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Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is
a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both
analytically and by simulation that modified Poisson regression is appropriate for independent prospective data.
This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this
setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for
estimating relative risks from clustered prospective data, by using generalized estimating equations to account for
clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression
for analyzing clustered data from intervention and observational studies. Both methods generally perform well in
terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone
to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The
results presented in this article support the use of modified Poisson regression as an alternative to log binomial
regression for analyzing clustered prospective data when clustering is taken into account by using generalized
estimating equations.

clinical trial; clustered data; cohort studies; generalized estimating equation; relative risk

Abbreviations: ACE, angiotensin-converting enzyme; GEE, generalized estimating equation; ICC, intracluster correlation coeffi-
cient.

Binary outcomes are routinely encountered in epidemio-
logic research. Traditionally, the effect of an exposure or
intervention on such outcomes has been expressed in the
form of an odds ratio. Although the odds ratio has some
advantages, such as being directly estimable in case-control
studies, it may be difficult for nonepidemiologists to interpret
and is often misinterpreted as a relative risk (1). As a result,
arguments have been made in favor of estimating relative
risks for prospective studies (1–3), rather than odds ratios.

Relative risks can be estimated by log binomial regres-
sion (4), a generalized linear model that combines a log link
with a binomial distribution. The model may be written as

logðpiÞ ¼ b0 þ b1X1i þ b2X2i þ . . .þ bKXKi; ð1Þ

where pi is the probability of experiencing the outcome of
interest for subject i, and X1i, X2i, . . . Xki are predictor

variables. This model has the flexibility to accommodate
both categorical and continuous predictors but may fail to
converge (5). Convergence problems occur during the iter-
ative estimation procedure when the right-hand side of equa-
tion 1 exceeds 0 for some subject(s), based on the current
values of the parameter estimates, since the left-hand side of
equation 1 must be less than or equal to zero for pi to be
a valid probability.

To overcome convergence problems, researchers have
suggested a number of alternative methods for estimating
relative risks (5–8), including the popular modified Poisson
regression approach (5). This method also uses a log link
and, hence, has the same form as equation 1 but applies
a Poisson distribution to the data, rather than a binomial
distribution. It produces consistent estimates of the param-
eters in equation 1 but inconsistent variances, since the var-
iance under a Poisson model is larger than the variance
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under a binomial model unless the outcome is rare (9, 10).
Robust variance estimation is therefore used to avoid over-
estimating standard errors of parameter estimates (5). The
modified Poisson regression approach is now highly cited
(466 citations in the Thomson Reuters Web of Knowledge
(formerly ISI Web of Knowledge) as of January 10, 2011)
and has been applied across a broad range of observational
(11, 12) and intervention (13, 14) studies.

Modified Poisson regression was proposed in the context
of independent data and has been shown both analytically
and by simulation to be appropriate in this setting (5, 9, 10,
15–18). Clustering is present in many prospective studies
and may result from repeated measurements taken on the
same subject over time (e.g., presence or absence of depres-
sive symptoms at multiple psychological assessments) or
measurements taken on multiple subjects within a group
(e.g., presence or absence of postoperative infection among
patients within hospitals). The need to investigate the per-
formance of modified Poisson regression in the context of
clustered data was identified in 2004 when the method was
first suggested (5), but this still remains to be done.

Despite a lack of evidence supporting the use of modified
Poisson regression for clustered prospective data, applica-
tion of this method to such data is not uncommon (19, 20).
Standard errors are often corrected by using generalized
estimating equations (GEEs), which use a form of robust
variance estimation and take the clustering into account
(21), rather than the usual robust variance estimation ap-
proach applied to independent data. Investigation of the
performance of modified Poisson regression combined with
GEEs is essential to determine whether the results of pre-
vious clustered studies using this method are valid, and
whether this method should continue to be applied to clus-
tered data in the future.

The purpose of this article is to evaluate the performance
of the modified Poisson regression approach for estimating
relative risks from clustered prospective data, by using
GEEs to account for clustering. We consider both interven-
tion and observational studies where clustering is present
due to observations made on multiple subjects within
a group.

