
Performance of Secure Boot in Embedded Systems

Downloaded from: https://research.chalmers.se, 2022-08-27 14:38 UTC

Citation for the original published paper (version of record):
Profentzas, C., Günes, M., Nikolakopoulos, I. et al (2019). Performance of Secure Boot in Embedded
Systems. Proceedings of the 15th IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS): 198-204. http://dx.doi.org/10.1109/DCOSS.2019.00054

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Performance of Secure Boot in Embedded Systems

Christos Profentzas,† Mirac Günes,† Yiannis Nikolakopoulos,† Olaf Landsiedel,†‡ Magnus Almgren†

†Chalmers University of Technology, Sweden
‡ Kiel University, Germany

Email: {chrpro,mirac,ioaniko,magnus.almgren}@chalmers.se, ol@informatik.uni-kiel.de

Abstract—1With the proliferation of the Internet of Thi-
ngs (IoT), the need to prioritize the overall system security is
more imperative than ever. The IoT will profoundly change the
established usage patterns of embedded systems, where devices
traditionally operate in relative isolation. Internet connectivity
brought by the IoT exposes such previously isolated internal
device structures to cyber-attacks through the Internet, which
opens new attack vectors and vulnerabilities. For example, a
malicious user can modify the firmware or operating system by
using a remote connection, aiming to deactivate standard defenses
against malware. The criticality of applications, for example, in
the Industrial IoT (IIoT) further underlines the need to ensure
the integrity of the embedded software.

One common approach to ensure system integrity is to verify
the operating system and application software during the boot
process. However, safety-critical IoT devices have constrained
boot-up times, and home IoT devices should become available
quickly after being turned on. Therefore, the boot-time can
affect the usability of a device. This paper analyses performance
trade-offs of secure boot for medium-scale embedded systems,
such as Beaglebone and Raspberry Pi. We evaluate two secure
boot techniques, one is only software-based, and the second is
supported by a hardware-based cryptographic storage unit. For
the software-based method, we show that secure boot merely
increases the overall boot time by 4%. Moreover, the additional
cryptographic hardware storage increases the boot-up time by
36%.

Index Terms—Embedded Systems, Internet of Things, Secure
Boot, System Security

I. INTRODUCTION

The Internet of Things (IoT) will bring connectivity to ev-

eryday objects and devices, including vehicles [1], autonomous

robots [2], and smart home appliances [3] (e.g., smart vacuum

cleaners, smart cookers, smart heaters). While Internet con-

nectivity allows numerous new applications and use-cases, it

exposes devices to the security threats of the Internet: if we

connect a device to the Internet, it will certainly be attacked

and potentially penetrated, i.e., intruders can read data or

even modify executable system files. Such modifications are

especially critical in the context of the IoT, as the devices

often control physical objects such as the cooling system of a

refrigerator or the engine of a car.

1© 2019 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Today, we commonly find a secure boot process in regular

computer systems, including personal computers [4], data

centers [5] and also portable devices such as smartphones or

tablets [6]. Those computers usually include extra hardware

(e.g., a Trusted Platform Module) to ensure the integrity

of the firmware and the operating system during the boot

process. However, in the domain of embedded systems, secure

boot is often overlooked. Therefore, common IoT devices

rarely secure the boot process and fail to assure software free

from manipulation [7]. The absence of secure boot opens the

door to attacks on mission-critical IoT systems. For instance,

recent work demonstrates attacks that alter the firmware of

interconnected industrial robots [8]. A secure boot mechanism

would have detected such modifications during the boot-up

process.

Securing the boot process in embedded devices leads to

two significant overheads. Firstly, a secure boot process adds

additional hardware and complexity. Embedded devices need

efficient and simple designs since they face several constraints

when it comes to energy consumption and memory capacity.

Secondly, verifying the integrity of the operating systems or

firmware adds a further delay to the boot process. In some

applications, longer boot time may not be affordable. For

example, micro-controllers used in the automotive industry

should be able to boot almost immediately, preferably in the

sub-second domain, so that the vehicle can be used directly

after ignition [9]. Other examples are smart home devices

where users frequently turn them on and off, like vacuum

cleaners and electric kettles. For those devices, longer boot-up

times lead to less usability for their users.

