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Abstract

Background: Predicting risk of disease from genotypes is being increasingly proposed for a variety of diagnostic and
prognostic purposes. Genome-wide association studies (GWAS) have identified a large number of genome-wide significant
susceptibility loci for Crohn’s disease (CD) and ulcerative colitis (UC), two subtypes of inflammatory bowel disease (IBD).
Recent studies have demonstrated that including only loci that are significantly associated with disease in the prediction
model has low predictive power and that power can substantially be improved using a polygenic approach.

Methods: We performed a comprehensive analysis of risk prediction models using large case-control cohorts genotyped
for 909,763 GWAS SNPs or 123,437 SNPs on the custom designed Immunochip using four prediction methods (polygenic
score, best linear genomic prediction, elastic-net regularization and a Bayesian mixture model). We used the area under the
curve (AUC) to assess prediction performance for discovery populations with different sample sizes and number of SNPs
within cross-validation.

Results: On average, the Bayesian mixture approach had the best prediction performance. Using cross-validation we found
little differences in prediction performance between GWAS and Immunochip, despite the GWAS array providing a 10 times
larger effective genome-wide coverage. The prediction performance using Immunochip is largely due to the power of the
initial GWAS for its marker selection and its low cost that enabled larger sample sizes. The predictive ability of the genomic
risk score based on Immunochip was replicated in external data, with AUC of 0.75 for CD and 0.70 for UC. CD patients with
higher risk scores demonstrated clinical characteristics typically associated with a more severe disease course including ileal
location and earlier age at diagnosis.

Conclusions: Our analyses demonstrate that the power of genomic risk prediction for IBD is mainly due to strongly
associated SNPs with considerable effect sizes. Additional SNPs that are only tagged by high-density GWAS arrays and low
or rare-variants over-represented in the high-density region on the Immunochip contribute little to prediction accuracy.
Although a quantitative assessment of IBD risk for an individual is not currently possible, we show sufficient power of
genomic risk scores to stratify IBD risk among individuals at diagnosis.

Keywords: Inflammatory bowel disease, Crohn’s disease, Ulcerative colitis, Case-control study, Risk score, SNP array,
Complex trait
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Background
Inflammatory bowel disease (IBD) is a global disease
with the prevalence and incidence for Crohn’s disease
(CD) and ulcerative colitis (UC) rapidly increasing
worldwide [1]. Some individuals are more predisposed
to IBD than others, and genomic testing is appealing for
individualised monitoring and disease management. At
present, the low prevalence of CD and UC makes it diffi-
cult to identify ‘at risk’ individuals.
There are now over 200 loci for CD and UC, identified

in GWAS and Immunochip studies using more than
95,000 samples [2, 3]. However, these genome-wide sig-
nificant loci only account for a modest proportion of the
total variation of the diseases. The variance on the liability
explained by the significant loci is ~0.13 and ~0.08 for CD
and UC, respectively [2, 3].
As for any complex disease, there are many more

SNPs associated with phenotype that have small effect
sizes and the inclusion of non-genome-wide significant
variants is likely to make a positive contribution to the
prediction model [4]. Using genome-wide data, a num-
ber of studies have assessed risk prediction of CD and
predictive ability of the models, as measured by the area
under the ROC curve (AUC), ranging from 0.64 to 0.86
[5–9]. Comparison between these studies is difficult due
to differences in prediction method, sample size and
genotyping chip.
In this report, we performed genomic risk prediction

of CD and UC using four prediction methods that utilise
genome-wide SNP data. We further investigated how
performance was influenced by the size of the discovery
sample and the choice of the genotyping platform. We
show that genotype-based risk predictors can achieve a
substantial separation of cases from controls. We further
demonstrate high discriminant power between the top
and bottom 10% of individuals ranked on their risk score
in an independent cohort and a relationship between
genomic risk predictor and severity of CD.

Methods
The International Inflammatory Bowel Disease Genetics
Consortium (IIBDGC, Additional file 1) provided data
on over 68,000 IBD patients and 29,000 healthy controls
from 15 cohorts of mainly European descent. Initial
GWAS and subsequent meta-analyses used genome-
wide SNP arrays and imputed SNPs [10, 11], but the ma-
jority of samples were genotyped with Immunochip [2].

