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Abstract
In geotechnical engineering, transformation models are often used as first estimates of parameters and to verify the order of 
magnitude of field and laboratory tests, which reliability might be constrained by many uncertainties. The undrained shear 
strength has been for long of particular interest for such models. The traditional transformation models for undrained shear 
strength are often rather simple. Still, the geotechnical community does not seem to have agreed upon which models to use. 
In particular, the question of including index properties to the models seems to be open. In the paper, the performance of 
traditional transformation models is compared to that of machine learning (ML)-based models. In addition, the influence 
of data coherence is studied by using two datasets of different quality. The ML-based transformation models proved to 
perform better than traditional ones for both datasets. Clearly, most dominant variables in the transformation model are the 
preconsolidation pressure and the effective vertical stress. Although including additional variable often may well improve 
the performance of the training set, the prediction of the testing sets generally tends to worsen, indicating overtraining. The 
risks for overtraining increase with incoherent data.
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Introduction

Geotechnical data obtained by field and laboratory investiga-
tions is often both complex and incoherent. This can be seen, 
for example, when trying to find correlations and transforma-
tion models between various parameters. Different research-
ers suggest different correlations where the key regressor 
varies. Many times, none of them can give very accurate 
description, while the original data seems rather scattered. 
Part of the problem is the variation and uncertainty related 
to geotechnical properties. This is often divided into an 
inherent (natural) variability and an epistemic uncertainty. 
The inherent variability represents the natural variation of 
the property. The epistemic uncertainty is more complex. 
It includes statistical uncertainty, measurement error, and 

transformation model uncertainty. It is then difficult to unveil 
the true complexity of geotechnical data.

The use of machine learning (ML) has engaged popu-
larity in many fields of application, also in geotechnical 
engineering (Zhang and Phoon 2022, Zhang et al. 2022). 
It is tempting to develop ML-based models that describe 
complicated geotechnical phenomena. The learning ability 
of ML models makes it an attractive tool to reveal the hidden 
connections for examples between various soil parameters. 
However, if the data is incoherent and there exists a lot of 
variation due to errors in measurements or some other rea-
sons, this becomes a great challenge to the learning process. 
This might well cause overfitting of the ML model, and even 
though the statistical parameters might indicate improved 
correlation, for some combinations the model might give 
predictions that are completely out of plausible range. Such 
models might thus give an improved solution for a vast 
majority of cases, but for the other ones, the result might be 
quite misleading.

Transformation models for estimating undrained shear 
strength have been of particular interest in geotechnical engi-
neering for long. Traditional transformation models can be 
roughly divided into two types, as shown by Eqs. (1) and (2).
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where � , S , and m are either constants or functions of some 
soil properties. Their values depend on the material and the 
test type. For example, Skempton  (1954) suggested a cat-
egory (1) equation for the field vane shear strength su

FV of 
normally consolidated clays, where the factor � depends on 
the plasticity index (PI). For Scandinavian clays, Hansbo 
(Hansbo 1957) suggested the use of liquid limit (LL) instead 
of PI. Later, Chandler (Chandler 1988) extended Skempton’s 
and Larsson (Larsson 1980) Hansbo’s ideas to overconsoli-
dated (OC) clays. Equation (2) was first suggested by Ladd 
and Foot (Ladd and Foot 1974) and is often referred as the 
SHANSEP approach.

It has been recognized for long, that the su
FV should be 

corrected with respect to plasticity to account for anisotropy 
and rate effects (Bjerrum 1972; Taylor 2001). This corrected 
value is often referred to as su(mob). It is often assumed that 
the su(mob) value is approximately equal to the undrained 
shear strength determined by the direct simple shear (DSS) 
tests, i.e., the su

DSS value. However, it should be acknowl-
edged that rate effects are present in the DSS as well.

Mesri (Mesri 1975) suggested the use of Eq.  (1) for 
su(mob) using a constant value of � = 0.22 . Jamiolkowski 
et al. (Jamiolkowski et al. 1985) suggested category (2) 
equation with S = 0.23 ± 0.04 and m = 0.8 . However, for 
su

DSS, Larsson et al. (Larsson et al. 2007) suggested that S 
depends linearly on the LL, while Karlsrud and Hernandez-
Martinez (Karlsrud and Hernandez-Martinez 2013) pro-
posed the use of the water content ( w ). Ching and Phoon 
(Ching and Phoon 2012) also suggested the use of category 
(2) equation but proposed that S would be dependent on LI, 
sensitivity (St), or both. D’Ignazio et al. (D’Ignazio et al. 
2016) concluded that while the su

FV correlates with the index 
properties (PI, LL, w , and LI), the su(mob) values seem to 
be unaffected by them.

Based on the above, it seems that while majority of moe 
that equations of category (re recent research seems to prefer 
the use of category (2) equations, it is unclear whether index 
properties should be included when predicting the design 
value su(mob). It should also be acknowledged that there is 
now evidence that equations of category (1) or (2) would be 
the best one to correlate the preconsolidation pressure and in 
case of (2) also the effective vertical stress, to the undrained 
shear strength. Machine learning (ML) offers a valuable tool 
to test the dependencies between undrained shear strength 
and other soil properties. Recently, Zhang et al. (Zhang and 
Phoon 2022) studied the use of extreme gradient Boosting 
(XGBoost) and random forest (RF) learning methods to 

(1)Su = ��
�

p

(2)
Su

�
�

v

= SOCRm

study these relationships for su
FV for a database consisting 

of Scandinavian clays. In short, they obtained the best per-
formance with the XGBoost and RF models in comparison 
to three other ML models and two transformation models of 
category (2) where the value of S was made dependent on 
either w or LL. They also concluded that the preconsolida-
tion pressure is the most dominant factor, with a relative 
importance of 54.3% for their XGBoost model, while the 
value was 20.3% for effective vertical stress, 12.5% for PL, 
6.8% for w , and 6.1% for LL. Based on a fivefold cross-
validation of the ML models, they concluded that the models 
are influenced by the data quality.

While the study of Zhang et al. (Zhang and Phoon 2022) 
gives some important insights on the possibilities of ML 
models and the importance of various soil properties, it 
remains unclear which properties to include in predicting 
the su(mob) used in design. In addition, the differences of 
various proposed models could be partly explained by the 
quality of data used. This paper attempts to bring more clari-
fication to these questions. The scope of this paper is thus 
not on finding the best transformation model for engineer-
ing purposes but rather to (1) study which combination of 
soil properties gives the best estimate of su(mob), (2) study 
what is the influence of dataset quality on the models, and 
(3) study and exemplify the risks of overfitting. It is believed 
that ML models provide a good tool for such study providing 
much more freedom in the intervariable correlations than 
normally achieved by traditional transformation models. 
Artificial neural networks (ANN) will be used as the main 
ML method while multivariate adaptive regression spline 
(MARS) and genetic programming (GP) will be used as 
comparative ML methods and category (1) and (2) equa-
tions will be used for comparisons.