MATERIALS AND METHODS

To evaluate the performance of modified Poisson regres-
sion for clustered data, we conducted a simulation study. For
each simulation scenario, 1,000 data sets were generated with
20 or 50 clusters of various sizes according to a Poisson
distribution with a mean of 25 or 10, respectively, to give
an average total sample size of 500. Half of the subjects were
assigned to the treatment/exposed group, while the other half
were assigned to the control/unexposed group. Treatment/
exposure group assignment occurred at the individual level,
independent of the cluster. Binary outcomes were generated
with probability pij ¼ exp

�
b0 þ b1X1ij þ b2X2ij þ ui

�
for

subject j in cluster i, where X1ij is a binary indicator variable
for treatment/exposure, X2ij is a binary or continuous cova-
riate, and ui is a normally distributed random cluster effect
with mean 0 and variance 0.1 or 0.2, used to induce cluster-
ing. This corresponds to an intracluster correlation coefficient

(ICC) of between 0.01 and 0.15, depending on the treatment
and covariate effects (22). ICCs of this magnitude are typical
for clustered studies in practice (23). For each simulation
scenario, the expected baseline risk was 0.1 or 0.2, while
the treatment/exposure and covariate relative risks were 1,
1.25, or 2. If pij exceeded 1 for a given combination of values
for the treatment/exposure group, covariate, and random clus-
ter effect, new values of the covariate and/or random cluster
effect were generated until pij < 1.

Data were simulated under both intervention and obser-
vational study designs. For the intervention study scenarios,
the covariate was generated independently of the treatment
group assignment. Binary covariates were generated by using
a beta-binomial model with an average cluster-specific prev-
alence of 0.5 and an ICC of 0.05 (24). Continuous covariates
were generated by using the model X2ij ¼ l þ ai þ eij, with
average cluster-specific mean l ¼ 0.5 and normally distrib-
uted random cluster effects (ai) and error terms (eij), each
with mean 0. Variances were chosen such that the total
variance was 0.25, and the ICC was 0.05. For the observa-
tional study scenarios, the covariate depended on the expo-
sure status to induce confounding. Binary covariates were
generated with prevalence 0.4 for nonexposed subjects and
0.6 for exposed subjects, as well as an ICC of 0.05 by using
the method of Qaqish (25). Continuous covariates were gen-
erated as for the intervention study but with an average
cluster-specific mean of l ¼ 0.4 for nonexposed subjects
and l ¼ 0.6 for exposed subjects.

Each simulated data set was analyzed by using modified
Poisson regression, as well as log binomial regression for
comparison. GEEs with an exchangeable working correla-
tion structure were used to account for clustering. An ex-
changeable structure was chosen because equal correlation
is a reasonable assumption for the type of clustered data
considered. This choice of structure is not a requirement
for the extension of the modified Poisson regression ap-
proach to accommodate clustered data, however. Both treat-
ment/exposure and the covariate were included in the
analysis model. Because GEEs are known to underestimate
the variance of the parameter estimates when the number of
clusters is small (e.g., less than 40) (26), bias corrections
were applied in simulation scenarios involving 20 clusters
by using the method of Mancl and DeRouen (27), as imple-
mented in the SAS macro, diag103.sas (28). All analyses
were performed by using SAS, version 9.2, software (SAS
Institute, Inc., Cary, North Carolina).

For each simulation scenario, the following properties
were determined for both log binomial regression and mod-
ified Poisson regression: the convergence rate, calculated as
the percentage of simulated data sets where the fitting algo-
rithm converged; the type I error rate, calculated as the
percentage of Wald tests that resulted in a rejection of
the null hypothesis of no treatment/exposure effect at the
2-sided 5% level when the null hypothesis was true; the
coverage rate, calculated as the percentage of standard er-
ror-based 95% confidence intervals for the treatment/expo-
sure relative risk that contained the true value; and the mean
percent relative bias, where relative bias was calculated as
the estimated relative risk for treatment/exposure minus the
true relative risk, divided by the true relative risk. Type I
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error and coverage rates that differed significantly from the
nominal level were identified. For 1,000 simulated data sets,
type I error rates of less than 3.6% or greater than 6.4%
differ significantly (P < 0.05) from the nominal level of
5% based on a 2-sided normal approximation test for a pro-
portion. Similarly, coverage rates of less than 93.6% or
greater than 96.4% differ significantly from the nominal
level of 95%. Where log binomial regression failed to con-
verge for a particular data set, results from that data set were
necessarily excluded for the log binomial method from both
the numerator and denominator when determining the type I
error rate, coverage rate, and mean percent relative bias.
Actual cutoff values used to identify significant differences
from the nominal level for the type I error and coverage rates
therefore differed, depending on the number of simulated
data sets that converged. Relative risks estimated by using
modified Poisson regression were plotted against estimates
obtained by using log binomial regression, and summary
statistics were calculated for the difference in estimates be-
tween methods (modified Poisson minus log binomial)
across all simulations. Results are presented for an expected
baseline risk of 0.2 and a variance of 0.2 for the random
cluster effects only; full results are available from the cor-
responding author on request.

