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Abstract The utility of Orlando and Thissen’s (2000,
2003) S-X fit index was extended to the model-fit analysis
of the graded response model (GRM). The performance of
a modified S-X? in assessing item-fit of the GRM was
investigated in light of empirical Type I error rates and
power with a simulation study having various conditions
typically encountered in applied testing situations. The
results show that the Type I error rates were controlled
adequately around the nominal alpha by S-X?. The power
of the S-X? statistic was much lower when the source of
misfit was multidimensionality than when it was due to
discrepancy from the true GRM curves. Once the data size
increased sufficiently, however, appropriate power was
obtained regardless of the source of the item-misfit. In
summary, the generalized S-X? appears to be a promising
index for investigating item fit for polytomous items in
educational and psychological assessments.

Keywords Item response theory - Item fit - S-X? -
Graded response model

Introduction

Item response theory (IRT) employs a family of mathe-

matical models designed to describe the performance of
examinees on test items. Satisfactory model-data fit is
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critical if the benefits of IRT applications such as test
development, item banking, differential item functioning
(DIF), computerized adaptive testing (CAT), and test
equating are to be attained. Although there is now exten-
sive research literature on IRT, relatively less research has
been done to help practitioners evaluate the model-item fit
for polytomous item response data.

The S-X? item-fit statistic was originally proposed for
dichotomous IRT models and was found to perform better
than the traditional item-fit statistics such as Yen’s (1981)
Q; and McKinley and Mills (1985) G>. Recently, Kang and
Chen (2008) successfully generalized the use of S-X? to
polytomous IRT models such as the generalized partial
credit model (GPCM; Muraki 1992), the partial credit
model (PCM; Masters 1982), and the rating scale model
(RSM; Andrich 1978). According to the categorization of
IRT models proposed by Thissen and Steinberg (1986),
these models are the “divide-by-total” models, while the
GRM belongs to the “difference models” category.

For the GRM (Samejima 1969), Stone and Hansen
(2000) found that an item-fit test using the Pearson Xz
statistics or a log-likelihood ratio index, G2, suffered from
inflated Type I error rates. Also DeMars’ (2005) simulation
studies used PARSCALE’s (Muraki and Bock 1997) item
fit index and discovered inflated empirical Type I error
rates on a 10 polytomous item test under the GRM. In both
aforementioned studies, the empirical power of the item-fit
indices was not investigated.

As polytomously scored items have become increas-
ingly popular for many psychological and educational
testing programs, it is necessary to develop an item-fit
index for polytomous items that adequately controls Type I
error rates and shows appropriate power in detecting misfit
items. This includes “difference models” such as the
GRM. To answer this call, the current study investigated
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the performance of the S-X* item-fit statistic (Orlando and
Thissen 2000, 2003) under the GRM. Specifically, this
paper begins with reviewing the generalized S-X* proce-
dure for polytomous items. Then, the design for the sim-
ulation study investigating the performance of the
generalized S-X? under the GRM in terms of empirical
Type I error rates and power is discussed. Third, the results
of the simulation are explained and summarized. Finally,
the overall effectiveness of the S-X? statistic is addressed,
and future research is suggested.

The generalized S-X> for polytomous items

As a modified item-fit index of Orlando and Thissen’s
(2000, 2003) S-X? that is only for dichotomous items, the
generalized S-X? for polytomous items can be expressed as
follows:

(F-Z) z 2
: Oi —E; 4
s-x2=3") N Qi — Eic)” (1)

k=Z; 7z=0 Ei

where Z; is the highest score of a polytomous item i, z
indicates each category score, and F' is a perfect test score
(e., F= Zle Z;) when the total number of items in a test
is I. k represents a homogeneous group of examinees, Ny is
the number of examines in group k, and Oy, and E;, are,
respectively, the observed and predicted proportions of the
z category response in item i for group k.

