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Abstract

An algorithm derived from machine learning uses the arterial waveform to predict intraoperative hypotension some minutes 

before episodes, possibly giving clinician’s time to intervene and prevent hypotension. Whether the Hypotension Predic-

tion Index works well with noninvasive arterial pressure waveforms remains unknown. We therefore evaluated sensitivity, 

specificity, and positive predictive value of the Index based on non-invasive arterial waveform estimates. We used continu-

ous hemodynamic data measured from ClearSight (formerly Nexfin) noninvasive finger blood pressure monitors in surgical 

patients. We re-evaluated data from a trial that included 320 adults ≥ 45 years old designated ASA physical status 3 or 4 

who had moderate-to-high-risk non-cardiac surgery with general anesthesia. We calculated sensitivity and specificity for 

predicting hypotension, defined as mean arterial pressure ≤ 65 mmHg for at least 1 min, and characterized the relationship 

with receiver operating characteristics curves. We also evaluated the number of hypotensive events at various ranges of the 

Hypotension Prediction Index. And finally, we calculated the positive predictive value for hypotension episodes when the 

Prediction Index threshold was 85. The algorithm predicted hypotension 5 min in advance, with a sensitivity of 0.86 [95% 

confidence interval 0.82, 0.89] and specificity 0.86 [0.82, 0.89]. At 10 min, the sensitivity was 0.83 [0.79, 0.86] and the 

specificity was 0.83 [0.79, 0.86]. And at 15 min, the sensitivity was 0.75 [0.71, 0.80] and the specificity was 0.75 [0.71, 0.80]. 

The positive predictive value of the algorithm prediction at an Index threshold of 85 was 0.83 [0.79, 0.87]. A Hypotension 

Prediction Index of 80–89 provided a median of 6.0 [95% confidence interval 5.3, 6.7] minutes warning before mean arterial 

pressure decreased to < 65 mmHg. The Hypotension Prediction Index, which was developed and validated with invasive 

arterial waveforms, predicts intraoperative hypotension reasonably well from non-invasive estimates of the arterial waveform. 

Hypotension prediction, along with appropriate management, can potentially reduce intraoperative hypotension. Being able 

to use the non-invasive pressure waveform will widen the range of patients who might benefit.
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1 Introduction

The association between hypotension and serious complica-

tions and mortality in non-cardiac surgical patients is well 

established [1–7]. There is also limited evidence from a 

randomized trial that the relationship is causal [8]. Timely 

and appropriate treatment of hypotension reduces overall 

hypotension exposure. Even better would be to predict hypo-

tension, thus allowing the clinicians time to intervene and 

potentially moderate or even prevent hypotension.

Recently, an algorithm (Hypotension Prediction Index, 

HPI) based on machine learning was developed which pre-

dicts intraoperative hypotension (defined as mean arterial 

pressure < 65 mmHg sustained at least a minute) with a 

sensitivity and specificity of 88% [95% confidence intervals 

85, 90%] and 87% [85, 90%] 15 min before a hypotensive 

event. The area under the receiver operating characteristics 

curve was 0.95 [0.94, 0.95] [9]. The HPI algorithm better 

predicted hypotension than commonly used hemodynamic 

parameters trends including mean arterial pressure, stroke 

volume, and cardiac output [10]. Development and testing of 

this algorithm was based on invasive arterial line waveform 

data. However, only a small fraction of patients having non-

cardiac surgery require invasive arterial monitoring.

Advances in non-invasive hemodynamic monitoring 

now allow arterial pressure waveforms to be estimated 

from a finger cuff [11–16]. But whether the hypotension 

prediction algorithm, which incorporates subtle aspects of 

the arterial waveform, performs well from a non-invasive 

waveform estimate remains unknown. We therefore evalu-

ated the performance of the Hypotension Prediction Index 

derived from non-invasive arterial pressure waveforms in 

non-cardiac surgical patients. We used ClearSight (formerly 

known as Nexfin) non-invasive finger blood pressure sys-

tem in our investigation which gives reliable estimates of 

arterial pressure even in highly dynamic situations such as 

during induction of anesthesia [11] and clamping a carotid 

artery [12]. Reported difference between ClearSight and the 

invasive radial arterial pressure are small (2.2 ± 6.4 mmHg 

[11], and 3.5 ± 5.2 mmHg [12], for MAP), which is less than 

the 5 ± 8 mmHg criterion proposed by Association for the 

Advancement of Medical Instrumentation.