Embedded devices include a range of different micro-

controllers, which we can classify into three groups: small

scale (8–16 bit), medium scale (16–32 bit), and sophisticated

micro-controllers. This paper focuses on securing the boot

process of medium-scale microcontrollers (e.g., Raspberry Pi,

Beaglebone) equipped with an embedded operating system.

The paper makes two contributions: (1) We examine two dif-

ferent approaches to secure the boot process of an embedded

device. (2) We show the performance and runtime overhead of

the secure boot for those two approaches. Our results underline

the trade-offs between security and performance: we present

the tradeoffs ranging from 58ms to 245ms for a software-based

secure boot, which is 5.6–16% of the boot-loader execution

time, and 1.4–4% of the entire boot time (4065ms) of an off-

the-shelf Linux distribution. For the hardware-based secure

boot technique, we observe an overhead of 1900ms, which is978-1-5386-5541-2/18/$31.00 ©2018 IEEE

Fig. 1: The boot process of the medium-scale embedded

systems consists of multiple stages. The Boot ROM and first

stage boot-loader are hard-coded by the manufacturer and are

hard to modify. The second stage and the kernel code are

modifiable and usually stored in flash memory.

72% of the boot-loader execution time, and 36% of the entire

boot time (5352ms) of an off-the-shelf Linux distribution.

The remainder of the paper is structured as follows. First,

Section II introduces basic concepts and definitions of secure

boot. Next, Section III presents our threat model. We present

secure boot on off-the-shelf embedded hardware in Section IV

and evaluate its performance in Section V. In Section VI we

discuss the limitation of secure boot in IoT devices. Section

II presents related work and Section VII concludes the paper.

II. BACKGROUND AND DEFINITIONS

In this section, we introduce the required background for

both the boot process of a medium-scale embedded device

and secure boot in particular.

Boot Process. Commonly, manufacturers of embedded de-

vices divide the boot-up process [10] into several stages (see

Fig. 1). The purpose of each stage is to prepare the CPU

and transfer code fragments from external to internal memory.

Eventually, the boot-loader loads the operating system and

starts the execution of the kernel. The boot process begins

with the Boot ROM, provided by the manufacturer, which sets

and initializes the peripherals. The Boot ROM prepares the

system to execute the primary boot stage. The primary stage

configures the system and prepares the memory for loading

the secondary stage boot-loader. The secondary stage is the

actual bootloader of the operating system.

Commonly, both the Boot ROM and the primary stage are

tamper-proof, as both are hard-coded in the device firmware.

However, manufacturers allow the modification of the second

stage to provide flexibility and support for different bootload-

ers and operating systems. As a result, a secure boot process

has to ensure the integrity of the kernel and application code

before executing the secondary stage.

Security Challenge. The code in each stage can change the

overall status of the system and often the next-stage software.

As a result, we cannot trust a self-verified software, as it can

be modified to provide a false verification status. Therefore,

we need to verify in advance, and before we run each piece

of software that we give control over the system.

Secure Boot. In a secure boot process, an inherently trusted

component triggers the boot process, which is a tamper-proof

component referred to as the Roots of Trust (RoT) [11].

The Trusted Computing Group (TCG) [11] defines RoT as

a set of functions designed to be trusted by the operating

system. In embedded systems, RoT can be the Boot ROM (see

Fig. 1), which verifies the next-stage software and executes

only authentic software. Each stage verifies the integrity of

the next one leading to a Chain of Trust. For the verification,

we can use a dedicated monitoring hardware co-processor.

TCG has defined an international standard called the Trusted

Platform Module (TPM), which defines the properties that

those modules need to fulfill.

We note that different standards and vendors use various ter-

minology to describe a secured boot process: Common terms

include, for example, Secure boot, Trusted Boot and Verified

boot. Different solutions have been defined and implemented

in specific environments including personal computers, data

centers, routers, and mobile phones [5], [12], [13]. Especially,

Secure Boot has been among the standard techniques to define

a secured process to assure the integrity of each booting

steps [14]. In table I we compare the terminology for the

existing techniques.