The expected category proportions, E;., in Eq. 1, can be
computed using the following formula
Ey = J Pi(z|0)f* (k — 2|0)(0)30

" J1KO)p(0)20
where P(zl0) is the calculated probability that a person
with 0 gets an item score z on item i under the GRM, f(+|0)
is the conditional predicted test score distribution given 0,
£*(-|0) represents the conditional predicted test score dis-
tribution without item i, and ¢(0) is the population distri-
bution of 0. To compute £(-|0) and f*(-|0) used in Eq. 2,
the generalized recursive algorithm developed by Thissen
et al. (1995) is used.

As shown in Eq. 1, the summation for k is from the
highest score of item i, Z;, through F—Z; which is the
difference between the perfect test score and the highest
item i score. This is because for some groups with extre-
mely low or high test scores, the expected proportions of
examinees (E;,) for some score categories are always zero.
For example, suppose an achievement test has 10 polyt-
omous items with each item having five categories (z = 0,
1,2, 3, and 4). The possible test scores range between 0 and
40. Obviously, for the group of k = 3, the Ej;4 will be
always zero because the item score cannot be four when the

(2)
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total test score is three. Similarly, for the group of k = 37,
the E;o will be always zero. Therefore, valid groups for
computing S-X? in this example include those having
k =4 (Z;) to k = 36 (F—Z;). The respondents in the groups
with extremely low (i.e., k = 0, 1, 2, and 3) and high (i.e.,
k = 37, 38, 39, and 40) test scores are collapsed with the
k = 4 and k = 36 groups, respectively.

When respondents belong to low (high) test score
groups, they tend not to have high (low) item scores for a
specific polytomous item. Consequently, it happens often
that E;, becomes very small in some groups. To ensure a
minimum expected cell frequency of 1, adjacent cells
of item score categories for a given group k are to be
collapsed. With this collapsing algorithm, the df of the
modified S-X* in Eq. 1 is computed as (F —2Z; + 1) x
Z; — m — C; where m is the number of item parameters and
C; indicates the total number of item score category cells
being collapsed.

Method

Type I error rate study: design of simulation study and
data generation

To assess the performance of the generalized S-X? index
under the GRM, a simulation study varying in test lengths,
sample sizes, number of categories per item, and abil-
ity distributions was conducted. The simulation study
employed three test lengths (I = 5, 10, and 20 items), three
sample sizes (N = 500, 1,000, and 2,000 examinees), two
numbers of categories (nc =3 and 5), and two ability
distributions (normal and uniform). The three test lengths
mimicked educational or psychological testing programs
having various numbers of polytomously scored items, and
the three sample sizes represented small, moderate, and
large samples. The different numbers of item score cate-
gories were considered to be practical in real world set-
tings. Finally, the employment of a non-normal ability
distribution was based upon Micceri’s (1989) findings that
it is not rare for trait or ability distributions to be non-
normal. In sum, there were a total of 36 different conditions
simulated in this Type I error rate study (3 test lengths x 3
sample sizes x 2 numbers of item score categories x 2
ability distributions). One hundred replications were gen-
erated for each condition, and each condition mimicked
100 different I-item tests from the same item pool admin-
istered to 100 equivalent groups of n examinees.

For the empirical Type I error rate study, the item
parameters used for simulating response data under the
GRM were obtained as follows. The discrimination param-
eters («;) were randomly sampled from a Lognormal (0, 0.5%)
distribution. For each item, the threshold parameters (i.e., fi1,
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«vv» Bre—1) were randomly drawn from uniform distributions.
For the conditions with nc = 3, the first threshold parameter
(py) for each item was drawn from a uniform distribution,
U(—2,1), and the parameters for a successive category (f3,)
were obtained by adding a random value from U(.4,1) to f5;.
A similar item parameter generating approaches were
applied for the conditions with nc = 5: U(—2,0) was used
for generating f;, and three random values from U(.4,.7)
were added cumulatively to obtain f3,, i3, and 4. The values
for the 0 parameter were randomly drawn from the standard
normal distribution, N(0,1) or U(—3,3). Under each condi-
tion, the simulated Type I error rates were obtained by
dividing the number of wrongly flagged items by
100 x number of simulated items in each data set.

