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Forecasting future sales is one of the most important issues that is beyond all strategic and planning
decisions in effective operations of retail businesses. For profitable retail businesses, accurate demand
forecasting is crucial in organizing and planning production, purchasing, transportation and labor force.
Retail sales series belong to a special type of time series that typically contain trend and seasonal pat-
terns, presenting challenges in developing effective forecasting models. This work compares the fore-
casting performance of state space models and ARIMA models. The forecasting performance is demon-
strated through a case study of retail sales of five different categories of women footwear: Boots, Booties,
Flats, Sandals and Shoes. On both methodologies the model with the minimum value of Akaike's In-
formation Criteria for the in-sample period was selected from all admissible models for further eva-
luation in the out-of-sample. Both one-step and multiple-step forecasts were produced. The results show
that when an automatic algorithm the overall out-of-sample forecasting performance of state space and
ARIMA models evaluated via RMSE, MAE and MAPE is quite similar on both one-step and multi-step
forecasts. We also conclude that state space and ARIMA produce coverage probabilities that are close to
the nominal rates for both one-step and multi-step forecasts.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Sales forecasting is one of the most important issues that is
beyond all strategic and planning decisions in any retail business.
The importance of accurate sales forecasts to efficient inventory
management at both disaggregate and aggregate levels has long
been recognized [1]. Poor forecasts usually lead to either too much
or too little inventory directly affecting the profitability and the
competitive position of the company. At the organizational level,
sales forecasting is very important to any retail business as its
outcome is used by many functions in the organization: finance
and accounting departments are able to project costs, profit levels
and capital needs; sales department is able to get a good knowl-
edge of the sales volume of each product; purchasing department
is able to plan short- and long-term purchases; marketing de-
partment is able to plan its actions and assess the impact of dif-
ferent marketing strategies on sales volume; and finally logistics
department is able to define specific logistic needs [2]. Accurate
forecasts of sales have the potential to increase the profitability of
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retailers by improving the chain operations efficiency and mini-
mizing wastes. Moreover, accurate forecasts of retail sales may
improve portfolio investors’ ability to predict movements in the
stock prices of retailing chains [3]. Aggregate retail sales time
series are usually preferred because they contain both trend and
seasonal patterns, providing a good testing ground for comparing
forecasting methods, and because companies can benefit from
more accurate forecasts.

Retail sales time series often exhibit strong trend and seasonal
variations presenting challenges in developing effective forecast-
ing models. How to effectively model retail sales series and how to
improve the quality of forecasts are still outstanding questions.
Exponential smoothing and Autoregressive Integrated Moving
Average (ARIMA) models are the two most widely used ap-
proaches to time series forecasting, and provide complementary
approaches to the problem. While exponential smoothing meth-
ods are based on a description of trend and seasonality in the data,
ARIMA models aim to describe the autocorrelations in the data.
The ARIMA framework to forecasting originally developed by Box
et al. [4] involves an iterative three-stage process of model selec-
tion, parameter estimation and model checking. A statistical fra-
mework to exponential smoothing methods was recently devel-
oped based on state space models called ETS models [5].

Despite the investigator's efforts, the several existing studies
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have not led to a consensus about the relative forecasting perfor-
mances of these two modeling frameworks when they are applied
to retail sales data. Alon [6] concluded that the Winters ex-
ponential smoothing method' forecasts of aggregate retail sales
were more accurate than the simple and Holt exponential
smoothing methods' forecasts. Additionally, Alon et al. [3] com-
pared out-of-sample forecasts of aggregated retail sales made
using artificial neural networks (ANNs), Winters exponential
smoothing, ARIMA and multiple regression via MAPE (mean ab-
solute percentage error). Their results indicate that Winters ex-
ponential smoothing and ARIMA perform well when macro-
economic conditions are relatively stable. When economic condi-
tions are volatile (supply push inflation, recessions, high interest
rates and high unemployment) ANNs outperform the linear
methods and multi-step forecasts may be preferred. Chu and
Zhang [7] also conducted a comparative study of linear and non-
linear models for aggregate retail sales forecasting. The linear
models studied were the ARIMA model, regression with dummy
variables and regression with trigonometric variables. The non-
linear models studied were the ANNs for which the effect of sea-
sonal adjustment and use of dummy or trigonometric variables
was investigated. Using multiple cross-validation samples eval-
uated via the RMSE (root mean squared error), the MAE (mean
absolute error) and MAPE, the authors concluded that no single
forecasting model is the best for all situations under all circum-
stances. Their empirical results show that (1) prior seasonal ad-
justment of the data can significantly improve forecasting perfor-
mance of the neural network model; (2) seasonal dummy vari-
ables can be useful in developing effective regression models
(linear and nonlinear) but the performance of these dummy re-
gression models may not always be robust; (3) trigonometric
models are not useful in aggregate retail sales forecasting. Another
interesting example is by Frank et al. [8] forecast women's apparel
sales using single seasonal exponential smoothing (SSES), the
Winters' three parameter model and ANNs. The performance of
the models was tested by comparing the goodness-of-fit statistics
R2 and by comparing actual sales with the forecasted sales of
different types of garments. Their results indicated that the three
parameter Winters' model outperformed SSES in terms of R2 and
forecasting sales. ANN model performed best in terms of R2

