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Abstract The utility of Orlando and Thissen’s (2000,

2003) S-X2 fit index was extended to the model-fit analysis

of the graded response model (GRM). The performance of

a modified S-X2 in assessing item-fit of the GRM was

investigated in light of empirical Type I error rates and

power with a simulation study having various conditions

typically encountered in applied testing situations. The

results show that the Type I error rates were controlled

adequately around the nominal alpha by S-X2. The power

of the S-X2 statistic was much lower when the source of

misfit was multidimensionality than when it was due to

discrepancy from the true GRM curves. Once the data size

increased sufficiently, however, appropriate power was

obtained regardless of the source of the item-misfit. In

summary, the generalized S-X2 appears to be a promising

index for investigating item fit for polytomous items in

educational and psychological assessments.

Keywords Item response theory � Item fit � S-X2 �
Graded response model

Introduction

Item response theory (IRT) employs a family of mathe-

matical models designed to describe the performance of

examinees on test items. Satisfactory model-data fit is

critical if the benefits of IRT applications such as test

development, item banking, differential item functioning

(DIF), computerized adaptive testing (CAT), and test

equating are to be attained. Although there is now exten-

sive research literature on IRT, relatively less research has

been done to help practitioners evaluate the model-item fit

for polytomous item response data.

The S-X2 item-fit statistic was originally proposed for

dichotomous IRT models and was found to perform better

than the traditional item-fit statistics such as Yen’s (1981)

Q1 and McKinley and Mills (1985) G2. Recently, Kang and

Chen (2008) successfully generalized the use of S-X2 to

polytomous IRT models such as the generalized partial

credit model (GPCM; Muraki 1992), the partial credit

model (PCM; Masters 1982), and the rating scale model

(RSM; Andrich 1978). According to the categorization of

IRT models proposed by Thissen and Steinberg (1986),

these models are the ‘‘divide-by-total’’ models, while the

GRM belongs to the ‘‘difference models’’ category.

For the GRM (Samejima 1969), Stone and Hansen

(2000) found that an item-fit test using the Pearson v2

statistics or a log-likelihood ratio index, G2, suffered from

inflated Type I error rates. Also DeMars’ (2005) simulation

studies used PARSCALE’s (Muraki and Bock 1997) item

fit index and discovered inflated empirical Type I error

rates on a 10 polytomous item test under the GRM. In both

aforementioned studies, the empirical power of the item-fit

indices was not investigated.

As polytomously scored items have become increas-

ingly popular for many psychological and educational

testing programs, it is necessary to develop an item-fit

index for polytomous items that adequately controls Type I

error rates and shows appropriate power in detecting misfit

items. This includes ‘‘difference models’’ such as the

GRM. To answer this call, the current study investigated
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the performance of the S-X2 item-fit statistic (Orlando and

Thissen 2000, 2003) under the GRM. Specifically, this

paper begins with reviewing the generalized S-X2 proce-

dure for polytomous items. Then, the design for the sim-

ulation study investigating the performance of the

generalized S-X2 under the GRM in terms of empirical

Type I error rates and power is discussed. Third, the results

of the simulation are explained and summarized. Finally,

the overall effectiveness of the S-X2 statistic is addressed,

and future research is suggested.

The generalized S-X2 for polytomous items

As a modified item-fit index of Orlando and Thissen’s

(2000, 2003) S-X2 that is only for dichotomous items, the

generalized S-X2 for polytomous items can be expressed as

follows:

S� X2 ¼
XðF�ZiÞ

k¼Zi

XZi

z¼0

Nk
ðOikz � EikzÞ2

Eikz
; ð1Þ

where Zi is the highest score of a polytomous item i, z

indicates each category score, and F is a perfect test score

(i.e., F ¼
PI

i¼1 Zi) when the total number of items in a test

is I. k represents a homogeneous group of examinees, Nk is

the number of examines in group k, and Oikz and Eikz are,

respectively, the observed and predicted proportions of the

z category response in item i for group k.