Related Work. Recent works demonstrate the need for

securing the boot process of connected devices from con-

sumer level printers to industrial robots [8], [15]. There is

a large body of research in the field of securing and verifying

the boot process. Khalid et al. [16] discuss the difference

between secure and trusted boot and further evaluate the

performance overhead using FPGA boards. Liu et al. give a

slightly different approach for system verification. [17] and

Lebedev et al. [18], where they are giving examples of a

remotely attested system using FPGA embedded systems. In

contrast to our work, they focus on FPGA embedded systems

while this paper focus on embedded IoT systems. From the

practitioner’s side, Google’s Chromium OS uses verified boot,

which builds a chain of trust [13]. For recent work regarding

IoT devices, Asokan et al. [19] focus on solutions regarding

the firmware update on large-scale IoT deployments. For

constraint devices, Boot-IoT [20] propose an authentication

scheme towards secure bootstrapping.

III. ADVERSARY MODEL

In this section, we discuss attack vectors on the boot process

of IoT systems and introduce our adversary model. A medium-

scale embedded device commonly consists of the application

itself, an embedded operating system, and the boot firmware.

The boot firmware is similar to a BIOS in commodity com-

puters and manages the initial boot process, as discussed in

Section II. From a security perspective, a secure boot process

has to ensure the integrity of each of these components, i.e.,

that none of them has been modified maliciously [22]. In the

TABLE I: Terminology comparison

Term Termination RoT Verification Additional HW

[16]
Secure
boot

Auto-
termination

Boot
ROM

By certificate
authorities
(Remote

attestation)

Not specified

[5]
Trusted

boot

Letting users
decide

Boot
ROM

Compare hash
values

HSM

[13]
Verified

boot

Letting users
decide

Boot
ROM

Stored
cryptographic hash

comparison
Not specified

[21]
Mea-
sured
boot

No termination BIOS
Measures hash of
objects and logs

them
Not specified

context of connected embedded devices, i.e., IoT devices with

Internet connectivity, for example, via 5G/LTE, Bluetooth or

WiFi, this leads to two main directions of attack: (1) the

traditional attack vector of gaining physical access to the

device and (2) adversaries can manipulate the firmware via

their Internet connection. Thus, connectivity opens new attack

vectors, when compared to traditional embedded devices with-

out connectivity.

To compromise a connected IoT device, an adversary may

use security holes in both operating systems and its appli-

cations to trigger execution of remote, malicious code. Via

this code, an adversary can potentially modify data [23], the

OS [24] and also the boot process [15]. The adversary’s

goal is to make a permanent malicious modification, which is

unobservable to security analysis. Moreover, we argue that for

most IoT devices connectivity is essential for their operation,

i.e., they cannot provide their services to the users without

connectivity. Thus, just disabling Internet connectivity to close

this attack vector is not an option for the vast majority of

applications. Via physical access, the adversary can directly

manipulate and modify the application, OS, and the boot

process. The TPM is also exposed by an adversary with phys-

ical access, ongoing research by using Physical Unclonable

Functions (PUF) [25] is a promising solution. In our threat

model and further system design, we focus on the new attack

vector that Internet connectivity brings.

IV. SYSTEMS OVERVIEW

In this section, we present and discuss two system designs

to secure the boot process of an IoT device equipped with

an operating system such as embedded Linux: one design is

based solely on software mechanisms, and one additionally

utilizes hardware primitives. Both designs have specific trade-

offs regarding complexity, overhead, and system cost. Both

approaches are established [5], [13], [16] in the field, and

we do not claim their novelty. Instead, the contribution of

this paper lies (1) in comparatively evaluating the overhead

that both add to the boot process and (2) in contrasting this

overhead to the security each design provides.

A. Software-based Secure Boot with U-Boot

For the software-based method, we rely on the U-Boot [26]

bootloader to verify the integrity of the operating system.

In our system design, we make the following assumptions.

