symbol of the Galois 

field can be mapped to m binary elements. The main parametres 
of a RS code are (n, k ,  6 ) ,  where n is the code word lenght, k 
is the number of information symbols and 6 its minimal 
Hamming distance. 

0 

11.2. Product codes 
Let us consider two linear block codes t 1  having 

parametres (nl , k l ,  61) and t2 having parametres ( n 2 ,  k 2 , 6 2 ) .  

The product code ? =fl @ t2 is obtained by : 
1) placing ( kl x k2)  information symbols in an array of 

kl rows and k2 columns, 
2) coding the kl rows using code t2, 
3) coding the n2 columns using code t2, 

as illustrated in figure 1. 

Checks on columns 11 j % l  
Figure 1 : Construction of product code 9 =fl 6 f 2  

It is shown [4] that the ( n l  - k l )  last rows of the matrix 
are code words of t2 exactly as the ( n2 - k 2 )  last columns are 
code words of t1  by construction. The parameters of the 
resulting product code 9 are given by n = nl x n 2 ,  
k =  kl x k 2 ,  6=61 x 6 2  and the code rate R is given 
by R = R1 x R2 where Ri is the code rate of code ti. 
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This classical method has been used for the construction 
of RS product codes where the matrix M contains kl x k2 q-ary 
information symbols.The two codes 't? and t2 must have the 
same code word length nl = n2 so that they have the same q- 
ary symbols. 

A second method has been studied to build a RS product 
codes based on the binary elements of the q-ary symbols. We 
have used the same code 't? l = t 2 .  The matrix M contains 
kl x m rows and k2 x m columns of binary elements. Each 
one of kl x m row is converted into q-ary symbols and coded 
by code t2. The code words obtained are converted back into 
binary elements and each n2 x m column is converted into q- 
ary symbols and coded by code 0 l .  

With this method each bit is coded twice but not with the 
same neighbouring bits and simulations showed that the 
(nl - k l ) x  m last rows are code words of 0 and the 
(n2 - k2 ) x m last columns are code words of 't? too. 

We shall consider in this paper the results of RS product 
codes built with the lSf method, which gave the best results. 

I11 SOFT DECODING OF RS CODE 
If we considcr the transmission of block coded binary 

symbols {-l,+l] using QPSK signaling over a Gaussian 
channel, the sequence R at the input of the RS decoder can be 
modelised by: 

R = E + N  (1) 

q j  ... 
Gj i ': 1 is the received data 

;" e l j  "1" . ] is the transmitted code word 

: nij : ] are Additive 

White Gaussian Noise (AWGN) samples of stantard deviation 
0. Decoding the received sequence R according to the 

maximum likelihood criteria is given by : 

D = Ci if Pr(E = Ci / R )  >Pr(E = C' / R )  VZ # i(2) 

where R =  

[ q l  i rml rmj ... rmn 

E =  : eij 

e,l ... emj emn 

n11 ... n1j 1 . .  nln 
' 

nmj ... "mn 

of code 't? with parameters (n, k, 6) 
d l l  d l j  ... dXn 

: the decision correponding . I  andD= i dij 
dml -1. dmj * a *  dmn r 

to maximum likelihood transmitted sequence conditionally to 

R. For received samples corrupted by AWGN, decoding rule (2) 
is simplified into : 

D=C' i f  /R-C'f< lR-C112 VZ#i (3) 

(4) 

For RS codes, the number of code words qk is relatively large 
and optimum sequence decoding is too complex for 
implementation. In 1972, Chase proposed an algorithm [5] 
which approximates optimum sequence decoding of block codes 
with low computation complexity and a small performance 
degradation. Instead of reviewing all the code words, the Chase 
algorithm selects the most probable code words using channel 
information R to apply decision rule (3). For this, we take a 
hard decision on R which gives a binary word Y ( y z  = +1). 

Modifying the sign of the elements of Y o  corresponding to the 
p least reliable components of R, we obtain 2p - 1 new words 
Y , 1 = I.... 2p - 1 .The algebric decoding of 2p words Y1 

gives the subset of code words C1 which is used for soft 
decoding (3). 