Power study: design of simulation study and data
generation

For an empirical power study of IRT model-item fit, it is
necessary to generate atypical (i.e., bad or misfitting) items
deviating from the expectations of the logistic model under
investigation. According to Stone (2000) and Lee et al.
(2002), two main causes of lack of fit between observed data
and model predictions are (1) violations to the model
assumptions (e.g., unidimensionality) and (2) inadequacies in

Fig. 1 Item response surface
and item characteristic curves of

an illustrative M-type (a) *

polytomous item (z = 0, 1, 2, 3,
and 4)

Item Score

estimation procedures (i.e., a huge discrepancy between the
expected item characteristic curves and empirical curves as a
result of small sample size, random error, or true non-logistic
function). Following these research findings, this power study
considered two types of bad items: One was M-type misfit due
to multidimensionality, and the other was D-type misfit due to
a curve discrepancy. To generate these two different types of
misfit items, a two-dimensional GRM (for M-type) and a
Guttman step function (for D-type) were utilized.

When an item in a test measures a totally different
construct (6,) from that (0,) measured by all the other
items [i.e., p(0;, 0,) = 0], this item is considered as a
problematic item under the IRT assumption of unidimen-
sionality. This M-type misfit can be explained with Fig. 1.
As shown in Fig. la and c, the illustrative M-type polyt-
omous item (z = 0, 1, 2, 3, and 4) is very useful in mea-
suring 0,. But, when the other items in the same test mainly
measure 0}, the item would appear to be not-discriminating
under the unidimensional calibration model as shown in
Fig. 1b. Consequently, it is anticipated that the data points
could be explained with zero discrimination parameter or
could not be explained effectively under the application of
a unidimensional IRT model.

To generate a dataset including a single M-type misfit
item and GRM-fitting items, the two-dimensional GRM

Item Response Surface

4 4 ¢
(b) (c)
- -- - s
35 2 35t
- - " e an
.
3 . - . e 3|
a ® m o 25
9 25 - . = = q‘_; .
o . & Q
o . o
@ : d ol ] l- w :
E e . £
g 15 = . = g 15 |
- - . 1
1
2 - . . -
5 i - . i . . = Expected Curve
= Observed Data
.
- . il @ .

2 - 0 1

2

Marginal Item Characteristic Curve

under 91

Marginal Item Characteristic Curve
under 6,

@ Springer



92

T. Kang, T. T. Chen

was used, and the related boundary characteristic curve is
given by:
. exple 0 + 0l + 0y
i 1+ exp[zxil le + Otizejz + 5)“'].

(3)

P}, denotes the boundary probability for examinee j to
have a category score larger than x on item i. The log-
normal (0, 0.52) distribution was used to obtain the gen-
erating discrimination parameters: ¢;; for GRM-fitting item
and o;, for M-type misfit item. To ensure that each item
measures only one construct, «;; of the M-type misfit item
measuring 0, was always zero. Likewise o;, of the GRM-
fitting item measuring 0, was always zero. For either the
GRM-fitting or M-type misfit item, the procedures for
generating f1, f», f3, and B4 were the same process as
those for the Type I error rate study. Then, the J,; values
for M-type and GRM-fitting items are given by —o,,f3,; and
—o;1 P> Tespectively.