The expected category proportions, Eikz, in Eq. 1, can be

computed using the following formula

Eikz ¼
R

PiðzjhÞf �iðk � zjhÞuðhÞohR
f ðkjhÞuðhÞoh

; ð2Þ

where Pi(z|h) is the calculated probability that a person

with h gets an item score z on item i under the GRM, f ð�jhÞ
is the conditional predicted test score distribution given h,

f �ið�jhÞ represents the conditional predicted test score dis-

tribution without item i, and u(h) is the population distri-

bution of h. To compute f ð�jhÞ and f �ið�jhÞ used in Eq. 2,

the generalized recursive algorithm developed by Thissen

et al. (1995) is used.

As shown in Eq. 1, the summation for k is from the

highest score of item i, Zi, through F-Zi which is the

difference between the perfect test score and the highest

item i score. This is because for some groups with extre-

mely low or high test scores, the expected proportions of

examinees (Eikz) for some score categories are always zero.

For example, suppose an achievement test has 10 polyt-

omous items with each item having five categories (z = 0,

1, 2, 3, and 4). The possible test scores range between 0 and

40. Obviously, for the group of k = 3, the Eik4 will be

always zero because the item score cannot be four when the

total test score is three. Similarly, for the group of k = 37,

the Eik0 will be always zero. Therefore, valid groups for

computing S-X2 in this example include those having

k = 4 (Zi) to k = 36 (F-Zi). The respondents in the groups

with extremely low (i.e., k = 0, 1, 2, and 3) and high (i.e.,

k = 37, 38, 39, and 40) test scores are collapsed with the

k = 4 and k = 36 groups, respectively.

When respondents belong to low (high) test score

groups, they tend not to have high (low) item scores for a

specific polytomous item. Consequently, it happens often

that Eikz becomes very small in some groups. To ensure a

minimum expected cell frequency of 1, adjacent cells

of item score categories for a given group k are to be

collapsed. With this collapsing algorithm, the df of the

modified S-X2 in Eq. 1 is computed as ðF � 2Zi þ 1Þ �
Zi � m� Ci where m is the number of item parameters and

Ci indicates the total number of item score category cells

being collapsed.

Method

Type I error rate study: design of simulation study and

data generation

To assess the performance of the generalized S-X2 index

under the GRM, a simulation study varying in test lengths,

sample sizes, number of categories per item, and abil-

ity distributions was conducted. The simulation study

employed three test lengths (I = 5, 10, and 20 items), three

sample sizes (N = 500, 1,000, and 2,000 examinees), two

numbers of categories (nc = 3 and 5), and two ability

distributions (normal and uniform). The three test lengths

mimicked educational or psychological testing programs

having various numbers of polytomously scored items, and

the three sample sizes represented small, moderate, and

large samples. The different numbers of item score cate-

gories were considered to be practical in real world set-

tings. Finally, the employment of a non-normal ability

distribution was based upon Micceri’s (1989) findings that

it is not rare for trait or ability distributions to be non-

normal. In sum, there were a total of 36 different conditions

simulated in this Type I error rate study (3 test lengths 9 3

sample sizes 9 2 numbers of item score categories 9 2

ability distributions). One hundred replications were gen-

erated for each condition, and each condition mimicked

100 different I-item tests from the same item pool admin-

istered to 100 equivalent groups of n examinees.

For the empirical Type I error rate study, the item

parameters used for simulating response data under the

GRM were obtained as follows. The discrimination param-

eters (ai) were randomly sampled from a Lognormal (0, 0.52)

distribution. For each item, the threshold parameters (i.e., b1,
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…, bnc-1) were randomly drawn from uniform distributions.

For the conditions with nc = 3, the first threshold parameter

(b1) for each item was drawn from a uniform distribution,

U(-2,1), and the parameters for a successive category (b2)

were obtained by adding a random value from U(.4,1) to b1.

A similar item parameter generating approaches were

applied for the conditions with nc = 5: U(-2,0) was used

for generating b1, and three random values from U(.4,.7)

were added cumulatively to obtain b2, b3, and b4. The values

for the h parameter were randomly drawn from the standard

normal distribution, N(0,1) or U(-3,3). Under each condi-

tion, the simulated Type I error rates were obtained by

dividing the number of wrongly flagged items by

100 9 number of simulated items in each data set.

Power study: design of simulation study and data

generation

For an empirical power study of IRT model-item fit, it is

necessary to generate atypical (i.e., bad or misfitting) items

deviating from the expectations of the logistic model under

investigation. According to Stone (2000) and Lee et al.

