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Abstract-This  paper is concerned  with  the  performance of a Commun- 
ications system  which utilizes  frequency-hop spread  spectrum,  diversity 
transmission,  Reed-Solomon  coding,  and parallel  error-correction  and 
erasure-correction decoding.  Both binary signaling and  M-ary orthogonal 
signaling are considered. The goals are twofold. First,  it is desirable to 
provide good performance  in  partial-band  Gaussian noise interference  by 
use of coding and  diversity  with  an efficient error-correction algorithm. 
Second, it is necessary to totally neutralize  narrow-band  interference 
(regardless of the  power  level  or statistical  distribution ofthe interference) 
in  order to have an  effective spread-spectrum system. Through  an 
analysis  of the effects of partial-band  interference on a  frequency-hap 
spread-spectrum system with divetsity, it is shown that  the  use Of Reed- 
Solomon  coding with a parallel  errors  and  erasures aecoding algorithm 
accomplishes these goals. 

The paper also investigates the  accuracy of the Chernoff bound as an 
approximation to the  true performance  of  a  frequency-hop spread- 
spectrum communication system  with  diversity; side  information, Mary 
orthogonal  signaling,  and  Reed-Solomon  coding. f h e  performance 
results  presented  in  the  paper are based on analysis and  computer 
evaluation.  Approximate results  based on the Chernoff  bound are also 
given. It is shown that  the Chernoff  bound  for Mary orthogonal 
signaling gives  a very poor  approximation  for many cases  of interest. This 
is largely due to the looseness  of the union bound. 

F 
I. INTRODUCTION 

REQUENCY-hop communication syStems  require  a 
proper  combination of spread-spectrum  modulation,  error- 

control  coding,  diversity, and  decoding  method in order  to 
perform well in the presence of paftial-band  interference. 
The  individual  elements  of  such  a  system  are well documented 
in  the  literature  on  frequency-hop spread spectrum (e.g., [ 1 ] - 
[SI). In  particular, the use  of  coding, orthogonal  modulation, 
and  diversity is discussed  in [ 61 and [4 ] ,  and  decoding  ap- 
proaches for enhancing  protection against  partial-band or pulsed 
interference  are  described in [ 3 ]  and [ 7 ] .  This  paper  presents 
quantitative  results  on  the  performance of a  system  which uses 
the  combination of modulation,  coding, and  decoding  that was 
first described  in [ 3 ] . 

One  of the primary  applications is to provide  effective  anti- 
jam (AJ) communications against  a  partial-band  jamming 
threat.  One  measure of the antijam  capability is the minimum 
fraction of the band p* that  must  be  jammed  in  order  for  the 
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bit  error  probability to  be above  some  desired  value.  Reed- 
Solomon  codes  can  be  utilized in.a standard  error-correction 
role to provide  some AJ capability. If it is possible to  obtain 
reliable  side information  to  tell  the  decoder which of the re- 
ceived symbols have been  jammed,  the  Reed-Solomon  coding 
can be  made  considerably  more  effective (increased  value of 
p * )  by erasing jammed  symbols  and  employing  a  decoding 
technique  that will correct erasures.  However, it is not  sufficient 
to  correct  only  erasures since  in the presence of fullkband in- 
terference, all symbols will be  erased.  This  is  the  reason  for  our 
use  of the parallel  decoding approach of [ 5 ] which will correct 
erasures  due to  partial-band  interference or  errors  due  to  full- 
band  interference. 

Besides  having  a  large  value of p * ,  it is also  desirable that 
the system  perform well in the presence of partial-band Gauss- 
ian noise.  The performance in the presence of partial-band 
Gaussian  noise is measured  by the  mininium signal-to-noise 
ratio  (ENR*)  needed  for  the  bit  error  probability to  be below 
the desired  value.  In order to provide  reasonable  perforrtiance 
in  this case, we employ M-ary orthogonal signaling  (such  as 
modulating  a  carrier  by  a  set of orthogonal  baseband signals) 
as the  form of modulation. This,  however,  uses  more  band- 
width (signal  dimensions)  than  binary signaling. Because of 
this,  for  a  fixed  information  rate  and  bandwidth,  the Reed- 
Solomon  code  rate  must  be larger  with  M-ary  Orthogonal sig- 
naling than  with  binary signaling. 

The  outline of the paper is as, follows. In Section 11, we 
describe in detail  the parallel errors  and erasures  decoding 
technique we are  considering for  Reed-Solomon  codes.  In Sec- 
tion 111, we derive the Chernoff  bounds  for  the  error'proba- 
bility  of  binary  orthogonal  signals  with  diversity L in'partial- 
band Gaussian  noise.  In order to apply  this to  M-ary orthogonal 
signaling, we make  use  of the unioil  bound  also,  which we  will 
call the union-Chernoff  bound.  This  bound was employed  in 161 
for  the analysis  of the  performance of  a  system  with  convolu- 
tional  coding,  diversity,  and  partial-band  jamming  and  has  been 
widely  used  subsequently  in the evaluation of bit  error  proba- 
bilities. We compare  this  bound  to  the  exact  error  probability 
of M orthogonhl signals with diversity L in  partial-band Gauss- 
ian  noise  which is derived  in  Section IV. The  expressions  ob- 
tained  are  based on  those given by  Lindsey [8 ] for  the 
error  probability  with  white Gaussian  noise. As in the 
white Gaussian  noise  case, it is not possible to  give closed-form 
solutions  for  the  bit  error  rate. However, by use of numerical 
integration  methods, we have  evaluated the expressions for 
error  probabilities  in  a  diversity  system  with  orthogonal  modu- 
lation. In Section V, we examine the  error  probability of the 
parallel  decoding technique described  in  Section I1 for  orthog- 
onal signals  and  a class of nonorthogonal signals  (only  orthog- 
onal signals  were  considered  in [ 9 ] ). We derive  an  expression 
for  the  error  probability of this  signaling/decoding  scheme un- 
der  the  assumption  that  the  probability  that  the  decoder  in- 
correctly  decodes (i.e., the  decoder  error) is negligible  com- 
pared to  the  probability  of  decoder  failure.  From  this, we  de- 
rive the  upper  bounds  stated  in  [9]. Finally,  in  Section  VI,  we 
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present the numerical  results  for  several  different  combinations 
of codes  and  modulation. We show  that  the  decoding  approach, 
when used in  conjunction  with  a  proper  combination of  fre- 
quency  hopping,  diversity  transmission,  and side information, 
renders  the  narrow-band  jammer harmless  and  requires  a 
modest  signal-to-noise ratio  in  the  presence of  Gaussian  noise. 
As an  example,  a  (256, 200) Reed-Solomon  code  with  diversity 
5 and  16-ary  orthogonal signaling  requires  over 68 percent  of 
the band to  be  jammed  and  a signal-to-noise ratio  below  6.81 
dB in order  for  the  error  probability  to be  above  10-4. 