To generate a D-type misfit item, the boundary charac-
teristic curves resembling the two-step Guttman functions
as shown in Fig. 2 were used. The step functions had clear
discrepancies from the GRM logistic curves. The item
parameters for the boundary characteristic curves under the
GRM were o = 2, f; = =2.1, f = —0.7, f; = 0.7, and
f1 = 2.1. In contrast to the generating procedure for the M-
type misfit and GRM-fitting item data that used random
selected values for generating item parameters, the gener-
ating procedure for the D-type misfit item data employed a
fixed two-step Guttman functions in Fig. 2. (i.e., the dis-
tance between two adjacent Guttman curves was 1.4, and
the middle points of the curves were fixed as —2.1, —0.7,
0.7, and 2.1, respectively).

For the power study, the main consideration was given to
the effects of different types of misfit, sample size, and test
length upon the empirical power of S-X2 The number of
item score categories was always 5. The standard normal
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Fig. 2 Two-step Guttman functions of an illustrative D-type polyt-
omous item (z = 0, 1, 2, 3, and 4) and the corresponding boundary
characteristic curves of the GRM
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distribution was used to generate abilities. Hence, the
empirical power was examined under 18 simulated condi-
tions (3 test lengths of 5, 10, and 20 x 3 sample sizes of 500,
1,000, and 2,000 x 2 types of misfit items). One hundred
replications were generated for each condition. Each repli-
cation included a data set composed of /-1 items (/ = 5, 10,
or 20) simulated with the GRM functions and a single M- or
D- type item. For each condition, the empirical power of the
generalized S-X? index was computed using the number of
times that the misfit items were correctly flagged.

Results

For the current study, the item parameters were estimated by
the computer program MULTILOG 7.03 (Thissen 2003)
using each simulated dataset. To calibrate the GRM
parameters, the program defaults except N cycles = 3,000
were used. Most calibrations converged quickly, but some-
times over 1,000 EM cycles were required for the successful
convergence.

Type I error rates

The proportions of items wrongly flagged for misfit are
shown in Table 1 for each condition. The nominal alpha of
0.05 was used for the hypothesis tests in this paper. In the 5,
10, and 20 item test length conditions, the proportions were
calculated based on the total of 500, 1,000, and 2,000 items,
respectively (# items per dataset x 100 replications).

For the conditions with the generating distribution of
N(0,1), the simulated Type I error rates tended to be closer
to 0.05 than those of the conditions with U(—3,3) in most
cases. In the N(0,1) conditions, the Type I error rates ranged
from 0.030 to 0.078 except the condition with 20 item test,
small sample size (500 examinees), and 5 item score cate-
gories. In a few cases of the conditions with U(—3,3), rel-
atively large inflations of Type I error rates were observed,
such as 0.120 and 0.225 when the sample size was 500.

The false rejection rates seemed to be influenced by the
ratio of sample size to the number of test score groups.
When there are 20 items with 5 categories in a test, the
total number of groups is 73 (from Z; = 4 to F—Z; = 76).
In these cases, the empirical Type I error rates were
improved from 0.203 to 0.058 as the sample size increased
from 500 to 2,000 in the N(0,1) conditions. The same
improvement was found in the U(—3,3) conditions, where
the simulated Type I error rates changed from 0.225 to
0.056. In other words, for the generalized S-X2 to work
properly, more data were required as the number of
homogeneous test score groups increased.

To account for sampling error in obtaining the empirical
Type I error rates under each simulation condition given a
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Table 1 Type .l error raFes: Test length Sample # Category In conditions In conditions
proportions of indices with size with N(0,1) with U(-3,3)
empirical p-values less than _ ; ;
0.05 5 500 3 0.046 0.068
5 0.046 0.080*
1,000 3 0.040 0.036
5 0.056 0.064
2,000 3 0.030* 0.054
5 0.064* 0.058
10 500 3 0.054 0.073*
5 0.060 0.120*
1,000 3 0.044 0.040
5 0.042 0.060
2,000 3 0.046 0.042
5 0.053 0.048
20 500 3 0.071%* 0.099*
5 0.203* 0.225%
*Indicates the empirical Type I 1,000 3 0.052 0.052
error rate is out of 95% 5 0.078* 0.092%
CI=0.05+ 2,000 3 0.061* 0.062*
1.96,/(0.05 x 0.95)/100 x I 5 0.058 0.056