(2002), two main causes of lack of fit between observed data

and model predictions are (1) violations to the model

assumptions (e.g., unidimensionality) and (2) inadequacies in

estimation procedures (i.e., a huge discrepancy between the

expected item characteristic curves and empirical curves as a

result of small sample size, random error, or true non-logistic

function). Following these research findings, this power study

considered two types of bad items: One was M-type misfit due

to multidimensionality, and the other was D-type misfit due to

a curve discrepancy. To generate these two different types of

misfit items, a two-dimensional GRM (for M-type) and a

Guttman step function (for D-type) were utilized.

When an item in a test measures a totally different

construct (h2) from that (h1) measured by all the other

items [i.e., q(h1, h2) = 0], this item is considered as a

problematic item under the IRT assumption of unidimen-

sionality. This M-type misfit can be explained with Fig. 1.

As shown in Fig. 1a and c, the illustrative M-type polyt-

omous item (z = 0, 1, 2, 3, and 4) is very useful in mea-

suring h2. But, when the other items in the same test mainly

measure h1, the item would appear to be not-discriminating

under the unidimensional calibration model as shown in

Fig. 1b. Consequently, it is anticipated that the data points

could be explained with zero discrimination parameter or

could not be explained effectively under the application of

a unidimensional IRT model.

To generate a dataset including a single M-type misfit

item and GRM-fitting items, the two-dimensional GRM

Item Response Surface 

Marginal Item Characteristic Curve 

 under 1θ
Marginal Item Characteristic Curve 

under 2θ

(a)

(b) (c)

Fig. 1 Item response surface

and item characteristic curves of

an illustrative M-type

polytomous item (z = 0, 1, 2, 3,

and 4)
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was used, and the related boundary characteristic curve is

given by:

P�ijx ¼
exp½ai1hj1 þ ai2hj2 þ dxi�

1þ exp½ai1hj1 þ ai2hj2 þ dxi�
: ð3Þ

P�ijx denotes the boundary probability for examinee j to

have a category score larger than x on item i. The log-

normal (0, 0.52) distribution was used to obtain the gen-

erating discrimination parameters: ai1 for GRM-fitting item

and ai2 for M-type misfit item. To ensure that each item

measures only one construct, ai1 of the M-type misfit item

measuring h2 was always zero. Likewise ai2 of the GRM-

fitting item measuring h1 was always zero. For either the

GRM-fitting or M-type misfit item, the procedures for

generating b1, b2, b3, and b4 were the same process as

those for the Type I error rate study. Then, the dxi values

for M-type and GRM-fitting items are given by -ai2bxi and

-ai1bxi, respectively.

To generate a D-type misfit item, the boundary charac-

teristic curves resembling the two-step Guttman functions

as shown in Fig. 2 were used. The step functions had clear

discrepancies from the GRM logistic curves. The item

parameters for the boundary characteristic curves under the

GRM were a = 2, b1 = -2.1, b2 = -0.7, b1 = 0.7, and

b1 = 2.1. In contrast to the generating procedure for the M-

type misfit and GRM-fitting item data that used random

selected values for generating item parameters, the gener-

ating procedure for the D-type misfit item data employed a

fixed two-step Guttman functions in Fig. 2. (i.e., the dis-

tance between two adjacent Guttman curves was 1.4, and

the middle points of the curves were fixed as -2.1, -0.7,

0.7, and 2.1, respectively).

For the power study, the main consideration was given to

the effects of different types of misfit, sample size, and test

length upon the empirical power of S-X2. The number of

item score categories was always 5. The standard normal

distribution was used to generate abilities. Hence, the

empirical power was examined under 18 simulated condi-

tions (3 test lengths of 5, 10, and 20 9 3 sample sizes of 500,

1,000, and 2,000 9 2 types of misfit items). One hundred

replications were generated for each condition. Each repli-

cation included a data set composed of I-1 items (I = 5, 10,

or 20) simulated with the GRM functions and a single M- or

D- type item. For each condition, the empirical power of the

generalized S-X2 index was computed using the number of

times that the misfit items were correctly flagged.

Results

For the current study, the item parameters were estimated by

the computer program MULTILOG 7.03 (Thissen 2003)

using each simulated dataset. To calibrate the GRM

parameters, the program defaults except N cycles = 3,000

were used. Most calibrations converged quickly, but some-

times over 1,000 EM cycles were required for the successful

convergence.