11. DECODING ALGORITHM 
The decoding  approach we consider  was  introduced  in [ 31, 

and the reader  should  consult [ 3  J and [ 7 J for  related  results 
on  its  performance. In this  paper, we  provide  a  more  detailed 
description  and analysis of the algorithm. 

The  output of the  (n, k )  Reed-Solomon  encoder is a  block 
of n symbols  from  anM-ary  alphabet.  For  the  codes  considered 
in  the  present  paper, n and M are  equal,  and  they  are  a  power 
of two. If diversity is employed,  each  symbol is transmitted L 
times  (and  interleaving of the diversity  symbols  may  be  used). 
We assume that  the  channel is noise  free except  for  the  jammer. 
This is a  realistic  assumption  for  a  communication  system  op- 
erating  in  a  high-power AJ mode.  The  results  presented  are  in- 
dicative of the  performance  obtainable  on  a  channel  in which 
there is additional low-level  background  noise,  and  only  minor 
modifications would  need to be  made  to  the  implementation 
and  the analysis. 

The  demodulation/decoding  system is shown  in Fig. 1.  The 
signal is first  dehopped  and  demodulated.  The  output of the 
dehopper is a  sequence of L  diversity  receptions  for  each  of 
the n code  symbols.  Side  information regarding the presence 
of interference is extracted  from  the  dehopper  and  demodu- 
lator,  and  the L diversity  receptions  of  a given symbol  are em- 
ployed  along  with the side  information to  form  the  decision 
statistic.  The  side  information is used to  attach flags to  un- 
reliable  diversity  receptions. The diversity combiner  forms 
the square-law combination  of all unflagged  diversity  recep- 
tions. If at least one of the diversity  receptions is not flagged, 
the decision  device is presented  with a noise-free symbol. In 
the event that all of the diversity  receptions of a  particular 
symbol have  been  flagged, the diversity  combiner output is 
the square-law  combination  of all L  diversity  receptions  and 
the decision  device is presented  with  a  noisy  symbol. A (hard) 
M-ary  decision  must  be  made'on  the  symbol,  and  this  decision 
is fed into  the error-correction  decoder.  For  any  symbol in 
which  all  diversity receptions  are flagged, the erasure-correc- 
tion  decoder sees only  an  erasure, 

An (n ,  k )  Reed-Solomon  code will correct  up to e n - k. 
erasures out of n symbols  or  up  to t b I(n - k)/2]  errors  out 
of n symbols.  More  generally,  it  will  correct  any  combination 
of E erasures  and r errors  provided that 2r + E does  not ex- 
ceed n - k ,  and  in  practice,  the  erasure-correction  decoder of 
Fig. 1 should  probably  correct  a small number of errors  that 
might be caused by low-level background noise or  other in- 
terference on  the channel. However, the  performance  results 
that we present  are  for the simpler  system  consisting of errors- 
only  decoding  in  parallel  with erasures-only  decoding. 

The  input  to  the  error-correction  decoder  contains  no era- 
sures; it is a  sequence of M-ary symbols  from  the  output of 
the decision  device. Theinput  to  the erasure-correction  decoder 
has  an  erasure  in  each  position  where all diversity receptions 
are flagged,  and an M-ary symbol  in  each  position  where  at 
least  one  diversity  reception is not flagged. The erasure sys- 
tem' counts'how  many erasures it makes,  and if the number 
does  not exceed e ,  the  erasure-correction  decoding algo- 
rithm  produces  the  correct answer. The  erasure-correction 
decoder  does  not  attempt  to  decode if the  number of erasures 
exceeds e .  If there  are too many  erasures, the erasure-correc- 
tion decoder  defaults to  the,  error-correction  decoder.  The 

I 

i l  i 
Fig. 1. Demodulator/decoder block diagram. . 

error-correction  decoder is continually receiving the  output 
of the decision  device  and  attempting  to  decode. Most of the 
time it can  decode,  and  its  output will agree with  the  output 
of the erasure-correction  decoder.  An  important  property of 
bounded  distance  decoding  of  Reed-Solomon  codes is that 
with high probability, it will default  rather  than  decode  into 
an incorrect  codeword  when  the  number of errors  exceeds t .  
Thus,  with  high  probability, the receiver will know if the  two 
decoders have decoded  correctly  or  not. 