SNP arrays and quality control
We received 1,253,071 and 1,253,093 imputed GWAS
SNPs for CD and UC, respectively. For convenience we
refer to these genotypes as gChip. After following the
quality control (QC) protocol provided by IIBDGC, we
performed additional QC steps, retaining SNPs with

imputation quality INFO score R2 > 0.6 and minor allele
frequency (MAF) > 0.01 in each of the imputation co-
horts for CD (N = 6) and UC (N = 7), and identified
987,572 SNPs that were in common between CD and
UC samples.
The data we received for Immunochip (iChip) com-

prised 176,709 SNPs. Initial quality control followed the
preliminary guidelines provided by IIBDGC [2]. In
addition we eliminated SNPs with P-values <1e-6 in the
test of Hardy-Weinberg proportions, SNPs with MAF
less than 0.001, and individuals with >2% missing geno-
types. Due to the low effective number of markers on
iChip (Fig. 1a), a relatedness threshold of 0.2 (equivalent
to about 0.05 for gChip [12]) was set to remove one
member at random from a pair of related individuals.
To rule out potential mistakes in risk prediction, SNPs

with palindromic alleles (A/T, G/C) were removed from
iChip and gChip. After quality control 123,437 SNPs for
iChip and 909,763 SNPs for gChip were available to
evaluate predictors for CD and UC. The number of over-
lapping SNPs between iChip and gChip was 42,534
(42 K set, Fig. 1a). All analyses used only autosomal SNPs.
To summarise the differences between the 42 K SNP

set, iChip and gChip, we calculated the effective number
of markers (i.e. quasi-linkage equilibrium markers) from
the genomic relationship matrix as described in [12].
The number of independent SNPs was 2750 for the 42 K
SNP set, 2986 for iChip and 37,226 for gChip.

Partitioning of case-control samples
The data sets used in this study are described in Fig. 1b.
The discovery population for gChip included 16,400 in-
dividuals for CD (4906 cases and 11,494 controls) and
21,982 for UC (5788 cases and 16,194 controls). For
iChip 16,850 CD cases, 13,000 UC cases, and 27,050
common controls were available as discovery samples.
Individuals recruited from Australia and New Zealand
(ANZ cohort) were not included in the discovery sample
and served as an independent validation dataset. The
ANZ cohort consists of 1193 UC and 2204 CD cases
and 997 common controls.
For each trait, we considered various scenarios differ-

ing in the number of discovery samples, number of SNPs
and genotyping platform (Fig. 1b). We first created dis-
covery sets by extracting individuals that were genotyped
with both iChip and gChip and limited the marker panel
to the 42 K SNPs genotyped on both genomic platforms.
These data served as a baseline to assess how perform-
ance changed with increasing sample size and increasing
SNP coverage.

Genomic risk prediction methods
We applied four different methods for whole-genome
marker-enabled prediction. Genetic profile risk scores
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(GPRS) were constructed using the effects of all SNPs
estimated from single-marker association analyses using
PLINK [13]. An alternative to GPRS is a best linear
genomic prediction (GBLUP [14]) which is based on
mixed linear model that regresses phenotypes on all
SNPs jointly. For GBLUP we used the MTG2 software
[15, 16]. The third method applied elastic net
regularization (EN) using the glmnet package [17] in R
[18]. The EN method was recently applied by Wei et
al. [8] for risk prediction of CD and UC using the
IIBDGC iChip data. When applying EN, we first per-
formed a single SNP association analysis using PLINK
and then restricted the model space to the 8000 most

