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Abstract: We model the impact of atmospheric turbulence-induced phase 
and amplitude fluctuations on free-space optical links using synchronous 
detection. We derive exact expressions for the probability density function 
of the signal-to-noise ratio in the presence of turbulence. We consider the 
effects of log-normal amplitude fluctuations and Gaussian phase 
fluctuations, in addition to local oscillator shot noise, for both passive 
receivers and those employing active modal compensation of wave-front 
phase distortion. We compute error probabilities for M-ary phase-shift 
keying, and evaluate the impact of various parameters, including the ratio of 
receiver aperture diameter to the wave-front coherence diameter, and the 
number of modes compensated. 
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1. Introduction 

Evaluating the performance of a heterodyne or homodyne receiver in the presence of 
atmospheric turbulence is generally difficult because of the complex ways turbulence affects 
the coherence of the received signal that is to be mixed with the local oscillator. The 
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downconverted heterodyne or homodyne power is maximized when the spatial field of the 
received signal matches that of the local oscillator. Any mismatch of the amplitudes and 
phases of the two fields will result in a loss in downconverted power. Adaptive compensation 
of atmospheric wave-front phase distortion to improve the performance of atmospheric 
systems has been an important field of study for many years. In particular, modal 
compensation method involves correction of several modes of an expansion of the total phase 
distortion in a set of basis functions. 

Here, we study in a unified framework the effects of both wavefront distortion and 
amplitude scintillation on the performance of synchronous (coherent) receivers utilizing 
wavefront compensation. The effects ascribed to turbulence are random and subsequently 
must be described in a statistical sense. Early works quantified turbulence-induced fading 
through its mean and variance [1,2], although these are not adequate to fully characterize 
system performance. Later analyses have attempted to overcome these limitations and fully 
characterize the statistics of heterodyne optical systems by assuming a highly simplified 
model of atmospheric effects [3,4]. An alternate approach, aimed at overcoming the 
limitations of previous work, is based on numerical simulation of heterodyne optical systems 
[5,6]. Unfortunately, none of these prior works have resulted in an accurate statistical 
description of the performance of phase-compensated homodyne or heterodyne systems. 
Recently, a full-wave simulation of beam propagation has been used to examine the 
uncertainty inherent to the process of optical power measurement with a practical heterodyne 
receiver because of the presence of refractive turbulence [7]. 

The remainder of this paper is organized as follows. In Section 2, we define a 
mathematical model for the received signal after propagation through the atmosphere. By 
noting that the downconverted signal current can be characterized as the sum of many 
contributions from different coherent regions within the aperture, we show that the probability 
density function (PDF) of this current can be well-approximated by a modified Rice 
distribution. In our model, the parameters describing the PDF depend on the turbulence 
conditions and the degree of modal compensation applied in the receiver. In Section 3, we 
compute the error probability for QPSK modulation in the presence of multiplicative noise 
from atmospheric turbulence and additive white Gaussian noise (AWGN). We provide 
analytical expressions for the error probability of synchronous communication systems, and 
use them to study the effect of various parameters on performance, including turbulence level, 
signal strength, receive aperture size, and the extent of wavefront compensation. 

2. First-order statistics in optical homodyne or heterodyne detection 

When a received signal experiences atmospheric turbulence during transmission, both its 
envelope and its phase fluctuate over time. In the case of coherent modulation, phase 
fluctuations can severely degrade performance unless measures are taken to compensate for 
them at the receiver. Here, we assume that after homodyne or heterodyne downconversion is 
used to obtain an electrical signal, the receiver is able to track any phase fluctuations caused 
by turbulence (as well as those caused by laser phase noise), performing ideal coherent 
(synchronous) demodulation. Under this assumption, analyzing the receiver performance 
requires knowledge of only the envelope statistics of the downconverted electrical signal. 

In a coherent receiver, downconversion from the optical domain to the electrical domain 
can be achieved using either heterodyne or homodyne methods [8]. The performance 
comparison between homodyne and heterodyne depends on the modulation scheme being 
considered. This paper analyzes QPSK modulation with synchronous homodyne or 
heterodyne detection, assuming the dominant noise is local oscillator shot noise. For 
concreteness, equations are given for the heterodyne case, but the signal-to-noise ratio (SNR) 
and error-rate performance are the same for the homodyne case. We assume the heterodyne 
downconverter uses a 50-50 beamsplitter and a pair of photodetectors, comprising a balanced 
receiver. (Using BPSK modulation, it is possible to employ a single-quadrature 
downconverter for homodyne but not heterodyne. Hence, for BPSK, homodyne can achieve a 
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given error rate at a 3-dB lower signal power than heterodyne in the shot-noise-limited 
regime.)  