(among three models) but correlations between actual and fore-
casted sales were not satisfactory. Zhang and Qi [9] and Kuvulmaz
et al. [10] further investigated the use of ANNs in forecasting time
series with strong trend and seasonality and conclude that the
overall out-of-sample forecasting performance of ANNs, evaluated
via RMSE, MAE and MAPE, is not better than ARIMA models in
predicting retail sales without appropriate data preprocessing
namely detrending and deseasonalization. Motivated by the par-
ticular advantages of ARIMA models and ANNs, Aburto and Weber
[11] developed a hybrid intelligent system combining ARIMA type
approaches and MLP-type neural networks for demand forecasting
that showed improvements in forecasting accuracy. Encouraged by
their results they proposed a replenishment system for a Chilean
supermarket which led simultaneously to fewer sales failures and
lower inventory levels. Motivated by the recent success of evolu-
tionary computation Au et al. [12] studied the use of evolutionary
neural networks (ENNs) for sales forecasting in fashion retailing.
Their experiments show that when guided with the BIC (Bayesian
Information Criterion) and the pre-search approach, the ENN can
converge much faster and be more accurate in forecasting than the
fully connected neural network. The authors also conclude that the
performance of these algorithms is better than the performance of
the ARIMA model only for products with features of low demand
uncertainty and weak seasonal trends. Further, it is emphasized
that the ENN approach for forecasting is a highly automatic one
while the ARIMA modeling involves more human knowledge.
Wong and Guo [13] propose a hybrid intelligent model using ex-
treme learning machine (ELM) and a harmony search algorithm to
forecast medium-term sales in fashion retail supply chains. The
authors show that the proposed model exhibits superior out-of-
sample forecasting performance over the ARIMA, ENN and ELM
models when evaluated via RMSE, MAPE and MASE (mean abso-
lute scaled error). However, they also observe that the perfor-
mance of the proposed model deteriorated when the time series
was irregular and random pointing that it may not work well with
high irregularity and nonlinearity. Finally, Pan et al. [14] in-
vestigate the feasibility and potential of applying empirical mode
decomposition (EMD) in forecasting aggregate retail sales. The
hybrid forecasting method of integrating EMD and neural network
models (EMD-NN) was compared with the direct NN model and
the ARIMA model for aggregate retail sales forecasting. Data from
two sampling periods with different macroeconomic conditions
were studied. The out-of-sample forecasting results indicate that
the performance of the hybrid NN model is more stable compared
to direct NN model and ARIMA during volatile economy. However,
during relatively stable economic activity, ARIMA performs con-
sistently well. In summary, over the last few decades several
methods such as Winters exponential smoothing, ARIMA model,
multiple regression and ANNs have been proposed and widely
used because of their ability to model trend and seasonal fluc-
tuations present in aggregate retail sales. However, all these
methods have shown difficulties and limitations being necessary
to investigate further on how to improve the quality of forecasts.
The purpose of this work is to compare the forecasting perfor-
mance of state space models and ARIMA models when applied to a
case study of retail sales of five different categories of women
footwear from the Portuguese retailer Foreva. As far as we know it
is the first time ETS models are tested for retail sales forecasting.

The remainder of the paper is organized as follows. The next
section describes the datasets used in the study. Section 3 dis-
cusses the methodology used in the time series modeling and
forecasting. The empirical results obtained in the research study
are presented in Section 4. The last section offers the concluding
remarks.
2. Data

The brand Foreva was born in September 1984. Since the be-
ginning is characterized by offering a wide range of footwear for
all seasons, the geographical coverage of Foreva shops in Portugal
is presently vast; it has around 70 stores opened to the public most
of them in Shopping Centers. In this study we analyze the monthly
sales of the five categories of women footwear of the brand Foreva,
Boots, Booties, Flats, Sandals and Shoes, from January 2007 to April
2012 (64 observations). These time series are plotted in Fig. 1. The
Boots and Booties categories are sold primarily during the winter
season while the Flats and Sandals categories are sold primarily
during the summer season; the Shoes category is sold throughout
the year. The winter season starts on September 30 one year and
ends on February 27 next year. The summer season starts on
February 28 and ends on September 29 of each year. With the
exception to Flats series all the other series present a strong sea-
sonal pattern and are obviously non-stationary. The Boots series
remains almost constant in the first two seasons, decreases
slightly in 2009–2010 recovering in 2010–2011 and then decreases
again in 2011–2012. The Booties series also remains fairly constant
in the first two seasons and then maintains an upward trend
movement in the next three seasons. The Flats series seems more
volatile than the other series and the seasonal fluctuations are not
so visible. In 2007 the sales are clearly higher than the rest of the
years. An exceptional increase of sales is observed in March and
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Fig. 1. Monthly sales of the five footwear categories between January 2007 and April 2012: (a) pairs of Boots, (b) pairs of Booties, (c) pairs of Flats, (d) pairs of Sandals and
(e) pairs of Shoes.
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April of 2012. The Sandals series increases in 2008 remaining al-
most constant in the next season, then increases again in 2010
remaining almost constant in the last season. The Shoes series
presents an upward trend in the first 2 years and then reverses to
a downward movement in the last 3 years. The seasonal behavior
of this series shows more variation than the seasonal behavior of
the other series. In general there is some variation in the variance
with the level, and so it may be necessary to make a logarithmic
transformation to stabilize the variance.

It is important to evaluate forecast accuracy using genuine
forecasts. That is, it is not valid to look at how well a model fits the
historical data. The accuracy of forecasts can only be determined
by considering how well a model performs on data that were not
used when fitting the model [15]. When comparing different
models, it is common to use a portion of the available data for
fitting – the in-sample data, and use the rest of the data to mea-
sure how well the model is likely to forecast on new data – the
out-of-sample data [16]. In each case the in-sample period for
model fitting and selection was specified from January 2007 to
April 2011 (first 52 observations) while the out-of-sample period
for forecast evaluation was specified from May 2011 to April 2012
(last 12 observations). All model comparisons were based on the
results for the out-of-sample.
3. Methodology

3.1. Forecast error measures

Denote the actual observation for time period t by yt and the
forecasted value for the same period by yt̂ . To evaluate the out-of-
sample forecast accuracy using an in-sample set of size m n<
(where n is the total number of observations), the most commonly
used scale-dependent statistics are the mean error (ME), the mean
absolute error (MAE) and the root mean squared error (RMSE)
defined as follows [17]:
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When comparing the performance of forecast methods on a
single data set, the MAE is interesting as it is easy to understand
but the RMSE is more valuable as is more sensitive than other
measures to the occasional large error (the squaring process gives
disproportionate weight to very large errors). There is no absolute
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criterion for a “good” value of RMSE or MAE: it depends on the
units in which the variable is measured and on the degree of
forecasting accuracy, as measured in those units, which is sought
in a particular application.