111. UNION-CHERNOFF BOUND'S 
We first  consider  M-ary  orthogonal  signaling in the presence 

of  additive  white  Gaussian  noise  with  (two-sided)  spectral 
density  N0/2.  The signal set is denoted-by {si:Od i d M  - 1). 
Each  signal  has an energy Ed. A signal is sent  by  transmitting 
it L times on 6 different  frequency  hops  where,L is called the 
order of the diversity  or t h e  diversity level. We considersquare- 
law  combining of the L  corresponding outputs of the  optimum 
noncoherent  detector.  Thus, if the signal SO is sent, the  receiver 
decision  statistics  are 

and 

for 1 < i < M  - 1  where u2 = 2Ed/No.  The 2ML random vari- 
ables {Xi,m,  Yi,m : l ,<  m < L ,  0 d i d M - 1) are  mutually  in- 
dependent,  zero-mean,  unit-variance Gaussian random vari- 
ables. The positive  square root is assumed  in (1)  and  (2) so 
Ri 2 0 for each i. 

The  total  energy  required to  transmit the L  diversity  repe- 
titions of the signal is LEd. If an (n ,  k )  Reed-Solomon  code 
(alphabet size M )  is employed,  the energy per  information  bit 
is 

E, = nLEd/k(logz M ) .  

In this  paper, we consider  only  the  extended  Reed-Solomon 
codes, so the block  length is n = M  (see [ l o ]  for  a  description 
of  these  codes). 

Consider the  conditional  probability of error given that so 
is sent.  This  probability can be  written  as 

P,=P(Ro<max{R1,R~,~~~R~.l}) (3) 

where  this  and all subsequent  probabilities  are to be  inter- 
preted as conditional  probabilities given that SO is  sent.  Since 
the  random variables {Ri:  1 4 i d M - 1) are  identically dis- 
tributed,  the  union  bound gives 

P, d ( M  - l )P(Ro <R1).  

For  convenience,  define U = R i ,  V = R:, and Z = V - U,  
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so that  the  bound  on  the  probability of error is 

P, < (M - 1)P(Z > 0). 

Applying the Chernoff  bound to P (Z > 0). we have 

P, < (M - l)M,(s) (4) 

where M z ( s )  = E{esz) is the  moment  generating  function  for 
the  random variable Z. This  can  be  written in terms of the mo- 
ment  generating  functions  for U and Vas 

P, < (M - l)M&s)M&). ( 5  1 

It is generally  assumed for  this  decision  statistic  that  the  fac- 
tor of 1/2  improvement in the  Chernoff  bound (originally 
suggested by  Jacobs [ 1 11 ) can  be  applied.  This  improved  up- 
per  bound  has  been used in [6]  and  several subsequent  papers, 
For  the specific problem  that we are  considering,  Levitt  has 
shown  in  an  unpublished  manuscript  that the  factor of 1/2 can 
indeed  be  applied.  Notice  that  the  receiver  under  construction 
is not  the maximum  likelihood  receiver,  but it  turns  out  that 
whether  or  not  the receiver  makes a  maximum  likelihood  de- 
cision  has  very little to  do with  the  applicability of the  factor 
of 1/2. The  improved  version of ( 5 )  is 

P, < 3 (M - l)Mu(-s)Mv(s). ( 6 )  

g(s) = E{exP [s(Xo,o + V I 2 ]  1 

N s )  = E{exp [s(Yo,o)211. 

Define two  functions  g(s)'and h(s)  as 

and 

Then  the fact that the random variables { X i , m ,  Yi,m : 1 < rn < 
L ,  0 < i < M - 1) are  independent  and  identically  distributed 
implies that 

M u ( - s ) M v ( s )  = [h(s)l 2 L  [g(-s)h(-s)lL. 

The  moment  generating  functions g(s) and h(s )  are given by 

g(s) = (1 - 2s)- 1 12 exp {s u2 /( 1 - 2s)) 

and 

h(s) = (1 - 2s)-1/2 

for s < 1 /2. The  resulting  bound is 

1 {-su2/(1 + 2s)) 

2 (1 - 4 2 )  
P , < - ( M -  1) 1 o < s <  1/2. 

(7) 
The  bound of (7) applies to  communication  in  the  presence 

of  additive  white  Gaussian  noise  with  spectral  density N0/2.  
The  dependence  on  the  spectral  density is via the  parameter 
u = (2Ed/No)' / 2 .  The noise due  to  a partial-band  jammer  does 
not have a  constant  spectral  density across the  frequency  band. 
Rather,  the  spectral  density is N0/2 in the  portion of the  band 
that is jammed,  and it is zero  elsewhere. If p denotes  the  frac- 
tion of the  total  band  that is being jammed  and W denotes  the 
(one-sided)  bandwidth of the frequency-hopping signal, then 
the partial-band  noise  has  total  power  pWNo.  Thus, the aver- 
age  spectral  density  across the  band is NJ/2  where NJ is defined 
by NJ = Nop.  Lookingat  this  another  way,  the  partial  band  jam- 
mer  has  a total  power of WNJ, but  this  amount of power  can 
be  concentrated  in  any  subband.  For  a  subband which is a 
fraction p of the  total  band,  the  spectral  density  N0/2 in this 
subband  must be  such that (pW)No = WNJ. 