RESULTS

Modified Poisson regression converged for all simulated
data sets in the vast majority of scenarios, and convergence
rates did not fall below 99.9% for any scenario (data not
shown). Log binomial regression also converged for all sim-
ulated data sets in most scenarios when adjustment was
made for a binary covariate but regularly failed to converge
for some simulated data sets when adjustment was made for
a continuous covariate. Convergence rates fell as low as
34.7% for scenarios with 50 clusters and 0.3% for scenarios
with 20 clusters. The convergence rate decreased as the
treatment or covariate relative risk increased and as the
number of clusters decreased, but was largely unaffected

by the study design (Table 1). Decreasing the baseline risk
resulted in more convergence problems in scenarios where
the covariate had no effect on the outcome but fewer prob-
lems otherwise, while decreasing the variance of the random
cluster effects had little influence on the results (data not
shown).

Both log binomial regression and modified Poisson re-
gression sometimes produced type I error rates that were
too high (Table 2) and coverage rates that were too low
(Table 3) compared with the nominal level. Any type I error
problems were minimal however, as the highest type I error
rates across all scenarios were only 7.1% and 7.0% for log
binomial regression and modified Poisson regression, re-
spectively. Coverage problems were also minimal when ad-
justment was made for a binary covariate but could be
substantial when controlling for a continuous covariate, par-
ticularly for log binomial regression. The minimum cover-
age rate across all scenarios was 72.7% for this method,
compared with 91.0% for modified Poisson regression.
The poorest coverage rates tended to occur when the treat-
ment and covariate effects were strongest. Type I error and
coverage rates were largely unaffected by the study design.
Decreasing the baseline risk and random effects variance
resulted in fewer type I error and coverage problems (data
not shown).

The mean percent relative bias in the estimated relative
risk was generally small for both log binomial regression
and modified Poisson regression (Table 4). Values ranged
from �10.4% to 6.4% for log binomial regression and from
�4.1% to 6.4% for modified Poisson regression across all
scenarios. Large differences in the mean percent relative bias
occurred between methods in scenarios where convergence
rates were poor for log binomial regression. In these scenar-
ios, the magnitude of the bias was typically larger for log
binomial regression compared with modified Poisson regres-
sion. Bias was otherwise very similar between methods. Rel-
ative risk estimates for individual simulated data sets were
also very similar between methods. Plots of estimates ob-
tained using the 2 approaches for several simulation scenar-
ios are shown in Figure 1; plots for other scenarios showed

Table 1. Convergence Rate for Log Binomial Regression, by GEEs With Exchangeable Correlation to Account for

Clustering, Based on 1,000 Simulated Data Sets for an Intervention or an Observational Study With Adjustment for

a Continuous Covariate

Treatment/Exposure
Relative Risk

Covariate
Relative Risk

Intervention Study Observational Study

20 Clusters 50 Clusters 20 Clusters 50 Clusters

1.00 1.00 98.5 100.0 98.5 100.0

1.25 93.9 100.0 95.1 100.0

2.00 19.4 91.8 15.4 91.1

1.25 1.00 98.5 100.0 98.5 100.0

1.25 89.9 100.0 91.4 100.0

2.00 13.9 84.6 8.1 80.9

2.00 1.00 93.8 100.0 93.8 100.0

1.25 75.5 99.9 73.2 99.9

2.00 3.3 51.5 4.0 46.4

Abbreviation: GEE, generalized estimating equation.
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a similar pattern. The median difference in estimates across
all scenarios was 0.00 (interquartile range ¼ 0.00–0.01).

Two illustrative examples follow below—an intervention
study and an observational study.