Percentage errors have the advantage of being scale-in-
dependent, and so are frequently used to compare forecast per-
formance between different data sets. The most commonly used
measures are the mean percentage error (MPE) and the mean
absolute percentage error (MAPE) defined as follows [17]:
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Measures based on percentage errors have the disadvantage of
being infinite or undefined if yt¼0 for any t in the period of in-
terest, and having extreme values when any yt is close to zero.
Frequently, different accuracy measures will lead to different re-
sults as to which forecast method is best.

3.2. State space models

Exponential smoothing methods have been used with success
to generate easily reliable forecasts for a wide range of time series
since the 1950s [18]. In these methods forecasts are calculated
using weighted averages where the weights decrease ex-
ponentially as observations come from further in the past – the
smallest weights are associated with the oldest observations.

The most common representation of these methods is the
component form. Component form representations of exponential
smoothing methods comprise a forecast equation and a smoothing
equation for each of the components included in the method. The
components that may be included are the level component, the
trend component and the seasonal component. By considering all
the combinations of the trend and seasonal components 15 ex-
ponential smoothing methods are possible. Each method is usually
labeled by a pair of letters (T, S) defining the type of “Trend” and
“Seasonal” components. The possibilities for each component are
Trend {N, A, A , M, M }d d= and Seasonal¼{N, A, M}. For example
(N, N) denotes the simple exponential smoothing method, (A, N)
denotes Holt's linear method, (A , N)d denotes the additive damped
trend method, (A, A) denotes the additive Holt–Winters’ method
and (A, M) denotes the multiplicative Holt–Winters’ method, to
mention the most popular ones.

For illustration, denoting the time series by y y y, , , n1 2 … and the

forecast of yt h+ , based on all of the data up to time t, by yt h t
^

+ | the
component form for the method (A,A) is [19,20]

y l hb s (3.6)t h t t t t m hm
^ = + ++ | − + +

l y s l b( ) (1 )( ) (3.7)t t t m t t1 1α α= − + − +− − −

b l l b( ) (1 ) (3.8)t t t t1 1β β= − + −⁎
−

⁎
−

s y l b s( ) (1 ) , (3.9)t t t t t m1 1γ γ= − − + −− − −

where m denotes the period of the seasonality, lt denotes an es-
timate of the level (or the smoothed value) of the series at time t,
bt denotes an estimate of the trend (slope) of the series at time t, st
denotes an estimate of the seasonality of the series at time t and
yt h t
^

+ | denotes the point forecast for h periods ahead where
h h m( 1) mod 1m = ⌊ − ⌋ ++ (which ensures that the estimates of the
seasonal indices used for forecasting come from the final year of
the sample (the notation u⌊ ⌋ means the largest integer not greater
than u).

The initial states l b s s, , , ,m0 0 1 0…− and the smoothing para-
meters , ,α β γ⁎ are estimated from the observed data. The
smoothing parameters , ,α β γ⁎ are constrained between 0 and 1 so
that the equations can be interpreted as weighted averages. Details
about all the other methods may be found in Makridakis et al. [19].

To be able to generate prediction (or forecast) intervals and
other properties, Hyndman et al. [5] (amongst others) developed a
statistical framework for all exponential smoothing methods. In
this statistical framework each stochastic model, referred as state
space model, consists of a measurement (or observation) equation
that describes the observed data, and state (or transition) equa-
tions that describe how the unobserved components or states
(level, trend, seasonal) change over time. For each exponential
smoothing method Hyndman et al. [5] describe two possible state
space models, one corresponding to a model with additive random
errors and the other corresponding to a model with multiplicative
random errors, giving a total of 30 potential models. To distinguish
the models with additive and multiplicative errors, an extra letter
E was added: the triplet of letters (E, T, S) refers to the three
components: “Error”, “Trend” and “Seasonality”. The notation ETS
(,,) helps in remembering the order in which the components are
specified.

For illustration, the equations of the model ETS(A, A, A) (ad-
ditive Holt–Winters’ method with additive errors) are [21]

y l b s (3.10)t t t t m t1 1 ε= + + +− − −

l l b (3.11)t t t t1 1 αε= + +− −

b b (3.12)t t t1 βε= +−

s s (3.13)t t m tγε= +−

and the equations of the model ETS(M,A,A) (additive Holt–Win-
ters' method with multiplicative errors) are [21]

y l b s( )(1 ) (3.14)t t t t m t1 1 ε= + + +− − −

l l b l b s( ) (3.15)t t t t t t m t1 1 1 1α ε= + + + +− − − − −

b b l b s( ) (3.16)t t t t t m t1 1 1β ε= + + +− − − −

s s l b s( ) (3.17)t t m t t t m t1 1γ ε= + + +− − − −

where

, 0 1, 0 , 0 1 (3.18)β αβ α β α γ α= < < < < < < −⁎

and εt is a zero mean Gaussian white noise process with variance
s2. Eqs. (3.10) and (3.14) are the measurement equation and Eqs.
(3.11)–(3.13) and (3.15)–(3.17) are the state equations. The mea-
surement equation shows the relationship between the observa-
tions and the unobserved states. The transition equation shows
the evolution of the state through time.

It should be emphasized that these models generate optimal
forecasts for all exponential smoothing methods and provide an
easy way to obtain maximum likelihood estimates of the model
parameters (for more details about how to estimate the smoothing
parameters and the initial states by maximizing the likelihood
function see Hyndman et al. [5, pp. 68–69]).

3.3. ARIMA models

ARIMA is one of the most versatile linear models for forecasting
seasonal time series. It has enjoyed great success in both academic
research and industrial applications during the last three decades.
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The class of ARIMA models is broad. It can represent many dif-
ferent types of stochastic seasonal and nonseasonal time series
such as pure autoregressive (AR), pure moving average (MA), and
mixed AR and MA processes. The theory of ARIMA models has
been developed by many researchers and its wide application was
due to the work by Box et al. [4] who developed a systematic and
practical model building method. Through an iterative three-step
model building process, model identification, parameter estima-
tion and model diagnosis, the Box–Jenkins methodology has been
proved to be an effective practical time series modeling approach.