Type I error rates

The proportions of items wrongly flagged for misfit are

shown in Table 1 for each condition. The nominal alpha of

0.05 was used for the hypothesis tests in this paper. In the 5,

10, and 20 item test length conditions, the proportions were

calculated based on the total of 500, 1,000, and 2,000 items,

respectively (# items per dataset 9 100 replications).

For the conditions with the generating distribution of

N(0,1), the simulated Type I error rates tended to be closer

to 0.05 than those of the conditions with U(-3,3) in most

cases. In the N(0,1) conditions, the Type I error rates ranged

from 0.030 to 0.078 except the condition with 20 item test,

small sample size (500 examinees), and 5 item score cate-

gories. In a few cases of the conditions with U(-3,3), rel-

atively large inflations of Type I error rates were observed,

such as 0.120 and 0.225 when the sample size was 500.

The false rejection rates seemed to be influenced by the

ratio of sample size to the number of test score groups.

When there are 20 items with 5 categories in a test, the

total number of groups is 73 (from Zi = 4 to F-Zi = 76).

In these cases, the empirical Type I error rates were

improved from 0.203 to 0.058 as the sample size increased

from 500 to 2,000 in the N(0,1) conditions. The same

improvement was found in the U(-3,3) conditions, where

the simulated Type I error rates changed from 0.225 to

0.056. In other words, for the generalized S-X2 to work

properly, more data were required as the number of

homogeneous test score groups increased.

To account for sampling error in obtaining the empirical

Type I error rates under each simulation condition given a

Fig. 2 Two-step Guttman functions of an illustrative D-type polyt-

omous item (z = 0, 1, 2, 3, and 4) and the corresponding boundary

characteristic curves of the GRM
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nominal alpha of 0.05, 95% confidence intervals were

computed using CI = 0:05� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:05� 0:95Þ=ðR� IÞ

p

where R is the number of replication for each condition I is

the test length (Stone and Hansen 2000; Zhang and Stone

2008). For the test length of 5, 10, and 20 and R = 100, the

intervals were (0,031, 0.069) (0.036, 0.064), and (0.040,

0.060), respectively. Six conditions under the N(0,1) and

seven conditions under the U(-3,3), appeared to have

empirical Type I error rates falling out of the CIs. Because

the extent of the Type I error rate inflation was usually

small for those conditions, however, S-X2 seemed to ade-

quately control the Type I error rates in most cases.

Empirical power

Because each data set included only one misfit item in

power study, the empirical power was calculated as the

number of correctly flagged items divided by 100 in each

condition. Table 2 summarizes the empirical power of the

generalized S-X2 in detecting M- or D-type misfit items.

The false alarm rate (FAR) which indicates the proportions

of the GRM-fitting items being wrongly flagged as misfit is

reported in Table 2. FAR is a very similar concept to the

empirical Type I error rate, but may be affected by true

misfit items in the parameter estimation process.

As shown in Table 2, the empirical power for detecting

the M-type misfit item ranged from 0.050 to 0.130. The

FAR appeared to be between 0.038 and 0.079, which was

similar to that of the Type I error rate study. Table 3 shows

the average item parameter estimates and their standard

deviations for the datasets including M-type misfit items.

As discussed earlier in this paper, the estimated, the esti-

mated discrimination parameters of M-type misfit items

were close to zero. The average estimates were between

0.10 and 0.13 while the average discrimination parameter

estimates of the GRM fitting items were between 1.09 and

Table 1 Type I error rates:

proportions of indices with

empirical p-values less than

0.05

*Indicates the empirical Type I

error rate is out of 95%

CI ¼ 0:05�
1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:05� 0:95Þ=100� I

p

where I = test length

Test length Sample

size

# Category In conditions

with N(0,1)

In conditions

with U(-3,3)

5 500 3 0.046 0.068

5 0.046 0.080*

1,000 3 0.040 0.036

5 0.056 0.064

2,000 3 0.030* 0.054

5 0.064* 0.058

10 500 3 0.054 0.073*

5 0.060 0.120*

1,000 3 0.044 0.040

5 0.042 0.060

2,000 3 0.046 0.042

5 0.053 0.048

20 500 3 0.071* 0.099*

5 0.203* 0.225*

1,000 3 0.052 0.052

5 0.078* 0.092*

2,000 3 0.061* 0.062*

5 0.058 0.056

Table 2 Empirical power rates: proportions of indices with empirical

p-values less than 0.05

Misfit type Test length Sample size Empirical power (FAR)