2  Materials and methods

For this post hoc analysis, we used hemodynamic data 

measured by noninvasive finger cuff monitors (ClearSight, 

Edwards Lifesciences, Irvine, CA) in patients enrolled in 

a randomized trial of continuous noninvasive blood pres-

sure monitoring during noncardiac surgery. The trial was 

approved by the Cleveland Clinic Institutional Review 

Board (IRB # 16-845) and written informed consent was 

obtained from all subjects participating in the trial. The trial 

was registered before patient enrollment at clinicaltrials.gov 

(NCT02872896, Principal investigator: Kamal Maheshwari, 

Date of registration: August 19, 2016) [17]. We enrolled 320 

adults aged 45 years or older designated ASA physical status 

3 or 4 who had moderate-to-high-risk non-cardiac surgery 

with general anesthesia between August 2016 and August 

2017.

Patients were excluded if the attending anesthesiologist 

determined that invasive arterial monitoring was needed. 

Patients were also excluded when there was more than a 10% 

discrepancy in preoperative MAP between the arms, or if the 

expected duration of surgery exceeded 2 h.

The detailed trial protocol has been published [17]. 

Briefly, just before surgery patients were randomly allocated 

to continuous unblinded or blinded continuous blood pres-

sure monitoring by an investigator not involved in clinical 

care, in a 1:1 ratio, using a reproducible set of computer-

generated random number via a web-based system (REDCap 

secure web application). Allocation to blinded or unblinded 

continuous blood pressure monitoring was thus concealed 

as long as practical, and patients were not informed of their 

group assignments.

The continuous blood pressure monitor was properly 

positioned and all patients also had a cuff on opposite 

arms for intermittent oscillometric measurements. In the 

unblinded group, information from the continuous monitor 

was available to clinicians in addition to the usual oscil-

lometric values. In the blinded group, blood pressure man-

agement was based only on intermittent oscillometric blood 

pressure monitoring per routine; information from continu-

ous monitors was not available to the clinicians but recorded 

for analysis purposes. Oscillometric measurements were typ-

ically obtained at 5-min intervals, but clinicians were free to 

select any interval and to change it as conditions warranted. 

Clinicians were asked to minimize the amount and severity 

of hypotension < 65 mmHg MAP. However, the study proto-

col did not specify any particular approach. Clinicians were 

thus free to use any type and amount of intravenous fluids, 

whatever dose of vasopressors and inotropes they cared to 

and to adjust the inhalational concentration and intravenous 

anesthetic drugs as necessary.

The Hypotension Prediction Index was not available to 

either group and was calculated post hoc. But hypotension 

management and thus algorithm performance metrics might 

be influenced by the availability of continuous arterial pres-

sure and the early treatment in the unblinded group. We 

therefore separately evaluated HPI performance in unblinded 

and blinded patients, as well as in the entire cohort.
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2.1  Statistical methods

The Hypotension Prediction Index is based on an algorithm 

that estimates the likelihood of a hypotensive event in the 

near future. The HPI algorithm takes arterial pressure wave-

form as the input, then extracts various waveform features, 

then together with the patient demographics (age, gender, 

height, and weight), it computes an index value that ranges 

between 0 and 100: the larger the value, the more likely and 

the sooner a hypotensive event will occur. For this study, 

raw arterial waveform data from our previous study [17], 

together with the patient demographics (age, sex, height, and 

weight) were passed into the HPI algorithm [9] to compute 

an HPI value every 20 s.

