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Performance of the bootstrap Rasch model 
test under violations of non-intersecting 
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Abstract 
The Rasch model is known in particular for its properties of parameter separability and specific 
objectivity. The extent to which this property is attained depends on the magnitude of the discrep-
ancy between the data and the model. The use of reliable model fit tests which can detect model 
violations is therefore essential before a psychological test is used and inferences based on the 
requirements of the Rasch model are drawn. This paper provides a critical analysis of the perform-
ance of the parametric bootstrap model test (von Davier, 1997) in the presence of non-parallel item 
response functions as violations of a basic requirement of the dichotomous Rasch model. Based on 
results from simulated data it is shown that in general the bootstrap test leads too often to failures to 
reject non-fitting data. 
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Introduction 

The Rasch model (Rasch, 1960) is frequently used in educational and psychological 
testing (e.g., Bond & Fox, 2007; De Boeck & Wilson, 2004). It is known for its charac-
teristics of  scaling items and persons on a joint unidimensional interval scale and the 
separability of item parameters and person parameters, within a conditional maximum 
likelihood approach: by conditioning on the sufficient statistics for the person parame-
ters, the raw score r, item parameters can be estimated without the involvement of the 
person parameters. That is, because the latter disappear from the conditional likelihood 
equation (Rasch, 1960, 1977). This can briefly be indicated as follows. Consider n per-
sons indexed by 1,...,v n=  responding to k binary items indexed by 1,...,i k= . The bi-
nary responses of the n persons to the k items are arranged in an n k×  matrix. Let the 
response of person v to item i be modelled by the Bernoulli variable viX  which can take 
on the value { }0,1vix ∈ . The discrete probability distribution of viX  is determined by    
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where vθ  is the persons parameter of person v and iβ  the item parameter of item i.  
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with 
vr

γ  as the well-known elementary symmetric function of order vr  of the item pa-
rameters ( ) ( )1exp ,...,exp kβ β− − . Multiplying (2) over all observed response patterns 

1,..., nx x  (over all persons) gives the conditional likelihood function. Maximizing the 
conditional likelihood function yields a consistent estimator for the item parameters. This 
is known as the CML method. As is well-known from the theory of exponential families, 
parameter estimation essentially reduces to equating the observed values of the sufficient 
statistics to their expected values (under the model). 

It can be shown that the Rasch model implies monotonically increasing and non-
intersecting item response functions (IRFs) (Fischer, 1995; Karabatsos, 2001). The extent 
to which this property is attained depends on the magnitude of the discrepancy between 
the data and the model. Many of the statistical tests for the Rasch model are based on the 
asymptotic distribution of the conditional maximum likelihood estimators from which 
various 2χ  distributed test statistics can be derived. Glas and Verhelst (1995) give a 
review of these tests. In recent years exact tests have also been proposed (Chen & Small, 
2005, Verhelst, 2008; Ponocny, 2001). Exact tests are based on the uniform distribution 
of the n k×  matrix with given margins. By conditioning on all margins of the matrix the 
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joint conditional probability of all entries (all responses of the n persons to the k items) is 
independent of both the person and item parameters. It is equal to the reciprocal of the 
number of matrices consistent with the given, fixed margins. Unfortunately there do not 
exist satisfactory combinatorial or analytical methods to determine this number, so that 
Monte Carlo methods have been applied to approximate the exact distribution of any 
statistic by drawing random samples from the uniform distribution.  