M 5 500 0.050 (0.043)

1,000 0.120 (0.038)

2,000 0.100 (0.048)

10 500 0.120 (0.054)

1,000 0.110 (0.053)

2,000 0.120 (0.042)

20 500

1,000 0.080 (0.079)

2,000 0.130 (0.057)

D 5 500 0.110 (0.038)

1,000 0.180 (0.048)

2,000 0.410 (0.078)

10 500 0.280 (0.059)

1,000 0.320 (0.051)

2,000 0.640 (0.072)

20 500

1,000 0.830 (0.085)

2,000 0.970 (0.057)

For conditions where the empirical Type I error rates were consid-

erably inflated, the empirical power was not reported
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1.28. Because an M-type item measured a very different

construct from that measured by the other items in the

same test, the threshold parameters were not able to be

estimated accurately. This fact was reflected very well

through the relatively much larger standard deviations of

the M-type items’ threshold parameters than those of the

GRM-fitting items. Accordingly, it was expected that the

M-type items should be easily detected as misfitting.

However, the power of the generalized S-X2 in finding the

M-type misfit items was very small as shown in the results

of this power study.

In detecting the D-type misfit items, as shown in

Table 2, the power of the generalized S-X2 appeared to

increase as the sample size increased or as the test length

became longer. For example, when the test length was 20,

the empirical power of the item-fit statistics increased from

0.830 to 0.970 as the sample size increased from 1,000 to

2,000. Also when the sample size was 2,000, the empirical

power estimates were 0.410, 0.650, and 0.970 for the test

lengths of 5, 10, and 20, respectively.

Table 4 shows the average item parameter estimates and

their standard deviations for the datasets including the D-

type misfit items. In all conditions, the average threshold

parameter estimates of the D-type misfit items were close

to -2.1, -0.7, 0.7, and 2.1, which were the threshold

parameters of the corresponding GRM curves in Fig. 2.

The estimated discrimination parameters (â1i) appeared a

little larger (from 2.49 to 2.78) than the discrimination

parameter (2.00) of the corresponding GRM curves in

Fig. 2.

Discussion and conclusion

As more high-stake assessments adopt polytomous items

analyzed by IRT, the need for polytomous IRT fit indices

increases. As mentioned earlier, the success of IRT appli-

cations requires satisfactory fit between the model and the

data. Also one of the most important features of IRT,

parameter invariance, may not hold when the model is

incorrect (Andersen 1973; Shepard et al. 1984). In answer to

the call for an appropriate item fit index under polytomous

IRT, the results of the current study provide a rationale for

the application of the generalized S-X2 as an item fit index

under the GRM for researchers and practitioners.

The results of the Type I error rates study showed that

the Type I error rates of the generalized S-X2 adequately

controlled around the nominal level, 0.05, in most condi-

tions. In the conditions with the 20 items having 5 cate-

gories and small sample size (500 examinees), somewhat

severe inflations of the Type I error rates were found. These

results are consistent to those reported in Kang and Chen

(2008). Also, as Kang and Chen mentioned, this can be

explained by the sparseness problem in expected frequen-

cies. The expected cell frequencies will be easily sparse

when there is a small group of examinees given that there

are many test score groups. Because more sparseness

causes more collapsing, the df of the item-fit statistic would

consequently be smaller. Then, it would be much easier to

reject the null hypothesis of model-fit.

The power of the S-X2 item-fit statistic was much lower

when the source of misfit was M-type compared to D-type.