In order to assess the impact of turbulence, both log-amplitude and phase fluctuations 
should be considered. As a consequence, the field in the pupil plane is expressed as 

 ( )exp ( )SA A jχ φ= −⎡ ⎤⎣ ⎦r r , (1) 

where As is the amplitude without the effect of turbulence, and χ(r) and φ(r) represent the log-
amplitude fluctuations (scintillation) and phase variations (aberrations), respectively, 
introduced by atmospheric turbulence. In the heterodyne downconverter, the information-
carrying photocurrent is at the output of the balanced receiver is: 

 ( ) [ ] ( )0 exp ( ) cos 2S Si A A d W f tη χ π φ φ= Δ + Δ −⎡ ⎤⎣ ⎦∫ x r r r , (2) 

where η is the quantum efficiency of the photodetector, A0 is the amplitude of the local 

oscillator, and Δf and Δφ are, respectively, the differences between the frequencies and phases 
of the signal and local oscillator. The circular receiving aperture of diameter D is defined by 
the aperture function W(r), which equals unity for |r|≤D/2, and equals zero for |r|>D/2. We 
can rewrite the cosine using ( )cos cos cos sin sinu v u v u v− = + , obtaining 

 
[ ] ( ) ( ) ( ){

[ ] ( ) ( ) ( ) }
0 cos 2 exp cos

sin 2 exp sin .

S Si A A f t d W

f t d W

η π φ χ φ

π φ χ φ

= Δ + Δ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

+ Δ + Δ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫

∫

r r r r

r r r r
 (3) 

Taking the time average of the beat frequency Δf oscillations of Eq. (3), the average detected 

signal power 2
Si  may be written as 

 
2

2 2 2 2
0

1

2 4S S r ii D A A
πη α α⎛ ⎞

⎡ ⎤= +⎜ ⎟ ⎣ ⎦
⎝ ⎠

, (4) 

where α r and α i are normalized versions of the integrals in Eq. (3):  

 
( ) ( ) ( )

( ) ( ) ( )

1
2

1
2

exp cos
4

exp sin .
4

r

i

D d W

D d W

πα χ φ

πα χ φ

−

−

⎛ ⎞= ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

⎛ ⎞= ⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎣ ⎦ ⎣ ⎦
⎝ ⎠

∫

∫

r r r r

r r r r

 (5) 

In this last step, the trigonometric and exponential terms have been considered time-
independent, as the time average is taken over a period that is short compared with the 
coherence time associated with atmospheric turbulence. It is important to note that αr

 and αi 
represent integrals over the collecting aperture of the real and imaginary parts, respectively, of 
the normalized optical field reaching the receiver. These real and imaginary parts can be 
considered as the components of a complex random phasor.  

If the noise is dominated by local oscillator shot noise, the average noise power per unit 

bandwidth is 2 2 2
04Ni e D Aη π= , where e is the electronic charge. The SNR per unit 

bandwidth 2 2
S Ni iγ = can be expressed using Eq. (4) as  

 2 2 21

2 4 SD A
e

η πγ α⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (6) 

Note that the SNR in the presence of turbulence, γ, is proportional to the SNR in the absence 

of turbulence, ( ) 2 2
0

1
4

2 Se D Aγ η π= : 

#97537 - $15.00 USD Received 17 Jun 2008; revised 23 Jul 2008; accepted 20 Aug 2008; published 26 Aug 2008

(C) 2008 OSA 1 September 2008 / Vol. 16,  No. 18 / OPTICS EXPRESS  14153



 2
0γ γ α= . (7) 

The constant of proportionality is α2 = αr
2 + αi

2, a random scale factor representing the effect 
of both the amplitude and phase fluctuations of the optical field. The statistical properties of 

the random variable α2, with mean 2α  and PDF ( )2

2pα α , provide a statistical 

characterization of the SNR γ. Using the average SNR 2
0γ γ α=  and the Jacobian of the 

transformation 2 2
0α γ γ γ α γ= = , we obtain the PDF of the SNR: 

 ( ) 2

2 2

p pγ α

α αγ γ
γ γ

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

. (8) 

Turning attention to α2, we study how amplitude and phase fluctuations of the optical field 
define the statistics of the fading intensity α2= αr