significant SNPs, followed by 10-fold cross-validation
to choose the optimal EN tuning parameter. We also
applied BayesR [19, 20], which uses a Bayesian hier-
archical method that models SNP effects as a mixture
of normal distributions. To be able to fit the BayesR
model to the large datasets in this study we developed
a more efficient algorithm implemented in a newer
version of the BayesR software. Prior assumptions and
MCMC parameters for BayesR were as described in
[20]. For the case-control data, a generalised linear
model with a logit link function was used for GPRS
and EN, whereas a linear mixed model was used for
GBLUP and BayesR.
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Fig. 1 Datasets used in this study. a SNP density of iChip and gChip SNPs. The whole genome was partitioned into 0.6 M bins on each chromosome.
The middle and inner circles indicate the density of the SNPs on iChip and gChip, respectively. The spikes for iChip depict regions of dense coverage
mainly chosen for replication and fine mapping of GWAS loci, while gChip provides a uniform coverage with higher average density. b Partitioning of
data into sets of increasing sample size and number of SNPs. Samples were split into four subsets with increasing number of individuals and SNPs. The
smallest subsets (dotted box) include samples genotyped on both gChip and iChip and SNPs overlapping between chips
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We also tried to apply Bayesian Sparse Linear Mixed
Models [21] but encountered a run time error (segmen-
tation fault) for the datasets with more than 20,000
individuals using GEMMA v0.94. Another method we
investigated was the multiBLUP method developed by
Speed and Balding [22], which extends the GBLUP
method to several variance components and was re-
ported to increase prediction accuracy of CD in the
Wellcome Trust Case Control Consortium dataset [22].
However, using Adaptive multiBLUP implemented in
LDAK v4.9, we observed that prediction accuracy was
generally lower than GBLUP for the same training sets
(Additional file 2: Figure S1). Such behaviour is unex-
pected as the GBLUB model can be considered the
‘baseline’ model of multiBLUP. We therefore do not re-
port multiBLUP results in the main text.

Prediction performance
GPRS, EN, GBLUP and BayesR were used to predict risk
of CD and UC in each of the different data sets illus-
trated in Fig. 1b. Prediction performance was assessed
by 5-fold cross-validation. Each data set was partitioned
in K = 5 folds. In each iteration, 4 of the 5 folds were
used as a training set to train a different model for each
method, while the 5th fold was used to test the models.
This process was repeated 5 times, with a different fold
used for testing in each case. Accuracy of risk prediction
was measured by averaging the area under the ROC
curve (AUC [23]) over the K left-out folds. To ensure
that predictive performance was not biased by popula-
tion structure, we regressed disease phenotype on the
top 10 projected eigenvectors estimated from the POPRES
reference panel ([24], Additional file 3: Figure S2) and re-
peated the analysis using the residuals from the adjusted
phenotypes. The top eigenvectors of our samples were
projected from a sample of 2466 Europeans from the
POPRES reference panel using 608,435 SNPs genotyped
on gChip. For samples genotyped with iChip we used their
projected eigenvectors with gChip SNPs for adjusting
phenotypes.
We also evaluated the capability of genomic risk score,

which is a continuous score, to predict case-control sta-
tus in the ANZ cohort which is not part of the discovery
population for CD and UC. For this purpose we cate-
gorised the scores into deciles and estimated the odds
ratio of case-control status by contrasting each decile to
the lowest decile. Odds ratio of case-control status was
calculated for the largest iChip models, which included
123,437 SNPs and 43,900 and 40,050 individuals for CD
and UC, respectively.
Finally, we investigated the association between gen-

omic risk score and known risk stratification factors for
CD in a group of 823 patients from the ANZ cohort
(Additional file 4: Table S1) by regressing risk score on

risk factor, including time of onset (1–19 years, 20–
39 years, > 40 years), need of bowel surgery (no, yes) and
disease location (ileal only, colon only, ileocolonic).

Results
We considered various scenarios to assess the utility of
genomic risk prediction models for CD and UC depend-
ing on genomic risk score method, genotyping platform
and size of the discovery sample (Fig. 1).