For an example intervention study, we considered data from
the SecondAustralianNationalBlood Pressure Study (29) that
was conducted in general practices across Australia. Patients
attending these practices were eligible to participate if they

were aged65–84years and had hypertension, defined by either
an average systolic blood pressure of at least 160mmHg or an
average diastolic blood pressure of at least 90 mm Hg com-
bined with an average systolic blood pressure of at least
140 mm Hg. Averages were based on 2 measurements taken
at least 1 week apart. Patients were recruited and randomized
between 1995 and 1998 to receive 1 of 2 antihypertensive
drugs: angiotensin-converting-enzyme (ACE) inhibitor or

Table 2. Type I Error Rate of a Wald Test for a Treatment/Exposure Effect for Log Binomial Regression and Modified Poisson Regression, by

GEEs With Exchangeable Correlation to Account for Clustering, Based on 1,000 Simulated Data Sets for an Intervention or an Observational

Study With Adjustment for a Binary or Continuous Covariate

No. of
Clusters

Covariate
Relative Risk

Intervention Study Observational Study

Binary Continuous Binary Continuous

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

20 1.00 5.9 6.0 5.1 5.1 6.0 5.9 5.4 5.8

1.25 6.7a 6.9a 6.2 6.5a 6.2 6.0 4.6 5.1

2.00 6.5a 6.6a 2.6 5.3 6.0 5.7 3.2 4.7

50 1.00 5.2 5.1 5.0 5.0 6.2 6.2 5.1 5.1

1.25 6.4a 6.3 4.8 4.8 5.0 5.1 6.0 6.2

2.00 4.4 4.7 7.1a 6.7a 6.3 6.3 4.8 4.1

Abbreviation: GEE, generalized estimating equation.
a Significantly different (P < 0.05) from the nominal level of 5% based on a 2-sided normal approximation test for a proportion.

Table 3. Coverage Rate of 95% Confidence Interval for the Relative Risk for Log Binomial Regression and Modified Poisson Regression, by

GEEs With Exchangeable Correlation to Account for Clustering, Based on 1,000 Simulated Data Sets for an Intervention or an Observational