where I = test length

nominal alpha of 0.05, 95% confidence intervals were
computed using CI = 0.05 & 1.96,/(0.05 x 0.95)/(R x I)
where R is the number of replication for each condition [ is
the test length (Stone and Hansen 2000; Zhang and Stone
2008). For the test length of 5, 10, and 20 and R = 100, the
intervals were (0,031, 0.069) (0.036, 0.064), and (0.040,
0.060), respectively. Six conditions under the N(0,1) and
seven conditions under the U(—3,3), appeared to have
empirical Type I error rates falling out of the CIs. Because
the extent of the Type I error rate inflation was usually
small for those conditions, however, S-X? seemed to ade-
quately control the Type I error rates in most cases.

Empirical power

Because each data set included only one misfit item in
power study, the empirical power was calculated as the
number of correctly flagged items divided by 100 in each
condition. Table 2 summarizes the empirical power of the
generalized S-X? in detecting M- or D-type misfit items.
The false alarm rate (FAR) which indicates the proportions
of the GRM-fitting items being wrongly flagged as misfit is
reported in Table 2. FAR is a very similar concept to the
empirical Type I error rate, but may be affected by true
misfit items in the parameter estimation process.

As shown in Table 2, the empirical power for detecting
the M-type misfit item ranged from 0.050 to 0.130. The
FAR appeared to be between 0.038 and 0.079, which was
similar to that of the Type I error rate study. Table 3 shows
the average item parameter estimates and their standard
deviations for the datasets including M-type misfit items.

As discussed earlier in this paper, the estimated, the esti-
mated discrimination parameters of M-type misfit items
were close to zero. The average estimates were between
0.10 and 0.13 while the average discrimination parameter
estimates of the GRM fitting items were between 1.09 and

Table 2 Empirical power rates: proportions of indices with empirical
p-values less than 0.05

Misfit type  Test length ~ Sample size ~ Empirical power (FAR)
M 5 500 0.050 (0.043)
1,000 0.120 (0.038)
2,000 0.100 (0.048)
10 500 0.120 (0.054)
1,000 0.110 (0.053)
2,000 0.120 (0.042)
20 500
1,000 0.080 (0.079)
2,000 0.130 (0.057)
D 5 500 0.110 (0.038)
1,000 0.180 (0.048)
2,000 0.410 (0.078)
10 500 0.280 (0.059)
1,000 0.320 (0.051)
2,000 0.640 (0.072)
20 500
1,000 0.830 (0.085)
2,000 0.970 (0.057)

For conditions where the empirical Type I error rates were consid-
erably inflated, the empirical power was not reported
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1.28. Because an M-type item measured a very different
construct from that measured by the other items in the
same test, the threshold parameters were not able to be
estimated accurately. This fact was reflected very well
through the relatively much larger standard deviations of
the M-type items’ threshold parameters than those of the
GRM-fitting items. Accordingly, it was expected that the
M-type items should be easily detected as misfitting.
However, the power of the generalized S-X? in finding the
M-type misfit items was very small as shown in the results
of this power study.

In detecting the D-type misfit items, as shown in
Table 2, the power of the generalized S-X> appeared to
increase as the sample size increased or as the test length
became longer. For example, when the test length was 20,
the empirical power of the item-fit statistics increased from
0.830 to 0.970 as the sample size increased from 1,000 to
2,000. Also when the sample size was 2,000, the empirical
power estimates were 0.410, 0.650, and 0.970 for the test
lengths of 5, 10, and 20, respectively.