Datasets used in study

Two different datasets are used in the study. Ching and 
Phoon (Ching and Phoon 2014) proposed labeling a mul-
tivariate database as “soil type”/ “number of parameters of 
interest”/ “number of data points.” The first dataset taken 
from D’Ignazio et al. (D’Ignazio et al. 2016) and labelled 
as F-CLAY/7/216 contains thus 216 data points each con-
taining 7 parameters for Finnish clays. The dataset can 
be found on the webpage of ISSMGE technical commit-
tee 304 at http://​140.​112.​12.​21/​issmge/​tc304.​htm. How-
ever, the preconsolidation pressures used in this study are 
all normalized with respect to strain rate to correspond 
to a typical strain rate applied in CRS oedometer tests 
(1 × 10−6 s−1–4 × 10−6 s−1), using the same first-order cor-
rection as D’Ignazio et al. (D’Ignazio et al. 2016). The clay 
parameters in the dataset consist of undrained shear strength 
determined by the field vane (su

FV), in situ effective vertical 
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stress (σ′v), preconsolidation pressure (σ′p), liquid limit (LL), 
plastic limit (PL), water content ( w ), and sensitivity (St). In 
addition, the location and the depth of the data points are 
known. In this study, the focus is on the design value of 
undrained shear strength, i.e., on su(mob). The correction 
of su

FV is done according to Finnish guidelines (Ratahal-
lintokeskus 2005) following the ideas of Bjerrum (Bjerrum 
1972) and Helenelund (Helenelund 1977) applying a cor-
rection factor dependent of the liquid limit. The basic sta-
tistics, including mean, median, minimum, and maximum 
values, and coefficient of variation (COV) of the datasets are 
summarized in Table 1. In addition to the parameters listed 
above, also the statistics for calculated over consolidation 
ratio (OCR = σ′p/σ′v) and the ratio su(mob)/σ′p is provided.

The second dataset labelled as F-CLAY/7/135 is a sub-
set of the previous dataset. Therein an attempt is made, 
to remove outliers. It is well known that the undrained 
shear strength is closely related to the preconsolidation 
pressure. The changes of these parameters with respect 
to depth should thus be consistent. As already discussed, 
Mesri (Mesri 1975) suggested the ratio su(mob)/σ′p to be 
0.22 for clays in general. There should thus not be too high 
variation of the ratio within an otherwise homogenous clay 
layer, even if the expected value of this ratio is not restricted. 
Any clear deviations found in F-CLAY/7/216 with respect 
to the above will be considered as outliers and removed. 
Some sites also include data from the dry crust layers. As 

this data is very limited, it is not considered in the second 
dataset. The criteria described above includes the use of 
engineering judgement and involves thus subjectivity. With 
respect to statistical criteria removing data outside the limits 
su(mob)/σ′p  = mean ± 2COV, corresponding to a 95% con-
fidence interval for a normally distributed data, the criteria 
applied removed all except one data point on the high side. 
The aim herein is not to produce a “perfect” dataset, but 
rather to study the influence of data coherence on the perfor-
mance of various models. The basic statistics for the second 
datasets are summarized in Table 1. The performance of 
the criteria is further discussed in the “Discussion” section.

As can be seen from Table  1, the removal of outli-
ers has not considerably narrowed the range of values 
for the variables, comparing datasets F-CLAY/7/216 and 
F-CLAY/7/135. For the OCR, the maximum value has 
reduced to almost half, but the mean and median values are 
close for the two datasets. With respect to data coherence 
for the present study, the most interesting variable is the 
ratio between the undrained shear strength and the precon-
solidation pressure. As discussed above, this is sometimes 
considered a constant. In Fig. 1, the statistics for the ratio 
su(mob)/σ′p is illustrated for the two datasets.

As can be seen, the dataset F-CLAY/7/135 is much 
more coherent with respect to the ratio su(mob)/σ′p than 
F-CLAY/7/216. It is believed that the development of ML-
based transformation models in the next sections will reveal 

Table 1   Basic statistic for the 
two datasets

Variable Mean Median Min Max COV

F-CLAY/7/216 Depth 6.72 6.00 0.50 24.0 0.59
su

FV (kPa) 21.44 20.00 5.00 75.00 0.50
σ′v (kPa) 46.99 42.62 7.50 163.00 0.48
σ′p (kPa) 97.33 78.37 25.40 292.10 0.54
LL (%) 66.28 65.00 22.00 125.00 0.30
PL (%) 27.74 25.00 10.00 50.00 0.20
w(%) 76.34 75.00 25.00 150.00 0.27
St 17.45 11.00 2.00 64.00 0.79
sumob (kPa) 19.31 17.30 3.70 66.20 0.51
OCR 2.22 1.87 1.00 8.02 0.52
sumob/σ′p 0.21 0.20 0.06 0.47 0.28

F-CLAY/7/135 Depth 6.92 6.00 1.50 24.0 0.55
su

FV (kPa) 21.25 20.00 5.00 55.00 0.43
σ′v (kPa) 47.83 43.50 10.10 163.00 0.47
σ′p (kPa) 93.91 80.00 25.40 279.40 0.50
LL (%) 66.83 66.90 22.00 125.00 0.29
PL (%) 28.01 27.00 10.00 50.00 0.21
w(%) 78.57 80.00 25.00 150.00 0.26
St 18.15 12.50 2.00 52.30 0.74
sumob (kPa) 19.16 18.00 3.70 47.80 0.44
OCR 2.03 1.79 1.11 4.23 0.35
sumob/σ′p 0.21 0.21 0.15 0.34 0.18
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if true outliers where removed, or if the data F-CLAY/7/216 
will better show hidden connections between the variables.

Transformation models and ML methods 
used in study

Statistical parameters used in the development 
and evaluation of the models

In the development and evaluation of the different models, 
the following statistical parameters are utilized: bias fac-
tor ( b ), coefficient of variation (COV), standard deviation � 
(STD), the Pearson correlation coefficient ( R ) or its squared 
value (R2), and the mean square error (MSE).

The bias b is the mean of the ratio between the actual 
target value ( x ) and the predicted value ( y ), i.e.,

So, if the bias b = 1 , the model provides on average an 
unbiased prediction.

The amount of uncertainty a parameter/property has can 
be described with the coefficient of variation (COV), which 
is a dimensionless ratio between the standard deviation � and 
the mean value � of the property, i.e.,

It shows thus the extent of variability in relation to the 
mean of the population, the closer the value of COV is to 
zero, the smaller is the scatter of the data, with COV = 0 
indicating that the prediction is deterministic.