Firstly, the pre-boot environment of U-Boot has to be trusted,

Boot
loader

Enable verified boot
& configure U-Boot

Crypto-algorithms &
specifications

Kernel

Signature

Board
specifications Link

Configure Compile

U-Boot
kernel

verification

Run-Time

Fig. 2: From U-Boot configuration to deployment: First, we

configure the U-Boot to include the verification module. Next,

we link the object files to produce the secure version of U-

Boot. Finally, we deploy the executable file on the platform.

meaning that the security of the boot stages before U-Boot

cannot be modified. Typically, the manufacturer embeds the

first stage in the Boot ROM. Secondly, U-Boot has to be placed

in read-only memory since there is no prior verification of the

booting process. Lastly, this design requires read-only storage

of the cryptographic hashes used to verify the integrity of the

operating system.

U-Boot divides the security process into three steps: Config-

ure, Compile and Run-Time, see Figure 2. The software-based

secure boot process extends the boot process with an additional

verification step, see Figure 3. As a result, the bootloader only

boots the operating system once it has successfully verified the

integrity of the operating system. In practice, U-Boot binds the

kernel with the hardware information of the board. Thus, U-

Boot verifies that the kernel is correct and it will run on the

specific hardware configuration.

To verify the integrity of the kernel efficiently, we need

to resolve the digital block data of each image to a single

value; a conventional method is to use cryptographic hash

functions [27]. Cryptographic hash functions map an arbitrar-

ily long data to a small and fixed output, but they need to

fulfill specific properties to be considered cryptographically se-

cure [27]. U-Boot supports three cryptographic hash functions,

namely MD5, SHA-1 & SHA-256 [27]. The hash functions

have the following digest sizes: (1) MD5: 128-bit (2) SHA-1:

160-bit (3) SHA-256: 256-bit. Finally, the hash digest is being

signed by the private key, and the bootloader (U-Boot) can

verify the authenticity of the hash value by applying its public

key. Various public key algorithms could verify the hash digest

of the image. Popular public key cryptographic algorithms are

RSA [27] and Elliptic Curve Cryptography (ECC) [27]. U-

Boot currently supports only RSA, and the two supported key

sizes are 2048-bit and 4096-bit. The key size is the critical

factor of public key algorithms; bigger key sizes are more

difficult to break. On the other hand, the larger the key size,

Boot ROM

Primary
stage

Secondary
stage

Execute
Kernel

Valid kernel &
configuration?

Yes

Abort
No

E.g. X-Loader on
BeagleBone & First
stage bootloader on

RPi3

E.g U-boot on
Beaglebone &
Second stage

bootloader + U-boot
on RPi3

Fig. 3: Secure boot sequence with U-Boot: U-Boot runs as

the second stage, which verifies the kernel and the chosen

configuration. U-Boot passes the control of the system to the

operating system only after successful verification.

the longer the verification takes [27].

B. Hardware Security for Secure Boot

After introducing the software-only secure boot process, we

next introduce secure boot with a hardware security module.

This design further increases the security of the boot process

at the cost of adding additional hardware and boot latency.

This design is based on the TPM module as proposed by

Khalid et al. [16]. The method always starts with the initial-

ization of the TPM, which ensures that the TPM is activated.

The TPM provides the following functions defined by the

standard [28]: (1) Measurement, TPM calculates the hash of

the input data using SHA-1. (2) Extend, TPM takes the current

hash-value inside the register, appends the Measurement and

produces a new hash value (3) Control Transfer, the TPM

passes the system control to the successfully verified entity.

The process continues by calculating the cryptographic hash

value of the boot environment, which includes the system

configuration before loading the secondary stage boot loader

(see Section II). The process consists of a repetitive Measure–

Extend–Execute procedure [16]. This method is a common

way to ensure a Chain of Trust [29], which verifies the

integrity of the different stages step by step. The TPM transfers

the control of the system to each measured image only if it

has successfully verified the extended hash-value. In the case

of failure, the boot process will halt as shown in Figure 4.