2+ αi
2. We note that the two random 

magnitudes αr and αi are expressed in Eq. (5) as integrals over the aperture and, hence, are the 
sums of contributions from each point in the aperture. In order to proceed with the analysis, 
we consider a statistical model in which these continuous integrals are expressed as finite 
sums over N statistically independent cells in the aperture:  

 1

1

1
exp cos

1
exp sin ,

N

r k k
k

N

i k k
k

N

N

α χ φ

α χ φ

=

=

≅

≅

∑

∑

 (9) 

where χk is the log-amplitude and φk is the phase of the kth statistically independent cell. A 
similar approach has been used to analyze the statistics of the Strehl ratio [9]. The mean log-
amplitude can be extracted out of the sums, yielding 

 
( )

( )
1

1

1
exp exp cos

1
exp exp sin .

N

r k k
k

N

i k k
k

N

N

α χ χ χ φ

α χ χ χ φ

=

=

≅ −

≅ −

∑

∑

 (10) 

Under the assumption that N, the number of independent cells, is large enough, we can 
consider that αr and αi asymptotically approach jointly normal random variables: 

 ( ) ( ) ( )22

, 2 2

1
, exp exp

2 2 2r i

i ir r
r i

r i r i

pα α
α αα α

α α
πσ σ σ σ

⎡ ⎤⎡ ⎤ −−
= − −⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
, (11) 

where rα , iα  and σr
2, σi

2 are the means and variances of αr, αi, which are required to evaluate 
the joint PDF. To estimate these means and variances, we recall that αr and αi can be 
considered as the real and imaginary parts of a random phasor. Hence, it is possible to 
evaluate the means and variances of αr and αi by using the classical statistical model for 
speckle with a non-uniform distribution of phases [10]. After some algebraic manipulation, 
mean values can be obtained as 

 
( ) ( ) ( )

( ) ( ) ( )

1
exp exp 1 1

2

exp exp 1 1 ,
2

r k

i k

M M

j
M M

φ φ

φ φ

α χ χ χ

α χ χ χ

⎡ ⎤= − + −⎣ ⎦

⎡ ⎤= − − − −⎣ ⎦

 (12) 

and the variances are given by 
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( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( ) ( )

2

2

2 2

2

2

2 2

exp 2 exp2
2 2 2

4

exp 2 exp
2 1 1 1 1 ,

4

exp 2 exp2
2 2 2

4

exp 2 exp
2 1 1 1 1 .

4

k
r

k

k
i

k

M M
N

M M M M
N

M M
N

M M M M
N

φ φ

φ φ φ φ

φ φ

φ φ φ φ

χ χ χ
σ

χ χ χ

χ χ χ
σ

χ χ χ

−
⎡ ⎤= + + −⎣ ⎦

⎡ ⎤−
⎣ ⎦ ⎡ ⎤− − + + −⎣ ⎦

−
⎡ ⎤= − − −⎣ ⎦

⎡ ⎤−
⎣ ⎦ ⎡ ⎤− − − − −⎣ ⎦

 (13) 

 

Mφ(ω) is the characteristic function of the phase, i.e., the Fourier transform of its PDF . We 

point out that because αr, αi result from atmospheric turbulence, we can consider phases φk 

that obey zero-mean Gaussian statistics: ( ) ( )2 21 2 exp 2p φφ φπσφ φ σ= − . In this case, the 

characteristic function of the phase is: 

 ( )
22

.exp
2

M φ
φ

ωσω
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (14) 

In [11], the statistics of phase aberrations caused by atmospheric turbulence were 
characterized, considering a Kolmogorov spectrum of turbulence. In that analysis, classical 

results for the phase variance σφ
2 were extended to consider modal compensation of 

atmospheric phase distortion. In such modal compensation, Zernike polynomials are widely 
used as basis functions because of their simple analytical expressions and their 
correspondence to classical aberrations [12]. It is known that the residual phase variance after 
modal compensation of J Zernike terms is given by 

 

5
3

2

0
J

D
C

rφσ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (15) 

where the aperture diameter D is normalized by the wavefront coherence diameter r0, which 
describes the spatial correlation of phase fluctuations in the receiver plane [1]. In (15), the 
coefficient CJ depends on J [11]. For example, aberrations up to tilt, astigmatism, coma and 
fifth-order correspond to J = 3, 6, 10 and 20, respectively. Ideally, it is desirable to choose J 
large enough that the residual variance Eq. (15)  becomes negligible. 