The standard deviation � of the entire population of vari-
able ( x ) is given by

(3)b =
1

n

n
∑

i=1

xi

yi

(4)COV =
�

�

The Pearson correlation coefficient ( R ) is a measure of 
the linear correlation between two variables. It is defined 
as the covariance of the two variables ( x, y ) divided by the 
product of their standard deviations, i.e.,

R has values in between + 1 and −1 , where + 1 indicates 
total positive linear correlation, 0 no linear correlation, 
and − 1 total negative linear correlation.

MSE is a risk function that measures the average squared 
difference between the predicted ( y ) and the values that are 
estimated ( x ). It can be calculated as

MSE obtains positive values, the closer to zero the better 
is the prediction.

Traditional transformation models

As discussed in “Datasets used in study,” the traditional 
transformation models will be based on categories (1) and 
(2) types of equations. Equation (1) will be utilized in two 
different ways. Firstly, � will be fitted to give the best aver-
age fit with bias equal to one, and the performance of this 
model is then evaluated by its COV value. Secondly, � will 
be evaluated to give perfect match for each data point to 
study if the resulting � correlates to the classification data. 
Equation (2) will be firstly evaluated by using the values 
S = 0.244 and m = 0.763 proposed by D’Ignazio et  al. 
(D’Ignazio et al. 2016). Secondly, specific correlations for 
S and m will be studied.

ANN‑based transformation models

General

ANN, as a form of artificial intelligence, imitates the behav-
ior of the brain and nervous system (Shahin et al. 2001). The 
brain is a highly complex, nonlinear, and parallel informa-
tion-processing system. To perform the necessary computa-
tions, like pattern recognition, perception, and body control, 
it organizes some constituents named as neurons.

A neuron is a fundamental information-processing unit 
in the operation of a neural network (Haykin 2005). Fig-
ure 2 shows a neuron model and the architecture of the 
ANN model used in this study.

(5)�x =

�

∑n

i=1

�

xi − �x

�2

n

(6)R =
COV(x, y)

�x�y

(7)MSE =
1

n

n
∑

i=1

(

xi − yi
)2
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Fig. 1   Ratio between undrained shear strength and preconsolidation 
pressure for the two datasets
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In the mathematical modeling, the three considered 
basic elements of the neural model are as below:

1.	 A set of synapses or connecting links which are modeled 
by a parameter considered as weight. An input signal xj 
at the input of synapse j connected to neuron k is multi-
plied by the synaptic weight wkj.

2.	 A function for summing the weighted input signals for 
each neuron.

3.	 An activation function for limiting the amplitude of the 
output of a neuron. Different activation functions might 
be utilized, such as sigmoid which is used in this study, 
and the normalized amplitude of the output of a neuron 
often ranges in the closed interval [0, 1] or [−1, 1].

An externally applied bias, denoted by bk, is also 
included in the neural model. The bias increases or 
decreases the input of the activation function, depending 
on whether it is positive or negative, respectively.

In other words, a neuron k is modeled mathematically 
by the following equations:

and

where x1, x2, …, xm are the input signals; wk1, wk2, …, wkm are 
the synaptic weights of neuron k; uk is the linear summation 
function; bk is the bias; φ is the activation function; and yk 
is the output signal of the neuron. The use of bias bk has the 
effect of applying an affine transformation to the output uk 
of the linear combiner in the model of Fig. 2 (Haykin 2005).

(8)uk =

m
∑

j=1

wkjxj

(9)yk = �
(

uk + bk
)

Input–output mapping

A popular paradigm of learning called learning with a 
teacher or supervised learning involves modification of the 
synaptic weights (and biases) of a neural network by apply-
ing a set of training samples. Each example set of samples 
consists of a unique input signal and a corresponding esti-
mated response (output signal). The network training is per-
formed using some examples picked at random (or selected 
by user) from the samples sets, and the synaptic weights 
of the network are modified to minimize the difference 
between the estimated and the actual values of the desired 
output parameter(s). The difference between the estimated 
and actual outputs is computed by means of an appropriate 
statistical error criterion such as MSE. The training of the 
network is repeated for many examples in the input–output 
datasets until the network reaches a steady state, where there 
are no further significant changes in the synaptic weights.

Multilayer feedforward networks

The arrangement of the neurons of a neural network is 
intimately linked with the learning algorithm used to train 
the network and should be structured. As a commonly uti-
lized architecture which is employed in this study also, the 
multilayer feedforward network, known also as Multilayer 
Perceptron (MLP), consists of one or more hidden layers, 
whose computation nodes are called hidden neurons or hid-
den units. The hidden layer(s)/neurons intervene the network 
input and output layers.

The nodes in the input layer (the input vector) consti-
tute the input signals applied to the neurons (computation 
nodes) in the second layer (i.e., the first hidden layer). The 
output signals of the second layer are used as inputs to the 
third layer and so on for the rest of the network. The set of 

Fig. 2   Architecture of a typical 
3-layer feedforward network of 
ANN (Haykin 2005) for simula-
tion of corrected field vane 
strength
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output signals of the neurons in the output (final) layer of 
the network constitutes the response of the network to the 
source nodes in the input (first) layer. The three-layer feed-
forward ANN architecture used in this study is shown in 
Fig. 2 (Haykin 2005).

As the learning algorithm, back propagation approach 
was used so that the variables of the model, i.e., weights 
and biases, would be optimized. In this algorithm, MSE is 
propagated back from the output to the connection weights 
and updates the weights to minimize the prediction error 
(Foroozesh et al. 2014). The Levenberg–Marquardt (LM) 
method was used to minimize the error criterion because it 
is fast, accurate, and reliable (Adamowski and Chan 2011; 
Adamowski and Karapataki 2010). The LM algorithm is a 
modification of the classic Newton algorithm for finding an 
optimum solution to a minimization problem (Adamowski 
and Karapataki 2010; Daliakopoulos et al. 2005).

The mathematical computations of the ANN modeling 
are implemented by means of the MATLAB ANN toolbox. 
The primary objective of the ANN modeling has been to 
perform the input–output mapping, i.e., to capture the rela-
tionships/correlations between the input and output variables 
with the least error criterion.

GP‑based transformation models

Genetic programming (GP) is developed based on the con-
cept of genetic algorithm (Koza 1992). In GP, transforma-
tion models are encoded as a set of genes that are then modi-
fied using an evolutionary algorithm. Firstly, many equations 
are created based on the input variables. The fitness of each 
equation is then determined in the second step. Thereaf-
ter, the best equation is selected. New equations are cre-
ated through the procedure of reproduction, crossover, and 
mutation. In Fig. 3, the flowchart for the GP procedure is 
presented.

MARS‑based transformation models

Multivariate adaptive regression splines (MARS) is devel-
oped based on the concept of nonparametric regression 
(Friedman 1991) and can be seen as an extension of linear 
models that automatically model nonlinearities and inter-
actions between variables. It adopts the following relation 
between input ( x ) and output ( y).

where c0 is constant, Bm(x) is m-th basis function, cm is the 
coefficient of m-th basis function, and M is the number of 
basis functions.

