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Abstract

A type of analog integrating moving window detector for use with a

scanning pulse radar is examined. A performance analysis is carried
out, which takes into account both the radiation pattern of the antenna
and the dynamic character of the detection process due to the angular
scanning of the antenna. An expression for the false alarm rate of the
detector is first derived and evaluated numerically. The detection per-

formance and angular accuracy are next determined in a direct Monte
Carlo simulation of the detector on a digital computer for both no

fading and pulse-to-pulse Rayleigh fading. Finally the influence on

detection performance of the width used for the moving window is
investigated.

The detection of radar signals in Gaussian noise by
methods of analog post-detection integration has been
analyzed in the past for a number of pertinent cases [11-
[5]. The differences among these have been with regard to
assumptions concerning the envelope detector law, the
antenna beam shape, and weighting in the integration as
well as the chosen method of analysis.

All of these papers have, on the other hand, been based
on the one-point theory of detection [6], which assumes
that the statistical test for target presence can be carried
out with exact knowledge of the target position.

In the present paper an analysis of a type of analog
integrating moving window radar detector (abbreviated
AMW detector for analog moving window detector) is
carried out. This does not assume the target azimuth to
be known and therefore is not restricted to the one-point
theory. The analysis is however based on the assumption
of a known target range such that the usual approxima-
tions would have to be used to derive the performance for
an extended range interval.
The AMW detector is similar in principle to the well-

known binary digital moving window detector and es-

sentially consists of a number of delay lines, each equal in
length to the interpulse period, such that a running sum of
the last L video amplitudes can be formed on each sweep
as a function of range. Based on certain dynamic detec-
tion criteria, as described in Section II, the false alarm rate
and the detection performance of this detector are deter-
mined at a given range. For the detection performance,
which is found by Monte Carlo simulation, a Gaussian
antenna pattern is assumed and both no fading and pulse-
to-pulse Rayleigh fading are considered. Further, some
results on angular accuracy are presented for a beam-
splitting azimuth estimation logic.

11. An Analog Moving Window Detector

The AMW detector considered here is similar to the
digital binary moving window integrator. However, in
place of quantizing the incoming video in amplitude, it
operates directly with the analog information. A block
diagram of the complete receiver is shown in Fig. 1 and
an input consisting of signals and additive stationary
white Gaussian noise is assumed.

If the amplitude of the radar video signal at range R
and in the ith sweep is denoted x(R, i), the output of the
AMW detector at range R and in the kth sweep is

k

y(R, k) = E x(R, i)
i=k-L+1

(1)
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where L represents the window width of the integrator.
The output is thus the running sum of the received video
amplitudes over the previous L sweeps. The output can
also be defined by the recurrence relation

y(R,k) = y(R,k-1)-x(R, k-L) + x(R, k). (2)
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Fig. 1. Block diagram of radar receiver using analog

moving window detector.

On the basis of the integrated output as given by (1) or
(2) and a threshold VT, the detection of a new target on the
kth sweep and at range R is defined by the combined
event'

y(R,k) .VT
and

y(RI k -1) < VT.

The value of k= kB for which such a positive threshold
crossing occurs is defined as the target begin.2 The event

y(Rk) .VT
and (4)

y(R? k - 1) . VT

is then said to correspond to the target present condition
and a negative threshold crossing as defined by

y(Rk) <VT
and (5)

y(R,k- 1) 2 VT

corresponds to the target end event for which k= kE.
When a target end has occurred the azimuth of the

target is determined. With the beam-splitting procedure
considered here the estimate of target azimuth is deter-
mined as

Ill. False Alarm Performance

The probability of obtaining a false alarm on the kth
sweep and at range R is determined as the probability of
occurrence of the target detection event specified by (3)
for the case where only noise is present.' We have

Pf, = Prob {y(R, k) . VT, y(R, k - 1) < VT} (8)

where the second subscript in Pf, indicates that this prob-
ability applies independently for each single sweep. By
defining

k

z(R, k) = E x(R, i)
i=k-L+2

we can write

y(RIk) = z(Rh- 1) +x(R,k)
and

(9)

(10)

y(R, k-1)=z(R, k-1) + x(R,k-L) (11)
(3) and the false alarm probability can equivalently be stated

as

Pf, = Prob {x(R,k) . VT - z(Rk -1), (12)
x(R, k - L) < V!- z(R,k - 1) }.