Other statistics frequently applied but not based on the CML approach are response 
residual-based statistics of model fit (Glas & Verhelst, 1995; Rost & von Davier, 1994; 
Smith, Schumacker, & Bush, 1998; Suarez-Falcon & Glas, 2003; Wang & Chen, 2005; 
Wright, 1994; Wright & Stone, 1979). In particular, the widely-used mean square infit 
and outfit statistics (Wright & Stone, 1979) have been criticized, because their sensitivity 
to detect model misfit is affected by sample size and item variance. Therefore, setting a 
common cutoff-value that applies to every item is inappropriate (Karabatsos, 2000; 
Smith, 1994, 1996; Smith et al., 1998; Wang & Chen, 2005). Moreover, as Karabatsos 
(2001) has shown, true residuals between the observed and expected item responses may 
be underestimated: if the data contain noise in the form of systematic measurement dis-
turbances, the estimated parallel IRFs also contain noise, which will be absorbed to an 
unknown extent due to the use of already minimized residuals in the context of the maxi-
mum-likelihood algorithm. 
Two test statistics which are of particular interest in this paper assess the divergence 
between the frequencies of the observed response patterns and their expected frequencies 
under a certain item response model. The first one is the Pearson χ2-statistic which ag-
gregates the differences between the observed and expected frequencies defined by a 
fitted Rasch model over all possible response patterns, defined as follows 
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whereby Xi: observed response pattern,  
Ei: expected response pattern. 

The second one is the χ2-statistic by Read and Cressie (1988), CR(2/3), defined as  
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However, the particular problem with both statistics is that the number of possible re-
sponse patterns of k items with m response categories increases exponentially with in-
creasing number of items. As a consequence the expected frequencies become smaller in 
general. In most cases of empirical research by far not all possible response patterns are 
observed, and the expected frequencies are therefore very low. In these cases, the test 
statistic is no longer 2χ -distributed with degrees of freedom equal to the number of 
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possible response patterns minus 1 and consequential statistical inferences are invalid 
(Koehler & Larntz, 1980). 

The bootstrap test for the Rasch model 

In order to avoid the problem that the asymptotic distribution of χ2-statistics does not 
hold, von Davier (1997) proposed a parametric bootstrap method to generate the un-
known sampling distribution of a test statistic T as follows. In the first step, person and 
item parameters θ̂  and β̂  are estimated and the test statistic obsT  for the given data set is 
calculated. In the second step, a new data-set is generated according to the model equa-
tion and θ̂  and β̂ . Then, model parameters are estimated for the newly simulated data 
set and the test statistic, T, is calculated. This step is repeated B times to generate the 
sampling distribution for T. Usually, the number B of bootstrap samples has to be large, 
that is 1000B ≥  (Efron & Tibshirani, 1996). The p-value of the observed test statistic 

obsT  is then estimated using { }# obsT T B≥ . 

Von Davier (1997) investigated the performance of this bootstrap test in an extensive 
Monte Carlo simulation study, systematically varying response format, sample size, 
number of items, and number of responses generating latent classes. He concluded that 
both the Pearson chi-square and Cressie-Read statistic performed well in terms of detec-
tion rates of the true mixture distribution model based on the conventional alpha-level of 
five percent. Meanwhile, the bootstrap test is used not only to determine the true number 
of latent classes in the context of mixture distribution models, but also to compare uni- 
and multidimensional models (Carstensen & Rost, 2003; Rost & Carstensen, 2002). Or in 
general as a global Rasch model test, irrespective of any alternative model comparisons, 
to test the null hypothesis that the observed data matrix has been generated under the 
Rasch model (Rizopoulos, 2008), that is, that the Rasch model can reproduce the ob-
served pattern frequencies. 
Quite recently, Tollenaar and Mooijart (2003) investigated Type I error rates and the 
power of different bootstrapped fit statistics with regard to first-order Markov models for 
categorical data. They concluded that bootstrapping the usual fit statistics leads to Type I 
error rates being larger than the stated alpha level and that the parametric bootstrap has 
low power in situations with small sample sizes. 
Despite its application as a global model test, it should nevertheless be noted that the 
original formulation of the bootstrap test refers to the hypothesis of population homoge-
neity (Langeheine, Pannekoek & van de Pol, 1996; von Davier, 1997). The null hypothe-
sis of both chi-square test statistics does, however, not directly refer to a hypothesis of 
population homogeneity but is, in fact, quite general. The Pearson χ2- as well as the 
CR(2/3)-statistic tests the null hypothesis that the frequency distribution of the observed 
response patterns is consistent with the theoretical distribution of the expected response 
patterns under an item response model, for example, the Rasch model or a mixed Rasch 
model assuming more than one class. In particular, the null hypothesis of a one-class 
solution states that the observed data have been generated under the Rasch model with 
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parameter values as the maximum likelihood estimates θ̂ . What is then obvious is that 
the theoretical distribution of the expected response patterns is not independent from all 
other model assumptions, for example, non-intersecting item response functions. Conse-
quently, the bootstrap model test cannot be regarded as a test of population homogeneity 
solely and it is thus reasonable to investigate its power with respect to the violation of 
non-intersecting item response functions. However, no study to date has investigated the 
performance of the bootstrap test with regard to model violations of non-intersecting 
IRFs. The purpose of this paper is therefore to investigate the performance of the boot-
strap test to detect this kind of model violation. 