For  application of (7 )  tb partial-band  noise  jamming, the 
parameter u is given by 

U 7 (2 E~PINJ) '  I 2  

= { 2(Eb/N~)pk(lOg2  M)/nL)' 1 2 .  (8 

When the signal is transmitted  in  a  Jammed  frequency  slot, 
the  error  probability is bounded  as  in (7), and  this  happens 
with  probability p if the  frequency-hopping  pattern is random 
or  the  jammer  randomly  chooses  the  frequency  slots  to  be 
jammed.  Thus,  the  bound  on  the  probability of error  for  fre- 
quency-hop  communication in the presence of partial-band 
jamming is 

Pe < +(M - I)pL(l - 4s2)-L exp {-sLu2/(1 + 2s)} (9 )  

for 0 < s < 1 /2 where u is given by (8). This  bound is valid for 
any s in the interval (0, 1/2),  but we  wish to  select the value  of 
s to  make  the  bound as  tight  as  possible.  The  optimum value 
of s is 

s = { - 4 - u 2 + [ 1 6 f 2 4 u 2 + u 4 ] 1 / 2 ) / 1 6 .  (10) 

The  above  bound on  the  symbol  error  probability is easily con- 
verted to  a  bound on  the  bit error  probability  by  using  results 
of [ 101 on  the bit  error  probabilities  for  extended  Reed-Solo- 
mon codes. 

IV. SYMBOL ERROR PROBABILITY WITH DIVERSITY 
In  this  section, we derive  an  exact  expression for  the sym- 

bol  error  probability of the decision  device  defined  by (3). 
As mentioned  previously, we consider  M-ary  orthogonal sig- 
naling,  diversity level L,  and  noncoherent  detection,  The de- 
rivation of the  error  probability is based on  the work of Lindsey 
[ 81  in  which the  error  probability  for M orthogonal signals 
with  diversity level L is derived for  additive  white Gaussian 
noise  and  Rician  fading. 

Since we are assuming that side information is available  and 
that  there is no background  noise, the  only way an  error  can 
occur is  if the  jammer  hits every  diversity  transmission. 
This happens  with  probability p L .  Given that  each diversity 
transmission  has  been  jammed,  the  error  probability  can be 
calculated  using  results of Lindsey [ 81. 

In  order to  compute  the  error  probability  in (3), we first 
consider  the  random variables { Z i :  0 < i < M - 1)  defined  by 
Z i  = Ri2/2,  0 < i < M - 1 .  The  error  probability is then  the 
same  as (3) with Ri replaced  by Z i .  In order  to evaluate the 
error  probability,  the  conditional  densities of the  random 
variables Z i ,  0 < i < M - 1  must  be  determined. Given that 
symbol 0 was transmitted,  the  density of Z o  is given by 

The  conditional  density of z k  given that  symbol 0 was t 
mitted is 

for k # 0. The  probability of an  error is then 

P,(L, p )  = p L  Prob { z k  > Z ,  for  some k f 0). 
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(15) 

where p z O ( i o )  is given in  (1 1). When M = 2 ,  the integral  in 
(1 5); can  be  evaluated tb  be 

which for p = 1 is.a standard  result [ 12, p. 341 of  Marcum for 
an additive  white  Gaussian  noise  channel. 

In (1.5) and  (1 6) , ,  the  error  probability is  given as a  func- 
tion of the  fraction of the  band  being  jammed.  It easy to see 
that  the integrill in (1 5) and  .the  expression in (1  6 )  depend on 
N , ,   E d ,  and p only  through  the  ratio E d p / N J .  The  jammer may 
choose p to  maximize the  error  probability.  In  this case, the 
worst  case error  probability is given by 

The  maximum  in  (1 7 j can  be  caicuiated to  be 

where AL,M and BL,M are  constants. 
fraction p is given by 

Numerical  resuits for  the  constants in 
found  in [ 131. 

The  optimal  jamming 

(1 9 )  

(1 8) and  (1 9) may  be 

V. CODED ERROR PROBABILITY 
In  this  section, we c,onsider the  bit  error  probability of the 

output of the.decoder described  in  Section 11.  We, obtain  an 
analytical  expression  for the  .output  bit  error  probability ixi 
terms o f  the  error  and  erasure  probabilities,  rather  than rely 
on  the  upper  bounds  that we employed in [ 91. Two  different 
modulation  schemes  are  considered.  The  first  scheme  utilizes 
binary  FSK  with  one M-ary symbol  per  hop.  The M-ary  sym- 

bol i s  formed  from  a  sequence m = logz M binary FSK tones, 
so that  the resulting hf7ary signals are not  orthogonu2 (this sig- 
nal set has dimension10g2 M ) .  For  the partial-band  jamming 
model,  considered  in this  paper,  either all rn bits  representing 
a given symbol  are  jammed  or else none of them is jammed. 
The  second  type of modulation  considered is M-ary orthogonal 
signaling  such as MFSK or M-oi-thogond  baseband  signals 
modulating  a  carrier.  Such  a signal  set has  dimension M .  We 
shall see that  the analyses  for  these  two  different  modulation 
schemes  have  much in common. 