Assuming all x(R, i) statistically independent4 and identi-
cally distributed it follows that x(R, k), x(R, k-L), and
z(R, k- 1) all will be statistically independent and the
false alarm probability is determined as

rV.T
Pf8 = PLJ1(Z)

-xVT-dZ .fV _

O VT-z

where the arguments of x(R, i) and z(R, k) have been
omitted for simplicity so that x= x(R, i) and z= z(R, k).
The probability density function for x(R, i) is denoted
p1(x) and for z(R, k- 1) it is pL-l(Z). Since z(R, k- 1) is
the sum of L-1 independent variables (9) each having
the pdf p,(x) we have

(13)

kT = 2{ CB + kE - 1} (6)
assuming that the correspondence between the sweep
number k and the azimuth angle is known.

Finally, we have that

y(Rk ) < VT
and (7)

y(R, k - 1) < VT

corresponds to the no target condition.

1 Usually the range interval of interest will be quantized into a
number of contiguous range bins such that R should be considered
as a discrete parameter in (3).

2 The effect of an additional criterion which requires that a new

target detection must have a certain angular separation from a pre-
vious detection is investigated in Section III.

PL 1(z) = Pl(X)*Pl(X)* *. P1p(X) |>=Z
<- L - 1 times (14)

where the asterisk denotes the convolution operation.
Assuming a linear envelope detector after the matched

filter and normalizing the power level at the filter output
to unity, the video amplitude x(R, i) will have a Rayleigh
pdf when only noise is present, i.e.,

p,(x) = x exp (-x2/2) x > 0. (15)

Inserting into (13) then gives the false alarm probability

3 The derivation is similar to that presented in [7] which, however,
is for a binary moving window detector.

4This may, for example. not be true if the interference is due to
distributed clutter returns.
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Fig. 2. Single-sweep false alarm probability Pf, versus threshold for
AMW detector.

rVT
P=J PL1(Z) [(1 - exp (- (VT - z)2/2))

exp (-(VT- z) 2/2) ]dz.
This equation was evaluated numerically for various
values of L by first determining pL-l(z) as the (L- 1)-fold
self-convolution of pi(x) and then carrying out the inte-
gration in (16). In the convolutions as well as in the final
integral a discrete representation of the Rayleigh density
function using Ax=O.l was used. The results obtained
are shown in Fig. 2 with Pf, as a function of VT for L= 2,
4, 8, and 16. It is noted that the curves have a maximum
value with Pf. decreasing to both sides. The reason for
this behavior is that for low values of the threshold the
integrated output will stay above the threshold most of
the time and positive threshold crossings (false alarms)
will seldom occur.
From the results in Fig. 2 the false alarm rate (FAR) at

a given range is determined as

FAR = PfJfR alarms per second, (17)

wherefR is the radar pulse repetition frequency. In order
to obtain the overall false alarm rate when an extended
range interval is considered, approximate methods,
based on the actual procedure used for quantizing range,
would have to be introduced.

In the preceding analysis it was not taken into account
that in a practical system a certain angular separation
(0.5-1.0 beamwidth) will usually be required between two
detections if they are to be considered as two distinct
targets. To introduce this additional criterion into the
above analysis appears to be difficult and its significance
was therefore investigated through a direct computer
simulation in which a sequence of video amplitudes
x(R, i), E= 1, 2, * * *, were generated as

TABLE I

Simulation over 50 000 sweeps for Pf,= 10-3

L NFA* Pfit NFD t YFAII(percent)
4 50 1.0 10-3 1 98
8 54 1.1 10-3 6 89
16 56 1.1 10-3 13 77

* NFA is the total number of false alarms which occurred in
simulation.

t Pf1 is the estimated false alarm probability (=NFA/50 000).
t NFD is the number of false alarms which were rejected by the

separation criterion as specified above.
|| YFA expresses the reduction in false alarm rate if a "one-

beamwidth separation" criterion is used by the detector
(YFA= 100 (NFA-NFD)/NFA).

x(R i) =-\/nls+n2f2 (18)
where n1 and n2 are zero-mean unit-variance Gaussian
random variables as obtained from a pseudorandom
number generator in the computer. The window width L
was assumed to equal one beamwidth and this was also
used as the separation criterion in the detector. The azi-
muth estimate according to (6) determines the angular
position of a detected target and if two consecutive detec-
tions yield estimates kTl and kT2, the latter detection is re-
jected according to the separation criterion if kT2- kTl<L.