2.1.1  Predictive performance by receiver operating 

characteristics

Positives and negatives need to be defined for a receiver 

operating characteristic (ROC) analysis. We defined positive 

samples as data points exactly ‘t’ minutes (t = 5, 10, or 15) 

prior to a hypotension event, where a hypotensive event is 

defined as MAP ≤ 65 mmHg for at least 1 min. A negative 

sample was selected from each non-event segment of 30-min 

duration, where a non-event segment was at least 20 min 

from any hypotensive events and had MAP > 75 mmHg. The 

HPI model used in this noninvasive analysis was identical to 

the invasive HPI model developed previously [9]. Sensitivity 

and specificity (at an optimal threshold with the minimum 

difference between sensitivity and specificity) along with 

the ROC AUC were calculated from the positive and nega-

tive samples in the combined dataset. See Hatib et al. [9] 

for more details on this method of analysis for hypotension 

prediction.

2.1.2  Event rate analysis

In this analysis, we compared actual occurrences of hypo-

tensive events to the predicted rate in 15 min and separately 

in the blinded, unblinded, and combined cohort. For every 

data point in a given HPI range, a 15-min forward search 

window was used to locate a hypotensive event. The percent-

age of all data samples with a hypotensive event compared 

to the total number of samples in the HPI bin was the rate of 

hypotension for that bin.

2.1.3  Positive predictive value

Positive predictive value of dynamic algorithms like HPI 

provides incomplete information because PPV does not 

take into account the continuous nature of monitoring [18]. 

A challenge is that clinical interventions in response to 

hypotension at mean arterial pressures exceeding 65 mmHg 

may result in false positive predictions. For example, in a 

10 min window when HPI remains over 85 while the MAP is 

slowly decreasing, a clinical intervention might intervene to 

prevent MAP from decreasing to < 65 mmHg. See Fig. 1 for 

an example in which a bolus of phenylephrine, given after 

HPI reached 85, prevented a possible hypotension event. In 

this scenario, HPI might poossibly have correctly predicted 

hypotension save the vasopressor bolus, and the event should 

not be considered false-positive.

We tried to mitigate false-positive events by identifying 

rapid increases in MAP that were potentially consequent to 

clinical interventions. Specifically, we defined rapid mean 

pressure increases as > 5 mmHg in 20 s or > 8 mmHg in 

2 min from a baseline MAP < 75 mmHg based on Hatib 

et al. [9] analysis. To determine the extent to which rapid 

blood pressure increases resulted from clinical interventions, 

we reviewed electronic records for surgical incision, and 

boluses of ephedrine, phenylephrine, or epinephrine within 

the preceding 5 min. Surgical manipulation, changes in anes-

thesia level, fluid bolus, etc. can also cause a rapid increase 

in blood pressure, however, we could not reliably confirm 

these interventions from EMR data. Our mitigation strategy 

was only used to estimate positive predictive value. Because 

receiver operating characteristics analyses are based on the 

sensitivity (true-positives) and specificity (true negatives), 

no assumptions were required.

We calculated the positive predictive value (PPV) at an 

HPI threshold of 85. We selected an HPI threshold of 85 

since the current commercial implementation includes an 

alarm at this value. True positives were all data samples 

with HPI value above 85 and a hypotensive event within 

Fig. 1  Effect of clinical intervention on HPI and MAP. HPI Hypoten-

sion Prediction Index, MAP mean arterial pressure
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15 min in the future. False positives were all data samples 

with HPI value above 85 but without a hypotensive event 

within 15 min in the future. PPV was calculated as the ratio 

of true positives to all data points with HPI value above 85. 

We assumed rapid increases in blood pressure were true pos-

itives only when there was supportive evidence in the medi-

cal record, and eliminated other blood pressure increases 

from the analysis.

All statistics were performed with MATLAB (version 

R2018a; The Mathworks Inc, Natick, MA). Repeated meas-

urents from same subjects were evlauated  by bootstrapping 

method [19], where a total number of all subjects were 

first randomly chosen from all subjects with replacements, 

then statistics were computed. This process was repeated 

2000 times from which the standard error was calculated. 