Table 4 shows the average item parameter estimates and
their standard deviations for the datasets including the D-
type misfit items. In all conditions, the average threshold
parameter estimates of the D-type misfit items were close
to —2.1, —0.7, 0.7, and 2.1, which were the threshold
parameters of the corresponding GRM curves in Fig. 2.
The estimated discrimination parameters (d,;) appeared a
little larger (from 2.49 to 2.78) than the discrimination
parameter (2.00) of the corresponding GRM curves in
Fig. 2.

Discussion and conclusion

As more high-stake assessments adopt polytomous items
analyzed by IRT, the need for polytomous IRT fit indices
increases. As mentioned earlier, the success of IRT appli-
cations requires satisfactory fit between the model and the
data. Also one of the most important features of IRT,
parameter invariance, may not hold when the model is
incorrect (Andersen 1973; Shepard et al. 1984). In answer to
the call for an appropriate item fit index under polytomous
IRT, the results of the current study provide a rationale for
the application of the generalized S-X? as an item fit index
under the GRM for researchers and practitioners.

The results of the Type I error rates study showed that
the Type I error rates of the generalized S-X* adequately
controlled around the nominal level, 0.05, in most condi-
tions. In the conditions with the 20 items having 5 cate-
gories and small sample size (500 examinees), somewhat
severe inflations of the Type I error rates were found. These
results are consistent to those reported in Kang and Chen
(2008). Also, as Kang and Chen mentioned, this can be
explained by the sparseness problem in expected frequen-
cies. The expected cell frequencies will be easily sparse
when there is a small group of examinees given that there
are many test score groups. Because more sparseness
causes more collapsing, the df of the item-fit statistic would
consequently be smaller. Then, it would be much easier to
reject the null hypothesis of model-fit.

The power of the S-X? item-fit statistic was much lower
when the source of misfit was M-type compared to D-type.

Table 3 Average item parameter estimates (SD) of the datasets including the M-type misfit items