The simulation was carried out for L= 4, 8, and 16 with
decision thresholds giving Pf8= I0' as obtained from
Fig. 2. The results of a simulation over 50 000 consecutive
sweeps are summarized in Table I.
From these results it is seen that the additional criterion

that detections must be separated by more than one beam-
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Fig. 3. False alarm probability P1 versus threshold for analysis based on
one-point theory. Curves shown in broken line are from Fig. 2.

width in order to be taken into account individually does
reduce the effective false alarm rate and more so for the
larger values of L. However, even for L= 16, which is the
largest value considered here, the reduction is rather
modest, corresponding to no more than an equivalent
change in signal-to-noise ratio of around 0.1 dB.
For the detection model based on the one-point theory

the false alarm probability would be determined as

Pf=f PL(u)du (19)
VT

where u is the sum of L independent variables, each with
the pdfp1(x), such that

PL(U) = P1(X)*P(X))* * *Pl(X) X-. (20)

- L times -

Equations (19) and (20) were evaluated numerically and
the curves thus found are shown in Fig. 3 together with
the results from Fig. 2 in broken line.
From these two sets of curves it is possible to determine

the average duration of a false alarm with the moving
window analog integrator, for a given value of the thresh-
old VT. The average duration of a false alarm is given by

Dav= E[kE - kB] = Pf/Pf. >_ 1. (21)
The validity of (21) follows because Pf is the probability
that the integrated video is above the threshold VT for a
randomly selected observation of L consecutive video
amplitudes in a long sequence, whereas Pf8 is the proba-
bility that such an observation corresponds to the target
begin as defined by (3). Since the target begin condition is
a subset of all observations where the integrated video
exceeds the threshold the last inequality holds.

IV. Detection Curves and Angular Accuracy

The detection performance for the AMW detector was
next determined by a direct Monte Carlo simulation as-
suming a Gaussian characteristic for the antenna radia-
tion pattern and a matched filter receiver as shown in
Fig. 1. The number of signal pulses received between the
3 dB points of the antenna (one-way pattern) is denotedM
and is usually referred to as the number of hits per beam-
width.
For each repetition a sequence of more than 3M video

amplitudes was generated. Assuming a known target
range each amplitude in the observed sequence was de-
termined as

xi=-V(Ai + nl)2+ n2T (22)

where ni and n2 are independent zero-mean Gaussian
random variables with variance one, and Ai is the signal
amplitude in the ith sweep as determined by the signal-
to-noise ratio E/No at the center of the antenna beam,5
the relative antenna gain Gi (two-way voltage gain) at
the actual azimuth angle, and the target fading charac-
teristics. Since the average power signal-to-noise ratio at
the matched filter output equals the ratio of average signal
energy to noise spectral density at the input, we have in
the no fading case [due to the normalization of the noise
assumed in (22)] that 'A 12= Gt2E/No and thus the signal
amplitude is determined as

Ai =V2E/No Gi. (23)

6 E is the average energy of a received signal pulse at the center
of the beam and No is the (one-sided) spectral density of the white
Gaussian noise.
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Fig. 4. Detection performance of the AMW detector for the no fading
case. The points shown are the results of the simulation and the curves are

drawn to fit these.

Fig. 5. Detection performance of the AMW detector for the case of
pulse-to-pulse Rayleigh fading. The points shown are the results of the
simulation and the curves are drawn to fit these.
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For a pulse-to-pulse Rayleigh fading amplitude we have

2E [A.2] G2E/No

which is satisfied when the Rayleigh amplitude is deter-
mined as

Ai= a2 + a22 (24)

where a, and a2 are zero-mean Gaussian random variables
with variance G 2* E/No.
The relative position of the antenna pattern and the

individual returns was randomized over one sweep-to-
sweep period at the start of each new video sequence.

Each video sequence was in turn examined by the moving
window analog integrator as specified by (2) for different
values of the window width L and using the curves of Fig.
2 to determine the thresholds for which Pf8= 10-6. For
each repetition the occurrence of a target detection was

recorded together with the corresponding azimuth esti-
mate k as determined by the beam-splitting logic specified
by (6).