Study With Adjustment for a Binary or Continuous Covariate

No. of
Clusters

Treatment/Exposure
Relative Risk

Covariate
Relative Risk

Intervention Study Observational

Binary Continuous Binary Continuous

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

20 1.00 1.00 94.1 94.0 94.9 94.9 94.0 94.1 94.6 94.2

1.25 93.3a 93.1a 93.8 93.5a 93.8 94.0 95.4 94.9

2.00 93.5a 93.4a 97.4 94.7 94.0 94.3 96.8 95.3

1.25 1.00 93.7 93.7 94.4 94.4 94.4 94.5 94.3 94.4

1.25 93.6a 93.5a 93.8 93.6a 94.1 94.0 93.8 94.3

2.00 94.3 94.2 95.7 95.0 94.6 94.4 95.1 94.4

2.00 1.00 93.9 94.1 94.0 94.2 94.3 94.4 94.0 93.7

1.25 93.4a 93.3a 94.3 94.3 94.2 94.4 93.6 93.5a

2.00 95.1 94.5 72.7a 91.0a 94.3 93.8 85.0a 93.4a

50 1.00 1.00 94.8 94.9 95.0 95.0 93.8 93.8 94.9 94.9

1.25 93.6a 93.7 95.2 95.2 95.0 94.9 94.0 93.8

2.00 95.6 95.3 92.9a 93.3a 93.7 93.7 95.2 95.9

1.25 1.00 94.2 94.3 95.1 94.9 94.4 94.6 94.4 94.7

1.25 93.7 93.7 94.7 94.8 94.4 94.4 95.0 95.1

2.00 94.5 93.8 93.9 94.4 94.2 94.5 92.8a 93.1a

2.00 1.00 93.8 93.7 94.5 94.4 93.9 93.9 94.2 94.2

1.25 94.4 94.6 94.3 94.4 94.8 94.6 94.1 94.3

2.00 93.7 92.8a 84.1a 91.7a 92.5a 93.1a 90.1a 94.2

Abbreviation: GEE, generalized estimating equation.
a Significantly different (P < 0.05) from the nominal level of 95% based on a 2-sided normal approximation test for a proportion.
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diuretic. A postal survey of medication adherence was con-
ducted in 2000 by using the instrument of Morisky et al. (30).
We analyzed responses to the question (‘‘Sometimes, if you
felt worse when you took your medicine, did you stop taking
it?’’) using log binomial regression and modified Poisson re-
gression. This question was answered by 3,664 patients from
657 practices. GEEs with exchangeable correlation were used
to account for clustering due to the grouping of patients within
general practices. The ICC for this outcomewas 0.03, indicat-
ing aweak positive dependence between responses of patients
from the same practice. This dependencemay be due in part to
the use of a common treatment approach for patients attending
the same practice. Results were adjusted separately for gender,
age, marital status, or all 3 covariates, each of which was re-
lated to the outcome. The mean age of responders was 72
years, 50% were male, 66% were married, 23% were wid-
owed, and 11% were single.

Of the 1,858 responders assigned to the ACE-inhibitor
group, 196 (11%) indicated that they sometimes stopped
taking their medication when they felt worse, compared
with 222 (12%) of the 1,806 responders assigned to the
diuretic group. The relative risk of answering ‘‘yes’’ to the
question (‘‘Sometimes, if you felt worse when you took your
medicine, did you stop taking it?’’) comparing the ACE-
inhibitor group with the diuretic group is given in Table 5.
Modified Poisson regression gave results similar to those
from log binomial regression, independent of the covari-
ate(s) controlled for in the analysis. All analyses showed

that the ACE-inhibitor group had a lower risk of answering
‘‘yes’’ compared with the diuretic group, with relative risks
of around 0.86, although this did not reach statistical
significance.

For an example observational study, we considered data
from patients with hyperlipidemia who participated in the
control arm of the Point of Care Testing Trial (31). These
patients were recruited from general practices in Australia
in 2005, and baseline information was collected from pa-
tients’ medical records. Patients were asked to complete
a questionnaire to collect baseline demographic information
and to determine whether they knew they had hyperlipid-
emia. Over an 18-month follow-up period, the results of any
cholesterol tests performed as part of their usual patient
management were collected. The primary outcome for the
trial was whether the final cholesterol result was within
a prespecified target range (32), based on clinical guidelines.
We performed an analysis to determine whether patient
awareness of their medical condition influenced this out-
come for high density lipoprotein cholesterol. Analysis
was based on 1,048 patients from 23 practices who com-
pleted the baseline questionnaire and who had at least 1
cholesterol test performed during the follow-up period.
Small sample bias corrections were made by using the
method of Mancl and DeRouen (27). Clustering due to the
grouping of patients within general practices was taken into
account by using GEEs with exchangeable correlation. The
dependence between outcomes of patients from the same

Table 4. Mean Percent Relative Bias in the Estimated Relative Risk for Log Binomial Regression and Modified Poisson Regression, by GEEs

With Exchangeable Correlation to Account for Clustering, Based on 1,000 Simulated Data Sets for an Intervention or an Observational Study With