Test length Sample size Item (#) a B Po ]33 [L
5 500 M-type (100) 0.12 (0.04) —7.47 (6.25) —3.06 (5.22) 1.16 (5.17) 5.47 (5.81)
GRM-fitting (400) 1.28 (2.45) —0.98 (0.67) —0.43 (0.64) 0.13 (0.63) 0.70 (0.63)
1,000 M-type (100) 0.12 (0.03) —17.19 (4.57) —3.18 (4.53) 0.69 (4.98) 4.78 (5.91)
GRM-fitting (400) 1.21 (1.16) ~1.05 (0.61) 050 (0.61)  0.05 (0.60)  0.61 (0.61)
2,000 M-type (100) 0.13 (0.03) ~6.36 (3.61) ~2.56 (3.56) 123 4.58)  5.08 (6.16)
GRM-fitting (400) 1.09 (0.53) —0.98 (0.62) —0.42 (0.62) 0.12 (0.63) 0.67 (0.65)
10 500 M-type (100) 0.12 (0.03) —7.11 (4.69) —2.89 (4.65) 1.57 (5.05) 5.81 (6.09)
GRM-fitting (900) 1.16 (0.66) —1.03 (0.62) —0.48 (0.62) 0.09 (0.63) 0.65 (0.65)
1,000 M-type (100) 0.12 (0.04) —17.72 (4.54) —3.44 (4.79) 0.58 (5.58) 4.72 (6.90)
GRM-fitting (900) 1.15 (0.61) ~1.00 (0.59) 044 (0.58)  0.11 (0.59)  0.66 (0.59)
2,000 M-type (100) 0.13 (0.04) —6.63 (3.48) —291(338)  0.89 (4.12)  4.83 (5.51)
GRM-fitting (900) 1.14 (0.61) ~1.00 (0.61) —044 (0.61)  0.12(0.62)  0.67 (0.62)
20 500 M-type (100) 0.10 (0.03) —8.08 (5.34) —3.38 (4.83) 1.25 (5.24) 5.83 (6.21)
GRM-fitting (1,900) 1.12 (0.60) —1.05 (0.64) —049 (0.63)  0.08 (0.63)  0.64 (0.64)
1,000 M-type (100) 0.11 (0.02) —17.80 (4.96) —3.28 (5.04) 1.22 (5.62) 5.61 (6.86)
GRM-fitting (1,900) 1.13 (0.61) —1.00 (0.60) —0.45 (0.60) 0.11 (0.61) 0.66 (0.63)
2,000 M-type (100) 0.12 (0.04) —6.60 (3.47) —2.57 (4.33) 1.48 (6.11) 5.58 (8.04)
GRM-fitting (1,900) 1.13 (0.62) —0.99 (0.59) —0.44 (0.59) 0.11 (0.60) 0.67 (0.61)
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Table 4 Average item parameter estimates (SD) of the datasets including the D-type misfit items
Test Sample Item (#) a ﬁl ffz [33 [34
length size
5 500 D-type (100) 2.78 —2.12 —0.66 0.66 2.11
GRM-fitting (400) 1.06 (0.60) —1.10 (0.68) —0.53 (0.63) 0.06 (0.64) 0.65 (0.69)
1,000 D-type (100) 2.71 —2.11 —0.65 0.66 2.11
GRM-fitting (400) 1.13 (0.70) —1.04 (0.62) —0.47 (0.60) 0.08 (0.60) 0.64 (0.61)
2,000 D-type (100) 2.66 —2.11 —0.66 0.66 2.10
GRM-fitting (400) 1.16 (0.64) —1.05 (0.58) —0.50 (0.58) 0.06 (0.58) 0.61 (0.59)
10 500 D-type (100) 2.57 —2.15 —0.67 0.67 2.14
GRM-fitting (900) 1.12 (0.60) —1.03 (0.65) —0.46 (0.64) 0.10 (0.64) 0.67 (0.66)
1,000 D-type (100) 2.61 —-2.12 —0.66 0.67 2.12
GRM-fitting (900) 1.12 (0.63) —1.02 (0.59) —0.47 (0.59) 0.09 (0.60) 0.65 (0.61)
2,000 D-type (100) 2.60 —2.11 —0.65 0.66 2.12
GRM-fitting (900) 1.12 (0.62) —1.02 (0.58) —0.46 (0.59) 0.09 (0.59) 0.64 (0.60)
20 500 D-type (100) 2.49 —2.18 —0.69 0.69 2.17
GRM-fitting (1,900) 1.10 (0.59) —1.02 (0.64) —0.45 (0.63) 0.13 (0.64) 0.70 (0.65)
1,000 D-type (100) 2.58 —2.11 —0.65 0.67 2.13
GRM-fitting (1,900) 1.12 (0.60) —1.00 (0.61) —0.44 (0.61) 0.12 (0.62) 0.67 (0.63)
2,000 D-type (100) 2.58 —2.10 —0.66 0.68 2.11
GRM-fitting (1,900) 1.14 (0.61) —1.00 (0.58) —0.45 (0.58) 0.10 (0.59) 0.65 (0.59)

The small SD values of D-type items ranging between 0.04 and 0.20 due to the fixed data generating functions were not reported

Even though the M-type items appeared to cause the poor
threshold parameter estimation, S-X2 seemed insensitive to
detect this type of misfit even with a large sample size of
2,000. Because previous studies (e.g., Orlando and Thissen
2003; Zhang and Stone 2008) reporting satisfactory
empirical powers of S-X statistics did not consider M-type
but only D-type misfit items, the results here provide
noteworthy information for future studies.