After the desired number of repetitions Nr, the detec-
tion probability was estimated as the ratio between the
number of actual detections and N, and the sample mean
and sample variance of the azimuth estimate were de-
termined.
The results of the simulation showing the detection

probability Pd versus the reference signal-to-noise ratio
E/No, obtained for M= 1, 2, 4, 8, and 16 and takingL= M,
are shown in Fig. 4 for the no fading case and in Fig. 5
for pulse-to-pulse Rayleigh fading. For M= 1 and 2 the
number of repetitions was Nr= 500 whereas for the other
values of M it was taken as Nr= 300 in order to limit
computation time. Similar results were simultaneously
obtained for other values of L by examining the video
sequence generated in the simulation by the appropriate
detector logics. These results are summarized in Fig. 6
and Fig. 7 for Pd=O.5 and Pf8= 10-6 by showing the re-

quired signal-to-noise ratio as a function ofL for different
values of M. From these curves it is seen that the mini-
mum required signal-to-noise ratios are obtained for
LA-M. The minimum, however, is rather broad such that
values ofL smaller than M may be used with little degra-
dation in performance.

Results obtained on angular accuracy are shown in
Figs. 8 and 9 for the case where L=M. The estimated
standard deviation (square root of sample variance) with
the beam-splitting procedure is shown for M= 1, 4, and
16 and the lower bounds derived by Swerling [8], for no
fading and pulse-to-pulse fading, respectively, are shown
in broken line for reference. It should be noted that these
bounds are derived under the assumption that the number
of hits per beamwidth is large and therefore do not in-
clude the quantization error that one would expect for
few hits per beamwidth. Results obtained in [9] show that
for M= 20 the accuracy of the maximum likelihood pro-

cedure is around 20 percent larger than the lower bound.
The beam-splitting procedure is seen to give results close
to this for low signal-to-noise ratios but for increasing
signal-to-noise ratio the standard deviation decreases
at a rate much slower than the bounds. This is presumably
because the threshold crossings corresponding to target
begin and target end will always take place in regions cor-

responding to a marginal signal-to-noise ratio such that
only the increased steepness of the antenna beam pattern
further from the beam center accounts for the improved
accuracy of the estimate for larger signal-to-noise ratios.
The odd shape of the curves for M= 1 probably oc-

curs because a marginal signal-to-noise ratio (and there-
fore a low detection probability) will make the detections
tend to occur mainly when a target return coincides with
the center of the antenna beam, thus improving angular
accuracy.

The bias of the estimator was found equal to the theore-
tically expected value of L/2.
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Fig. 6 Required signal-to-noise
ratio for the AMW detector to yield
Pd=0.5 and Pps= 10-6 in the no
fading case, as a function of the
window width L.

Fig. 7. Required signal-to-noise
ratio for the AMW detector to yield
Pd=0.5 and PfU=10-6 in the case
of pulse-to-pulse Rayleigh fading,
as a function of the window width L.
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Fig. 8. Angular accuracy obtained with beam-splitting estimation proce-

dure for the no fading case. Broken line curves are lower bounds derived
by Swerling [8] and points shown are simulation results.

Fig. 9. Angular accuracy obtained with beam-splitting estimation proce-

dure for pulse-to-pulse Rayleigh fading case. Broken line curves are lower
bounds derived by Swerling [8] and points shown are simulation results.
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V. Conclusions

A type of analog integrating moving window detector
has been analyzed, taking into account the antenna pat-
tern and the dynamic character of the detection process.

The performance of this detector is expected to be close
to the maximum likelihood procedure and the results ob-
tained should thus be useful for reference purposes. The
maximum likelihood detector would be obtained by using
the optimum envelope detector law, making the width of
the window several times the beamwidth, and applying
optimum weights to the outputs of the delay line. To
determine the false alarm rate in this case, along the lines

of Section III of this paper, appears to be difficult, and a

Monte Carlo analysis of the maximum likelihood detec-
tor, as in Section IV, could therefore not be carried out.

Some results for optimum weighted integration based on

the one-point theory have been obtained in [4] and [5]
and may be taken as indicative of the difference in per-

formance. In [5] the asymptotic improvement with opti-
mum weighting as compared to uniform integration over

the 3 dB beamwidth is found to be 0.23 dB. For the same
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comparison an improvement of 0.7 dB is quoted in [4] for
M= 50, Pd= 0.5, and Pf= 10-6. These two results are diffi-
cult to reconcile but the method used in [4] is probably
not very accurate.
The results on angular accuracy with the beam-split-

ting estimation procedure show that for low signal-to-
noise ratio the performance is close to the maximum
likelihood procedure. For increasing signal-to-noise ratio
the accuracy does, however, not follow the lower bounds
but decreases at a much slower rate. Whether or not such
a behavior would be acceptable in practice would depend
on the particular application.
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