(10)y = c0 +

M
∑

m=1

cmBm(x)

The expression of basis function is given below (Sekulic 
and Kowalski 1992):

Otherwise,

where q is power, t is the knot location, and b−
q
(x − t) and 

b+
q
(x − t) are the spline functions. The development of 

MARS model involves two steps, namely, a forward and a 
backward step as follows.

Forward step: this step is used to introduce basis func-
tion in Eq. (10). MARS can suffer overtraining due to large 
number of basis functions.

Backward step: for preventing overfitting, extra basis 
functions have been deleted from Eq. (10). Generalized 
cross-validation (GCV) value is used to delete the extra basis 
functions. The expression of GCV is given below:

where N  is the number of data and C(B) is a complexity 
penalty that increases with the number of BF in the model 
and which is defined as

(11)b−
q
(x − t) = [−(x − t)]

q

+ =

{

(t − x)q

0
ifx > t

(12)b+
q
(x − t) = [+(x − t)]

q

+ =

{

(x − t)q

0

(13)GCV =

1

N

∑N

i=1

�

yi − f
�

xi
��2

�

1 −
C(B)

N

�2

(14)C(B) = (B + 1) + dB

Fig. 3   Flowchart for simple genetic programming (GP) model
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where d is a penalty for each basis function (BF) included 
into the model. The details about d are given by Friedman 
(Friedman 1991).

The flowchart for MARS is given in Fig. 4.

Performance of the models

Performance of traditional models

Firstly, the performance of Eq. (1) was evaluated by fitting 
the value of � to give an unbiased prediction of the undrained 
shear strength. The obtained values for � and corresponding 
b between the measured and the predicted COV for the ratio 
between measured and predicted and R2 and MSE between 
the measured and the predicted mobilized undrained shear 
strength values are presented in Table 2.

In the second round, the value of � was fitted to each data 
point to give an exact fit. The obtained � values did not show 
any notable correlation with most of the soil data. For the data-
set F-CLAY/7/216, no correlation was found. For the dataset 
F-CLAY/7/135, some correlation was found for the OCR. The 
best fit was found using Eq. (15).

The obtained values for n1 and n2 are 0.2444 and − 0.247, 
respectively, giving a COV = 0.446 and R2 = 0.23.

(15)� = n1OCR
n2

Introducing Eq. (15) into Eq. (1), gives the following 
modified version of Eq. (1):

It is worth noticing that this equation is the same equation 
as (2) and can be rewritten into

The performance of Eq. (2b) with the obtained n1 and n2 
values and corresponding b, COV, R2, and MSE values is 
presented in Table 2 for dataset F-CLAY/7/135.

The performance of Eq. (2) was first evaluated by using 
the values S = 0.244 and m = 0.763 obtained by D’Ignazio 
et al. (D’Ignazio et al. 2016). As can be expected, these val-
ues give a very good performance for dataset F-CLAY/7/135, 
as the data is almost the same and Eq. (2)_135 is almost 
identical to the previous Eq. (2b)_135; see Table 2. On the 
other hand, for dataset F-CLAY/7/216, the performance was 
much poorer. It is interesting to note that for this dataset the 
inclusion of OCR did not improve the prediction at all. It 
was also observed that if the preconsolidation pressures of 
dataset F-CLAY/7/216 had not been normalized, the predic-
tion of Eq. (2) would have been poorer than the one from 
Eq. (1).

The performance of Eq. (2) was further evaluated by fit-
ting both the value of S and m for each data point to yield 
the perfect match. However, the obtained S and m values did 
not show any correlation to any of the data. A special effort 
was tried out to correlate S to the plasticity index. The reason 
behind is that for the active undrained shear strength the 
value of S is likely to increase with the friction angle, as the 
yield surface gets more inclined. There is no data of the fric-
tion angles, but generally, the friction angle is found to cor-
relate with the plasticity index. However, even if the value of 
S for active undrained strength might increase with the fric-
tion angle due to higher inclination of the yield surface, for 
the same reason, the S value for the passive undrained shear 
strength should decrease. The field vane value, representing 
more the average of active, direct shear and passive, is thus 
likely to be uninfluenced by the friction angle.

(16)Su = n1�
i
pOCR

n2

(2b)Su = n1�
�

vOCR
1+n2

Fig. 4   Flowchart for the MARS model

Table 2   Performance of various 
traditional transformation 
models, b between the measured 
and the predicted, COV for the 
ratio between measured and 
predicted, and R2 and MSE 
between the measured and the 
predicted mobilized undrained 
shear strength values

Dataset Equation b COV R2 MSE

F-CLAY/7/216 (1)_216 s
u
= 0.208 ⋅ �

�

p   1.000 0.2803 0.642 45.34
(2)_216 s

u
= 0.244 ⋅ �

�

vOCR
0.763   1.010 0.2995 0.606 43.13

(2)*_216 s
u
= 0.213 ⋅ �

�

vOCR
0.97   1.000 0.2797 0.640 44.60

F-CLAY/7/135 (1)_135 s
u
= 0.211 ⋅ �

�

p   1.000 0.1748 0.865 14.05
(2b)_135 s

u
= 0.244 ⋅ �

�

vOCR
0.753   1.013 0.1531 0.879 9.78

(2)_135 s
u
= 0.244 ⋅ �

�

vOCR
0.763   1.007 0.1532 0.880 9.96

(2)*_135 s
u
= 0.25 ⋅ �

�

vOCR
0.735   1.000 0.1533 0.880 10.15
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As any attempt to further improve the performance of 
Eq. (2) did not yield any notable improvement, an unbiased 
parameter set was finally introduced as set (2)* in Table 2. 
The COV values are shown with 4 digits just to show the 
infinite small differences between models (2b)_135, (2)_135, 
and (2)*_135. In practice, their performance is equally good. 
It is worth noting that for dataset F-CLAY/7/216, the best fit 
of Eqs. (1) and (2)* gives practically the same result. Their 
similarities are also shown in the value of parameter m for 
(2)*_216 being close to one. The predictions of Eqs. (1) and 
(2)* are shown in Fig. 5 together with a range of ± 2 COV.

Performance of ANN models

Based on the available databases, different scenarios of 
input–output mappings were performed, and their parameter 
estimation precisions were calculated. In all scenarios, the 
mobilized vane shear strength was considered as the out-
put, but the input parameters, in situ vertical effective stress 
(σ'v), preconsolidation pressure (σ'p), overconsolidation ratio 
(OCR), liquid limit (LL), plastic limit (PL), water content 
( w ), depth, and sensitivity (St) were arranged in different 

scenarios such that the estimation accuracy of the ANN 
models and GP, MARS, and some traditional empirical 
equations could be compared. As another target of organiz-
ing different scenarios, a sensitivity analysis was performed 
among the input variables to identify the least number of 
soil properties that might lead to the best estimation of the 
modified vane shear strength of soil. Altogether 16 different 
scenarios were verified. The considered input parameter(s) 
in each scenario and the statistics of their performance are 
presented in Table 3.