For  the analysis presented  in  this  section, we  will  assume 
that  there is no background  noise  and  that  perfect  side  infor- 
mation is available. Furthermore, we  assume  that the  interfer- 
ence is white  Gaussian  noise  over the  full  band of a  frequency 
slot,when  there is a  hit.  (For MFSK, a  frequency  slot  includes 
all M possible  tones.) ?'he results  can easily be  extended  to in- 
clude  imperfect  side  information  and  nonzero  background 
noise.  Assuming that  perfect  side  information is available, the 
probability of each  diversity  transmission of an M-ary symbol 
being jammed is p. Since all L diversity  transmissions of a 
particular  symbol  must  be  jammed  in  order  for  that  symbol to 
have nonzero  error  probability,  the  probability of a  channel 
symbol  error is the  probabdity of a  symbol  error given that all 
L diversity  transmissions  were  jammed  times p L .  The  decoder 
consists of an  erasure-correction  decoder  and an error-coi-rec- 
tion  decoder. When a  .symbol is jammed,  the  input fo the 
erasure-correction  decoder  for that  symbol  becomes  an era- 
sure,  while the  input  to  the error-correction  decoder is the de- 
modulated  symbol.  To  determine  the  ilecoded  error  probability, 
y e  will need to  compute  the  (conditional) ei-ror probability 
P e ( L ,   p )  given that  a  symbol is jammed.  For  binary FSK sig- 
naling (the first scheme);, the  error  probability is  given by 

where 

L - 1  ( I  + L - l ) !  - x . ,  . .  . 
j = j  ( 1  - z)!2'+L- 1 

For M-ary orthogonal signaling, 

i!(L + i - I)! 

the  error  probability is 

( 2 2 )  

Notice that ( 2 1 )  is the same  as (16) and ( 2 2 )  is the same  as (1 5) 
without  the  factor p L .  

Since an (n, k )  Reed-Solomon  code  can  correct up  to e = 
n - k erasures, the  output of the  combined  decoder will be. 
the  output of the erasure-correction  decoder if there  are  no 
more  than e erasures. If more  than e erasures  are  present,  the 
combined  decoder will take  the  output of the  error-correction 
decoder.  The  error-correction  decoder will be  able to; correct 
up to t = [ ( n  k ) / 2 ]  errors. If more  than t errors  occur,  then 
the  decoder will (with high probability)  recognize  that  the 
number of errors  exceeds the error-correction  capability of the 
decoder  and  the  output is just  the  demodulated  information 
Symbols  of the received signal. That is, the  probability  that  the 
decoder  fails to  decode is much  greater  than  the  probability it 
decodes  into  the  wrong  codeword [ l o ] ,  [ 141. If the  latter 

. .  
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probability is neglected,  the  probability  of  a  symbol  error  at 
the decoder output is derived  as  follows. 

First,  the  symbol is always  correct if no more  than n - k 
erasures occur  in  the  decoder  input.  This is due  to  the assump- 
tion of perfect  side  information  and  no  background  noise. If 
more  than n - k erasures  occur, the  output  of  the combined 
decoder will be the  output of the  error  correction  decoder. A de- 
coding  failure will occur if the  number of errors  in  the received 
vector  is  greater  than  the  error-correcting  capability of the 
code. Let Es,i be the  event  that  the  first  symbol  of  the .received 
vector is in  error,  let Es,o be the  event  that  the  first  symbol of 
the  decoder  output is in  error, let E, be tbe event that j of  the 
last n - 1  symbols  are  jammed,  and  let El be the event that 1 
symbol  errors  occur  in the last n - 1  symbols  of the received 
vector. 

We can  write the decoded  symbol  error  probability as the 
probability  that  the  first  symbol is received  in error,  at least 
e of the remaining n - 1  symbols were jammed,  and  at least t 
of these  jammed  symbols were  received in error,  that is, 

We note  the  following  facts  about  the  events Es,o,  Ei, and 
kl. First, Es,o is independent of the :vents l?j and kl. Next, Ej 
and Eit are  disjoint for j f j ' .  Also, El and Elg  are  disjoint  for 
1 # 1'. Using these  facts  in the above  expression  for P(ES,i), we 
obtain 

n - 1  n-1 

j=e  I=t 

which  can  be written as 

n -  1 i 

Next  observe  that 

and 

for 1 < 1. Clearly, p(il I ~ i )  = o for 1 > j .  

(24) simplifies to 
I f p = l , t h e n P ( E j ) = O f o r j < n - l a n d P ( E n - l ) = l , s o  

which is just  the  output  symbol  error  probability  for  an  error- 
$orrecting  decoder  when the  input  symbol  error  probability is 
P,(L,  1).  Two simple upper  bounds  on  the symbol  error  prob- 
ability  can  be  easily  derived  from  (24);  First,  since the last 
summation  in  (24) is  less than  1  and Pe(L,  p )  < 1, we have 
from  (24)  and (25) that 

P{Es,o}< (n) (i) (PL)'(l - p L ) " - j .  (29) 
j=n-k+l  

The  right-hand  side of (29) is just  the  error  probability  at  the 
output of the erasure-correction  decoder  of Fig. 1 (the  erasure 
probability is p L ) .  Notice that  the  upper  bound in (29)  de- 
pends  only  on the  fraction p of the  band  that is jammed. 
Another  bound can  be obtained  from  the  fact  that 

n - 1  

j = e  

The  bound  that  results  from  (23)  and  (30) is 

n -  1 

where 

(32) 
This is easily recognized  as the  error  probability  at  the  output 
of the error-correction  decoder  of  Fig. 1. Thus, we can upper 
bound  the  performance of the combined  decoder  strategy by 
the  performance of error-correction  decoding  alone  or  by the 
performance of erasure  correction  alone.  The  performance  re- 
sults given in [ 9 ]  are  based  exclusively on  these  bounds.  The 
numerical  results given in the  next  section will show that each 
of these  bounds is tight  for  certain ranges of values  of p. 