For this technique, we make the following assumption: The

first entity of the Chain of Trust needs to be trusted, which

in this case is the boot ROM and first stage boot-loader. The

manufacturer should embed this code in a way so that nobody

can modify it, for example, by placing it in read-only memory.

Boot-ROM

1st Stage
Boot Loader

Fetch U-Boot

Pre-Boot
Enveroment

Measurements

Valid
Pre-boot

Env

Yes

Measurements

Start U-Boot
&

Fetch Kernel
TPM

TPM
Initialization

Valid
Kernel

Yes

Execute
Kernel

Abort

No

No

TPM

Fig. 4: Secure boot with a TPM co-processor: The manu-

facturer provides the boot-ROM and first stage bootloader.

We split the second stage into two phases: 1) The pre-boot

environment, where we check the integrity of U-Boot. 2) U-

Boot execution, where we check the integrity of the operating

system.

V. EVALUATION

This section evaluates both system designs in detail and

focuses on the overhead of the secure boot process in each sys-

tem. Practical application scenarios motivate this evaluation,

for example, vehicles are expected to be immediately usable

after ignition, imposing a low-latency requirement between

turning on the ignition and the full boot up of all the micro-

controllers of a vehicle. Also, home appliances like smart

vacuum cleaners and smart heaters experience frequent turn

off and on by their users, where the boot time can affect the

usability of the device.

A. Experimental Setup

We implement our system design on two generic embedded

platforms for IoT applications [30] that are readily available,

namely a Raspberry Pi and a BeagleBone (see Table II).

Finally, we extend the capabilities of the BeagleBone to

support hardware cryptographic primitives.

B. Evaluation Results

Next, we present the results of our evaluation of the

overhead of the secure boot process. We begin with the

software-based method and continue with the hardware-based

TABLE II: Hardware specifications

Model Hardware

Raspberry Pi 3 Model B ARM® Cortex A53 - 1.2GHz(quad-core)
1 GB LPDDR2 RAM

Beglebone Black C ARM® Cortex A8 - 1GHz
512MB DDR3 RAM

Cryptocape (by Cryptotronix) TPM-Module:AT97SC3204T

TABLE III: Verification overhead of TPM

Overhead Average time (ms)
TPM Initialization 993
Measurements 138
Extend PCR values 791
Total 1923

technique. The results summarize the performance of our

system design.

1) Software Mechanism of U-Boot: Figures 5a, 5b, 5c & 5d

present the overhead of verification using different key sizes

and three different hash functions (MD5, SHA-1, SHA-256).

The average execution time for U-Boot without any security

mechanism is 976ms for the BeagleBone and 903ms for

Raspberry-Pi. These numbers form the baseline to compare

the overhead of secure boot. The entire boot time of the off-

the-shelf Linux-kernel (Debian GNU 7) on BeagleBone is 4s,

and for Raspberry Pi (Debian Jessie 4.4) is 7s (see Figure 6).

We begin evaluating the overhead that different hash func-

tions in U-Boot bring. In this evaluation, we set the key-size

of RSA to 2048-bit and use BeagleBone. With the MD5 hash

function, the average overhead is 58ms, representing 5.7% of

the U-Boot execution time (see Figure 5a), and 1.4% of the

entire boot time of the Linux kernel (see Figure 6a). With

the SHA-1 hash function, the average overhead increases to

117ms, which is 11% and 2.8% of the U-Boot execution

(see Figure 5a) and the entire boot time of the Linux kernel

(see Figure 6a), respectively. For SHA-256 hash function, the

overhead increases to 164 ms, 15% and 4%, respectively (see

Figure 5a & 6a).

Next, we increase the key-size of RSA to 4096-bits, us-

ing the same hash functions and BeagleBone. This key-size

increases the overhead by 24ms to 35ms depending on the

hash function (see Figure 5b). For the same experiment using

Raspberry Pi, we observe similar results (see Figures 5c &

5d).

2) TPM Hardware on BeagleBone: Table III presents the

overhead after introducing the hardware primitive (TPM). The

initialization of the TPM takes 993ms. TPM uses SHA-1

as the hash function and the overhead of calculating the

measurements (see Section II) is 138ms. For extending the

Registers (PCR) TPM takes 791ms. Overall, the whole method

takes 1923ms, which adds an overhead of 36%.