The multiplicative seasonal ARIMA model, denoted as ARIMA
p d q P D Q( , , ) ( , , )m× , has the following form [22]:

B B B B y c B B( ) ( )(1 ) (1 ) ( ) ( ) (3.19)p P
m d m D

t q Q
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and m is the seasonal frequency, B is the backward shift operator, d
is the degree of ordinary differencing, and D is the degree of
seasonal differencing, B( )pϕ and B( )qθ are the regular auto-
regressive and moving average polynomials of orders p and q,
respectively, B( )P

mΦ and B( )Q
mΘ are the seasonal autoregressive

and moving average polynomials of orders P and Q, respectively,
c (1 )(1 )p P1 1μ ϕ ϕ Φ Φ= − − ⋯ − − − ⋯ − where μ is the mean of

B B y(1 ) (1 )d m D
t− − process and εt is a zero mean Gaussian white

noise process with variance s2. The roots of the polynomials
B B B( ), ( ), ( )p P

m
qϕ Φ θ and B( )Q

mΘ should lie outside a unit circle to
ensure causality and invertibility [23]. For d D 2+ ≥ , c¼0 is
usually assumed because a quadratic or a higher order trend in
the forecast function is particularly dangerous.

After identifying a tentative model for a time series the next
step is to estimate its parameters. The parameters of ARIMA
models are usually estimated by maximizing the likelihood of the
model (for more details about this procedure see Hyndman [24]).
4. Empirical study

4.1. Model selection

4.1.1. State space model
An appropriate model can be selected among several candi-

dates by minimizing an error measure such as RMSE, provided the
errors are computed from a hold-out set that was not used to
estimate the model parameters. However, since there are often
few historical data available a procedure based on the in-sample
fit is usually preferred. One approach can be is to use an in-
formation criterion which penalizes the likelihood of the model to
compensate for the potential overfitting of the data. Akaike's In-
formation Criteria (AIC) is usually used for ETS models [5, pp. 105–
106]:

L kAIC 2 log( ) 2 (4.1)= − +

where L is the likelihood of the model and k is the total number of
parameters and initial states that have been estimated. For small
values of n a bias-corrected version of the AIC (AICc) is usually
preferred [5, pp. 105–106]:

k k
T k

AIC AIC
2( 1)( 2)

(4.2)c = + + +
−

Under these criteria, the best model for forecasting is the one
with the smallest value of the AIC or AICc.

Some of the combinations of (Error, Trend, Seasonal) can lead
to numerical difficulties. Specifically, the models that can cause
such instabilities are ETS(M, M, A), ETS(M, Md, A), ETS(A, N, M),
ETS(A, A, M), ETS(A, Ad, M), ETS(A, M, N), ETS(A, M, A), ETS
(A, M, M), ETS(A, Md, N), ETS(A, Md, A), and ETS(A, Md, M) [24].
Usually these particular combinations are not considered when
selecting a model.

4.1.2. ARIMA model
The main task in ARIMA forecasting is selecting an appropriate

model order, that is the values of p q P Q d, , , , and D.
Usually the following steps are used to identify a tentative

model [23,25]:
(1)
 Plot the time series, identify any unusual observations and
choose the proper variance-stabilizing transformation. A series
with nonconstant variance often needs a logarithm transfor-
mation (more generally a Box–Cox transformation may be
applied [26]).
(2)
 Compute and examine the sample ACF (AutoCorrelation
Function) and the sample PACF (Partial AutoCorrelation
Function) of the transformed data (if a transformation was
necessary) or of the original data to further confirm a neces-
sary degree of differencing (d and D). An alternative approach
to choose d and D is to apply unit-root tests. Unit-root tests
based on a null hypothesis of no unit-root are usually pre-
ferred [24]. It is recommended that seasonal differencing be
done first because sometimes the resulting series will be sta-
tionary and there will be no need for a further regular differ-
encing. The Canova–Hansen test [27] is appropriate for
choosing D. After D is selected, d should be chosen by applying
successive KPSS tests [28].
(3)
 Compute and examine the sample ACF and sample PACF of the
properly transformed and differenced series to identify the
orders of p q P, , and Q by matching the patterns in the sample
ACF and PACF with the theoretical patterns of known models.
Alternatively, as for ETS models, p q P, , and Q may be selected
via an information criterion such as the AIC [15,29]:

L p q P Q kAIC 2 log( ) 2( 1) (4.3)= − + + + + + +

where k¼1 if c 0≠ and 0 otherwise, and L is the likelihood of
the model fitted to the properly transformed and differenced
data. Akaike's Information Criteria corrected for small sample
bias (AICc) is defined as [15]

p q P Q k p q P Q k
T p q P Q k

AIC AIC

2( 1)( 2)
2 (4.4)

c =

+ + + + + + + + + + +
− − − − − −
The model with the minimum value of the AIC or AICc is often
the best model for forecasting. It should be emphasized that the
likelihood of the full model for yt is not actually defined and so the
value of the AIC for different levels of differencing is not com-
parable [24].

We investigated the required transformations for variance
stabilization and decided to take logarithms in the case of Boots,
Booties and Flats data (for more details see Cryer and Chan [26]).
Fig. 2 shows the sample ACF and the sample PACF for the five retail
series after transforming. It can be seen that in general the sample
ACFs decay very slowly at regular lags and at multiples of seasonal
period 12 and the sample PACFs have a large spike at lag 1 and cut
off to zero after lag 2 or 3, suggesting that seasonal and/or or-
dinary differencing might be necessary. For each retail series the
Canova–Hanson test was applied for choosing D. After selecting D
successive KPSS tests were applied to determine the appropriate
number of first differences. In the case of Boots, Booties and
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Fig. 2. Sample ACF (left panels) and sample PACF (right panels) plots for logged Boots data (a1, a2), logged Booties data (b1, b2), logged Flats data (c1, c2), Sandals data (d1, d2)
and Shoes data (e1, e2).
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Sandals series one seasonal difference was required; in the case of
Shoes series one first difference was required; and in the case of
Flats series one seasonal difference and one first difference were
required. The data of the five footwear categories after trans-
forming and differencing are shown in Fig. 3. In all cases the
transformation and the differencing have made the series look
relatively stationary, as can be seen in Fig. 4.