Adjustment for a Binary or Continuous Covariate

No. of
Clusters

Treatment/Exposure
Relative Risk

Covariate
Relative Risk

Intervention Observational

Binary Continuous Binary Continuous

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

Log
Binomial

Modified
Poisson

20 1.00 1.00 1.85 1.86 1.90 2.01 2.44 2.43 2.07 2.26

1.25 1.58 1.55 2.46 2.18 0.98 0.95 2.40 2.23

2.00 0.33 0.37 �0.16 0.68 1.31 1.31 3.68 1.03

1.25 1.00 2.21 2.22 1.97 2.13 1.20 1.22 1.96 2.09

1.25 1.16 1.21 0.72 1.31 1.16 1.13 2.09 2.17

2.00 0.57 0.64 �4.68 �0.03 1.29 1.28 �1.11 1.22

2.00 1.00 0.86 0.86 1.13 1.43 2.82 2.81 1.06 1.38

1.25 1.38 1.37 �0.53 0.66 1.64 1.61 1.53 1.95

2.00 1.09 1.57 �10.39 �2.93 1.70 1.92 �5.18 �1.82

50 1.00 1.00 2.11 2.13 1.60 1.58 2.41 2.40 1.88 1.86

1.25 1.63 1.65 1.88 1.89 2.29 2.28 1.84 1.81

2.00 1.01 1.09 1.29 1.07 0.63 0.59 1.89 1.99

1.25 1.00 1.56 1.59 1.54 1.53 2.17 2.19 1.54 1.53

1.25 1.68 1.72 1.82 1.83 1.84 1.82 1.93 1.96

2.00 1.11 1.06 �1.03 �0.19 1.29 1.36 1.01 1.75

2.00 1.00 1.55 1.57 1.55 1.54 1.39 1.40 1.60 1.59

1.25 1.34 1.32 �0.33 �0.19 2.08 2.04 1.83 1.91

2.00 1.33 1.33 �8.22 �4.09 1.82 1.80 �5.42 �2.63

Abbreviation: GEE, generalized estimating equation.
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practice was weak, with an ICC of only 0.02. Results were
adjusted separately for gender, age, diabetes, or all 3 cova-
riates, each of which was related to both the outcome and
the exposure of interest. No adjustment was made for fre-
quency of testing during the follow-up period, because there
was no evidence to suggest that this was related to either the
outcome or the exposure. The mean age of patients was
66 years, 50% were male, and 35% had diabetes.

Of the 817 patients who knew they had hyperlipidemia,
644 (79%) had their final high density lipoprotein choles-
terol result within the target range, compared with 166
(72%) of the 231 patients who were unaware they had hy-
perlipidemia. The relative risk of having a final high density
lipoprotein cholesterol result within target range, comparing
those who knew they had hyperlipidemia with those who did

not, is given in Table 6. As for the intervention study exam-
ple, log binomial regression and modified Poisson regres-
sion produced similar results when the former method
converged. In contrast to the previous example, relative
risks varied depending on the covariate(s) included in the
model, ranging from 1.04 to 1.11. Statistical significance
also varied. The results of the model adjusting for all 3
covariates are of most interest because of greater control
for confounding compared with models adjusting for only
a single covariate. Log binomial regression failed to con-
verge in this case, while modified Poisson regression pro-
duced a relative risk of 1.04 (95% confidence interval: 0.94,
1.14), indicating a nonsignificant increase in the probability
of a positive health outcome for patients who were aware of
their condition.

Figure 1. Estimated relative risks from 1,000 simulated data sets for modified Poisson regression compared with log binomial regression, by
generalized estimating equations with exchangeable correlation to account for clustering. Data sets were simulated under an intervention study
design with 20 clusters and a treatment relative risk of 1 (A and C) or 2 (B and D). Adjustment was made for a binary (A and B) or a continuous
(C and D) covariate with a relative risk of 2.

Table 5. Relative Risk of Answering ‘‘Yes’’ to a Questiona Estimated From Log Binomial Regression and Modified

Poisson Regression, by GEEsWith Exchangeable Correlation to Account for Clustering, for Patients Assigned to the

ACE-Inhibitor Group Compared With the Diuretic Group in the Second Australian National Blood Pressure Study,

Australia, 1995–2001

Covariate
Adjustment

Log Binomial Modified Poisson

Relative Risk
95% Confidence

Interval
Relative Risk

95% Confidence
Interval

Gender 0.87 0.72, 1.04 0.87 0.72, 1.04

Age 0.86 0.71, 1.03 0.86 0.71, 1.03

Marital status 0.85 0.71, 1.02 0.85 0.71, 1.02

All of the above 0.86 0.72, 1.03 0.86 0.72, 1.03

Abbreviations: ACE, angiotensin-converting enzyme; GEE, generalized estimating equation.
a Question: ‘‘Sometimes, if you felt worse when you took your medicine, did you stop taking it?’’
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DISCUSSION

We studied the performance of the modified Poisson re-
gression approach for estimating relative risks from clus-
tered prospective data via simulation, using GEEs with an
exchangeable correlation structure to account for clustering.
This method performed well across a range of settings, in-
cluding intervention and observational study designs, as
well as small or large numbers of clusters. It produced type
I error and coverage rates that were close to the nominal
levels and mean percent relative biases that remained small
across the range of scenarios considered.