The bootstrap confidence interval was calculated as a 95% 

asymptotic confidence interval.

3  Results

Four patients enrolled in the underlying trial did not receive 

the allocated intervention and 11 others had incomplete 

waveform data. Consequently, a total of 305 of patients were 

included in this analysis, with an average age 60 ± 9 years, 

weight 98 ± 28 kg and height 171 ± 10 cm. The incidence 

and severity of hypotension are characterized by various 

way in Table 1. Patients averaged 3.3 clinical interventions 

for hypotension (skin incision or vasopressor administra-

tion). Among patients in whom mean pressure increased 

> 5 mmHg in 20 s or > 8 mmHg in 2 min from a baseline 

MAP < 75 mmHg, 46% had skin incision or were give a 

vasopressor bolus within 5 min.

3.1  Algorithm performance

Figure 2 shows the receiver operating characteristic curves 

for the 5-, 10-, and 15-min prediction time points before 

each hypotensive episode, defined by MAP < 65 mmHg 

for at least a minute, using the entire dataset (N = 305). 

Table 2 summarizes the ROC results (sensitivity, specific-

ity, and AUC) separately for patients assigned to blinded and 

unblinded continuous pressure monitoring.

Figure 3 shows occurrence of hypotension against HPI 

for all patients. The amount of hypotension increases lin-

early with the increase in the algorithm prediction index. 

The results along with the median time to hypotension and 

25th, 75th percentiles as an indication for range, for dif-

ferent ranges of HPI is shown in Table 3 and Supplement 

Fig. 1 for the entire dataset, and the blinded and unblinded 

arms separately. A Hypotension Prediction Index of 80–89 

provided a median of 6.0 [95% confidence interval 5.3, 6.7] 

minutes warning before mean arterial pressure decreased to 

< 65 mmHg.

The positive predictive values of the algorithm were 

similar in the blinded and unblinded groups. We thus pre-

sent results for the entire population at an HPI threshold 

Table 1  Hypotension statistics in all patients as median [25th, 75th] percentiles

Summary statistics Combined Blinded Unblinded

Monitoring time (min) 202 [154, 258] 202 [154, 246] 202 [157, 266]

Number of patients with hypotension (event) 187 of 305 (61%) 94 of 150 (62%) 93 of 155 (60%)

Total number of events in dataset 649 337 312

Average number of events per patient 1 [0, 3] 1 [0, 4] 1 [0, 3]

Average duration of each event (min) 2 [1, 5] 3 [1, 5] 2 [1, 4]

Total duration of events per patient (min) 2.3 [0, 9.4] 3.5 [0, 12.3] 1.7 [0, 7.3]

Total duration of events per patient (%) 1.1 [0, 5.0] 1.6 [0, 7.4] 0.8 [0, 3.5]

Mean MAP under 65 mmHg per patient (mmHg) 60 [58, 62] 60 [57, 62] 61 [58, 62]

Area under 65 mmHg for MAP per patient (mmHg × min) 11.9 [0, 64.4] 18.0 [0, 79.1] 9.3 [0, 49.3]

Time weighted area (MAP < 65 mmHg) per patient (mmHg) 0.05 [0, 0.35] 0.08 [0, 0.53] 0.04 [0, 0.24]

Fig. 2  ROC plot at 5, 10, and 15-min for the entire cohort of 305 

patients
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of 85. The positive predictive value prediction was 0.83 

(95% confidence interval [0.79, 0.87]) when rapid increases 

in blood pressure after HPI reached 85 were considered to 

be true positives only when there were supportive clini-

cal interventions in the electronic record, and other rapid 

increases, presumably due to surgical manipulations, fluid 

boluses, change in anesthetic level, etc. were excluded from 

the analysis altogether..