Common individuals and common SNPs between iChip
and gChip
Our initial analyses were restricted to individuals geno-
typed on both iChip and gChip (2479 cases and 3440
controls for CD; 2357 cases and 6740 controls for UC)
and 42,534 SNPs (42 K) that were in common between
platforms. To evaluate risk prediction performance we
performed within study 5-fold CV.
We found that BayesR performed better in prediction

than alternative methods (Fig. 2). Compared to the
GPRS method, using BayesR led to gains in prediction
accuracy on the AUC scale of 9% (computed as
100 × [0.779/0.715–1]) for CD and 7.4% (computed as
100 × [0.741/0.690–1]) for UC when models were
trained on iChip (Additional file 5: Table S2) and gains
were slightly higher for gChip models. BayesR consist-
ently outperformed the other methods in subsequent
analyses and we therefore mainly report the BayesR re-
sults from hereon.
Prediction accuracy for CD and UC from 5-fold cross-

validation was high, despite the low number of 42,534
markers (AUC 0.779 and 0.741 for CD and UC, respect-
ively). This was expected as the SNP list contained
GWAS hit SNPs. However, models trained on gChip had
higher AUC for CD (0.806) and UC (0.766) than models
based on iChip. If SNPs on both chips are without geno-
typing and imputation errors, accuracies are expected to
be identical between chips. Lower accuracies for ichip
could be partly due to missing genotypes, but the aver-
age missing rate of iChip SNPs was less than 0.05%. An-
other potential factor that could lead to systematic
differences between iChip and gChip is confounding of
case-control status by batch effects. Batch effects are pos-
sibly larger for gChip due to the use of different GWAS
arrays and the splitting of cases and controls into 6 imput-
ation cohorts for CD and 7 cohorts for UC. We looked for
batch effects in the data by training models using gChip
genotypes and then predicting the left out test set using
the iChip genotypes and vice versa (Additional file 6: Fig-
ure S3). In the absence of systematic differences between
genotypes, we would expect similar accuracies for the
same validation sample irrespective which array was used
for training. Using either gChip or iChip genotypes for
validation did not change the predictive performance of
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models trained on iChip, whereas using gChip in both dis-
covery and validation led to a gain in accuracy. For ex-
ample for CD measured on the 0–1 scale, training on
gChip or iChip and using iChip genotypes in the valid-
ation sample gave AUC of 0.771 and 0.779, respectively,
compared to AUC of 0.806 and 0.776 when using gChip
in the validation sample. This suggests a small artificial
gain in the prediction performance for gChip in cross-
validation, most likely due to imperfect imputation of
SNPs not genotyped across all GWAS platforms.
To avoid prediction bias due to potential confounding

effects from population stratification, we used adjusted
phenotypes controlled for projected eigenvectors derived
from the POPRES reference population ([24], Additional
file 3: Figure S2). Using these adjusted phenotypes, it
was observed that AUC values for CD and UC decreased
by 3.2% (computed as 100 × [0.806/0.781–1]) and 6.8%
(computed as 100 × [0.766/0.717–1]) for gChip and 3.3%
(computed as 100 × [0.778/0.753–1]) and 6.8% (com-
puted as 100 × [0.741/0.694–1]) for iChip, respectively.

Prediction performance with increasing sample size and
number of SNPs
We next investigated by 5-fold CV if increase in sample
size and in the number of potential predictors makes a

contribution to prediction performance (Fig. 3, Additional
file 5: Table S2). A noticeable feature of Fig. 3 is that sub-
stantial increases in SNP density for both chips did not
translate into big increases in AUC. The effective number
of independent SNPs was estimated to be 2750 for the
42 K SNP set, 2986 for iChip and 37,226 for GWAS
gChip. The increase in the effective number of inde-
pendent SNPs of ~9% for iChip largely reflects the con-
siderable LD between SNPs in regions of high density
around the 163 susceptibility loci detected in the study
described by Jostins et al. [2]. Surprisingly, the substan-
tial increase in the number of independent SNPs for
gChip had a negative effect on prediction performance
in most scenarios for all methods (Additional file 5:
Table S2). The SNPs in the 42 K set are very much
enriched for specific regions in the genome known to
be associated with IBD and this perhaps explains the
observation for gChip, since the effects of all the extra
SNPs with presumably zero, or very small contribution,
have to be balanced with noise, potentially impacting
negatively on prediction performance. In addition, we
cannot rule out that other sources of artefactual con-
founding between discovery and target samples that es-
caped our QC contribute to the unexpected results for
gChip.