Modified Poisson regression gave results similar to those
from log binomial regression when the latter model con-
verged, as seen in the example data sets and in the simula-
tion study when adjustment was made for a binary covariate.
These results are consistent with previous findings in the
context of independent data (5, 9, 15, 16, 18). Modified
Poisson regression generally outperformed log binomial re-
gression in terms of bias and coverage in scenarios where
log binomial regression suffered most from convergence
problems. Log binomial regression failed to converge for
up to 99.7% of simulated data sets for a given scenario,
highlighting the need to consider alternative methods for
estimating relative risks. Surprisingly, modified Poisson re-
gression also failed to converge on rare occasions. Conver-
gence problems have not been observed for this method in
the independent data setting (9, 18). We investigated scenar-
ios where modified Poisson regression failed to converge in
our simulation study and found that convergence could be
achieved if the exchangeable working correlation structure
was replaced by an independence structure. In contrast,
convergence often remained a problem for log binomial re-
gression when an independence working correlation struc-
ture was specified. These findings suggest that modified
Poisson regression can overcome the convergence problems
of the log binomial model in the clustered data setting.
However, different working correlation structures may need
to be considered in order to achieve convergence in practice.

Modified Poisson regression was proposed as an alterna-
tive to log binomial regression for estimating relative risks
in the context of independent data, and its performance in
the context of clustered data is only now being investigated.
Despite this, the modified Poisson regression approach is

already in use for analyzing clustered data, with GEEs often
used to account for clustering (19, 20). Our results suggest
that application of modified Poisson regression combined
with GEEs is appropriate in this setting.

An alternative to using GEEs to account for clustering is
to fit a mixed-effects model with a random cluster effect.
A distribution must be assumed for the random effects that
may be difficult to verify, and misspecification can have
a substantial impact on the results (33). An advantage of
using GEEs is that the working correlation structure used
to account for clustering does not need to be correctly spec-
ified in order to produce consistent parameter estimates
(21).

Type I error rates were calculated for the simulation study
based on a Wald test of the null hypothesis of no treatment/
exposure effect. The Wald test was chosen as this could be
performed when small sample bias corrections were applied
and led to conclusions that were consistent with the 95%
confidence intervals for the treatment/exposure effect. How-
ever, the score test may be preferable to the Wald test in
practice. We investigated type I error rates based on the
score test for simulation scenarios, where the number of
clusters was 50 and, hence, small sample bias corrections
were not applied. The score test produced fewer type I error
rates that differed significantly from the nominal level com-
pared with the Wald test but did not alter our conclusions.

Our simulation study had several limitations. First, we did
not consider situations where cluster size is informative and,
hence, standard GEEs may not be valid. Cluster-weighted
GEEs may be more appropriate in this case (34�36) and
could be applied to both the log binomial and modified
Poisson approach when cluster size is related to the out-
come. Second, we did not consider situations where entire
clusters are randomized to the same treatment group or have
the same exposure status. This work is currently in progress.
Finally, we did not consider clustered data arising from re-
peated measurements taken on the same individuals over
time. Modified Poisson regression has been applied to clus-
tered data of this type (37, 38), and its performance in this
context is an area worthy of investigation.

In conclusion, log binomial regression can be a useful
tool for providing an estimate of the effect of treatment on
a binary outcome that is easy to interpret. If log binomial
regression fails to converge, relative risks can be estimated

Table 6. Relative Risk of Having an HDL Cholesterol Result Within Target Range Estimated From Log Binomial

Regression and Modified Poisson Regression, by GEEs With Exchangeable Correlation to Account for Clustering,

for Control Patients From the Point of Care Testing Trial Who Knew They Had Hyperlipidemia Compared With

Control Patients Who Did Not Know, Australia, 2005–2007

Covariate
Adjustment

Log Binomial Modified Poisson

Relative Risk
95% Confidence

Interval
Relative
Risk

95% Confidence
Interval

Gender Did not converge 1.06 0.96, 1.17

Age 1.11 1.00, 1.22 1.10 1.00, 1.22

Diabetes 1.06 0.97, 1.16 1.06 0.97, 1.17

All of the above Did not converge 1.04 0.94, 1.14

Abbreviations: GEE, generalized estimating equation; HDL, high density lipoprotein.
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by using the modified Poisson regression approach. This
approach has previously been shown to work well for ana-
lyzing independent data (5, 9, 10, 15–18). Our results sup-
port the use of modified Poisson regression for analyzing
clustered prospective data when clustering is taken into ac-
count by using GEEs.
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