Method 

Data simulations 

WinGen 2.5.4.414 (Han, 2007) was used to simulate 2700 data matrices according to a 
fully-crossed 3 × 3 × 3 design. The design included three levels of test length (10, 20 and 
30 items; see von Davier, 1997 for a similar test length condition), three levels of sample 
size (150, 500 and 2500) and three levels of intersecting IRFs, low, medium, and high 
degree. Thus, the two-parametric logistic model (Birnbaum, 1968) was used to simulate 
data with crossing IRFs. Following Suarez-Falcon and Glas (2003) for each discrimina-
tion parameter a log normal distribution with common mean, but different standard de-
viations was specified: LN(0, 0.12), LN(0, 0.25), and LN(0, 0.50), respectively. The 
person and item parameters have been drawn from a standard normal distribution. Note 
that although tests of ten to thirty items would be seen as short in the context of educa-
tional and psychological measurement, the experimental design followed that of von 
Davier (1997), who used similar scale lengths. The normality of the person parameters as 
well as parameter recovery was verified for a few randomly chosen data sets from differ-
ent simulation conditions by using the Shapiro-Wilk test as implemented in R and the R 
package “Latent trait models” (Rizopoulos, 2008), respectively. 
For the simulations with 500N =  and 2500N =  item parameters of the corresponding 
conditions of the data matrices with 150N =  were used to imitate replication studies of 
the same items in independent samples. Finally, for each of the resulting 27 conditions, 
100 replications were generated5. 

The bootstrap test was performed with the maximum possible number of 999 bootstrap 
replications in Winmira 2001 (von Davier, 2001) for each of the 2700 data files. 
 
 

                                                                                                                         
5 The simulation code for generating data sets with defined model violations and Rasch-fitting data used 
in this study can be obtained from the first author. 
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Results 

To compute the general detection rates of model violations and failure-to-reject rates the 
recommendations of von Davier (1997) were applied to accept the Rasch model if neither 
the Pearson 2χ  statistic nor the Cressie-Read 2χ  statistic rejects the model on the con-
ventional 5 per cent alpha level. Table 1 shows the overall detection rates of model misfit 
separated by sample size, test length, and degree of model violation. 

 
 

Table 1: 
Bootstrap Rasch model rejection rates for different sample sizes and different degrees of 

model violations 

Degree of model violation Item 
Number 

Sample 
Size weak moderate strong 
150 .07 .02 .12 
500 .09 .04 .48 

10 

2500 .17 .13 1 
150 .05 .05 .05 
500 .07 .05 .03 

20 

2500 .06 .07 .06 
150 .03 .07 0 
500 .06 .04 .02 

30 

2500 .08 .04 0 
Note. Rasch model rejection if p-value for Pearson-χ2 and Cressie-Read-χ2 < .05. 

 
The table shows that only under the condition of test length with 10 items did detection 
rates increase as the sample size increased, and therefore statistical power of the boot-
strap model test increased. Moreover, only under the condition of 10 items a relationship 
between degree of model violation and rejection rates in all sample size conditions can 
be observed. Nevertheless, except for the condition of sample size N = 2500, item num-
ber 10k = , and strong model violation, the rejection rates were alarmingly low. Recall 
that the number of possible response patterns under the more realistic condition with 20 
and 30 dichotomous items is 220 and 230, respectively, resulting in extremely sparse data. 
Consequently, even with a sample size of 2500, the sampling distribution of the Pearson 
χ2- and the CR(2/3)-statistic is not well approximated, yielding very low rejection rates. 