To be able to compare more accurately the forecasting
performance of both modeling approaches – ETS and ARIMA, for
each time series we decided to fit, using the in-sample data from
January 2007 to April 2011 (first 52 observations), all ARIMA
p d q P D Q( , , ) ( , , )m× models where p and q could take values from
0 to 5, and P and Q could take values from 0 to 2. Usually the
values of p q P, , and Q are not allowed to exceed these upper
bounds to avoid problems with convergence or near-unit-roots
[24].
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e

Fig. 3. Monthly sales of the five footwear categories between January 2007 and April 2012 after transforming and differencing (a) seasonally differenced logged Boots data,
(b) seasonally differenced logged Booties data, (c) doubled differenced logged Flats data, (d) seasonally differenced Sandals data and (e) first differenced Shoes data.
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4.2. Residual diagnostics

After identifying an appropriate model (ETS or ARIMA) we have
to check whether the model assumptions are satisfied. The basic
assumption for both models is that εt is a zero mean Gaussian
white noise process.

Hence, model diagnostic checking is accomplished through a
careful analysis of the residuals:
(1)
 by constructing a histogram of the standardized residuals and
comparing it with the standard normal distribution using the
chi-square goodness of fit test, to check whether they are
normally distributed;
(2)
 by examining the plot of the residuals to check whether the
variance is constant;
(3)
 by computing the sample ACF and sample PACF of the re-
siduals to see whether they do not form any pattern and are
statistically insignificant, and by doing a Portmanteau test of
the residuals – the more accurate is the Ljung–Box test [25].
The Ljung–Box test tests whether the first k autocorrelations of
the residuals are significantly different from what would be
expected from a white noise process. The null-hypothesis is
that those first k autocorrelations are null, so large p-values are
indicative that the residuals are not distinguishable from a
white noise series. Using the usual significance level of 5%, a
model passes a Ljung–Box test if the p-value is greater than
0.05 [30]. If there are significant spikes in sample ACF and/or in
sample PACF of the residuals or if the model fails a Ljung–Box
test, another model should be tried; otherwise forecasts can be
calculated.
4.3. Implementation

The time series analysis was carried out using the statistical
software R programming language and the specialized package
forecast [24,31].

For each retail series all admissible ETS models and all ARIMA
p d q P D Q( , , ) ( , , )m× models where p and q could take values from
0 to 5, and P and Q could take values from 0 to 2 were applied
using the in-sample period between January 2007 and April 2011
(first 52 observations). The parameters of each model were esti-
mated by maximizing the likelihood. The ETS model and the AR-
IMA model with the minimum value of the AICc that passed the
diagnostic checking were selected for forecasting. The Ljung–Box
test was applied with a significance level of 5% based on the first
15 autocorrelations.

For each retail series, Table 1 gives the forecasting accuracy
measures for in-sample data of the ETS model and ARIMA model
selected according to the procedure described earlier. The forecast
error measures presented in Table 1 are defined in Section 3.1.
From Table 1 it can be observed that with the exception to Shoes
series ARIMA models forecast better than ETS models in the
training sample judged by the three most common performance
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Fig. 4. Sample ACF (left panels) and sample PACF (right panels) plots for seasonally differenced logged Boots data (a1, a2), seasonally differenced logged Booties data (b1, b2),
doubled differenced logged Flats data (c1, c2), seasonally differenced Sandals data (d1, d2) and first differenced Shoes data (e1, e2).
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measures: RMSE, MAE and MAPE (with the single exception to
MAPE for the Sandals series); although it should be emphasized
that these results should not be used for forecast evaluation.

4.4. Cross-validation procedure

Since there is no universally agreed-upon performance mea-
sure that can be applied to every forecasting situation, multiple
criteria are therefore often needed to give a comprehensive as-
sessment of forecasting models [7]. The RMSE, MAE, and MAPE are
the most commonly used forecast error measures among both
academics and practitioners, and the retail forecasting literature is
no exception [32].

For each retail series both selected models (ETS and ARIMA)
were used to forecast on the out-of-sample period from May 2011
to April 2012 (12 observations). Both one-step and multiple-step



Table 1
Forecast accuracy measures for in-sample period (January 2007 to April 2011).

Retail series Model ME RMSE MAE MPE (%) MAPE (%)

Boots ETS(M, N, M) 254.43 1530.93 990.68 �40.77 66.88
Log ARIMA (0, 0, 3) (0, 1, 0)12× 94.70 1320.60 722.54 �19.48 33.66

Booties ETS(M, N, M) 88.46 384.61 255.36 �23.72 51.67
Log ARIMA (1, 0, 0) (0, 1, 2)12× 47.01 290.22 170.75 �10.94 29.04

Flats ETS(M, N, M) 4.16 284.67 192.14 �6.07 24.56
Log ARIMA (0, 1, 0) (0, 1, 1)12× 21.61 174.19 122.01 �0.26 20.33

ARIMA (1, 0, 0) (0, 1, 0)12× 450.11 1817.00 913.45 �162.13 200.99

ARIMA (4, 1, 0) (1, 0, 1)12× �74.76 772.67 638.30 �4.18 14.26
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forecasts were produced. Using each model fitted for the in-sam-
ple period, point forecasts of the next 12 months (one-step fore-
casts) and the forecast accuracy measures based on the errors
obtained were computed. The values of RMSE, MAE and MAPE of
one-step forecasts obtained are presented in Tables 2, 3 and 4,
respectively.

The cross-validation procedure for multi-step forecasts was
based on a rolling forecasting origin modified to allow multi-step
errors. Supposing n is the total number of observations, m is the
in-sample size and h is the step-ahead, multi-step forecasts were
obtained using the following algorithm:
Fo

F

C

r h¼1 to n-m

or i¼1 to n-m-hþ1

Select the observation at time mþhþi-1 as out-

of-sample

Use the observations until time mþi-1 to esti-

mate the model

Compute the h-step error on the forecast for time

mþhþi-1

ompute the forecast accuracy measures based on

the errors obtained
In our case study m¼52 and n¼64. It should be emphasized
that in multi-step forecasts the model is estimated recursively in
each step i using the observations until time m i 1+ − .