4  Discussion

Our primary result is that the Hypotension Prediction Index, 

which was developed and validated from invasive arterial 

waveforms, works reasonably well with non-invasive arterial 

pressure waveform estimates. Given that the vast majority of 

noncardiac surgical patients are monitored non-invasively, 

our findings markedly broaden the range of patients who 

might benefit.

The non-invasive ClearSight system used in our investi-

gation gives reliable estimates of arterial pressure even in 

highly dynamic situations such as during induction of anes-

thesia [11] and clamping a carotid artery [12]; the reported 

difference between invasive radial arterial pressure was 

small (2.2 ± 6.4 mmHg [11], and 3.5 ± 5.2 mmHg [12], for 

MAP), which is below the 5 ± 8 mmHg of AAMI acceptable 

criteria for pressure measurements. While the blood pres-

sures obtained noninvasively from the non-invasive system 

are relatively accurate and reliable, the sensitivity and speci-

ficity of HPI prediction was slightly lower compared to inva-

sive arterial pressure. The lower sensitivity and specificity 

presumably result from subtle differences in the waveform 

which are used to calculate HPI [9]. The features used in the 

HPI model come from detailed waveform features within a 

heart-beat, variability of features over short periods of time 

[9], and critically depend on a good intra-patient precision. 

The non-invasive system has good intra-patient precision in 

tracking subtle changes in waveforms and pressure levels 

[11, 12]. Perhaps consequently, HPI performed well on the 

noninvasive waveforms suggesting noninvasive waveform 

features are close to those of invasive waveforms. The qual-

ity of noninvasive waveforms can be influenced by finger 

perfusion and extreme hemodynamic conditions. Algorithm 

retraining using a larger dataset of noninvasive waveforms 

from a wider patient population may further improve its 

accuracy.

Positive predictive value of dynamic algorithms like HPI 

provides incomplete information because PPV does not take 

Table 2  Receiver operating characteristics area under the curve analysis in all patients at 5, 10, and 15 min before a hypotensive event defined by 

mean arterial pressure (MAP) < 65 mmHg sustained for a minute

Sensitivity and specificity are given at the optimal threshold for HPI

Time AUC [95% Conf] Sensitivity Specificity Threshold

Combined (N = 305)

 5 min 0.93 [0.91,0.95] 0.86 [0.82,0.89] 0.86 [0.82,0.89] 30

 10 min 0.90 [0.87,0.93] 0.83 [0.79,0.86] 0.83 [0.79,0.86] 28

 15 min 0.84 [0.79,0.88] 0.75 [0.71,0.80] 0.75 [0.71,0.80] 22

Blinded arm (N = 150)

 5 min 0.94 [0.90,0.96] 0.86 [0.82,0.91] 0.87 [0.82,0.91] 30

 10 min 0.93 [0.88,0.96] 0.87 [0.81,0.92] 0.87 [0.81,0.91] 28

 15 min 0.83 [0.75,0.89] 0.75 [0.68,0.82] 0.75 [0.68,0.81] 22

Unblinded arm (N = 155)

 5 min 0.93 [0.91,0.95] 0.86 [0.82,0.89] 0.86 [0.82,0.89] 31

 10 min 0.90 [0.87,0.93] 0.83 [0.79,0.86] 0.83 [0.79,0.86] 31

 15 min 0.84 [0.79,0.88] 0.75 [0.71,0.80] 0.75 [0.71,0.80] 22

Fig. 3  Hypotensive, MAP < 65  mmHg, event rates in all patients. 

Dashed lines are the lines of identity. MAP mean arterial pressure
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into account the continuous nature of monitoring and pos-

sible interventions [18]. Clinical intervention influencing 

blood pressure, drugs or surgical manipulation, can cause 

abrupt changes in blood pressure resulting in false positive 

predictions. Moreover, the only way to evaluate HPI with-

out the clinician’s intervention would be a blind prospective 

evaluation, and to force the clinician to let the MAP go down 

until 65 mmHg or below, without any intervention, which 

is unethical. Nonetheless, the PPV was 0.83 [0.79, 0.87] 

when rapid increases in blood pressure were considered to 

be true positives only when supportive clinical interven-

tions in the electronic record were present, and other rapid 

increases, presumably due to surgical manipulations, fluid 

boluses, change in anesthetic level, etc. were excluded from 

the analysis altogether. Without assumptions, then, four-fifth 

of high HPI episodes resulted in either hypotension or a 

clinical intervention to prevent hypotension.