Of course, the presented analyses which were carried out solely with non-fitting data, 
teaches us nothing about the performance of the bootstrapped fit statistics with respect to 
model fit comparisons between data matrices generated by the Rasch model and those 
generated by the 2-PL model. The results presented above with their surprisingly low 
detection rates must arouse suspicion that the bootstrapped test statistics might also have 
low power to distinguish between 2-PL and Rasch-fitting data matrices. However, the 
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power rates under the various experimental conditions are still unknown and should be 
investigated. Consequently, additional data fitting the Rasch model were simulated under 
a fully crossed 3 × 3 design. In accordance with the previous simulation conditions, test 
length was varied (10, 20 and 30 items) as well as sample size (150, 500 and 2500). 
Person and item parameters were both drawn from a standard normal distribution. For the 
simulations with N = 500 and N = 2500, item parameters analogous to those of the data 
sets with N = 150 were used to imitate replications of the same items in independent 
samples. Finally, 100 replications per condition were used resulting in 900 data sets. 
Again, the bootstrap test was performed with 999 replications per data set and, following 
von Davier (1997), the model was accepted if neither the Pearson 2χ  nor the Cressie-
Read-statistic rejected the Rasch model at the five percent level. 

With the 2700 2-PL-generated data sets and the 900 Rasch-fitting data sets, Receiver 
Operator Characteristic (ROC) analyses were used to evaluate the bootstrap test in its 
ability to detect 2-PL data. Hence, for different sample size and test length conditions, 
the data-generating model (coded 1: Rasch model and 2: 2-PL model) served as the state 
variable and model fit as the test variable (coded 0: data rejected as Rasch-fitting; coded 
1: data accepted as Rasch-fitting). 
Under each experimental condition, the ROC analysis of the bootstrap test estimated 
H(c), the probability that a 2-PL data set will be rejected ( )0c = . Hence, ( )H c denotes 
the sensitivity – the probability that the bootstrap test correctly identifies a 2-PL model, 
that is, the “hit rate” using 0c =  as the critical value. Thus, ( )1 H c−  represents the 
“miss-rate”, that is, the probability that the bootstrap test incorrectly identifies a 2-PL-
fitting data set as Rasch-fitting. The ROC analysis also estimated ( )F c , the probability 
that a Rasch-fitting data set has a value equal to 0c =  which refers to the probability that 
a Rasch-fitting data set will be incorrectly identified as non-fitting, that is, the “false 
alarm” rate. Consequently, ( )1 F c−  is the specificity, that is, the probability that the 
bootstrap test correctly classifies a Rasch-generated data set as Rasch-fitting. 

Both ( )F c  and ( )H c  define a two-dimensional graph, with ( )F c  on the x-axis and 

( )H c  on the y-axis. The coordinate ( ) ( ){ }ˆ ˆ,F c H c  contains the estimates of the false 

alarm and the hit rate, conditional on the value of c. Therefore, the ROC curve is repre-
sented by a line connecting the set of coordinates over all possible values of c. Thus, a 
model test with high sensitivity and specificity would yield a ROC which would curve 
close to the upper-left corner of the graph, whereas a completely random guess would 
result in a diagonal line from the left bottom to the top right corner, the line of no-
discrimination. Therefore, the sensitivity and specificity are jointly represented by the 
area a under the ROC curve with { }0,1a∈ , whereby a perfect classification would be 
represented by an area of one, a completely random guess by an area of 0.5. 
Table 2 shows the resulting areas under the curve obtained for different experimental 
conditions. 
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Table 2: 
Receiver-operator analysis table (area under the curve) for various item- and sample-size-

conditions 

Sample Size Test Length 
150 500 2500 

10 .480 .582* .672** 
20 .470 .470 .502 
30 .497 .480 .455 

 
In general, and in accordance with the expectation following from the already low rejec-
tion rates with 2-PL data only, the bootstrap tests performed poorly and did not distin-
guish sufficiently between 2-PL- and Rasch-generated data. Under the conditions of 
short test length (10 items) and large sample sizes (500, 2500) only the null hypothesis 
(i.e., that the true area under the curve equals .50) had to be rejected. However, the re-
lated areas under the curve were far from being either statistically or practically satisfy-
ing. For all remaining conditions, the probability that the bootstrap test would distinguish 
between 2-PL model and Rasch model data was not significantly different from random 
guessing. 