Both one-step and multi-step forecasts are important in facil-
itating a short and long planning and decision making. They si-
mulate the real-world forecasting environment in which data need
to be projected for short and long periods [3]. The values of RMSE,
MAE and MAPE of multi-step forecasts obtained are presented in
Tables 2, 3 and 4, respectively.
5. Results

5.1. Point forecasts

The results of Tables 2, 3 and 4 show that the overall out-of-
sample forecasting performance of ETS and ARIMA models eval-
uated via RMSE, MAE and MAPE is quite similar on both one-step
and multi-step forecasts.

In one-step forecasts, ETS forecasts more accurately Flats and
Shoes series than ARIMA, regardless of the forecast error measure
considered. Improvements are of the order 20% or less. For Boots
series the RMSE and MAE values of the ETS model are 33% and 40%
smaller, respectively, but the MAPE value of the ARIMA model is
20% smaller. For Booties series the RMSE and MAE values of the
ARIMA model are 27% and 28% smaller, respectively, but the MAPE
value of the ETS model is 15% smaller. For Sandals series the MAE
and MAPE values of the ARIMA model are 4% and 59% smaller,
respectively, but the RMSE value of the ETS model is 15% smaller.

When considering each error measure individually over all
time series in one-step forecasts ETS forecasts always more accu-
rately than ARIMA: in four of the five retail series (80%) for RMSE
and in three of the five retail series (60%) for MAE and MAPE.

In multi-step forecasts, ARIMA forecasts more accurately
Booties series than ETS, regardless of the forecast error measure
considered (with the exception to MAPE for h¼1 and h¼2 where
improvements are, respectively, 16% and 7%). For Boots series ETS
forecasts more accurately than ARIMA in 58% of the steps when
considering RMSE and MAE (for h¼1–3, 8–11); ARIMA forecasts
more accurately than ETS in 67% of the steps when considering
MAPE (for h¼2–7,11,12). For Flats series ARIMA forecasts more
accurately than ETS in 58% of the steps when considering RMSE
(for h¼2–4,6–8,12); ETS forecasts more accurately than ARIMA in
58% (for h¼1, 2, 5, 6, 9–11) and 83% (for h¼1, 2, 4–11) of the steps
when considering MAE and MAPE, respectively. For Sandals series
ETS forecasts more accurately than ARIMA in 92% (for h¼1–5, 7–
12) and 83% (for h¼2–5, 7–12) of the steps when considering
RMSE and MAE, respectively; ARIMA forecasts more accurately
than ETS in 58% of the steps when considering MAPE (for h¼2–8).
For Shoes series ETS forecasts more accurately than ARIMA in 92%
(for h¼1–9, 11, 12), 83% (for h¼1–8, 11, 12) and 75% (for h¼1–6, 8,
11, 12) of the steps when considering RMSE, MAE and MAPE,
respectively.

When considering each error measure individually over all
time series in multi-step forecasts ETS forecasts more accurately
than ARIMA for RMSE and MAE: in three of the five retail series
(60%) for RMSE and in four of the five retail series (80%) for MAE.
ARIMA forecasts more accurately than ETS for MAPE: in three of
the five retail series (60%). Overall ETS produces more accurate
forecasts in 57% of the steps for RMSE and MAE and in 50% of the
steps for MAPE.

These results also show that globally multi-step forecasts are
better than one-step forecasts which is not surprising because
multi-step forecasts incorporate information that is more updated.

To see the individual point forecasting behavior we plotted the
actual data versus the forecasts from both ETS and ARIMA models
in Fig. 5. In general, we find that both ETS and ARIMA models have
the capability to forecast the trend movement and seasonal fluc-
tuations fairly well. As expected, the exceptional increase in the
sales of flats observed in March and April 2012 was not predicted
by both models which under-forecasted the situation.



Table 2
RMSE for out-of-sample period forecasts (May 2011 to April 2012).

Retail series Model One-step forecasts Step-ahead of multi-step forecasts

1 2 3 4 5 6 7 8 9 10 11 12

Boots ETS 1263.63 1772.99 2424.99 2823.25 3629.93 4575.80 4913.38 3532.30 2012.93 812.90 203.37 181.60 193.94
ARIMA 1886.38 2315.46 2570.81 2866.74 2176.30 2307.08 2466.34 2269.76 2485.37 2657.74 1648.04 721.31 13.00

Booties ETS 1151.46 604.69 1056.24 1381.72 1733.74 2013.21 2074.64 1944.03 1418.13 665.95 384.70 59.27 87.77
ARIMA 843.68 538.86 719.85 943.74 1400.74 1594.39 1564.41 1141.17 671.83 131.48 53.90 19.49 14.57

Flats ETS 757.45 448.94 564.52 589.74 837.14 1048.20 1075.22 1218.73 1460.33 1682.60 1771.42 1909.65 1731.85
ARIMA 797.07 511.76 542.19 390.76 746.12 1049.51 1064.89 1152.75 1444.94 1719.01 1833.64 1944.21 1700.07

Sandals ETS 1201.01 1279.47 804.48 894.17 280.57 1413.19 2587.91 1200.82 1032.87 1434.66 1920.06 1722.84 1857.38
ARIMA 1414.50 1506.71 1475.93 1536.06 1608.02 1700.61 1788.28 1925.44 2110.13 2359.24 2724.48 3335.86 4657.98

Shoes ETS 651.72 624.38 738.61 628.96 732.80 904.56 962.67 827.87 949.67 1097.71 1220.35 1113.71 1178.26
ARIMA 798.62 876.86 1098.66 1103.78 1128.61 1121.56 1182.66 908.78 1058.72 1132.51 1212.91 1280.02 1236.24

Table 3
MAE for out-of-sample period forecasts (May 2011 to April 2012).