C. Discussion

Configuration choices, like the hash function, have differ-

ent performance impact and trade-offs. For example, MD5

provides better performance, but it is no longer recom-

mended [31]. FIPS 180-4 Secure Hash Standard (SHS) rec-

ommends SHA-1 and SHA-256, but Stevens et al. [32] have

found the first collisions on SHA-1.

Regarding the performance of Secure boot with TPM, we

have noticed a higher verification overhead (approximately

eight times more) compared to the software-based technique

(Verified U-Boot). The main reason for this is that there are

more measurement requirements in this method: we verify the

kernel, U-Boot and boot states which include the complete

system configurations. Another source of overhead is the

initialization time of the TPM. It is worth to notice that the

extra hardware does not intend to accelerate the cryptographic

functions, but rather to provide stronger security properties as

we explained in previous sections.

To conclude, if we compare the different parts of the boot-

time we notice that loading the kernel is the most time-

consuming part. Thus, we argue that while the overhead of

Secure Boot is not negligible, its overall performance overhead

is limited. This performance makes Secure Boot a practical

solution to secure the software-stack of medium-size devices

in the Internet of Things. For application where boot-up

needs to be reduced further, customized, modular OS kernels

with application-specific functionality could be an option to

improve the boot performance.

VI. LIMITATIONS AND DISCUSSION

In this paper, we evaluate the time performance of a

software- and hardware-based secure boot techniques. The

boot performance, i.e., the time until a device has booted,

is a critical aspect, for example in industrial IoT systems

like autonomous vehicles. While secure boot ensures system

integrity, it cannot protect against all attacks. In the following

we discuss key limitations:

Availability. A general limitation of secure boot is the

lack of protection against persistent DOS-attack caused by

the mechanism. An attacker can try to modify the integrity

of the operating systems repeatedly and reboot the system.

This attack will prevent the system from booting-up, and it

is possible a DOS-attack caused by the security mechanism.

We need secure boot techniques that can adapt and recognize

such an attack vector. Moreover, this attack highlights the

complexity of the security techniques in IoT which involves

heterogeneous devices. For example, a user can still expect

a compromised smart-light to work in safe mode. However,

a compromised industrial robot which involves safety-critical

aspects, it should immediately halt.

Applicability. In this paper, we focus on medium size

embedded boards (e.g., ARMv7), where resource constraints

do not prevent the extension of the boot process. In small con-

straint IoT devices (e.g., ARM Cortex M4) similar approaches

may not be applicable for several reasons. First, those devices

do not separate the boot process in stages. Moreover, we need

to implement a bootloader efficient to meet memory and run-

time constraints for those devices. Second, the firmware and

the application is stored together in flash memory, without

any protective barrier. Finally, the limited CPU power makes

it hard to make the cryptographic calculation. We can expect

0.90

0.95

1.00

1.05

1.10

1.15
Ti

m
e

(s
)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
0.05
0.10
0.15
0.20

U-Boot
Hash
RSA

(a) RSA 2048-bits key-size on Bea-
gleBone

0.90

0.95

1.00

1.05

1.10

1.15

Ti
m

e
(s

)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
0.05
0.10
0.15
0.20

U-Boot
Hash
RSA

(b) RSA 4096-bits key-size on Bea-
gleBone

0.90

0.95

1.00

1.05

1.10

1.15

Ti
m

e
(s

)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
0.05
0.10
0.15
0.20

U-Boot
Hash
RSA

(c) RSA 2048-bits key-size on Rasp-
berry Pi

0.90

0.95

1.00

1.05

1.10

1.15

Ti
m

e
(s

)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
0.05
0.10
0.15
0.20

U-Boot
Hash
RSA

(d) RSA 4096-bits key-size on
Raspberry Pi

Fig. 5: For the evaluation of U-Boot using the BeagleBone & Raspberry Pi, we apply RSA with a key size of 2048 and 4096

bits. The U-Boot time refers to the performance without the verification module. All figures compare the three available hash

functions: MD5, SHA-1, SHA-256. Note the graphs have discontinuing scale numbers

4.0

4.1

4.2

4.3

Ti
m

e
(s

)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

kernel
U-Boot
Hash
RSA

(a) Entire Boot Time: BeagleBone

8.0

8.1

8.2

8.3

Ti
m

e
(s

)