Fig. 2 Comparison of prediction performance of four methods using individuals and SNPs common between gChip and iChip. The sample
consisted of 2479 cases and 3440 controls for CD and 2357 cases and 6740 controls for UC. The number of SNPs was 42,534. Prediction accuracy
is measured as the area under the curve (AUC) with higher values denoting better performance. Vertical lines display the variation of estimates in
5-fold cross-validation. Prediction models were trained using either disease status (0–1) or disease phenotype adjusted for ancestry (adjusted)
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Prediction performance for the independent ANZ cohort
Within-study or cross-validation will most likely not re-
flect the exact performance of out-of-sample prediction.
A proper assessment requires external validation in
several datasets collected from different sources to avoid
over-optimistic prediction results. After the previous
GWAS [10, 11, 25–27], genotyping in IIBDGC was
almost exclusively done with iChip and hence no inde-
pendent dataset was available to assess the performance
based on gChip samples. To evaluate models based on
iChip we used the ANZ cohort as an independent
validation population. The ANZ cohort includes samples
recruited from centers within Australia and New
Zealand that were excluded from the aforementioned
cross-validation analyses. Further, the ANZ cohort was
not included in the previous GWAS studies, which is
important to protect against potential bias that would
result from including individuals in the validation set
that were also part of the data used for selecting SNPs
onto iChip.
We used each of the five prediction models from 5-

fold cross-validation to predict case-control status and
we reported the mean AUC. In contrast to the results
from cross-validation, models trained with adjusted phe-
notypes controlled for population stratification had simi-
lar performance to those with unadjusted phenotypes
(Additional file 7: Table S3). This shows that adjustment
for population structure is important to reduce the

inflation of prediction accuracy when future accuracy is
assessed by cross-validation.
Of the four methods, BayesR performed best across

training sets varying in sample size and number of SNPs.
Across the eight different data schemes, BayesR gave the
highest AUC 5 times, GBLUP twice, and EN once
(Additional file 8: Table S4). Overall, the gain in pre-
diction performance by increasing sample size and
number of SNPs was larger than what would be ex-
pected from the cross-validation results. Prediction
models that were trained using all available individ-
uals and SNPs had the best performance with AUC
scores of 0.78 for CD and of 0.70 for UC, respect-
ively. The prediction accuracy was lowest for models
derived from the 42 K SNPs set and the smallest
sample size (5919 CD samples, 9097 UC samples).
Relative to this model, using all iChip markers
(123,437 SNP) and increasing sample size to 43,900
for CD and 40,050 for UC led to gains in accuracy
on the AUC scale of 9.9% for CD (computed as
100 × [0.746/0.679–1]) and 9.3% for UC (computed
as 100 × [0.696/0.637–1]), respectively.
GPRS models included all available SNPs and had

poor prediction performance. We investigated if per-
formance using iChip would benefit from selection of
markers at various P-value cutoffs (Additional file 9: Fig-
ure S4). For most CD training datasets, the maximum
AUC was obtained for models including all SNPs, or
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Fig. 3 Prediction performance with increasing sample size and SNP density using BayesR. Prediction accuracy is measured as the area under the
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improved only slightly using selection cutoffs. A similar
trend for CD was reported for GPRS constructed from
GWAS SNPs using the Wellcome Trust Case Control
Consortium dataset [5]. AUC for UC improved by less
than 0.022 for two of the four training sets when SNP
were selected on P-value.
In Fig. 4 we plotted the kernel density estimates of

the predicted risk scores for control and case groups
based on the best performing model for BayesR. There
was substantial separation of the cases from the con-
trols for both diseases. As expected from the lower
AUC, the separation was less profound for UC.

Association of genomic risk score with clinical
characteristics of Crohn’s disease
For 823 CD cases in the ANZ cohort additional clin-
ical characteristics were available (Additional file 4:
Table S1). We found that individuals with higher gen-
omic risk scores more often required bowel resection
(P-value <0.03), were younger at disease onset (P-
value <0.005), and suffered more often from ileal than
from colonic CD (P-value <0.003, Additional file 10:
Figure S5). The P-value for disease onset and disease
location is significant after Bonferoni adjustment for
the three features investigated.