The  derivation so far has  been  for the  symbol  error  proba- 
bility of the Reed-Solomon  code. We now  relate  this  to  the 
bit  error  probability  for  the  two  different  types of signaling 
(nonorthogonal  and  orthogonal).  For  a  (nonorthogonal) sig- 
nal set in  which the signals  are  sequences of binary signals, de- 
fine Eb,i to  the event that  the first bit of the first symbol of 
the received  vector is in error, and let Ebqo be the event that 
the first bit of the first symbol of the  decoder  output is in er- 
ror.  The  same  argument  that gives (24) can  be  applied to  Eb,j 
and to  prove that 

n -1  I 

(34) 

and P, is given in  (21).  For M-ary orthogonal signaling, (33) is 
still valid, but  (34)  must  be replaced by 

(35 1 

Finally, we note  that  the  upper  bound  on  the  symbol  error 
probability  in  (29) also  holds  for  bit  error  probability,  and the 
upper  bound on symbol  error  probability in (31) also holds 
for bit  error  probability if P{E,,i} is replaced  by P{Eb,i}. 
Similar  results  can be  obtained when a  sequence of m M-ary 
symbols is used  as a  code  symbol. 

VI. NUMERICAL RESULTS AND DISCUSSION 
In this  section, we  discuss  some  numerical  results that  are 

presented for  the decoding  algorithm  discussed in Section I1 
and  analyzed  in  Section V. First, we demonstrate  the  tightness 
of  the  two  bounds given in  Section V for  the  (32,  10) Reed- 
Solomon  code  with diversity L = 5 .  The  two  upper  bounds 



TABLE I 
ERROR PROBABILITY FOR (32, 10) REED-SOLOMON CODE WITH 

DIVERSITY 5 (Eb/NJ = 5 dB) 

p Error-Correction Deed" Erasure-Correction Decoding Parallel  Decoding 
- 
0.50 
0.55 0.740  X IO-= 

0.124 X LO-'' 0.80 
0.179 X l0= 

0.213  X 10" 0.835 XlO-" 0.65 

0.75 0.313 X10" 
0.70 0.242  X lo-" 0.640 X 10''  

0.856 X 10-8 
0.80 0.174 X IOJ 0.497 X l @  0.850 x 
0.85 0.374 XIOJ ' 0.111 x 1 0 2  
0.00 0.228 X10-l 
0.05 0.205 

0.711 X 1 0 '  0.134 

1.00 0.308 
0.882 0.234 
Loo0 0.308 

P 

0.221 x 10.1' 
0.378 X1Wo 

0.177 X l f l  
0.520 XlW' 

0.308 x10-1' 0.348 x107 

0.882 x 1 6  

0.455  X 10 '  

the 
the 

on  the  performance of the parallel  decodi,ng  algorithm a] 
performance of an  erasure-correction  decoder  only  an' 

re 
d 

performance of an  error-correction  decoder  only. These  proba- 
bilities  are  shown  in  Table I for Eb/NJ = 5 dB. Notice that  for 
small  values of p, the  bound based on  the  performance of era- 
sure-correction  decoding is tighter, while for larger  values  of p,  
the  bound based on  the  performance of error-correction  de- 
coding is tighter. 

We are  now  interested  in  the  ENR  (in  the  notation of Sec- 
tion of Sections 111 and IV, ENR  is E ~ / N J )  that is required to 
achieve a specified bit  error  rate  (BER). We compute  ENR as a 
function of p for  two  different  codes  and  for various  diversity 
levels. As discussed in [ 31,  there is a  minimum  effective  valueof 
p,denoted byp*,suchthatforp<p*,thespecifiedBERwillbe 
achieved  regardless of the  amount of power or noise distribution 
of thejammer.  The value ofp* will depend on  the code,  thediver- 
sity level, and the specified BER In our analysis, we are assuming 
that  the  background noise is  neg1igible.l 

For  the  parallel  decoding  technique, p* can  be  evaluated  as 
follows.  For  a given Reed-Solomon  code,  let p s  be  the  code 
symbol  erasure  probability  at the decoder  input which gives 
the specified output BER for  the  erasure-correction  decoder. 
In order  to cause the erasure  probability to  be  at least ps, the 
probability of a  jammed diversity  transmission  must  be at least 
the  Lth  root  of ps, that is, pL. must  be  at least as  large asps. It 
follows that 

For p < p * ,  the -specified  BER is achieved for  arbitrarily 
small  values of ENR  (any  nonzero  value);  that is, the  upper 
bound  in (29) is less than  the desired  BER. For p 2 p * ,  there 
will (with  high  probability) be more  than n - k erasures. If 

' there  are  more  than n - k erasures, the  output of the error- 
correction  decoder is taken as the decoded  data (the erasure- 
correction  decoder is not  used).  The  analyses of  Sections 111 
and IV indicate  how  to  calculate  the  error  probabilities  for the 
output of the error-correction  decoder.  The  overall  BER  can 
be  upper  bounded  by  the  error  probability  for  the  erasure- 
correction  decoder  for p < p* and  by  the  error  probability 
for  the  error-correction  decoder  for p 2 p*.  All the results 
presented  assume  perfect  side  information.  However,  these 
results  are  indicative of the  performance  that can  be  ob- 
tained even if the side  information is not  perfect if some  minor 
modifications  are  made  in  the  decoder.  For  example,  the era- 
sure-correction  decoder  could be modified to  correct .r errors 
and E erasures  for  a  small  value of .r (e.g., .r = 1 or 2) as  long  as 
the  constraint 2.r -k E < n - k is satisfied. 

In  Table 11, we show the  different p* values for  two  differ- 
ent  codes  and several levels of  diversity. As an  example of the 
tightness  of  this  bound  for  fixed  BER, we plot  the  bound 
based on  the  performance  of  the  error-correction  decoder 
alone  and the exact  result for parallel  decoding  in  Fig. 2 for 

I If the  background  noise is not  negligible,  the  value of p* will  also  depend 
on  this  noise level. 