Md5 Sha-1 Sha-256
Hash Algorithm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

kernel
U-Boot
Hash
RSA

(b) Entire Boot Time: Raspberry Pi

Fig. 6: Evaluation of entire boot time using the BeagleBone &

Raspberry Pi. The RSA key-size is 2048-bits, and we compare

with the three available hash functions: MD5, SHA-1, SHA-

256. The RSA overhead is very small and barely visible. Note:

the graphs have discontinuing scale numbers

a different overhead compare with that of the evaluation in

section V. Hardware support like TPM is not available for

small IoT device.

Scalability. One of the benefits of the Internet of Things is

the ability to upgrade the firmware over-the-air (OTA), i.e., via

the Internet connection of the device. This flexibility provides

scalability for vendors to upload the firmware and application

updates to already deployed IoT devices. However, after each

update, the credentials matching the firmware need to be

updated. This update is challenging, as many TPM modules

do not allow direct updates of credentials to protect against

attacks.

VII. CONCLUSION

The security aspects of embedded systems become more

critical with the rise of the Internet of Things. Secure boot is

one of the primary tools to secure IoT applications and their

operating system. This paper presents and evaluates trade-

offs regarding the implementation and the performance of

secure boot. Our results show that the software-based method

increases the overall boot-up time by 4%. The hardware-based

one adds an overhead of 36%.

For future works, we plan to evaluate the impact of different

system configurations and kernel configurations on the perfor-

mance of secure boot. Moreover, we will focus on the design,

implementation, and evaluation of secure boot on smaller and

more constrained devices (e.g., ARM M4).

VIII. ACKNOWLEDGMENTS

This work was supported by the Swedish Research Coun-

cil (VR) through the project “AgreeOnIT”, the Swedish Civil

Contingencies Agency (MSB) through the projects “RICS”

and “RIOT”, and the Vinnova-funded project “KIDSAM”.

REFERENCES

[1] M. Gerla, E. K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in 2014 IEEE

World Forum on Internet of Things (WF-IoT), March 2014, pp. 241–246.
[2] Z. Bi, L. D. Xu, and C. Wang, “Internet of things for enterprise systems

of modern manufacturing,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1537–1546, May 2014.

[3] S. Kashyap, V. S. Rao, R. V. Prasad, and T. Staring, “Cook over ip:
Adapting tcp for cordless kitchen appliances,” in 2018 IEEE/ACM Third

International Conference on Internet-of-Things Design and Implemen-

tation (IoTDI), April 2018, pp. 1–12.
[4] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable

bootstrap architecture,” in Proceedings. 1997 IEEE Symposium on

Security and Privacy (Cat. No.97CB36097), May 1997, pp. 65–71.
[5] S. Berger, K. Goldman, D. Pendarakis, D. Safford, E. Valdez, and

M. Zohar, “Scalable attestation: A step toward secure and trusted
clouds,” IEEE Cloud Computing, vol. 2, no. 5, pp. 10–18, Sept 2015.

[6] The Android Team, “Verifying boot,” https://source.android.com
/security/verifiedboot/verified-boot, 2017.

[7] S. Eresheim, R. Luh, and S. Schrittwieser, “On the impact of kernel
code vulnerabilities in iot devices,” in 2017 International Conference

on Software Security and Assurance (ICSSA), July 2017, pp. 1–5.
[8] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and

S. Zanero, “An experimental security analysis of an industrial robot
controller,” in 2017 IEEE Symposium on Security and Privacy (SP),
May 2017, pp. 268–286.