If it is also assumed that the log-amplitudes χk are normal random variables [13], we can 
use energy conservation, and the expressions for the mean of exponential functions of 
Gaussian variables, to obtain classical results for the log-amplitude and amplitude means: 

 
( )

2

21
exp exp .

2k

χ

χ

χ σ

χ χ σ

= −

⎛ ⎞− = ⎜ ⎟
⎝ ⎠

 (16) 

The irradiance ( )exp 2 kβ χ χ≡ −  has a mean given by ( )2exp 2 χσ . The log-amplitude 

variance σχ
2 is often expressed as a scintillation index σβ

2=exp(4σχ
2)−1. 

Substitution of Eq. (14) and Eq. (16) into Eq. (12) and Eq. (13) yields  
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( ) ( ) ( )

( )

22

2 2 2 2

2 2

1 1
exp exp

2 2

0

1
1 exp 2 2exp exp

2
1

1 exp 2 .
2

r

i

r

i

N

N

φχ

φ χ φ

φ

α σσ

α

σ σ σ σ

σ σ

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

⎡ ⎤= + − − − −⎣ ⎦

⎡ ⎤= − −⎣ ⎦

 (17) 

At this point, we still need to determine the number of statistically independent patches or 
cells N present in the aperture. An analytical expression to estimate N can be defined by  

 ( ) ( )
1

1
N d W C

S

−
⎡ ⎤= ⎢ ⎥⎣ ⎦

∫ r r r , (18) 

where W(r) again characterizes the collecting aperture with area S = (π/4)D2. Here, C(r) is the 
coherence function describing the wavefront distortion introduced by atmospheric turbulence 
[1] 

 ( )
5/ 3

0

1
exp 6.88

2

r
C

r

⎡ ⎤⎛ ⎞
= ⎢− ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

r . (19) 

Physical insight into Eq. (18) may be obtained by considering the limiting case in which the 
receiver aperture is much greater than the coherence diameter r0, i.e., D»r0. In this case, 

 

1
5/ 3

2
00

8 1
exp 6.88

2

r
N r dr

D r

−
∞⎡ ⎤⎡ ⎤⎛ ⎞

⎢ ⎥= ⎢− ⎥⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∫ . (20) 

The integral can be solved in a closed form to obtain N = [1.007 (r0/D)2]−1. To a good 
approximation, the aperture can be considered to consist of (D/r0)

2 independent cells, each of 
diameter r0. In the opposite extreme of an aperture much smaller than the coherence diameter, 
D«r0, we have C(r) ≈ 1 and N = 1. This result indicates that as the aperture gets smaller, the  
number of cells approaches unity. Values of N < 1 are not possible. An analytical expression 
for N valid for all aperture diameters is given by 

 

1
5/ 32

2
00

8 1
exp 6.88

2

D

r
N r dr

D r

−
⎡ ⎤⎡ ⎤⎛ ⎞
⎢ ⎥= ⎢− ⎥⎜ ⎟
⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

∫ , (21) 

which can easily be integrated to yield 

 

1
5/ 32

0

0

6
1.09 , 1.08

5

r D
N

D r

−
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞= Γ ⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟

⎝ ⎠ ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

. (22) 

Here, Γ(a,x) is the lower incomplete gamma function. Equation (22) will be used to 
estimate the value of N needed to evaluate Eq. (17). 

Turning again to the distribution function of interest, a joint PDF of intensity α2 and phase 

θ can be found by substituting θα cos2=ra , θα sin2=ia  into Eq. (11), and multiplying 
the resulting expression by the Jacobian of the transformation, 1/2. To obtain the marginal 
PDF of the fading intensity α2, we integrate with respect to θ:  
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 ( ) ( ) ( )
2

2 2

2
2 2

cos sin1 1
exp exp

4 2 2
r

r i r i

p d
π

α
π

α θ α α θ
α θ

π σ σ σ σ−

⎡ ⎤ ⎡ ⎤−
= − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ . (23) 

Unfortunately, the integral in Eq. (23) cannot be performed in closed form. Since αr and αi are 
jointly normal random variables, it is possible to obtain the mean and variance of the intensity 

fading as 
22 2 2

r i rα σ σ α= + +  and ( )2

2 4 4 2 22 4r i r rασ σ σ σ α= + + .  It is instructive to consider the 

weak-turbulence, near-field regime, where values of σφ
2 and σχ

2 are small but the log-
amplitude variance σχ

2 can be neglected in comparison to the effect of phase aberrations. From 
Eq. (17), we obtain σr