Conclusion and discussion 

This simulation study indicates that there is much room for improvement within the 
bootstrap model test. As for 2-PL data only, failure-to-reject rates were extremely high in 
almost all of the cases leading to the conclusion that – except for short test lengths, 
strong model violations, and large sample size – the bootstrap test performs even worse 
than pure chance. This implies that for the specified conditions, the bootstrap test leads to 
over-optimistic decisions about the fit of the data to the dichotomous Rasch model. 
Consequently, the ROC analyses revealed that the bootstrap test performed very poorly 
in distinguishing between 2-PL and Rasch-fitting data matrices. Although the bootstrap 
test distinguished between those models statistically significant under the condition of 
ten items and sample sizes of N =500 and N = 2500, the related areas under the curve 
indicated a very low discrimination power to distinguish between both models. 
It appears that the bootstrap test suffers from a severe statistical power problem, thereby 
failing too frequently to reject a non-fitting model. A possible explanation for the bad 
performance given in this paper is an inappropriate choice of the statistic. Theoretically a 
statistic referring to all possible response patterns must have power against model viola-
tions as simulated in this study. Practically the great number of possible response pat-
terns obtained already for a small number of items has the effect that the expected fre-
quencies of the response patterns are generally very low and thus barely distinguishable 
between the tested model and the alternative, even for the strongest model deviations 
considered here. Consequently the power of the test must be low. Only for very small 
item numbers (for instance 10 as in this study) and large sample sizes the performance 
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gets better so that power rates reach practically acceptable values. Thus, the bootstrap 
test in its present form seems to have limited use in detecting violations of the central 
requirement of non-intersecting IRFs and it is therefore difficult to call it a test of the 
Rasch model. One might argue that the bootstrap test was originally suggested to com-
pare models with increasing number of latent classes and not to test the central assump-
tion of the Rasch model of non-intersecting IRFs. But note that the hypothesis of both χ2-
statistics about the reproducibility of the observed response patterns under a certain 
model is a general hypothesis about the differences between observed and expected 
response pattern frequencies and is therefore by no means restricted to conditions where 
only the true number of latent classes is crucial. As mentioned in the introduction, this is 
exactly the reason why the bootstrap test is used in the context of comparing the data-
model-fit of uni- and multidimensional Rasch models (Carstensen & Rost, 2003; Rost & 
Carstensen, 2002) or the data-model-fit without any reference to alternative models (Ri-
zopoulos, 2008). Given the results of this study one can therefore raise doubts whether 
the bootstrap model test is – in its present form – really a test of the Rasch model. When 
used as a global model test we strongly recommend at least complementing the bootstrap 
test procedure by using the likelihood ratio test by Andersen (1973) as well as using 
powerful tests of item fit as suggested by Ponocny (2001), both implemented in the R 
package “Extended Rasch modeling” (Mair & Hatzinger, 2007).  
Finally, some limitations of this study must be noted and suggestions for additional fu-
ture research are given. In particular, this study focused on various degrees of slope 
variation for different test length and sample sizes, but did not evaluate effects of multi-
dimensionality or violations of the local stochastic independence assumption. It is known 
that such model violations can cause crossing IRFs (Hoskens & De-Boeck, 1997; Mas-
ters, 1988; Tuerlinckx & De Boeck, 2001a, 2001b; Yen, 1993) but are too often ignored 
in the application of the two-parametric logistic model (Andrich, 2004; Lumsden, 1978). 
Therefore, future research should evaluate the performance of the bootstrap test under 
these conditions because it cannot be concluded from the present results that the boot-
strap test is insensitive to intersecting IRFs due to such measurement disturbances. 
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