Clinicians use a wide variety of hemodynamic measure-

ments and experience to anticipate intraoperative blood 

pressure changes. Factors related to surgical procedures, 

Table 3  Event rate analysis

HPI Hypotension Prediction Index

HPI range Event rate (95% CI), % Median time to event 

(95% CI), min

25th percentile time to 

event (95% CI), min

75th percentile time to 

event (95% CI), min

Number of samples

Combined (N = 305)

 0–9 9.9 [8.6, 11.3] 9.7 [8.7, 10.3] 6.3 [5.7, 7.0] 12.3 [12.0, 13.0] 5715/57,983

 10–19 17.5 [15.4, 19.7] 9.0 [8.3, 10.0] 6.0 [5.3, 6.7] 12.7 [12.0, 13.0] 5689/32,581

 20–29 27.4 [24.8, 30.3] 8.7 [8.0, 9.0] 5.3 [4.7, 6.0] 11.7 [11.3, 12.3] 6882/25,082

 30–39 41.3 [38.0, 44.8] 8.3 [8.0, 8.7] 5.3 [5.0, 5.7] 11.3 [11.0, 12.0] 9635/23,286

 40–49 54.7 [50.9, 58.4] 7.4 [7.0, 8.1] 4.7 [4.0, 5.0] 10.7 [10.0, 11.0] 5562/10,182

 50–59 61.7 [57.6, 65.5] 7.3 [6.7, 7.7] 4.3 [4.0, 5.0] 11.0 [10.0, 11.7] 3843/6239

 60–69 67.1 [62.9, 71.1] 6.7 [6.0, 7.7] 3.7 [3.3, 4.1] 11.0 [10.0, 12.0] 3601/5382

 70–79 74.1 [70.0, 78.1] 6.7 [5.7, 7.3] 3.7 [3.3, 4.3] 10.3 [9.7, 11.0] 3396/4598

 80–89 79.9 [75.9, 83.6] 6.0 [5.3, 6.7] 3.3 [3.0, 3.7] 9.7 [9.0, 10.3] 4091/5127

 90–99 89.2 [86.3, 92.1] 2.7 [2.3, 3.0] 1.0 [1.0, 1.0] 6.7 [6.0, 7.3] 14,007/15,726

 100 100 [100, 100] 0 [0, 0] 0 [0, 0] 0 [0, 0] 5690/5728

Blinded arm (N = 150)

 0–9 9.9 [8.2, 11.9] 9.7 [8.3, 10.7] 6.3 [6.0, 7.0] 12.3 [11.7, 13.0] 2899/29,445

 10–19 16.5 [13.5, 20.0] 9 [7.7, 10.1] 5.7 [5.0, 6.7] 12.7 [11.3, 13.3] 2616/15,875

 20–29 25.1 [21.8, 28.8] 8.7 [7.7, 9.3] 5.3 [4.3, 6.1] 12.0 [11.3, 12.3] 2929/11,651

 30–39 40.0 [35.2, 44.7] 8.3 [7.7, 9.0] 5.3 [5.0, 5.7] 11.3 [10.7, 12.0] 4540/11,392

 40–49 54.0 [48.2, 59.6] 7.3 [6.7, 8.3] 4.3 [4.0, 5.0] 10.3 [9.8, 11.3] 2490/4625

 50–59 63.8 [58.6, 69.3] 7.7 [6.7, 8.7] 4.3 [3.7, 5.3] 11.3 [10.0, 12.0] 1749/2742

 60–69 68.7 [63.9, 74.1] 7.7 [6.3, 8.3] 3.7 [3.3, 4.7] 11.3 [10.3, 12.3] 1623/2357