TABLE II 
VALUES OF p* FOR PARALLEL  ERRORSIERASURES  DECODING WITH 

PERFECT  SIDE  INFORMATION  AND  BER = 

L 

0.482 0.240 0.400 
2 
1 

(64,321 code (64,20) code (32,16) code (32,lO) code 

0.632 0.4M 
3 0.736 0.621 
5 0.833 

0.877 0.922 0.853 0.003 9 
0.816  0.877  7 
0.752 

0.306 
0.694 

0.M1 
0.864 

0.674 0.784 
0.553 

0.789 
0.844 

L (64,48) code (64,12) code (32,24) code (32,6) code 

1 0.532 

0.697 0.014 7 
0.9w 0.603 0.881 5 

0.486 0.852 0.431 0.810 3 
0.339 0.787 0.282 0.729 2 
0.115 0.619 0.080 

0.649 
0.034 

9 0.032  0.755 0.948 
0.734 
0.786 

15.0 - 
ENR(dB1 

12.0 - 

9.0 - 

6.0 - 

Chernoff bound 

Error-correctton 
decoding bound 

0.0 
0.0 20 .40 .60 . 3 0  1.0 

P 

Fig. 2. EJNJ necessary for BER for (32, 16) Reed-Solomon  code  with 
diversity 1.  

the (32, 16) Reed-Solomon  code  and  diversity 1 and  orthog- 
onal signaling. In Figs.. 3-6, we will plot  the  performance 
of the error-correction  decoder  only,  since for values 
of p greater than p * ,  this  upper  bound is fairly  tight,  and  for 
,o less than p * ,  the error  probability is  alw-ays  less than  the 
specified  BER for  any positive  value  of E, .  In Figs. 3-6, we 
consider the case  of orthogonal signals, while  in  Fig. 7 ,  non- 
orthogonal signals are  considered.  In  Fig. 3, the ENR  neces- 
sary  for  a  BER of using,a (32, 16)  Reed-Solomon  code 
is shown  for  diversity values of 3 and 7 with  orthogonal signal- 
ing, and  in  Fig.  4,. the results  for the (64, 32) code  with di- 
versity 3  and 5 are  shown. In Figs. 5 and 6,  analogous  results 
are shown  for  the (32, lo),  and  (64,20) Reed-Solomon  codes, 
respectively,  with  diversity  1  and 3 and  orthogonal signaling. 
Both  the  Chernoff  bound  and  the  exact result  are shown.  The 
Chernoff  bound is about  2  dB larger than  the  exact  result  for 
all values of p,  and is considerably  larger  than  the  exact re- 
sults  for small  values of p.  The vertical  line  in these figures  oc- 
curs  at p = p * .  The parallel  decoder will have error  probability 
less than lop4 for  any Eb > 0 when p is less than p * .  Finally, 
in  Fig. 7 ,  the exact  ENR  necessary  for  a  BER  of l o p 4  using a 
(32, 16)  Reed-Solomon  code is shown  for  diversity values  of 1,3, 
5,  and 7 with  nonorthogonal signaling ( i n  = 5). 

In  comparing the  perfomance of two  different  coded sys- 
tems,  one  must  be  careful to  keep  certain  system  parameters 
the same.  The  parameters  that  should  be held constant  in  any 
comparison  are: 1) energy  per  information bit E , ,  2) total 
RF  bandwidth W ,  3) information  bit  rate R b ,  and  4)  total  in- 
terference  power NJW. In the systems  considered  above,  keep- 
ing the  total  RF  bandwidth and the  information  bit  rate  con- 
stant  requires  the overall information  rate to  be  constant.  Note 
that k logz M/nL is the  number of information  bits  per  chan- 
nel  symbol.  For a signal set of dimensionality D, diversity of 
level L ,  and  an ( n ,  k )  code  with  an  alphabet of sizeM,  the in/- 
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Chernoff bound 

773 

P 
Fig. 3. Eb/NJ necessary  for BER for (32, 16) Reed-Solomon  code 

with  diversity 3 and 7. 

I0.Or Chernoff bound 

0 0 " ' " '  
0.4 0.5 0.6 0.7 0.8 0.9 1.0 

P 
Fig. 4. Eb/NJ necessary  for  BER  for (64, 32) Reed-Solomon  code 

with  diversity 3 and 5 .  

150- 

ENR(d81 Chernoff  bound 
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L= 1 
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Error-correction 
decodlng  bound 
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0.0 I I I I 
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Fig. 5 .  Eb/NJ necessary  for  BER for (32, 10) Reed-Solomon  code 

with  diversity 1 and 3. 
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Fig. 6.  Eb/NJ necessary  for  BER  for (64, 20) Reed-Solomon  code 
with  diversity 1 and 3. 

0- 
0.0 .20 .40 .60 .80 1.0 P 

Fig. 7. &INJ necessary  for  BER  for (32, 16) Reed-Solomon code 
with  diversity 1 ,  3, 5 ,  and 7 for  nonorthogonal  signals. 

formation  rate  (in  bits  per  dimension)  is 

k log2 M R = -- 
nLD 

For  an M-ary orthogonal signal set,  the dimensionality is D = 
M .  If the M-ary signals are  sequences  of m binary FSK tones, 
the dimensionality is D = 2m = 2 log2 M .  