2 = 0, 21 2r φα σ= − , and 2 2
i Nφσ σ= . In this case, the fading intensity 

α2 is defined as the sum of a constant (coherent) term αr with amplitude rα  and a random 
(incoherent) term αi with zero mean and variance σi

2. Such a random variable, defined as the 
sum of a known dominant phasor plus a random phasor sum, is characterized by a Rice PDF 
[10]: 

 ( )2

2 2
2

02 2 2

1
exp

2 2

a a
p Iα

α αα
σ σ σ

⎡ ⎤+ ⎛ ⎞= − ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

, (24) 

where a2=
2

rα  and 2σ2 = σi
2. The parameter a2 represents the coherent intensity that 

dominates over the fluctuating residual halo, whose intensity is represented by 2σ2. It is 

convenient to express the basic Rice PDF (24) in terms of the mean 2 2 22 aα σ= +  and the 
contrast parameter 2 21 2 /r aσ≡ , a measure of the strength of the residual halo to the 
coherent component: 

 ( ) ( ) ( ) ( )
2

2
2

02 2 2

1 11
exp exp 2

r r rr
p r Iα

α
α α

α α α

⎛ ⎞⎡ ⎤+ ++= − − ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

, (25) 

which is often referred to as the modified Rician PDF. The variance of the intensity fading 

2

2

ασ can be expressed in terms of mean value 2α and the parameter r as 

( )2

2 2 22 1 (1 )r rασ α= + + . 

It is possible to extend this convenient Rice distribution to stronger turbulence regimes, in 

which both the phase aberrations σφ
2 and the log-amplitude variance σχ

2 need to be considered. 
We can expect the general marginal PDF Eq. (23) to behave like the Rice PDF Eq. (25) 

provided that we can find a set of equivalent Rice parameters ( 2α  and r) that makes Eq. (17) 
and Eq. (19) have identical mean and variance. Comparing the means and variances of the two 

distributions, the required values of 2α and r can be computed as functions of rα , σr
2, and σi

2 
through the relations 

 
( ) ( )

2 2 2 2

2 2 4 4 2 22 1 (1 ) 2 4 .

r i r

r i r rr r

α σ σ α

α σ σ σ α

= + +

+ + = + +
 (26) 

After some algebra, the contrast parameter 1/r can be obtained from Eq. (26) as 

 

( ) ( )

22 2

1
24 2 22 2 2 2

1
1

2

r i r

r r i r i r

a

r
a a

σ σ

σ σ σ σ

+ += −
⎡ ⎤+ − − −⎢ ⎥⎣ ⎦

, (27) 
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where the mean rα and variances σr
2, σr

2 are obtained with the help of Eq. (17).  
We have just redefined the Rician model so the dominant component can be a phasor sum 

of two or more dominant waves, and can be subject to amplitude fluctuations (scintillation). 
The parameter r ranges between 0 and ∞. It can be shown that when the dominant term is very 
weak (r→0), intensity fading α2 becomes negative-exponential-distributed, just as in a speckle 
pattern. Likewise, when the dominant term is very strong (r→∞), the density function 

becomes highly peaked around the mean value 2α , and there is no fading to be considered. 
When r is large, it can be shown that the PDF of α2 is, except for a skewness factor α , 

approximately Gaussian with mean 2α . Consequently, the Rice distribution can describe the 
entire range of fading that needs to be considered in our analysis. 

Using Eq. (25) to express the PDF of the fading intensity α2, and applying Eq. (8), we find 
that the SNR γ is described by a noncentral chi-square distribution with two degrees of 
freedom: 

 ( ) ( ) ( ) ( )
0

1 11
exp exp 2

r r rr
p r Iγ

γ γ
γ

γ γ γ
⎡ ⎤+ +⎡ ⎤+= − − ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

, (28) 

where the mean SNR 2
0γ γ α=  depends on turbulence-free SNR 0γ  and the parameter 

2α describing turbulence effects. 
While we have a plausible model leading to the Rice and noncentral chi-square 

distributions, the choice of the beta distribution in [6] is based on a resemblance of the 
observed curves in some numerical simulations, and not on any statistical reasoning. It is not 
clear how the parameters of the beta distribution must be (heuristically) fitted. Also, it result 
difficult to extent those results to coherent optical receivers using atmospheric compensation 
techniques. The framework of our approach is mathematically more robust and leads to results 
easily extendable to systems employing active modal compensation. 