For the M-type misfit items, it was true that the empir-
ical power was too low to suggest the S-X? statistic as a
tool for evaluating item fit under all the conditions con-
sidered in this study. Also for the D-type misfit items, it
appeared that appropriate power could be only obtained for
conditions with a 20-item test and a sample size of at least
1,000. Because it is noted that the statistical power is a
function of sample size, it can be expected that more power
could be observed for larger sample size. Under this con-
sideration, a further study was conducted to investigate
appropriate sample sizes that would produce satisfactory
power (e.g., 0.7 or higher). This additional power study
employed much larger sample sizes of 5,000, 10,000, and
20,000 for detecting the M- or D-type misfit items under
the conditions with a test length of 5, 10, or 20 items each
having 5 categories. The number of these additional con-
ditions was 18 (= 3 test lengths x 3 new sample sizes x 2
types of misfit items). Each data set included a single misfit
item, and 100 replicated data sets for each new condition
were generated and calibrated in the same process as
described earlier. The results are summarized in Table 5.

As shown in Table 5, regardless of test length, it
appeared that at least 20,000 examinees were required to
obtain acceptable power in detecting misfit items due to
multidimensionality. However, for a short test with five
items, inflated FARs, 0.078 and 0.115, were found for the
conditions with 10,000 and 20,000 examinees, respec-
tively. For the D-type misfit items, the sample sizes of
5,000 or more appeared to be enough for producing satis-
factory power. But, similar to the cases of M-type items,
for a short test with five items, inflated FARs, 0.130 and
0.185, were found for the conditions with 10,000 and
20,000 examinees, respectively. These results indicate that
the use of very large sample sizes should be considered
more cautiously when the test length is short (five items)
regardless of the source of item misfit.

In conclusion, under the GRM, the generalized S-X?
adequately controlled the Type I error rates in most con-
ditions and was able to yield satisfactory power in detect-
ing the M- or D-type misfit items with large sample sizes.
Therefore, the generalized S-X? item-fit statistics appeared
to be a promising index for investigating item-fit in edu-
cational and psychological assessments having polytomous
items.

To gain a better understanding of this promising item-fit
index, however, additional studies need to be conducted.
First, because this study examined only one kind of misfit
item under each test data set, additional misfit items in a
test need to be further considered to better understand the
performance of the generalized S-X? in detecting misfit
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Table 5 Empirical power rates of an additional power study with
very large sample sizes: proportions of indices with empirical p-
values less than 0.05

Misfit type  Test length ~ Sample size ~ Empirical power (FAR)
M 5 5,000 0.290 (0.048)
10,000 0.470 (0.078)
20,000 0.730 (0.115)
10 5,000 0.170 (0.043)
10,000 0.490 (0.056)
20,000 0.740 (0.059)
20 5,000 0.280 (0.053)
10,000 0.460 (0.050)
20,000 0.740 (0.046)
D 5 5,000 0.790 (0.060)
10,000 0.950 (0.130)
20,000 0.990 (0.185)
10 5,000 1.000 (0.061)
10,000 1.000 (0.064)
20,000 1.000 (0.046)
20 5,000 1.000 (0.054)
10,000 1.000 (0.056)
20,000 1.000 (0.055)

items. Also more potential sources of misfittng items (e.g.,
different levels of correlation between 0, and 0,, differ-
ential item functioning, poorly estimated item parameters,
etc.) need to be further studied. Second, different from the
study of Kang and Chen (2008) where all the items on a
test were misfit in conducting the power study, the current
power study included only a single misfit item into each
test. To make this approach more informative and mean-
ingful, however, more different percentages or number of
misfit items on a test needs to be further considered. Third,
the performance of the generalized S-X* needs to be
investigated under conditions where the ability distribution
is other than normal and uniform. For example, under
skewed distributions, it would be expected that S-X? per-
forms poorly due to low cell frequencies in some parts of
the distribution. Fourth, the Guttman step functions were
used in this study to simulate the D-type misfit items. If
empirical item response functions which are not consistent
with the underlying model could be considered, it would
make this type of study deal with more realistic misfit
items. Finally, the test lengths considered in this study were
5, 10, and 20 items. Because it is not uncommon that a
psychological scale includes more than 20 polytomous
items, it will be also interesting to extend the current study
into considering longer test lengths.
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