Based on the observations from the previous stud-
ies, regarding the complexity of the models, usually 3 to 
10 neurons lead to the best results (Foroozesh et al. 2014; 
Karaagac et al. 2009; Khosrojerdi et al. 2016). So, in this 
study, 7 neurons were considered in all ANN models so that 
the results of different models might be compared. For the 
training and verification, the data was divided into training 
(70%), validation (15%), and testing (15%) datasets. The 
same 70% training dataset was later used for training of the 
GP and MARS models, while testing of them was done for 
the rest of the data (30%). The validation dataset is used for 
the generalization of the ANN model in the training process. 

Fig. 5   Performance of Eq. (1) 
for dataset F-CLAY/7/216 (a) 
and F-CLAY/7/135 (c) and 
Eq. (2) for F-CLAY/7/216 (b) 
and F-CLAY/7/135 (d). The 
dotted lines represent the range 
of predictions corresponding 
to ± 2 COV

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

P
r
e
d
ic
te
d
 s

u
[k
P
a
]

Measured s
u
[kPa]

a) Equation (1)_216

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

P
r
e
d
ic
te
d
 s

u
[k
P
a
]

Measured s
u
[kPa]

b) Equation (2)_216

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

P
r
e
d
ic
te
d
 s

u
 [
k
P
a
]

Measured s
u
[kPa]

c) Equation (1)_135

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

P
r
e
d
ic
te
d
 s

u
[k
P
a
]

Measured s
u
[kPa]

d) Equation (2)_135

183   Page 8 of 18 Arab J Geosci (2023) 16:183



1 3

Table 3   Results of ANN analysis with various trials for databases of F-CLAY/7/216 and F-CLAY/7/135

Trial Parameters to train ANN Data F-CLAY/216 database F-CLAY/135 database

b COV R2 MSE b COV R2 MSE

1 σ′v All 1.003 0.475 0.352 63.289 0.996 0.279 0.664 23.932
Train (70%) 0.998 0.507 0.314 69.152 1.022 0.277 0.664 25.611
Validation (15%) 0.933 0.467 0.268 54.101 0.920 0.255 0.789 14.232
Test (15%) 1.104 0.304 0.532 45.094 0.953 0.286 0.491 26.228

2 σ′p All 1.012 0.248 0.764 23.196 1.005 0.153 0.892 7.714
Train (70%) 1.000 0.255 0.755 24.638 1.000 0.142 0.891 8.233
Validation (15%) 0.986 0.210 0.824 12.686 1.003 0.155 0.902 6.720
Test (15%) 1.097 0.233 0.750 27.231 1.032 0.193 0.876 6.321

3 σ′v, σ′p All 1.012 0.234 0.841 15.520 0.995 0.139 0.924 5.441
Train (70%) 1.002 0.233 0.859 14.162 1.000 0.128 0.930 5.313
Validation (15%) 0.997 0.206 0.839 11.876 0.963 0.150 0.938 3.979
Test (15%) 1.077 0.250 0.729 25.686 1.004 0.166 0.848 7.583

4 σ′v, OCR All 1.009 0.235 0.831 16.585 0.995 0.142 0.927 5.169
Train (70%) 0.996 0.235 0.845 15.597 1.002 0.128 0.934 5.012
Validation (15%) 0.975 0.198 0.859 11.747 0.964 0.170 0.907 5.899
Test (15%) 1.108 0.243 0.750 26.233 0.991 0.169 0.901 5.138

5 σ′v, σ′p, OCR All 1.011 0.233 0.839 15.798 1.004 0.142 0.932 4.841
Train (70%) 1.001 0.232 0.852 14.881 1.001 0.118 0.938 4.713
Validation (15%) 0.984 0.197 0.878 9.358 1.012 0.203 0.938 3.976
Test (15%) 1.090 0.253 0.731 26.767 1.012 0.163 0.874 6.353

6 σ′v, OCR, LL All 1.009 0.218 0.881 11.641 1.002 0.131 0.931 4.914
Train (70%) 1.002 0.199 0.914 8.702 1.000 0.121 0.938 4.685
Validation (15%) 0.971 0.228 0.846 14.692 0.980 0.129 0.932 4.298
Test (15%) 1.081 0.264 0.767 22.364 1.033 0.165 0.870 6.634

7 σ′v, OCR, LL, PL All 1.009 0.244 0.844 15.220 1.010 0.154 0.891 7.771
Train (70%) 0.999 0.221 0.872 12.853 1.002 0.143 0.898 7.728
Validation (15%) 0.969 0.210 0.846 12.294 1.005 0.183 0.890 7.022
Test (15%) 1.099 0.324 0.689 29.406 1.054 0.163 0.836 8.758

8 σ′v, σ′p, OCR, LL, PL All 1.012 0.253 0.861 13.545 1.055 0.215 0.900 7.609
Train (70%) 1.006 0.238 0.906 9.514 1.048 0.134 0.920 6.887
Validation (15%) 0.971 0.267 0.795 17.946 1.077 0.401 0.883 7.393
Test (15%) 1.082 0.289 0.700 28.024 1.068 0.224 0.789 11.233

9 σ′v, OCR, LL, PL, ω, depth All 1.052 0.215 0.885 11.680 1.231 1.929 0.912 6.409
Train (70%) 1.044 0.184 0.922 8.216 1.004 0.116 0.935 4.946
Validation (15%) 1.001 0.259 0.845 13.958 2.363 2.490 0.870 9.979
Test (15%) 1.142 0.266 0.768 25.674 1.111 0.222 0.839 9.537

10 σ′v, σ′p, OCR, LL, PL, ω, depth All 1.031 0.220 0.861 13.889 0.987 0.331 0.899 7.265
Train (70%) 1.024 0.208 0.887 11.601 0.992 0.122 0.932 5.166
Validation (15%) 0.985 0.214 0.842 12.566 0.867 0.842 0.830 12.491
Test (15%) 1.110 0.251 0.758 26.049 1.088 0.239 0.795 11.641

11 σ′v, St, OCR All 1.010 0.227 0.843 15.383 0.998 0.141 0.920 5.687
Train (70%) 1.000 0.216 0.869 13.237 1.003 0.126 0.930 5.322
Validation (15%) 0.967 0.232 0.814 15.165 0.976 0.169 0.917 5.314
Test (15%) 1.101 0.242 0.753 25.730 1.002 0.168 0.844 7.794

12 σ′v, ω, OCR All 1.004 0.213 0.871 12.608 0.996 0.144 0.925 5.363
Train (70%) 1.002 0.202 0.886 11.436 0.997 0.126 0.933 5.093
Validation (15%) 0.954 0.206 0.883 11.595 1.007 0.194 0.902 6.095
Test (15%) 1.066 0.243 0.796 19.178 0.980 0.157 0.885 5.863
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However, the validation and test dataset error criteria of the 
ANN model are compared with the test dataset for the GP 
and MARS models, mainly because of limited amount of 
data, especially for F-CLAY/7/135. Traditionally, a single 
training is performed for the ANN models, accepting the 
results as such. However, due to random initial guess of the 
optimization model in training of the ANN, repeating train-
ing with the same data will yield different results. To study 
more this aspect, training was done 1000 times for each trial. 
The differences between the trials will be discussed later. For 
Table 3, the training sets giving the lowest weighted sum for 
MSEtrain, MSEvalidation, and MSEtest, with equal weights 
for each, were chosen. In Fig. 6, the COV, R2, and MSE 
values are presented for the different trials for the training 
and test data.