3. Performance of coherent receivers 

In the presence of turbulence, the received power is scaled by the fading intensity α2, a 

random variable with PDF ( )2
2 ααp , which depends on atmospheric propagation. At the 

receiver, the signal is perturbed by AWGN, which is statistically independent of the fading 
intensity α2. Hence, the instantaneous SNR γ is proportional to α2. The symbol-error 
probability (SEP) ps(E) of an ideal coherent receiver is obtained by averaging the SEP 
conditioned on the SNR γ over the PDF of the instantaneous SNR, pγ(γ):  

 ( ) ( ) ( )
0S Sp E d p E pγγ γ γ
∞

= ∫ . (29) 

Although our model can accommodate various modulation/detection schemes, in this 
paper, we consider M-ary phase-shift keying (M-PSK) with ideal coherent detection based on 
maximum-likelihood principles. In this case, the SEP conditioned on the instantaneous SNR is 
given by [14] 

 ( )
2

/ 2 /

2/ 2

sin
exp

sin

M

S
Mp E d

π π

π

π

γ θ γ
θ

−

−

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ . (30) 

Using Eqs. (30) and (28) in  Eq. (29), after some algebra, we obtain  
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Fig. 1. Symbol-error probability (SEP) vs. turbulence-free SNR per symbol γ0 for QPSK with 
coherent detection and additive white Gaussian noise (AWGN). Performance is shown for 
different values of: (a) the normalized receiver aperture diameter D/r0, and (b) the number of 
modes J removed by adaptive optics. Amplitude fluctuations are neglected by assuming σβ

2=0. 
Turbulence is characterized by the phase coherence length r0. In (a), D/r0 ranges from 0.1 
(weak turbulence) to 10 (strong turbulence). In (b), the compensating phases are expansions up 
to tilt (J=3), astigmatism (J=6), and 5th-order aberrations (J=20). The no-correction case (J=0) 
is also considered. The no-turbulence case is indicated by black lines. 
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( ) ( )
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∫ . (31) 

Although this integral cannot be put in a closed form, we are able to carry out the integration 
in Eq. (31) using a simple 30-point Gaussian-Legendre quadrature formula, which yields high  
accuracy. It is useful to have a simple closed-form upper bound on the error probability, 
which can be obtained by simply noting that 2sin 1θ ≤ . The integral in Eq. (30) is reduced to 

   ( ) 21
exp sinS

M
p E

M M

πγ γ− ⎛ ⎞≤ −⎜ ⎟
⎝ ⎠

.   (32) 

By using this upper bound along with the PDF of the instantaneous SNR Eq. (28) in the 
symbol error probability Eq. (29), after some algebra, we obtain an upper bound for the SEP 
in an M-PSK receiver: 

 ( ) ( )
( ) ( )

2

2 2

sin11
exp

1 sin 1 sin
S

rrM Mp E
M r r

M M

πγ

π πγ γ

⎡ ⎤
+ ⎢ ⎥−≤ −⎢ ⎥

⎢ ⎥+ − + +
⎣ ⎦

. (33) 

Comparison with the exact result Eq. (31) shows that the upper bound Eq. (33) estimates the 
SEP with sufficient accuracy to be useful in many practical situations. 

Figures 1-3 show the effect of atmospheric turbulence on QPSK with coherent detection 
using modal-compensated heterodyne or homodyne receivers. We study the SEP Eq. (31) as a 
function of several parameters: the average turbulence-free SNR γ0 per symbol, the receiver 
aperture diameter D, the number of spatial modes J removed by the compensation system, and 
the strength of atmospheric turbulence. Turbulence is quantified by two parameters: the phase  
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Fig. 2. SEP vs. coherence diameter r0 for QPSK with coherent detection and AWGN. In (a), no 
phase compensation is employed, and performance is shown for different values of the 
scintillation index σβ

2. In (b), the scintillation index is fixed at σβ
2 = 0.3, and performance is 

shown for different values of J, the number of modes corrected by adaptive optics. The severity 
of atmospheric turbulence increases when r0 decreases. In all cases, we assume the turbulence-
free SNR per symbol is γ0 = 10 dB, and the receiver aperture diameter is D = 10 cm. In (a), the 
σβ

2 ranges from 0.3 (weaker turbulence) to 1 (stronger turbulence). In (b), the compensating 
phases are expansions through tilt (J=3), astigmatism (J=6), and 5th-order aberrations (J=20). 
The no-turbulence case is indicated by black lines. 

  
coherence length r0 and the scintillation index σβ

2. We consider two nonzero values of the 
scintillation index. The value σβ

2 = 0.3 corresponds to relatively low scintillation levels, while 
σβ

2 = 1 corresponds to strong scintillation, but still below the saturation regime. When the 
turbulence reaches the saturation regime, wavefront distortion becomes so severe that it would 
be unrealistic to consider phase compensation. In most practical free-space links, amplitude 
fluctuations are not saturated [15]. 