0 

0 I 

Simulation results : 
We have simulated different RS codes on a Gaussian 

channel using the Chase algorithm. We noticed that the greater 
the number of test sequences (2p),  the more the subset of 
decoded code words is likely to contain the transmitted code 
word, and the better is the coding gain. We have choose 
seventeen test sequences and the coding gain amelioration 
obtained is up to 2dB at BER of In figure 2, we compare 
the performance of the RS(255,223,33) with hard decoding and 
the RS(3 1 , 2 7 3  with soft dccoding. 

REED SOLOMON CODES 
BER HARD AND SOFT DECODING 
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Figure 2 : Comparison of the RS code (255,223,33) using 
hard decoding with the RS code (31,27,5) using soft decoding 

Both codes have the same coding rate R = 0.87 and give 
close results at a BER of We note that the correction 
power of RS(255,223,33) code is t = 16, whereas that of 
RS(31,27,5) is t = 2 .  We know that for an algebric decoder, 
the number of computations increases exponentially with t .  
Thus, the 2nd code will be easier to implement even if we use 
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16 te t sequences for the soft decoding.This comparaison is 
quite 'nteresting since it shows that for applications requiring a 
maxi um BER above a small RS code with soft 
decod ng gives better results than a more powerful code with 
hardd I ding. 

= +I / R} 
LLR- = In (5) 

Pr{ejf = -1 / R} 
in position ( j , f )  of the 

and 1 < f < m) . It is shown 

can be approximated, in 

where Cmin(+l) and Cmin(-') are two code words at minimal 
Eucli ean distance from R with cjf min(+l) = +1 and 

ten( = -1 (C""(+') and C""(-') are choosen among d r 
of code word given by Chase algorithm). By 

(6) using (4) we obtain : 

where] 

If we brmalise the approximated LLR of d 5  with respect to 

where 1 : 
n m  min(+l) 

Pxz (9) 
x=l z=l 
x + j  z+f  

LLR of decision djf , r -  (relation 
rjf plus wjf which is 

r- is an estimation of the 

of binary elements at 

the code word at 
is code 

(i = +1). Then we look for code word Cmin(-i) at minimal 
Euclidean distance from R among the code word subset 
obtained by Chase algorithme. C"n(-i) must have -i as 
binary element at position (j,f). 

If the Cmin(-j) code word is founded, the soft decision 
r -  of d y  can be computed using the relation given below : 

where M"n(-i) and M"n(i)represent respectively the 
Cmin(-i) Euclidean distance from R and Cmin(+i) Euclidean 
distance from R; else we use the relation: 

r -  = p.cd min(i) 

where p is a constant which is a function of the BER and is 
optimized by simulation. 

V ITERATED DECODING OF R S  PRODUCT 
CODES 

For an RS product code 9 ='t! @ 't! ('t! =( n, k ,  6 )), the 
received sample matrice [%I has n x m rows and n columns. 
This matrix is diveded into n sub-matrices R.  Each one of 
these n matrices R represents an elementary RS code word. 
The decoder decodes the lines (or columns) of the matrix, 
estimates the normalized LLR [%'I as describe in section IV 
and gives as output [W(l)] ([W(l)]=[%']-[%]). Then the 
decoder performs the same operations on the columns (or rows) 
using as input : 

This decoding procedure is then iterated by cascading the 
elementary decoders as illustrated in Figure 3. The coefficient 
a ( k )  is used to reduce the influence of [W ( k ) ]  in the first 
iterations where the BER is relatively high and thus [W (k)] is 
not absolutely reliable. 

['32(1)] = [%I + a(1) [ W ) l  (12) 

I I "'J 
or columns of or columns of 

"Product Code" 

I I I 

~ 

Figure 3 : Block diagram of elementary RS decoder 

VI. PERFORMANCE OF RS TURBO CODES 
OVER GAUSSIAN CHANNEL 

The upper bound of the asymptotic coding gain G, in the 
case of maximum likelihood sequence decoding depends on the 
minimal code distance [(G, I lOlog(R.6)]. We have used 
expurged RS codes as elementary code because they increase 
the minimal distance of the product code for a slight discrease 
in the coding rate.It is clear that the performance of the turbo 
decoder depends on the number of test sequences. In our 
investigation, we used seventeen test sequences based on the 
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, , , ,  , 
(63,58,6) 10.84 
(63,56,8) 10.79 

five least reliable bits. This is a compromise between 
performance and complexity. In order to have the parameters 
a ( k )  and P(k) independent of the product code, we normalized 
the average value of the computed wjf to +1 for samples 
wz>O and -1 for samples wjf<O. The performances of RS 
turbo codes have been evaluated over a Gaussian channel using 
Monte Carlo simulation. The RS product codes has the same 
elementary code t1=t2=t. In figure 4, we present the BER of 
RS turbo code RS(63,56,8)xRS(63,56,8). 