Studying the data in Table 3 and Fig. 6, several inter-
esting conclusions can be made. Trial 2 seems to give a 
relatively good prediction using only the preconsolidation 
pressure as input. All statistical indicators for trial 2 are 
better than for the traditional transformation model using 
Eq. (1), indicating that the relationship is not linear. Add-
ing information about the vertical effective stress, i.e., 
comparing trials 3, 4, and 5 to trial 2, improves the overall 
performance for both data. However, for the more scat-
tered data F-CLAY/7/216, no improvement is found for the 
testing data. The different setups using preconsolidation 
stress and effective vertical stress, i.e., trials 3, 4, and 5, 
give in practice equal performance. It should though be 
noted that the results were received from different ANN 
training sets and relying on a single training would have 

indicated differences in between the trials. For trials 3, 4, 
and 5, the statistical measures are again much better than 
for the traditional transformation model, indicating that 
the relationship is not as given by Eq. (2).

Adding information about plasticity, i.e., trials 6, 7, 
and 8, clearly improves the performance of the training 
dataset for F-CLAY/7/216. However, for the testing data, 
the performance drops, except for trial 6, which shows 
a slight improvement. For the more coherent dataset 
F-CLAY/7/135, no improvement can be found. However, 
also for this dataset, some of the training sets gave a clear 
improvement for the training sets of trials 6, 7, and 8, but 
then, the testing data gave very poor results. Adding infor-
mation about water content and depth to previous (trials 9 
and 10) does not improve the performance.

Comparing trials 4, 11, 12, 14, and 16 reveals that 
adding sensitivity data, i.e., trial 11, does not give any 
improvement. However, the inclusion of water con-
tent in trial 12 improves the performance for dataset 
F-CLAY/7/216, while no improvement is found for 
F-CLAY/7/135. The inclusion of information about depth 
(trial 14) improves the performance of training and valida-
tion, while the testing performance gets worse. The inclu-
sion of both water content and depth information (trial 
16) improves the overall performance of both datasets and 
seems to give the best performance of all trials. However, 
in practice, the improvement to trial 4 is rather insignifi-
cant. It is also interesting to note that the inclusion of 
information about plasticity, sensitivity, water content, and 
depth (trial 15) gives the best performance of the training 

Table 3   (continued)

Trial Parameters to train ANN Data F-CLAY/216 database F-CLAY/135 database

b COV R2 MSE b COV R2 MSE

13 σ′v, LL, ω, St, OCR All 1.026 0.206 0.866 13.359 0.997 0.110 0.952 3.424

Train (70%) 1.023 0.188 0.901 10.230 1.005 0.071 0.977 1.754

Validation (15%) 0.971 0.230 0.860 11.847 0.966 0.196 0.903 7.034

Test (15%) 1.093 0.237 0.708 29.682 0.993 0.138 0.851 7.484
14 Depth, σ′v, OCR All 1.017 0.232 0.839 15.974 0.998 0.124 0.934 4.695

Train (70%) 1.005 0.213 0.869 13.656 1.003 0.117 0.941 4.524
Validation (15%) 0.981 0.224 0.833 12.963 1.000 0.129 0.940 3.954
Test (15%) 1.112 0.284 0.698 30.021 0.973 0.145 0.880 6.275

15 Depth, σ′v, LL, ω, St, OCR All 1.038 0.220 0.893 10.631 1.022 0.129 0.931 5.142
Train (70%) 1.012 0.161 0.941 5.979 1.023 0.127 0.942 4.695
Validation (15%) 1.086 0.269 0.838 13.590 1.001 0.111 0.940 3.913
Test (15%) 1.111 0.322 0.700 29.529 1.040 0.148 0.845 8.530

16 Depth, σ′v, ω, OCR All 1.009 0.205 0.887 11.105 1.019 0.136 0.944 4.023
Train (70%) 1.011 0.198 0.910 9.147 1.011 0.115 0.954 3.537
Validation (15%) 0.941 0.228 0.850 13.554 1.040 0.200 0.932 5.534
Test (15%) 1.069 0.194 0.816 17.817 1.037 0.134 0.912 4.722
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set for F-CLAY/7/216, while the performance of testing 
set is not so good.

The performance of models can be visualized by Taylor 
diagrams (Taylor 2001). They are often used to compare 
climate models but can well be used to compare how any 
model represents reality. In the Taylor diagram, three statis-
tical parameters are used and plotted in the same diagram, 
namely, the Pearson correlation coefficient ( R ), the centered 
root-mean-square error (RMSE, i.e., the root of MSE), and 
the standard deviation (STD). Because of their mathemati-
cal relation, these parameters can be plotted together in a 
quadrant in the following way. The observation, i.e., the 

parameter that is modelled, in our case sumob, is plotted on 
the horizontal axis, at a distance of STD from the origin. The 
horizontal axis represents R = 1 , while other R values are 
related to the angle to the horizontal axis, i.e., the azimuthal 
angle. The model points are plotted at a distance of their 
STD from the origin on a line which angle corresponds to 
the R value. Then, the centered RMSE value will be related 
to the distance of this point to the observation. As a cen-
tered RMSE value is used, i.e., the means are subtracted out 
before computing their values, the diagram does not provide 
information about overall biases, but solely characterizes the 
centered pattern error (Taylor 2001).
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Fig. 6   Performance of ANN trials considering training data (a, c, e) (left) and test data (b, d, f) (right) for databases of F-CLAY/7/216 and 
F-CLAY/7/135
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As the actual value of STD is not important when com-
paring the models, a normalized plot is often used. Therein, 
both RMSE and STD values are normalized with the STD 
of the observation. Then, the observation point is at unit 
distance from the origin. Herein, such a normalized plot is 
used to compare different datasets.