Clinical applications of genomic risk score in the ANZ
cohort
To quantify the usefulness of the genomic risk score, we
compared the top and bottom 10% of the genetic risk
predictors in the ANZ cohort using an epidemiological
approach [16, 28]. Individual genetic risk scores were
ranked from lowest to highest, and stratified into deciles.
We obtained the odds ratio of case-control status for
each decile comparing it to the lowest decile as a

reference (Fig. 5). As expected, the odds ratio was largest
for the difference between the 1st and the 10th decile.
The odds ratio for CD between highest and lowest decile
was 40.64 ± 31 for BayesR, 29.56 ± 3.62 for EN, 23.43 ±
7.09 for GBLUP and 5.69 ± 0.47 for GPRS, respectively.
These observed values agree reasonably well with the ex-
pected odds ratio of 31.97, 26.75, and 7.4 given the ob-
served AUC and assuming a prevalence of 0.005 for CD
[29]. A value of 40 means that if a person’s risk profile
score falls into the last decile he/she is 40 times more
likely to be a case than if he/she belonged to the first
decile. Utility of genomic risk scores for UC was lower
with odds ratios of 13.62 ± 2.42, 16.45 ± 2.84, 10.39 ±
1.32 and 3.35 ± 0.15 for BayesR, EN, GBLUP and GPRS,
respectively (Fig. 5). Assuming a prevalence of 0.002 for
UC, these values again agree well with the expected
odds ratio between highest and lowest decile of 13.69,
14.56, 11.93, and 4.44, respectively.

Discussion
In this study we show that genomic risk scores estimated
from a large discovery population can increase the predic-
tion accuracy of an individual’s risk of CD and UC. It is not
possible to compare all rivaling methods available for SNP-
based prediction. We chose methods that were expected to
run efficiently on the largest datasets of this study. Across
various training sets the BayesR method outperformed
other methods (GBLUP, EN, GPRS) in comparison. The
good performance of BayesR is consistent with recent ana-
lyses that demonstrated that using a mixture of distribu-
tions for the SNP effects increases prediction accuracy for
diseases with strong associations [20–22, 30].
Elastic net regularisation (EN) performed relatively

poorly. In a recent study, based largely on the same
iChip samples and using EN, Wei et al. [8] reported
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AUCs of 0.86 for CD and 0.83 for UC. Our reported
CV estimate of 0.83 for CD is slightly lower; however
for UC the best AUC we achieved was 0.77. A direct
comparison of both studies is difficult since there were
differences in QC protocols, the composition of discovery
and validation samples and importantly, the SNPs avail-
able on iChip. We were not able to test the prediction
model in Wei et al. [8], which included 573 and 366 single
SNPs for CD and UC, respectively, as our validation
samples (ANZ cohort) were included in their study. In
addition, the iChip data we downloaded (iChip release 5,
November, 2012) included 2113 fewer SNPs than the set
that passed QC in Wei et al., and only 75% of the CD pre-
dictor SNPs and 73% of the UC predictor SNPs provided
by Wei et al. [8]. Of the remaining predictors a further
11% for CD and 12% for UC failed our stringent QC.
However, even with a substantial proportion of SNPs
missing, one would still expect that a significant part of
the original signals be tagged by other SNPs in LD, par-
ticularly in the high-density regions.
We used AUC to summarize the prediction perform-

ance across methods. However, in practice a prediction
model should also be calibrated, that is, return a risk score
that is on the same scale as the actual observed pheno-
type. For example, if a model predicts risk scores in the
range from −0.5 to 0.5, but phenotypes are coded as 0 and
1, then the model is not calibrated, regardless how high
AUC may be. BayesR and GBLUP risk scores are reason-
ably well calibrated whereas EN and GPRS scores are not.