Retail series Model One-step forecasts Step-ahead of multi-step forecasts

1 2 3 4 5 6 7 8 9 10 11 12

Boots ETS 690.63 948.26 1342.31 1854.88 2356.78 3019.70 3584.63 2488.65 1650.09 560.31 148.10 167.65 193.94
ARIMA 1159.49 1257.29 1695.41 2115.84 1513.89 1676.37 1911.57 1660.83 1961.00 2045.75 1233.00 516.50 13.00

Booties ETS 749.78 357.31 756.01 1011.60 1318.99 1464.28 1500.68 1484.99 1087.02 539.72 286.58 49.74 87.77
ARIMA 539.75 324.15 526.36 677.33 972.66 1088.10 1018.14 836.41 481.61 106.55 47.65 19.48 14.57

Flats ETS 513.90 323.46 428.50 472.94 588.44 683.03 769.54 938.54 1152.01 1323.08 1489.38 1894.98 1731.85
ARIMA 601.65 369.83 448.94 337.28 503.29 715.21 782.96 916.03 1151.53 1376.13 1558.57 1928.18 1700.07

Sandals ETS 745.65 860.59 555.52 583.84 202.12 744.23 1042.48 548.40 527.79 747.01 1141.96 1350.99 1857.38
ARIMA 713.32 750.49 744.50 761.65 788.56 845.32 836.24 924.47 1108.91 1380.73 1836.12 2702.99 4657.98

Shoes ETS 547.97 475.31 553.71 447.48 496.22 669.36 762.33 618.28 664.29 889.93 1137.13 994.69 1178.26
ARIMA 683.03 666.59 831.30 854.60 838.40 835.83 868.51 634.15 804.72 876.07 1114.09 1129.78 1236.24
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Table 4
MAPE (%) for out-of-sample period forecasts (May 2011 to April 2012).

Retail series Model One-step
forecasts

Step-ahead of multi-step forecasts

1 2 3 4 5 6 7 8 9 10 11 12

Boots ETS 211.03 130.02 199.10 100.39 67.97 70.70 74.97 61.63 63.42 32.13 12.96 103.58 340.24
ARIMA 169.87 176.39 198.09 63.76 53.31 53.77 61.13 54.30 64.78 77.86 82.96 87.64 22.81

Booties ETS 72.86 55.79 91.86 71.04 91.12 87.07 72.17 68.70 73.77 59.32 34.92 25.07 151.32
ARIMA 85.63 66.09 98.38 45.64 50.19 46.05 42.43 44.98 42.51 36.25 14.00 19.66 25.12

Flats ETS 49.26 31.28 43.12 46.75 43.27 42.45 48.15 61.59 63.09 58.49 53.49 62.32 54.15
ARIMA 62.37 33.43 49.39 45.49 44.04 46.10 50.87 63.78 64.82 63.15 57.09 63.40 53.16

Sandals ETS 165.87 449.07 253.55 231.13 246.04 281.16 298.73 321.29 114.01 26.76 40.64 44.24 54.33
ARIMA 68.55 1149.57 62.23 62.00 72.72 229.45 74.09 112.21 78.31 76.71 76.90 91.60 136.24

Shoes ETS 18.32 13.85 16.53 12.52 12.58 16.73 20.26 16.51 15.26 22.02 29.18 19.48 22.40
ARIMA 23.79 20.91 25.57 25.86 22.36 21.54 22.08 16.03 19.55 20.86 27.20 22.09 23.50
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5.2. Forecast interval coverage

Producing estimates of uncertainty is an important aspect of
forecasting which is often ignored. We also evaluated the perfor-
mance of both forecasting methodologies in producing forecast
intervals that usually provide coverages which are close to the
nominal rates [23]. Table 5 shows the mean percentage of times
that the nominal 95% and 80% forecast intervals contain the true
a

c

Fig. 5. Out-of-sample fixed forecasting comparison for the retail series (between May 20
of Sandals, and (e) pairs of Shoes.
observations for both one-step and multiple-step forecasts.
The results indicate that ETS and ARIMA models produce cov-

erage probabilities that are close to the nominal rates for both one-
step and multi-step forecasts. In one-step forecasts ARIMA slightly
overestimates the coverage probabilities of both nominal forecast
intervals. ETS slightly overestimates the coverage probability of
the nominal 95% forecast interval and is equal to the coverage
probability of the nominal 80% forecast interval. In multi-step
b

e

d

11 and April 2012): (a) pairs of Boots, (b) pairs of Booties, (c) pairs of Flats, (d) pairs



Table 5
Forecast interval coverage for out-of-sample period forecasts (May 2011 to April 2012).

Model Nominal coverage (%) One-step forecasts Step-ahead of multi-step forecasts

1 2 3 4 5 6 7 8 9 10 11 12

ETS 95 96.8 84.8 80.2 82.0 78.0 75.2 68.6 63.4 80.0 85.0 86.6 90.0 100.0
80 80.0 68.2 60.2 58.0 69.0 67.6 63.0 63.4 60.0 75.0 80.0 70.0 80.0

ARIMA 95 95.2 88.4 85.6 92.0 95.6 92.8 94.4 96.6 96.0 95.0 93.4 90.0 80.0
80 83.4 75.2 74.8 78.0 80.2 80.2 85.6 89.8 88.0 80.0 80.2 80.0 80.0
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forecasts, ETS underestimates the coverage probabilities of the
nominal 95% forecast intervals in 92% of the steps and over-
estimates in 8%. The coverage probabilities of the nominal 80%
forecast intervals are underestimated in 83% of the steps and are
equal to 80% in 17% of the steps. ARIMA underestimates the cov-
erage probabilities of the nominal 95% forecast intervals in 67% of
the steps, overestimates in 25% of the steps and is equal to 95% in
8% of the steps. The coverage probabilities of the nominal 80%
forecast intervals are underestimated in 25% of the steps, over-
estimated in 50% of the steps and are equal to 80% in 25% of the
steps. The mean absolute deviation of the coverage probabilities
generated by ETS is 14.7% for the nominal 95% forecast intervals
and 12.1% for the nominal 80% forecast intervals. The mean ab-
solute deviation of the coverage probabilities generated by ARIMA
is 3.9% for the nominal 95% forecast intervals and 3.0% for the
nominal 80% forecast intervals. So we may conclude from these
results that in multi-step forecasts ETS tends to underestimate a
little more the coverage probabilities of the forecast intervals than
ARIMA.