In Fig. 7, the Taylor diagram representation is given for 
trials 4, 15, and 16 for both datasets F-CLAY/7/216 and 
F-CLAY/7/135. In addition, trial 15 is given for an ANN 
training set, giving the best performance for the training data 
out of the 1000 training sets. In all cases, the performance 
for training, validation, and testing is given separately, using 
white fill for training, grey for validation, and black for test-
ing. Trials 4 and 16 give a relatively consistent performance, 
while the points for training, validation, and testing are rela-
tively closely located, trial 16 showing the best performance. 
Trial 15 is giving a good performance for the training data, 
but it declines more for validation and training data, indi-
cating overtraining. The implications of overtraining are 
clearly shown for the case trial 15 max train, showing the 
best performance for training data, but worst performance 
for testing data.

The differences between trials 4 and 16 are further stud-
ied by Fig. 8 comparing the predicted data to the observed. 
Again, white fill is used for training, grey for validation, 
and black for testing. The dotted lines in both trials 4 and 16 
represent ± 2COVAll_trial 4.

As can be seen also from this presentation, the difference 
between these two trials is minimal. However, it can though 

be seen that including data on water content and depth 
slightly improves the performance especially for smaller 
values. Generally, the value of depth is not related to the 
strength, as we may have highly overconsolidated clays at 
shallow depths with high undrained shear strength and soft 
normally consolidated clays at deeper depths. However, as 
the dataset consisted of clays with generally low OCR, it is 
logical that the depth correlates with the strength. As infor-
mation of water content and depth is available if oedometer 
data is used, adding them will not require any extra effort. It 
would though not be advisable to use such model for highly 
overconsolidated clays, predicting, e.g., the strength of dry 
crust. For practical engineering, the difference between trials 
4 and 16 is insignificant.

Performance of GP models

Various combinations of input parameters were also tried for 
the GP models, but not as extensively as for the ANN. Inter-
estingly, for F-CLAY/7/216, the best performances were 
achieved by including data of σ'v, σ'p, and OCR, while for 
F-CLAY/7/135 including LL improved slightly the perfor-
mance of the testing set, while the performance of training 
was slightly declined. It is good to note that also for GP the 
outcome will vary for repetitive trainings and a similar 1000 
training trials as for ANN were not tried out. As no clear 
improvement was found for additional parameters, models 
including data of σ'v, σ'p, and OCR are used for comparisons.
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The performance of the GP models for F-CLAY/7/216 
and F-CLAY/7/135 using σ'v, σ'p, and OCR as input is given 
in Fig. 9, as the ratio of measured vs. predicted undrained 
shear strength including lines indicating ± 2 COV. The 

Fig. 8   Performance of ANN 
trials 4 (a) and 16 (b) for 
F-CLAY/7/135 and trials 4 (c) 
and 16 (d) for F-CLAY/7/216. 
In addition to predicted vs. 
measured data, a 1:1 line and 
the lines for ± 2 COV are given
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statistical performance of the models evaluated by their bias, 
COV, R2, and MSE is presented in Table 4.

Performance of MARS models

Similarly, as for GP models, different combinations of input 
parameters were also tried for the MARS models, but not 
as extensively as for the ANN. Similarly, for MARS mod-
els, the best performance was not achieved by including 
all parameters. In general, it can be reported that the most 
consistent performance was achieved with a combination 
including data of σ'v, σ'p, and OCR. For F-CLAY/7/216, the 

inclusion of LL improved the performance of training set, 
while for the training set, COV and R values were slightly 
worse and MSE was slightly better. The differences though 
were minor. For F-CLAY/7/135, the inclusion of LL and PL 
data improved the performance of the training set, while the 
performance of testing set and overall performance dropped. 
Again, the differences are rather small. Unlike for ANN and 
GP models, MARS yields the same results on repeated 
trainings.

The performance of the final MARS models for 
F-CLAY/7/216 and F-CLAY/7/135 using σ'v, σ'p, and 
OCR as input is given in Fig. 10 as the ratio of measured 

Table 4   Performance of various 
AI transformation models

Dataset Method Bias COV R2 MSE

F-CLAY/7/216 ANN case 16 Train (70%) 1.009 0.205 0.887 11.105
Validation (15%) 1.011 0.198 0.910 9.147
Test (15%) 0.941 0.228 0.850 13.554
All 1.069 0.194 0.816 17.817

GP Train (70%) 1.002 0.233 0.849 17.082
Test (30%) 1.055 0.261 0.701 9.523
All 1.018 0.244 0.797 14.807

MARS Train (70%) 1.004 0.245 0.818 20.550
Test (30%) 1.031 0.262 0.667 39.583
All 0.997 0.241 0.781 23.875

F-CLAY/7/135 ANN case 16 Train (70%) 1.019 0.136 0.944 4.023
Validation (15%) 1.011 0.115 0.954 3.537
Test (15%) 1.040 0.200 0.932 5.534
All 1.037 0.134 0.912 4.722

GP Train (70%) 1.001 0.120 0.941 5.287
Test (30%) 0.986 0.248 0.805 6.608
All 0.996 0.169 0.908 5.688

MARS Train (70%) 1.000 0.138 0.908 8.196
Test (30%) 0.977 0.197 0.846 10.304
All 0.993 0.158 0.894 8.836

Fig. 10   Performance of 
MARS model for datasets 
F-CLAY/7/216 (a) and 
F-CLAY/7/135 (b). In addition 
to predicted vs. measured data, 
a 1:1 line and the lines for ± 2 
COV for training set are given
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to predicted undrained shear strength including lines indi-
cating ± 2 COV. The statistical performance of the models 
evaluated by their bias, COV, R2, and MSE is presented in 
Table 4.

Discussion

In the development of the ML models, the data was divided 
into a training (70%) and test (30%) data for MARS and GP 
methods and to training (70%), validation (15%), and test 
(15%) data for the ANN. As the division to the different 
sets was done randomly, it might result in that all relevant 
data is not covered in the training set. In Table 5, the mean, 
min, and max values of the training datasets are given with 
respect to their values for the complete datasets. A min value 
of 1.24 means thus that for training the smallest value was 
1.24 times larger than the minimum value of the whole data-
set. As can be seen from Table 5, the training dataset for 
F-CLAY/7/216 covered almost the entire range of the vari-
ous parameters with a mean very close to the whole dataset. 

For dataset F-CLAY/7/135, the training data did not cover 
as well the range of values for all data. Still, the models per-
formed much better than for F-CLAY/7/216 dataset.

As an overview of the performance of different types of 
models, the Taylor diagram plots for some selected trans-
formation models are presented in Fig. 11 for both datasets 
F-CLAY/7/216 and F-CLAY/7/135, indicating the overall 
performance of the models. As can clearly be seen also from 
this presentation, all models perform better for database 
F-CLAY/7/135. Based on this, two obvious conclusions can 
be made. Firstly, the removal of data from F-CLAY/7/216 
to obtain F-CLAY/7/135 consisted at least of the major part 
of true outliers. Secondly, incoherent data deteriorated the 
performance of all models evaluated. A further conclusion 
from Fig. 11 is that the ML models perform better than the 
traditional equations. Generally, the ANN models gave the 
best performance, although the difference to GP and MARS 
models was small. It should also be remembered that for the 
ANN, 1000 training sets were performed while only one 
was done for the GP model, MARS lacking the influence of 
different training sets.

