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Abstract—This paper examines the performance of an adaptive 

linear array employing the new RLMS algorithm, which consists 

of a recursive least square (RLS) section followed by a least mean 

square (LMS) section. The performance measures used are 

output and input signal-to-interference plus noise ratios (SINR),

side lobe level (SLL), and SINRo as a function of the direction of 

arrival of the interfering signal. Computer simulation results 

show that the performance of RLMS is superior to either the 

RLS or LMS based on these measures, particularly when 

operating with low input SINR.
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I. INTRODUCTION

The continued demand for wireless communication services 
is spearheading research in new techniques for enhancing 
spectral utilization. One such technique is the use of adaptive 
or smart antennas to produce a movable beam pattern that can 
be directed to the desired coverage areas. This characteristic 
minimizes the impact of unwanted noise and interference, 
thereby improving the quality of the desired signal.  

An adaptive antenna consists of an array of antenna 
elements. The signals picked up by these individual elements 
are combined through the use of a signal processing unit to 
form a beam pattern that can be steered toward the desired 
coverage direction [1]. The performance of the signal 
processing unit is generally dictated by the beam forming 
algorithm used. The LMS or RLS are two commonly used 
algorithms for adaptive beam forming. The former has good 
tracking performance with low computational complexity, and 
is robust against numerical errors. On the other hand, the RLS 
algorithm can achieve a faster convergence which is 
independent of the eigen-value spread variations of the input 
signal correlation matrix [1].  These desirable features offered 
by both the LMS and RLS algorithms can be jointly realized 
through the use of a new algorithm, called RLMS [2]. The 
RLMS algorithm consists of two signal processing sections; an 
RLS section followed by an LMS section, as shown in Fig. 1. 
The convergence performance of RLMS is analyzed in [2].  

In this paper, the effectiveness of the RLMS algorithm for 
beam forming in an adaptive linear array consisting of N

isotropic antenna elements is evaluated under different 
operating conditions, including the presence of a cochannel 
interfering signal, and additive white Gaussian noise (AWGN) 

of zero mean and variance 2σ . The performance measures 

adopted are the signal-to-interference plus noise ratio ( )SINR ,

the side lobe level (SLL), and the variation of the output SINR

as a function of the angle of arrival (AOA) of the interfering 
signal.  For comparison, corresponding results obtained with 
the use of only the RLS or LMS algorithm are also presented. 

The paper is organized as follows. In section II, the RLMS 
system model for the adaptive array is described. Section III 
reviews the convergence of the RLMS algorithm. A description 
of the computer simulation study is provided in Section IV, 
followed by the results presented in Section V. Section IV 
concludes the paper.  

II. RLMS SYSTEM OVERVIEW

Fig. 1 shows the block diagram of an N-isotropic element 
adaptive linear array, which employs RLMS as its beam 
forming algorithm.  

Let the desired signal ( )ds t and a cochannel interference 

( )is t , both originated from a distance, are impinging on the 

array at an angle and d iθ θ , respectively, as shown in Fig. 1. 

The resulting outputs of the individual antenna elements in the 

presence of AWGN, ( )tn  of variance 2σ can be expressed as 

1 2( ) [ ( ),  ( ),  ..., ( )]
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where and d iA A are the array factors for the desired signal 

and the cochannel interference, respectively. By referencing 

with respect to the first element,  and d iA A are given by  
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d is the antenna element spacing, λ is the carrier wavelength

[3] , and ( )T  denotes transpose.  

1-4244-2424-5/08/$20.00 ©2008 IEEE ICCS 2008 493



Figure 1. The block diagram of an adaptive array system employing the RLMS algorithm [2] 

According to Fig. 1, the input stage of the RLMS scheme is 
based on the RLS algorithm with its weight vector at the 

( 1)thj + iteration updated according to [4]  

( 1) ( ) ( 1) ( ) ( ) ( )RLS RLS RLS RLSj j j j e j j∗+ = + +W W p X W    (4) 

where ( )jp is an arbitrary symmetric positive definite 

matrix given by 

1 ( ) ( ) ( ) ( )
( 1) ( )

( ) ( )

H

H

j j j j
j j

(j) j jα α
+ = −

+

p X X p
p p

X p X
          (5) 

( )jp is initialized by 1δ − I , with δ being a small positive 

constant, α is the forgetting factor and I is an N N× unity 

matrix. 

Now, the output of the RLS section at the thj iteration can 

be expressed as  

( ) ( ) ( )H

RLS RLSy j j j= W X                           (6) 

where ( )⋅HW denotes the complex conjugate transpose of 

the weight vector ( )⋅W .