 70–79 74.6 [69.3, 80.2] 6.7 [6.0, 8.0] 3.7 [3.0, 4.7] 10.7 [9.3, 11.3] 1578/2116

 80–89 79.7 [73.0, 85.9] 6.3 [5.3, 7.3] 3.3 [3.0, 4.0] 10.0 [8.8, 11.0] 1842/2317

 90–99 90.2 [86.3, 93.8] 2.7 [2.3, 3.0] 1 [1.0, 1.3] 6.7 [6.0, 7.7] 6786/7536

 100 100 [100, 100] 0 [0, 0] 0 [0, 0] 0 [0, 0] 3292/3292

Unblinded arm (N = 155)

 0–9 9.9 [8.1, 11.9] 9.3 [8.0, 10.7] 6.0 [4.8, 7.3] 12.3 [11.7, 13.3] 2828/28,512

 10–19 18.5 [15.6, 21.4] 9.0 [8.0, 10.7] 6.0 [5.3, 7.3] 12.3 [11.7, 13.0] 3073/16,696

 20–29 29.6 [25.2, 33.9] 8.3 [7.7, 9.5] 5.7 [4.7, 6.3] 11.7 [10.7, 12.3] 3947/13,404

 30–39 43.1 [38.4, 47.5] 8.3 [7.7, 9.0] 5.2 [4.3, 5.7] 11.6 [11.0, 12.3] 5068/11,819

 40–49 55.5 [50.7, 60.3] 7.7 [6.7, 8.7] 4.7 [4.0, 5.3] 10.7 [10.0, 11.3] 3064/5524

 50–59 60.2 [53.9, 66.0] 7.0 [6.0, 7.8] 4.3 [4.1, 5.0] 10.7 [9.6, 11.7] 2087/3466

 60–69 66.0 [59.7, 72.4] 6.0 [5.3, 7.3] 3.3 [3.0, 4.3] 10.3 [8.7, 12.0] 1974/2991

 70–79 73.9 [68.4, 79.5] 6.5 [5.3, 7.7] 3.7 [3.0, 4.0] 10.0 [9.0, 11.0] 1815/2459

 80–89 80.1 [75.3, 85.3] 6.0 [5.0, 6.7] 3.3 [2.7, 4.0] 9.3 [8.0, 10.3] 2238/2794

 90–99 88.5 [83.9, 92.6] 2.7 [2.3, 3.0] 1.0 [1.0, 1.0] 6.3 [5.0, 7.3] 7232/8179

 100 100 [100, 100] 0 [0, 0] 0 [0, 0] 0 [0, 0] 2425/2425
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anesthetic drugs, and advanced hemodynamic parameters 

when available all guide clinicians to manage blood pres-

sure. Stroke volume variation [20–22], pulse pressure vari-

ation [23, 24], and systolic pressure variations [25–28] are 

often used to assess fluid responsiveness and guide fluid 

administration. Stroke volume, dP/dtmax [29, 30], and cardiac 

output all reflect cardiac function, systemic vascular resist-

ance, and dynamic arterial elastance [31]. All help manage 

hypotension, but none of them reliably predicts hypotension. 

The Hypotension Prediction Index uniquely predicts a future 

hypotensive state, and on average provides 6 min of warning 

which will often be sufficient to administer a vasopressor. 

If a clinician wants a longer predictive time, a lower thresh-

old for HPI may be used, which will extend the time avail-

able to determine the proper pro-active treatment to avoid 

hypertension. The extent to which hypotension prediction 

reduces intraoperative hypotension and potentially reduces 

serious complications needs to be formally evaluated. Trial 

is already in progress (NCT03610165).

In summary, the Hypotension Prediction Index, which 

was developed and validated with invasive arterial wave-

forms, predicts intraoperative hypotension reasonably 

well from non-invasively measured arterial blood pressure 

waveforms. Being able to use non-invasive pressure wave-

forms will widen the range of patients who might benefit.
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