Table 5   Range of values used 
for training of the models given 
as training dataset value/all data 
value, where value corresponds 
to the mean, min, and max 
values

F-CLAY/7/216 F-CLAY/7/135

Ratio of values between training data and all data

Variable Mean Min Max Mean Min Max

σ′v 0.98 1.00 0.83 1.03 1.24 1.00
σ′p 0.99 1.00 1.00 1.04 1.25 1.00
LL 0.99 1.00 1.00 1.01 1.14 1.00
PL 1.00 1.00 1.00 0.98 1.00 1.00
w 1.00 1.00 1.00 1.00 1.20 0.87
St 0.99 1.00 1.00 0.97 2.00 1.00
sumob 0.99 1.00 1.00 1.04 1.68 1.00
OCR 1.01 1.00 1.00 1.02 1.07 1.00
sumob/ σ′p 0.99 1.16 1.00 0.98 0.99 0.93

Fig. 11   Taylor diagrams for 
modelling of sumob for the vari-
ous transformation models for 
datasets F-CLAY/7/216 (a) and 
F-CLAY/7/135 (b)
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By studying the performance of different ANN trials in 
testing, it can be noted that adding information generally 
tends to improve the performance in the training dataset. 
Remembering that due to the initial guess of the optimi-
zation model there is some randomness in a single ANN 
training and that in the chosen training sets the overall per-
formance was optimized, it is understood that the trend could 
be more apparent. The important conclusion from this is 
that if one uses all available data to train a model, like often 
done for traditional transformation models, the predictions 
may improve by adding variables. However, these may still 
be false predictors causing overfitting of the data. Then, the 
model may fail in predicting any additional data, resulting 
in even dangerous outliers.

It is obvious that σ'p is by far the most dominant fac-
tor in predicting su. The inclusion of σ'v also improves the 
estimates. Both conclusions are logical with respect to the 
yielding of clays, i.e., the relationship between the yield sur-
face of clays, in situ stress, and failure. However, it should 
be noted that for the more scattered dataset F-CLAY/7/216 
the inclusion of the effective vertical stress did not improve 
the performance of the testing data. The situation is more 
unclear with respect to plasticity properties. While there was 
clear indication of overtraining when additional parameters 
were included in the model, it can be argued that including 
LL could slightly improve the performance of some models. 
It is good to note that the correction made for suFV to derive 
su(mob) is based on LL. There is no reason to believe that this 
correction would be perfect, and some influence of LL to 
su(mob) is thus likely.

Comparing the results for the two datasets F-CLAY/7/216 
and F-CLAY/7/135, it was observed that for none of 
the methods and different sets of parameters, the data-
set F-CLAY/7/216 led to a better transformation model 
and revealed some connections. A logical conclusion 
then is that the partially subjective cleaning of data for 
dataset F-CLAY/7/135 did not remove any potentially 
important data, but true outliers were removed from 
dataset F-CLAY/7/216. Acknowledging that the dataset 
F-CLAY/7/216 is more scattered, it can be further concluded 
that the risk for overtraining increases for more scattered 
data. Thus, if the data is scattered, simpler models should 
be preferred, as also indicated by the relatively good perfor-
mance of using only σ'p as input for F-CLAY/7/216 dataset, 
in comparison to the more extended models. This supports 
the discussions of results by D’Ignazio et al. (D’Ignazio 
et al. 2016), Mesri and Wang (Mesri and Wang 2017), and 
D’Ignazio et al. (D’Ignazio et al. 2017).

The comparison of the performance of traditional and 
ML-based transformation models is in that sense problem-
atic, that while the whole datasets were used for the tradi-
tional models, only 70% was used to train the ML models 
with additional 15% for the validation of the ANN models. 

Still, it is obvious that the ML models give a clearly bet-
ter performance when comparing the results presented in 
Tables 2 and 4. For engineering purposes, it is though often 
more practical to apply traditional transformation models, 
of which type (2) gives a very fair prediction for soft sensi-
tive clays. For ML models, ANN can be criticized of being 
a black box while no equation is provided. GP and MARS 
models provide an equation, but the equations are often 
rather complex and sensitive, so one needs to be careful 
in their implementation. At the end, it is much up to the 
problem in hand if ML models give any additional benefits 
in predicting su. For big database applications, ML offers 
intriguing possibilities. The authors also strongly believe 
that ML is a very useful tool to provide new insights over 
various dependencies and, as in the present study, give 
explanation to some of the present discrepancies researchers 
may have on correlations between geotechnical properties.

Conclusions

In this study, transformation models for sumob have been 
developed based on traditional correlation models as well 
as ML models. Two different datasets have been used, 
F-CLAY/7/216 being the larger but more incoherent one 
while some data has been cleaned from its subdataset 
F-CLAY/7/135. Based on the study, the following conclu-
sions can be made:

•	 Based on all models, the cleaning of the F-CLAY/7/216 
data into dataset F-CLAY/7/135 removed true outliers.

•	 As expected, preconsolidation pressure is the most 
important variable in predicting the mobilized undrained 
shear strength.

•	 For both traditional and ML models, the inclusion of 
effective vertical stress/OCR in addition to the precon-
solidation pressure did not improve the prediction for the 
more scattered dataset F-CLAY/7/216.

•	 For the more coherent dataset F-CLAY/7/135, the inclu-
sion of effective vertical stress and/or OCR improved the 
prediction notably for both traditional and ML models.

•	 The inclusion of depth and w improved slightly the per-
formance of the ANN models, especially for lower su 
values. This can though well be partly due to the used 
datasets, with a very limited OCR.

•	 The ANN-based sensitivity study with 1000 different 
training sets revealed that the outcome of repetitive train-
ings may vary significantly. The difference was more sig-
nificant for the more scattered dataset F-CLAY/7/216.

•	 The ANN-based sensitivity study of different training 
scenarios revealed that the performance of the training 
dataset can generally be improved by including more 
parameters. However, the performance of the testing 
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data rapidly decreases when false predictors are added. 
This trend is also more significant for the more scattered 
dataset F-CLAY/7/216.

•	 The above indicates that there is a greater risk for over-
training for more incoherent data. That is why, it is rec-
ommended to use simple models with few input data, 
when the data is scattered.

•	 Generally, all ML models performed better than the tradi-
tional models with the same input parameters, indicating 
that the dependency of su on these parameters is not as 
straightforward as in the traditional models.

Data availability

1. The datasets analyzed during the current study are avail-
able in the webpage of ISSMGE technical committee 304 at 
http://​140.​112.​12.​21/​issmge/​tc304.​htm

2. The datasets generated during the current study are 
available from the corresponding author on reasonable 
request.
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