Table 3 Average item parameter estimates (SD) of the datasets including the M-type misfit items

Test length Sample size Item (#) â b̂1 b̂2 b̂3 b̂4

5 500 M-type (100) 0.12 (0.04) -7.47 (6.25) -3.06 (5.22) 1.16 (5.17) 5.47 (5.81)

GRM-fitting (400) 1.28 (2.45) -0.98 (0.67) -0.43 (0.64) 0.13 (0.63) 0.70 (0.63)

1,000 M-type (100) 0.12 (0.03) -7.19 (4.57) -3.18 (4.53) 0.69 (4.98) 4.78 (5.91)

GRM-fitting (400) 1.21 (1.16) -1.05 (0.61) -0.50 (0.61) 0.05 (0.60) 0.61 (0.61)

2,000 M-type (100) 0.13 (0.03) -6.36 (3.61) -2.56 (3.56) 1.23 (4.58) 5.08 (6.16)

GRM-fitting (400) 1.09 (0.53) -0.98 (0.62) -0.42 (0.62) 0.12 (0.63) 0.67 (0.65)

10 500 M-type (100) 0.12 (0.03) -7.11 (4.69) -2.89 (4.65) 1.57 (5.05) 5.81 (6.09)

GRM-fitting (900) 1.16 (0.66) -1.03 (0.62) -0.48 (0.62) 0.09 (0.63) 0.65 (0.65)

1,000 M-type (100) 0.12 (0.04) -7.72 (4.54) -3.44 (4.79) 0.58 (5.58) 4.72 (6.90)

GRM-fitting (900) 1.15 (0.61) -1.00 (0.59) -0.44 (0.58) 0.11 (0.59) 0.66 (0.59)

2,000 M-type (100) 0.13 (0.04) -6.63 (3.48) -2.91 (3.38) 0.89 (4.12) 4.83 (5.51)

GRM-fitting (900) 1.14 (0.61) -1.00 (0.61) -0.44 (0.61) 0.12 (0.62) 0.67 (0.62)

20 500 M-type (100) 0.10 (0.03) -8.08 (5.34) -3.38 (4.83) 1.25 (5.24) 5.83 (6.21)

GRM-fitting (1,900) 1.12 (0.60) -1.05 (0.64) -0.49 (0.63) 0.08 (0.63) 0.64 (0.64)

1,000 M-type (100) 0.11 (0.02) -7.80 (4.96) -3.28 (5.04) 1.22 (5.62) 5.61 (6.86)

GRM-fitting (1,900) 1.13 (0.61) -1.00 (0.60) -0.45 (0.60) 0.11 (0.61) 0.66 (0.63)

2,000 M-type (100) 0.12 (0.04) -6.60 (3.47) -2.57 (4.33) 1.48 (6.11) 5.58 (8.04)

GRM-fitting (1,900) 1.13 (0.62) -0.99 (0.59) -0.44 (0.59) 0.11 (0.60) 0.67 (0.61)
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Even though the M-type items appeared to cause the poor

threshold parameter estimation, S-X2 seemed insensitive to

detect this type of misfit even with a large sample size of

2,000. Because previous studies (e.g., Orlando and Thissen

2003; Zhang and Stone 2008) reporting satisfactory

empirical powers of S-X2 statistics did not consider M-type

but only D-type misfit items, the results here provide

noteworthy information for future studies.

For the M-type misfit items, it was true that the empir-

ical power was too low to suggest the S-X2 statistic as a

tool for evaluating item fit under all the conditions con-

sidered in this study. Also for the D-type misfit items, it

appeared that appropriate power could be only obtained for

conditions with a 20-item test and a sample size of at least

1,000. Because it is noted that the statistical power is a

function of sample size, it can be expected that more power

could be observed for larger sample size. Under this con-

sideration, a further study was conducted to investigate

appropriate sample sizes that would produce satisfactory

power (e.g., 0.7 or higher). This additional power study

employed much larger sample sizes of 5,000, 10,000, and

20,000 for detecting the M- or D-type misfit items under

the conditions with a test length of 5, 10, or 20 items each

having 5 categories. The number of these additional con-

ditions was 18 (= 3 test lengths 9 3 new sample sizes 9 2

types of misfit items). Each data set included a single misfit

item, and 100 replicated data sets for each new condition

were generated and calibrated in the same process as

described earlier. The results are summarized in Table 5.

As shown in Table 5, regardless of test length, it

appeared that at least 20,000 examinees were required to

obtain acceptable power in detecting misfit items due to

multidimensionality. However, for a short test with five

items, inflated FARs, 0.078 and 0.115, were found for the

conditions with 10,000 and 20,000 examinees, respec-

tively. For the D-type misfit items, the sample sizes of

5,000 or more appeared to be enough for producing satis-

factory power. But, similar to the cases of M-type items,

for a short test with five items, inflated FARs, 0.130 and

0.185, were found for the conditions with 10,000 and

20,000 examinees, respectively. These results indicate that

the use of very large sample sizes should be considered

more cautiously when the test length is short (five items)

regardless of the source of item misfit.