With this signal forming the input to the following LMS 
section, the input signal vector of the LMS section becomes  

H

LMS RLS RLSy= =
d d

X A A W X                        (7) 

For the LMS stage, its weight vector is updated according 
to 

0( 1) ( ) ( ) ( ) 0LMS LMS LMS LMSj j j e jµ µ µ+ = + < <W W X   (8) 

where 0µ is a positive number that depends on the input 

signal statistics. 

Finally, the output of the RLMS beam former is given by  

H
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H H
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LMS
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W A W X

W X

                           (9) 

III. CONVERGENCE OF THE RLMS ALGORITHM

The convergence of the RLMS algorithm can be studied by 

observing its mean-square errorξ , defined as 

2

RLMSE eξ (10)

where [ ]E denotes the expectation operator and signifies 

the modulus. 

From Fig. 1, the overall error signal for the RLMS 

algorithm at the jth iteration is given by 

( ) ( ) ( 1)RLMS RLS LMSe j e j e j= − − (11) 
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with 
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where RLSd and LMSd correspond to the reference signals for 

the RLS and LMS sections, respectively.  

   Applying (11) and (12) to (10), we obtain 
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where ( ) ( ) ( 1)RLS LMSD j d j e j= − − , and Q is the correlation 

matrix of the input signals given by [5] as 

1
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Since H H H

RLMS LMS RLSd
W = W A W , it has been shown in [2] that 

the summation terms on the RHS of (13) are given by 
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where ( )jZ  is the input signal cross-correlation vector 

given by [5] as 

1
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As a result, the mean square error ξ  as specified by (13) 

can be rewritten as 
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The optimal weight vector ( )
RLSopt jW  is obtained by first 

differentiating (18) with respect to ( )H

RLS jW  yielding the 

gradient vector ( )ξ∇ . After equating ( )ξ∇ to zero, we obtain  

1( ) ( ) ( )
RLSopt j j j−=W Q Z                        (19) 

With this optimal weight vector, the minimum value of the 

mean square error becomes  
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Furthermore, it is shown in [2] that as the adaptation 

progresses, the mean square error will eventually converge to 

minlim ( )
j

jξ ξ
→∞

=                               (21) 

IV. PERFORMANCE STUDY

The performance of the RLMS algorithm has been studied 

by means of MATLAB simulation for an adaptive linear array 

consisting of eight isotropic antenna elements, spaced half 

carrier wavelength apart. For the simulations, the desired 

BPSK signal arrives at an angle 0dθ = . It is corrupted by an 

interfering BPSK signal arriving at 45iθ = in the presence of 

AWGN of zero mean and variance 2σ . All the tap weights are 

initially set to zero. The forgetting factor used is 1α = , and the 

step size for the LMS tap weights is 0.075.µ =  Each 

simulation run involves 1000 iterations. 

At each iteration, the output signal-to-interference plus 

noise ratio, ( )oSINR j is calculated according to 

( )
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where ( )dP j , ( )iP j and ( )nP j are the average output powers, 

at thj iteration, of the desired signal, the interference signal and 

the AWGN, respectively. sV and iV are the input amplitudes of 

the desired and interfering BPSK signals, respectively. For the 

simulation, sV is equal to 1 Volt, and σ is the rms noise 

voltage. ( )H jW  is as defined in (6).  

For comparison purposes, simulations have also been 
repeated using either the LMS or RLS algorithm on its own.  

V. SIMULATION RESULTS

The performance of the RLMS scheme is evaluated 

according to the following measures: 

Signal-to-interference plus noise ratio ( )SINR

Side lobe level (SLL)

SINRo against angle of arrival of the interference. 

A. Output SINR versus input SINR : 

The influence of interference and noise on the performance 

of the RLMS algorithm has been evaluated in terms of the 

oSINR achieved after convergence as a function of the 

input SINR . Fig. 2 shows the resultant oSINR achieved with the 

RLMS, LMS and RLS algorithms over an input SINR  range 

of -5 to 10 dB with σ =0.01. The effect of a larger σ of 0.05 

is shown in Fig. 3. From Fig. 2 and Fig. 3, it is obvious that 

the RLMS schemes out performs both the RLS and LMS 

algorithms in terms of achievable oSINR . Also, it is observed 

that the RLMS scheme achieves a larger oSINR for a given 

input SINR when σ is larger. This suggests that the RLMS 

algorithm is more sensitive to a change in interference level 

than noise. On the other hand, both the RLS and LMS 

algorithms tend to suffer from an increase in the noise level.  
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Figure 2. Output SINR versus input SINR with 0.01σ =

B. Beam pattern characteristics 

Fig. 4 shows the beam patterns obtained through the use of 

RLMS, RLS and LMS algorithms when the input SINR is 10 

dB and 0.05σ = . The maximum gain corresponds to the 

direction of arrival of the desired signal, i.e., 0dθ = . Here, the 

side lobe level (SLL) is defined as 

( ) dSLL dB Maximum sidelobe gain Gain atθ= −       (23) 

-5 0 5 10
-10

-5

0

5

10

15

20

25

30

35

Input SINR/dB
O

u
tp

u
t 

S
IN

R
/d

B

LMS

RLS

RLMS

Figure 3. Output SINR versus input SINR with 0.05σ =

For each of the three algorithms considered, SLL values are 

obtained for a range of input SINR , extending from 0 to 15 

dB, with 0.05σ = . These SLL values are tabulated in Table 1. 