Calibration is important when genomic predictions are to
be combined with other information sources.
Comparing prediction performance of the selected

42,534 SNPs subset with the full iChip (123,437 SNPS)
and gChip (909,763 SNPs) set from cross-validation
demonstrated that the power of iChip is mainly due to
the power of the initial GWAS study for its marker se-
lection. This suggests that residual associated SNPs that
are only tagged by gChip and that low or rare-variants
overrepresented in the high-density region on iChip con-
tribute little to prediction accuracy.
About 25% of the SNP-heritability tagged by gChip SNPs

is lost using iChip [12], but the decrease of the proportion
of variance explained did not translate into decreased pre-
diction performance. This observation is consistent with
theoretical and empirical studies [20, 22, 31–33] that show
prediction performance can be markedly different from the
proportion of variance accounted for in the training set,
particularly for traits with strong SNP associations. In the
external validation using data from the ANZ cohort, in-
creasing sample size resulted in gains in accuracy of 8% for
CD and 9% for UC, largely consistent with the expectation
that iChip increases power by enabling larger sample sizes.
The highly shared etiology between CD and UC [2] could
allow combining CD and UC cases into a much larger
training dataset that is expected to further increase the
power of risk stratification for IBD.
We have identified several potential sources of con-

founding like batch effects and divergent ancestry of
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individuals and show that they contribute very little to the
prediction performance of the genomic risk predictor in
the independent ANZ cohort. Although accuracies in the
ANZ cohort were lower than those from cross-validation,
we demonstrated the ability of the genomic risk score to
discriminate between clinically relevant low-risk and high-
risk groups. Even small increases in predictive ability can
substantially increase the odds ratio of disease status for
patients with the highest and lowest prediction scores.
CD and UC are heterogeneous complex phenotypes in

terms of age of onset, disease location and disease behavior
[34, 35]. Disease heterogeneity poses a challenge in devel-
oping accurate genomic risk predictors from case-control
studies [36]. To develop a risk score that is predictive in all
patients, larger sample sizes are needed to ensure that rele-
vant subtypes have adequate representation in the case-
control study. One potential solution is to conduct ‘deep
phenotyping’, but this might not be achievable in retrospect.
A more realistic option is to collect detailed phenotypes on
new cases and to then stratify samples based on their gen-
etic risk score [37]. For example, we found that higher gen-
omic risk scores for CD were associated with clinical
characteristics typically associated with increased disease
severity, including ileal location and younger age of onset
[38, 39]. Although this approach did not achieve the separ-
ation required for diagnostic purposes, it could be used to
stratify cases into relevant subgroups at diagnosis for
further prospective, longitudinal studies to identify
additional factors that determine a severe disease
course [40].
Our analysis of deciles in the ANZ cohort confirms that

there may also be clinical utility in using genetic risk
scores at the extremes, specifically at the higher end of the
scale [39]. Currently there are no clinical guidelines for
screening unaffected first-degree relatives of patients with
either CD or UC, unlike those set out for colorectal can-
cer. First-degree relatives of patients with either IBD and
with a high genetic risk score may be considered for sim-
ple, non-invasive, and inexpensive screening tests such
as an annual or biannual fecal calprotectin [41]. Pro-
spective studies will be needed to determine the utility
and cost-effectiveness of such a strategy as compared
to current established strategies such as those for first-
degree relatives of patients with colorectal cancer.

Conclusions
Implementing genomic risk prediction for IBD in clinical
practise involves making important decisions regarding the
choice of model, the size of the training data and the SNP
genotyping array. We demonstrate benefits in prediction
performance using a Bayesian mixture model that takes ad-
vantage of the known genetic architecture for CD and UC.
Our analyses demonstrate that the power of genomic risk
prediction for CD and UC is mainly due to strongly

associated SNPs with considerable effect sizes. Additional
SNPs only tagged by high-density GWAS arrays and low or
rare-variants over-represented in the high-density region
on the Immunochip contribute little to prediction accuracy.
These results favour the Immunochip over GWAS chips as
it facilitates larger sample sizes.
Individualised risk assessment is an important concept

in an era of personalised medicine. In clinical practise,
the genomic risk score has little utility to diagnose IBD
in individuals, largely because the diseases are highly
polygenic. Rather, genomic risk scores provide additional
risk stratification that is not fully captured with currently
available clinical information at diagnosis. By identifying
individuals with heightened genetic risk clinicians can
recommend earlier and more frequent clinical assess-
ment allowing more effective interventions or treatment
options both in patients and in other high risk groups
such as first-degree relatives of those with IBD.
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