36 14.8 4.86 1.20 4.63 
64 17.0 5.05 1.00 4.40 

REED SOLOMON TURBO CODE 
BER (63,56,8) X (63,56,8) 
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Figure 4 : Bit Error Rate versus signal to noise ratio after 
cach of the first four iterations using the iterative algorithm 
with 'f! '='f!*=RS(63,56,8) 

We can observe that the coding gain improves after each 
iteration. For a BER of we gain respectively 1.6dB, 0.3dB 
and 0.ldB at each additional iteration. The total coding gain is 
about 5dB compared with an uncoded transmission, for a BER 
of However, increasing the number of iterations above 
four doesn't bring any significant coding gain. This results 
from the fact that the slope of the BER curve is too steep after 
iteration 4. In figure 5 ,  we have plotted the BER versus signal 
to noise ratio of different RS turbo codes at the fourth iteration. 
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Figure 5 : Bit Error Rate versus signal to noise ratio after at 
fourth iteration using the iterative algorithm of different RS 
turbo codes. 

We observe that the slope of BER curves increases with 
the code word length and the minimum Hamming distance 
elementary code. However, for a fixed code word length, 
increasing the minimum Hamming distance above 8 doesn't 
bring any ameliorations because the number of test sequences is 
fixed to seventeen for all simulated RS turbo codes. This is 
shown by the BER curve of RS(31,26,6)xRS(31,26,6) and 
RS(31,24,8)xRS(31,24,8) (see figure 5). To solve this problem 
we must increase the number of test sequences when we 
increase the minimum Hamming distance of product code. 

To evaluate the performance of RS turbo codes, we have 
compared the coding gain at the fourth iteration with an upper 
bound of $he asymptotic coding gain G, in the case of 
maximum likelihood sequence decoding given by : 

(13) G, I lOlog(R.6) = (Gu)ma 

Since RS product codes are powerful codes, it is also 
interesting to compare the signal to noise ratio required for a 
given BER ( for example) with Shannon's theoretical 
minimum signal to noise ratio to achieve an error free 
transmission over a Gaussian channel. The results are 
summarized in the table below (see figure 6). 

Figure 6 : Table comparing the performance of the RS turbo 
codes at the fourth iteration and theoretical performance. 

The coding gain at the fourth iteration for a BER of 
is winthin B . 5  dB for the seven RS turbo codes. The 
maximum coding gain obtained is about 5.5 dB. The difference 
between the obtained gain for a BER of and (Gu)ma is 
higher the higher is the minimum Hamming distance of 
product code. This result is due to the fixed number of test 
sequence used for all RS turbo codes. If we compare the 
performance at iteration 4 of the RS turbo codes with the 
theoretical limit of Shannon, we find a difference AS of the 
order of 3.5 dB for a BER of 

VII. PERFORMANCE OF RS TURBO CODES 
OVER RAYLEIGH CHANNEL 

In the case of Rayleigh channel, the received samples are 
given by : 

R = h E + N  (14) 

where N is an AWGN and h is an Rayleigh attenuation. As 
for as Gaussian channel, the components of [ W ( k ) ]  are 
normalized and we have used the same values for a ( k )  and 
P(k) .  In figure 7 and 8 we compare the RS turbo code 
performance over a Gaussian and a Rayleigh channels. 
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REED SOLOMON TURBO CODE 
(31,26,6) X (31,26,6) 

IO’ 

103 

Fi :odes 
at th fourth iteration over a Gaussian and a Rayleigh channels. 

e observe that the BER curves have the same slope at 
iterati n 4 for a Gaussian and Rayleigh channels. The BER 
curves are simply shiftted by about 6dB to the right in the case 
of a R yleigh channel. We note that the smaller the code rate 
the sm ller is the degradation. 

T ese results have been obtained without any knowledge 
of the ttenuation h.  If we assume that h is known the BER 
will b i divided by about 2 only. 

presented the first results of RS 

the difference with 
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