It is observed that the three algorithms achieve similar SLL

performance when input SINR is larger than 10 dB. However, 

the RLMS scheme is far superior at lower input SINR . Based 

on this SLL measure, it is clear that the RLMS scheme 

achieves the best performance among the three algorithms 

considered.  
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Figure 4. The beams patterns obtained with LMS, RLS and RLMS    

algorithms (input 10SINR dB= with 0.05σ = )
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TABLE I. SLL (DB) ACHIEVED AT DIFFERENT INPUT SINRS (DB)

Algorithm 

Input SINR (dB) 

0 2.5 5 7.5 10 12.5 15 

RLMS  -16.27 -14.36 -14.38 -14.9 -13.65 -12.32 -12.21 

RLS  -13.99 -12.87 -12.37 -12.2 -11.85 -11.22 -12.11 

LMS -6 -8 -9.7 -9.8 -11 -9.2 -11.5 

C. SINR∆  against AOA of the interference, iθ

The influence of the direction of arrival of the interfering 

signal on the output SINR is also investigated. For this study, 

the desired signal has an input SINR of either 0 dB or 10 dB 

with 0.05σ = . The interfering signal arrives at an angle iθ ,

which varies from 90o−  to 90o .   

In this study, the performance measure adopted is  

, ,o o RLMS o RLSSINR SINR SINR∆ = −                 (24) 

where ,o RLMSSINR and ,o RLSSINR are the ensemble average 

output SINR, obtained from 30 simulation runs, for the RLMS 

and RLS algorithms, respectively.  

Fig. 5 shows the variation of oSINR∆ with iθ for the case 

that the desired signal arrives at 0o
dθ = , i.e., bore-side. The 

same results but obtained with 90o
dθ = , i.e., end-fire, are 

plotted in Fig. 6. For both the bore-side and end-fire cases, it is 
noted that the RLMS scheme performs better than the RLS 

algorithm, i.e., the oSINR∆ values achieved are positive, except 

for a small region when | | 75o
iθ > . It is possible for the RLMS 

scheme to achieve a larger gain in oSINR over the RLS 

algorithm when the input SINR drops from 10 dB to 0 dB. 
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Figure 5. Changes of 
oSINR∆ with the AOA of the interference. The desired 

signal arrives at 0o
dθ = and its input SINR is (i) 0dB and 

(ii)10dB  with 0.05σ = .
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Figure 6. Changes of 
oSINR∆ with the AOA of the interference. The desired 

signal arrives at 90o
dθ = and its input SINR is (i) 0dB and (ii) 10dB with 

0.05σ = .

Also, the oSINR∆  tends to peak at around 50o
iθ = ± for the 

bore-side case, and at around 20o
iθ = ± for the end-fire case.  

D. Performance with a noisy reference signal 

The performances of the RLMS, RLS and LMS schemes 

have also been studied when the reference signal used is 

corrupted by AWGN. This involves examining the effect on 

the mean square error ξ as a result of varying the noise 

component in the reference signal. Fig. 7 shows the ensemble 

average of the mean square error,ξ , obtained from 100 

individual simulation runs, as a function of the ratio of the rms 

noise to the reference signal level.  

From Fig. 7, it is observed that the RLMS scheme is the 

least sensitive to a noisy reference signal among the three 

algorithms considered. This is particularly true when the noise 

level is larger than 0.3 times the reference signal.  
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VI. CONCLUSIONS

This paper compares the performance of digital beam 

forming using the RLMS, RLS and LMS algorithms. It is 

shown that the RLMS scheme outperforms the other two 

algorithms in all the performance measures considered in this 

paper, i.e., achievable output SINR, side lobe level, and 

influence of the AOA of the interference on the oSINR . In 

most cases, the RLMS scheme achieves a larger enhancement 

in performance at lower input SINR. Furthermore, it is shown 

that the RLMS algorithm is also more robust when the 

reference signal used is noisy. The RLMS algorithm 

complexity is slightly higher than that of the RLS algorithm as 

the complexity for the LMS is very low.     
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