[9] M. Åsberg, T. Nolte, M. Joki, J. Hogbrink, and S. Siwani, “Fast linux
bootup using non-intrusive methods for predictable industrial embedded
systems,” in 2013 IEEE 18th Conference on Emerging Technologies

Factory Automation (ETFA), Sept 2013, pp. 1–8.
[10] Texas Instruments, “Boot sequence,” http://processors.wiki.ti.com /in-

dex.html.
[11] H. C. A. van Tilborg and S. Jajodia, Eds., TCG Trusted Computing

Group. Boston, MA: Springer US, 2011, pp. 1279–1279.
[12] K. Dietrich and J. Winter, “Secure boot revisited,” in 2008 The 9th

International Conference for Young Computer Scientists, Nov 2008, pp.
2360–2365.

[13] The Chromium OS team, “Verified boot,” http://www.chromium.org/
chromium-os/ chromiumos-design-docs/verified-boot, 2009.

[14] J. D. Tygar and B. S. Yee, “Dyad: A system for using physically secure
coprocessors,” Technical Report CMU-CS-91-140R, 1991.

[15] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[16] O. Khalid, C. Rolfes, and A. Ibing, “On implementing trusted boot
for embedded systems,” in 2013 IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), June 2013, pp. 75–80.
[17] Y. Liu, J. Briones, R. Zhou, and N. Magotra, “Study of secure boot

with a fpga-based iot device,” in 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS), Aug 2017, pp. 1053–
1056.

[18] I. Lebedev, K. Hogan, and S. Devadas, “Invited paper: Secure boot
and remote attestation in the sanctum processor,” in 2018 IEEE 31st

Computer Security Foundations Symposium (CSF), July 2018, pp. 46–
60.

[19] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik,
“Assured: Architecture for secure software update of realistic embedded
devices,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 37, no. 11, p. 2290–2300, Nov 2018.
[20] M. Hossain and R. Hasan, “Boot-iot: A privacy-aware authentication

scheme for secure bootstrapping of iot nodes,” in 2017 IEEE Interna-

tional Congress on Internet of Things (ICIOT), June 2017, pp. 1–8.
[21] G. Fedorkow, “What’s the difference between secure boot and measured

boot?” http://forums.juniper.net/t5/Security-Now/What-s-the-Difference-
between-Secure-Boot-and-Measured-Boot/ba-p/281251, 2015.

[22] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in
embedded systems: Design challenges,” ACM Trans. Embed. Comput.

Syst., vol. 3, no. 3, pp. 461–491, Aug. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1015047.1015049

[23] Z. S. Huang and I. G. Harris, “Return-oriented vulnerabilities in arm
executables,” in 2012 IEEE Conference on Technologies for Homeland

Security (HST), Nov 2012, pp. 1–6.
[24] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell, “Cloaker:

Hardware supported rootkit concealment,” in 2008 IEEE Symposium on

Security and Privacy (sp 2008), May 2008, pp. 296–310.
[25] P. Choi and D. K. Kim, “Design of security enhanced tpm chip against

invasive physical attacks,” in 2012 IEEE International Symposium on

Circuits and Systems, May 2012, pp. 1787–1790.
[26] S. Glass, “Verified u-boot,” https://lwn.net/Articles/571031/, 2013.
[27] W. Stallings, Cryptography and Network Security: Principles and Prac-

tice, 3rd ed. Pearson Education, 2002.
[28] The TCG community, “Trusted platform module (TPM) summary,”

2008.
[29] W. Fang, C. Zhou, Y. Zhang, and L. Zhang, “Research and application

of trusted computing platform based on portable tpm,” in 2009 2nd

IEEE International Conference on Computer Science and Information

Technology, Aug 2009, pp. 506–509.
[30] K. J. Singh and D. S. Kapoor, “Create your own internet of things: A

survey of iot platforms.” IEEE Consumer Electronics Magazine, vol. 6,
no. 2, pp. 57–68, April 2017.

[31] E. Thompson, “MD5 collisions and the impact on computer forensics,”
Digital Investigation, vol. 2, pp. 36–40, 2005.

[32] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full SHA-1,” in Advances in Cryptology – CRYPTO

2017, J. Katz and H. Shacham, Eds. Cham: Springer International
Publishing, 2017, pp. 570–596.