Figure 1 presents the SEP vs. turbulence-free SNR γ0. Figure 1(a) shows the performance 
for different values of the normalized aperture diameter D/r0, while Fig. 1(b) shows the  
performance for different values of J, the number of modes compensated. We assume no 
scintillation, σβ

2=0, so the effect of turbulence is simply to reduce the coherence length r0. For 
a fixed aperture diameter D, as r0 is reduced, the normalized aperture diameter D/r0 increases, 
and turbulence reduces the heterodyne or homodyne downconversion efficiency. Even using a 
relatively small normalized aperture diameter D/r0=1, turbulence introduces more than a 15-
dB performance penalty at 10−3 SEP. When phase correction is used, as in Fig. 1(b), in most 
situations, compensation of just a few modes yields a substantial performance improvement. 
Compensation of J = 20 modes yields significant improvement for even the largest normalized 
apertures considered. For example, for a normalized aperture D/r0=10, at a SEP = 10−3, the 
SNR penalty is just over 5 dB. This value should be contrasted with the 15-dB penalty 
observed in Fig. 1(a) for D/r0 = 1 when J = 0, i.e., no modes are compensated. 

Figure 2 shows the SEP vs. the phase coherence diameter r0. Figure 2(a) shows the 
performance for different values of the scintillation index σβ

2, while Fig. 2(b) shows the 
performance for different values of J, the number of modes compensated. In all cases 
presented, the turbulence-free SNR has a value γ0 = 10 dB. The aperture diameter is fixed in 
every plot to D = 10 cm. As we observe in Fig. 2(a), for strong turbulence, corresponding to 
small values of r0, the SEP is substantially independent of the scintillation index σβ

2. In this 
regime, phase distortions have a large impact, and high-order phase corrections may be 
required. We note that in this regime of strong turbulence, the coherent part of α2 is very  
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Fig. 3. SEP vs. normalized receiver aperture diameter D/r0 for QPSK with coherent detection 
and AWGN. In (a), no phase compensation is employed, and performance is shown for 
different values of the scintillation index σβ

2. In (b), the scintillation index is fixed at σβ
2 = 0.3, 

and performance is shown for different values of J, the number of modes corrected by adaptive 
optics. In all cases, the turbulence-free SNR per symbol γ0 is proportional to the square of the 
aperture diameter D. For the smallest aperture considered, we assume γ0 = 10 dB. In (a), σβ

2 
ranges from 0.3 (weaker turbulence) to 1 (stronger turbulence). In (b), the compensating phases 
are expansions up to tilt (J=3), astigmatism (J=6), and 5th-order aberrations (J=20). The no-
turbulence case is indicated by black lines. 

 
weak, r→0, and intensity fading becomes negative-exponential distributed, i.e. 

( ) ( )1 exppγ γ γ γ γ= − . In this case, SEP Eq. (31) reduces to 
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2 2

1

2 2

sin sin1
1 tan cot

1 21 sin 1 sin
S

M MM Mp E
M M M

M M

π πγ γπ π
π ππγ γ

−

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟⎛ ⎞− ⎪ ⎪⎛ ⎞ ⎢ ⎥⎜ ⎟= − +⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎢ ⎥⎜ ⎟⎝ ⎠⎪ ⎪+ +⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

. (34) 

For the strongest turbulence (i.e., smallest r0) considered, γ →0 and the SEP Eq. (34) 

asymptotes to a maximum value (M−1)/M. In the plots shown, where M=4, we have 
ps(E)→3/4. 