In conclusion, under the GRM, the generalized S-X2

adequately controlled the Type I error rates in most con-

ditions and was able to yield satisfactory power in detect-

ing the M- or D-type misfit items with large sample sizes.

Therefore, the generalized S-X2 item-fit statistics appeared

to be a promising index for investigating item-fit in edu-

cational and psychological assessments having polytomous

items.

To gain a better understanding of this promising item-fit

index, however, additional studies need to be conducted.

First, because this study examined only one kind of misfit

item under each test data set, additional misfit items in a

test need to be further considered to better understand the

performance of the generalized S-X2 in detecting misfit

Table 4 Average item parameter estimates (SD) of the datasets including the D-type misfit items

Test

length

Sample

size

Item (#) â b̂1 b̂2 b̂3 b̂4

5 500 D-type (100) 2.78 -2.12 -0.66 0.66 2.11

GRM-fitting (400) 1.06 (0.60) -1.10 (0.68) -0.53 (0.63) 0.06 (0.64) 0.65 (0.69)

1,000 D-type (100) 2.71 -2.11 -0.65 0.66 2.11

GRM-fitting (400) 1.13 (0.70) -1.04 (0.62) -0.47 (0.60) 0.08 (0.60) 0.64 (0.61)

2,000 D-type (100) 2.66 -2.11 -0.66 0.66 2.10

GRM-fitting (400) 1.16 (0.64) -1.05 (0.58) -0.50 (0.58) 0.06 (0.58) 0.61 (0.59)

10 500 D-type (100) 2.57 -2.15 -0.67 0.67 2.14

GRM-fitting (900) 1.12 (0.60) -1.03 (0.65) -0.46 (0.64) 0.10 (0.64) 0.67 (0.66)

1,000 D-type (100) 2.61 -2.12 -0.66 0.67 2.12

GRM-fitting (900) 1.12 (0.63) -1.02 (0.59) -0.47 (0.59) 0.09 (0.60) 0.65 (0.61)

2,000 D-type (100) 2.60 -2.11 -0.65 0.66 2.12

GRM-fitting (900) 1.12 (0.62) -1.02 (0.58) -0.46 (0.59) 0.09 (0.59) 0.64 (0.60)

20 500 D-type (100) 2.49 -2.18 -0.69 0.69 2.17

GRM-fitting (1,900) 1.10 (0.59) -1.02 (0.64) -0.45 (0.63) 0.13 (0.64) 0.70 (0.65)

1,000 D-type (100) 2.58 -2.11 -0.65 0.67 2.13

GRM-fitting (1,900) 1.12 (0.60) -1.00 (0.61) -0.44 (0.61) 0.12 (0.62) 0.67 (0.63)

2,000 D-type (100) 2.58 -2.10 -0.66 0.68 2.11

GRM-fitting (1,900) 1.14 (0.61) -1.00 (0.58) -0.45 (0.58) 0.10 (0.59) 0.65 (0.59)

The small SD values of D-type items ranging between 0.04 and 0.20 due to the fixed data generating functions were not reported
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items. Also more potential sources of misfittng items (e.g.,

different levels of correlation between h1 and h2, differ-

ential item functioning, poorly estimated item parameters,

etc.) need to be further studied. Second, different from the

study of Kang and Chen (2008) where all the items on a

test were misfit in conducting the power study, the current

power study included only a single misfit item into each

test. To make this approach more informative and mean-

ingful, however, more different percentages or number of

misfit items on a test needs to be further considered. Third,

the performance of the generalized S-X2 needs to be

investigated under conditions where the ability distribution

is other than normal and uniform. For example, under

skewed distributions, it would be expected that S-X2 per-

forms poorly due to low cell frequencies in some parts of

the distribution. Fourth, the Guttman step functions were

used in this study to simulate the D-type misfit items. If

empirical item response functions which are not consistent

with the underlying model could be considered, it would

make this type of study deal with more realistic misfit

items. Finally, the test lengths considered in this study were

5, 10, and 20 items. Because it is not uncommon that a

psychological scale includes more than 20 polytomous

items, it will be also interesting to extend the current study

into considering longer test lengths.
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