5.3. Analysis and discussion

ETS and ARIMA models provide complementary approaches to
the problem of time series forecasting. While the former frame-
work is based on a description of trend and seasonality in the data,
the latter one aims to describe the autocorrelations in the data.
There is the idea that ARIMA models are more general than ex-
ponential smoothing models. Actually, the two classes of models
are complimentary each with its strengths and weaknesses. While
linear exponential smoothing models are all special cases of AR-
IMA models, the non-linear exponential smoothing models have
no equivalent ARIMA counterparts. There are also many ARIMA
models which have no exponential smoothing counterparts. In
particular, every ETS model is non-stationary while ARIMA models
can be stationary.

It may also be thought that ARIMA is advantageous over ETS
because it is a larger model class. However, the results in [5] show
that the exponential smoothing models performed better than the
ARIMA models for the seasonal M3 competition data. (For the
annual M3 data, the ARIMA models performed better.) In a dis-
cussion of these results, Hyndman and Athanasopoulos [15]
speculate that the larger model space of ARIMA models actually
harms forecasting performance because it introduces additional
uncertainty and that the smaller exponential smoothing class is
sufficiently rich to capture the dynamics of almost all real business
and economic time series.

Our results reinforce the idea that ARIMA models do not pro-
duce more accurate forecasts than state space models when an
automatic forecasting algorithm is applied. And that state space
models can be very competitive in producing automatic forecasts
of univariate time series which are often needed in any retail
business. In fact state space models seem to have a slightly better
performance than ARIMA models in the presence of a larger vo-
latility in the case of one-step forecasts, as showed the out-of-
sample results of Flats and Shoes series. In the case of multi-step
forecasts that is not so evident and globally their performance is
quite similar. Our results also indicate that ETS and ARIMA models
produce coverage probabilities that are close to the nominal rates
for one-step forecasts. In multi-step forecasts ETS tends to un-
derestimate a little more the coverage probabilities of the forecast
intervals than ARIMA.

We also concluded that globally ARIMA fits the data better than
ETS but that does not mean that it forecasts better. In fact, a model
which fits the data better does not necessarily forecast better, and
the fit error measures should not be used as a way to select a
model for forecast [19].

As mentioned in Section 3.1, one of the limitations of the MAPE
is having huge values when data contain very small numbers. The
large values of MAPE of both models for the Boots, Booties and
Sandals retail series are explained by the fact that during the out-
of-sample period there are some months with almost no sales
(close to zero).

In general, we find that both ETS and ARIMA models have the
capability to forecast the trend movement and seasonal fluctua-
tions fairly well. As expected, the exceptional increase in the sales
of flats observed in March and April 2012 was not predicted by
both models which under-forecasted the situation.
6. Conclusions and future work

Accurate retail sales forecasting can have a great impact on
effective management of retail operations. Retail sales time series
often exhibit strong trend and seasonal variations presenting
challenges in developing effective forecasting models. How to ef-
fectively model these series and how to improve the quality of
forecasts are still outstanding questions. Despite the investigator's
efforts, the several existing studies have not led to a consensus
about the relative forecasting performances of ETS and ARIMA
modeling frameworks when they are applied to retail sales data.

The purpose of this work was to compare the forecasting per-
formance of ETS and ARIMA models when applied to a case study
of retail sales of five different categories of women footwear from
the Portuguese retailer Foreva. As far as we know it is the first time
ETS models are tested for retail sales forecasting.

For each retail series all admissible ETS models were applied
using the in-sample period. To identify an appropriate ARIMA
model for each retail series, after deciding the required transfor-
mations for variance stabilization, unit-root tests were applied to
select the necessary degrees of differencing to achieve stationarity.
To be able to compare more accurately the forecasting perfor-
mance of both modeling approaches, for each time series we
decided to fit all the ARIMA models where p and q could take
values from 0 to 5, and P and Q could take values from 0 to 2. The
ETS model and the ARIMA model with the minimum value of the
AICc that passed the diagnostic checking were selected for fore-
casting on the out-of-sample.

Both one-step and multiple-step forecasts were produced using
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the selected models. The results show that the overall out-of-
sample forecasting performance of ETS and ARIMA models eval-
uated via RMSE, MAE and MAPE is quite similar on both one-step
and multi-step forecasts. On both modeling approaches multi-step
forecasts are generally better than one-step forecasts which is not
surprising because multi-step forecasts incorporate information
that is more updated. The performance of both forecasting
methodologies in producing forecast intervals that provide cov-
erages which are close to the nominal rates was also evaluated.
The results indicate that both ETS and ARIMA produce coverage
probabilities that are very close to the nominal rates. ARIMA being
a larger model class it could be thought to be advantageous over
ETS. Our results show that when an automatic algorithm is applied
the overall out-of-sample forecasting performance of ARIMA
models is not better than ETS models in predicting retail sales, and
neither is best for all circumstances.

Retailers are increasing their assortments in response to con-
sumer demands for higher product variety. The new paradigm of
mass customization is forcing manufacturers to redesign and
change products constantly [33–35]. As a consequence, products
life cycles have been decreasing making sales at the SKU (Stock
Keeping Unit) level in a particular store difficult to forecast, as time
series for these products tend to be short. Moreover, retailers are
increasing marketing activities such as price reductions and pro-
motions due to more intense competition and recent economic
recession. Products are typically on promotion for a limited period
of time, e.g. 1 week, during which demand is usually substantially
higher occurring many stock-outs due to inaccurate forecasts [36].
Stock-outs can be very negative to the business because these lead
to dissatisfied customers. How to balance the loss due to stock-
outs and the cost of safety stocks is clearly an important issue for
today's retailers.
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