In designing a spread-spectrum  system to have a certain 
overall bit  error  probability p b ,  there  are  two  parameters  that 
we  feel  are  important.  The  first is p*,  which is the minimum 
fraction  of  the  band  that must be  jammed  for  the  error  proba- 
bility to be  at least p b  (regardless  of the power or statistical 
distribution  of the interference).  It is desired t o  make p* as 
large as  possible. The  second is ENR*  which  we  define  to  be 
the  maximum E b / N ~  (over 0 < p < 1) required t o  obtain the 
specified bit  error  probability p b  in the presence  of  partial- 
band Gaussian noise. It is desired to  make  ENR* as  small  as 
possible.  Different  coding  strategies  provide a tradeoff be- 
tween  these  two  important  parameters. In  Table 111, we list 
these  parameters  for  various  codes,  along  with  the value of p 
(denoted  by b )  which  requires the maximal  signal-to-noise 
ratio  ENR*. With orthogonal  modulation,  which is decoded 
with  soft  decisions (square-law combining),  repetition  cod- 
ing (diversity),  and  Reed-Solomon  coding,  we note  the follow- 
ing. First,  the  orthogonal  code  has  dependent  bit  errors.  This is 
because  all  code  symbols  are  sent  on  the  same  hop  which is 
either  jammed  or is noise  free.  However, the orthogonal  code 
(because  of  its  low  rate) can be  decoded easily with  soft deci- 
sions (square-law combining).  The  repetition  code  and Reed- 
Solomon  code  are  interleaved;  each  symbol  is received in in- 
terference  that  is  independent  of  the  interference  on all other 
symbols  (different  symbols  are  sent  on  different  hops).  The 
repetition  code is decoded using soft  decisions (square-law 
combining).  The  Reed-Solomon  code is decoded  with  hard 
decisions. Nonorthogonal signaling uses considerably  fewer 
dimensions  per  transmitted  bit  than  orthogonal signaling be- 
cause the signal set  has  dimension log2 M .  This  allows us  to 
use  lower  rate  interleaved  codes (i.e., repetition  and Reed- 
Solomon  codes)  than  with  orthogonal signaling.  If we fix the 
overall information  rate  (in  bits  per  dimension)  of  the  system, 
then  the following  conclusion is evident from Figs. 1-7 and 
Table 111. Orthogonal signals (which  perform well on  the 
AWGN channel) have lower values of ENR*, but  they also 
have  lower values of p* than  nonorthogonal signals with  the 
same overall  rate. The  lower ENR* values are  due to the per- 
formance gained by  soft  decision  decoding  of the orthogonal 
code.  The  lower values of p* are due  to  the  bandwidth inef- 
ficiency of orthogonal signaling. Thus, if the primary  interest 
is in p*, it  appears  that  binary signaling  is most  effective.  If 
the primary  interest  is  in ENR*, then  orthogonal signaling is 
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TABLE 111 
VALUES OF p* ,  ENR*, AND p  ̂ FOR VARIOUS CODES AND BER = 10-4 

I. L n=M m Rate p* ENR ’ i 

5 2 32 5 0.039062 0.755 15.98 0.95 
10 4 32 5 0.039062 0.795 14.31 1.00 
IS R 32 5 0.038062 0.801 13.77 1.00 -- 
20 8 32 5 0.039062 0.780 13.42 1.00 

.. 

In 2 64 6 0.038062 0.808 15.69 0.95 _ _  
20 4 64 6 0.039082 0.833 14.12 1.00 
30 6 64 6 0.039062 0.833 13.46 1.00 

40 8 ii, 6 0.038062 0.820 13.20 1.00 
35 7 6 0.039062 0.828 13.35 1.00 

45 9 
50 10 64 6 0.038062 0.790 13.27 1.00 

64 6 0.039062 0.808 13.27 1.00 

30 3 128 7 0.039062 0.855 14.64 1.00 
An 4 . 12R 7 0.039062 0.858 14.04 1.00 1- 

50 5 128 7 0.039062 0.857 13.64 1.00 
60 6 128 7 0.039062 0.854 13.37 1.00 
70 7 128 7 0.039062 0.848 13.19 1.00 
80 8 128 7 0.039062 0.840 13.09 1.00 

... 

90 9 128 7 . 0.039062 0.828 13.06 1.00 
100 10 128 7 0.039062 0.812 13.13 1.00 
80 4 256 8 0.039062 0.875 14.03 1.00 

~~ 

Inn s 256 8 0,039062 0.872 13.62 1.00 _ _ _  
120 6 256 8 0.039062 0.868 13.34 1.00 
160 8 256 8 , 0.039062 0.854 13.04 1 . 0 0  
180 9 256 8 0.039062 0.841 13.00 1.00 
200 10 256 8 0.039062 0.826 13.05 1.00 ... ~ 

220 I 1  266 8 0.039062 0.800 13.23 1.00 
5 2 
40 I 256 2 0.039062 0.756  9.90 0.83 

16 1 0.039062 0.548 9.15  0.81 

80 2 256 2 0.039062 0.764 7.97 0.87 
120 3 250 2 0.039062 0.753 7.16 - 1.00 
1W 4 256 2 0.039062 0.729 6.82 1.00 _.. 
200 5 . 256 2 0.03a062 0.682 6.81 1.00 
8 1 32 1 0.039062 ’ 0.463 8.45 0.63 

24 3 
16 2 32 1 0.038062 0.480 6.76 0.69 

32 1 0.038062 0.430 6.83 0.63 
97 1 134 1 0.039551 0.376 6.88 ’ 0.47 -. 
53 2 64 1 0.038818 0.259 7.11 0.36 

.. 

more  effective.  For both large p* and small ENR*, M = 16 
with  two  16-ary  symbols  per  code  symbol is quite  effective 
with  the  length  256  Reed-Solomon  code.  This,  however,  re- 
quires  additional  decoding  complexity  and  delay. 
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