Figure 3 considers the effect of aperture diameter on performance. It presents the SEP as a 
function of the normalized aperture diameter D/r0 for a constant phase coherence length r0 and 
constant scintillation index σβ

2. For the smallest aperture diameter considered, the turbulence-
free SNR has a value γ0 = 10 dB. For any other aperture diameter, the value of γ0 is 
proportional to D2. Figure 3 illustrates the concept of an optimal aperture diameter in coherent 
free-space links. This optimal aperture diameter, which minimizes the SEP, exhibits two 
different regimes in our studies. For relatively small apertures, amplitude scintillation is 
dominant, and performance is virtually unaffected by wavefront phase correction. When the 
aperture is larger, phase distortion becomes dominant, and high-order phase correction may be 
needed to improve performance to acceptable levels. In [7], the simulation of beam 
propagation was used to examine the uncertainty inherent to the process of optical power 
measurement with a practical heterodyne receiver because of the presence of refractive 
turbulence. Phase-compensated heterodyne receivers were also considered for overcoming the 
limitations imposed by the atmosphere by the partial correction of turbulence-induced wave-
front phase aberrations. As in the current analysis, simulations indicated that the optimal 
aperture diameters, those minimizing the relative error, separate two different regimes in our 
simulations. The regime dominated by amplitude scintillation was defined for relatively small 
apertures and it was virtually unaffected by phase-front corrections. When larger apertures 
were considered, phase distortion was the relevant effect of turbulence, amplitude fluctuations 

#97537 - $15.00 USD Received 17 Jun 2008; revised 23 Jul 2008; accepted 20 Aug 2008; published 26 Aug 2008

(C) 2008 OSA 1 September 2008 / Vol. 16,  No. 18 / OPTICS EXPRESS  14161



were of little influence, and we needed high-order phase corrections to decrease the 
uncertainty to acceptable levels. 

In Fig. 3(a), no phase compensation is employed (J=0), and the performance is shown for 
different values of the scintillation index σβ

2. Here, the optimal normalized aperture diameter 
is close to D/r0 = 0.3, and increases slightly with increasing scintillation index. In any case, 
when σβ

2 becomes too large, the optimization is of little practical significance. In Fig. 3(b), we 
consider strong scintillation, σβ

2 = 1, and show the performance for different values of J, the 
number of modes compensated. As we increase J, the optimized value of D/r0 increases, and 
the optimized SEP improves substantially. Even for such strong scintillation, with 
compensation of J = 20 modes and optimized D/r0, excellent SEP performance is obtained. In 
this case, the optimized D/r0 is rather large (close to 4). For the larger values of D/r0 
considered in these plots, the coherent part of α2 is very weak (r→0) and fading intensity 
becomes negative-exponential-distributed, such that the SEP is described by Eq. (34). In Fig. 
3(a), when large normalized apertures D/r0 are considered, the SEP becomes independent of 
the scintillation index σβ

2, and tends toward an asymptotic value that is independent of 
normalized aperture diameter D/r0. In Fig. 3(b), at large values of D/r0, the SEPs also tend 
toward asymptotic values, independent of normalized aperture diameter D/r0, which depend 
only weakly on the scintillation index σβ

2. 

4. Conclusions 

We have studied the impact of atmospheric turbulence-induced scintillation and phase 
aberrations on the performance of free-space optical links in which the receiver uses modal 
wavefront compensation and synchronous homodyne or heterodyne detection. We have 
defined a mathematical model for the signal received after propagation through the 
atmosphere and after modal compensation. By noting that the down converted electrical signal 
current can be characterized as the sum of many contributions from different coherent regions 
within the aperture, we showed that the PDF of this signal can be described by a modified 
Rice distribution. The parameters describing the PDF depend on the turbulence conditions and 
the number of modes compensated at the receiver. We have provided analytical expressions 
for the symbol error probability (SEP) for synchronous detection of M-PSK with additive 
white Gaussian noise, and have used them to study the effect of various parameters on 
performance, including signal level, aperture diameter, turbulence strength, and the number of 
modes compensated. We have separately quantified the effects of amplitude fluctuations and 
wavefront phase distortion on system performance, and have identified two different regimes 
of turbulence, depending on the receiver aperture diameter normalized to the coherence 
diameter of the wavefront phase. When the normalized aperture diameter is relatively small, 
amplitude scintillation dominates and, as phase fluctuations have little impact, performance is 
virtually independent of the number of modes compensated. When the normalized aperture is 
larger, amplitude fluctuations become negligible, and phase fluctuations become dominant, so 
that high-order phase compensation may be needed to improve performance to acceptable 
levels. We have found that for most typical link designs, wavefront phase fluctuations are the  
dominant impairment, and compensation of a modest number of modes can reduce 
performance penalties by several decibels. 
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