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Abstract

The performance of optimal strategies for hedging a claim on a non-

traded asset is analyzed. The claim is valued and hedged in a utility max-

imization framework, using exponential utility. A traded asset, correlated

with that underlying the claim, is used for hedging, with the correlation

� typically close to 1. Using a distortion method [30, 31] we derive a non-

linear expectation representation for the claim's ask price and a formula

for the optimal hedging strategy. We generate a perturbation expansion

for the price and hedging strategy in powers of �2 = 1� �
2. The terms in

the price expansion are found to be proportional to the central moments

of the claim payo� under a measure equivalent to the physical measure.

The resulting fast computation capability is used to carry out a simulation

based test of the optimal hedging program, computing the terminal hedg-

ing error over many asset price paths. These errors are compared with

those from a naive strategy which uses the traded asset as a proxy for the

non-traded one. The distribution of the hedging error acts as a suitable

metric to analyze hedging performance. We �nd that the the optimal pol-

icy improves hedging performance, in that the hedging error distribution

is more sharply peaked around a non-negative pro�t. The frequency of

pro�ts over losses is increased, and this is measured by the median of the

distribution, which is always increased by the optimal strategies.

1 Introduction

This article investigates the extent to which the use of an optimal hedging

method, based on utility maximization, can improve the management of basis
risk. By this term we mean the risk associated with the trading of a derivative

security on an underlying asset that is not traded. Examples include weather

�Thanks to M.H.A. Davis for suggestions and many helpful comments.
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derivatives, or options on baskets of stocks, where the basket is illiquid. In such

a scenario, a correlated traded asset might be used for hedging purposes. (In

the stock basket example, the claim on the basket might be hedged using liquid

futures on a stock index, where the composition of the basket and the index are

similar but not identical.)

In such a situation perfect hedging will not generally be possible, and to

approach the problem systematically some optimal hedging method is sought.

This can be done by embedding the problem in a utility maximization frame-

work, in a manner that is now well established in derivative pricing. Indeed, the

optimal valuation and hedging of claims on non-traded assets has been studied

by other authors [5, 6, 11, 14, 24]. These papers have been concerned with

solving the associated utility maximization problems, involving a portfolio of

the traded asset and a random endowment of the claim payo�, from a variety

of perspectives.

This paper takes the solution of the utility maximization problem as given,

though we do present it brie
y for completeness, and generalize the represen-

tation for prices given in [11, 24]. Our main contribution is, �rst, to derive a

perturbation series which gives accurate analytic approximations for the price

and hedging strategy of the claim. Further details and results on such per-

turbation expansions are provided in [23]. Second, we use the ensuing fast

computation of prices and hedging strategies to conduct a simulation-based test

of the e�cacy of the optimal hedge relative to a naive strategy which simply

uses the traded asset as a proxy for the non-traded one. We take the view that

it is important to establish whether optimal risk management procedures o�er

a signi�cant improvement to more ad hoc procedures.

We use an exponential utility function to express the investor's risk prefer-

ences, though future work will explore strategies across di�erent preferences and

risk measures, such as \expected shortfall" [8]. This risk measure has recently

been analyzed in the context of hedging in a stochastic volatility model [17],

though a full-blooded test over many asset path histories was not carried out.

This is also a fertile topic for future research.

Our testing procedure is to simulate many paths for the traded and non-

traded asset prices, and to implement a self-�nancing hedging strategy implied

by both optimal and naive methods. We compute the terminal tracking error for

each path, plot the histogram for the tracking error distribution, and compute

some relevant statistics of the distribution. Recall that in the Black-Scholes

(BS) [3] world the hedging error is zero with probability one, implying a Dirac

�-function distribution for the terminal hedging error.

We do indeed �nd that the optimal method improves hedging performance

over the naive method, and the improvement is greater for lower absolute values

of the correlation, and for higher values of risk aversion. The hedging error

distribution has a lower standard deviation under the optimal strategy, and a

higher median, indicating a higher relative occurrence of positive hedging errors.

The structure of the paper is as follows. In Sections 2{4 we set up the model,

de�ne utility-based prices, and classes of equivalent probability measures that

arise in the sequel. In Section 5 we derive representations for the asking price
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and optimal hedging strategy for the claim, and perturbation expansions are

derived in Section 6, with explicit results for a put option on the non-traded

asset. Section 7 analyzes hedging performance via simulation, and Section 8

concludes.

2 The Basis Risk Model

Two asset prices (S; Y ) := (St; Yt)0�t�T follow log-normal di�usions:

dSt = �Stdt+ �Stdwt; (1)

dYt = �0Ytdt+ �0Ytdw
0
t ; (2)

for 0 � t � T , where the Brownian motions (w;w0) = (wt; w
0
t )0�t�T have corre-

lation �, so that dw0
t dwt = �dt, with �1 � � � 1. The parameters �; �; �0; �0; �

are constants, and equations (1) and (2) are written in the physical measure P.

The riskless interest rate r is constant. The asset with price S is a traded asset
but the asset with price Y is non-traded. A European option on asset Y has

non-negative payo� h(YT ) at maturity time T , where h is a function.

Denote by (w;w0) := (wt; w
0
t)0�t�T a two-dimensional Brownian motion on

a �ltered probability space (
;F ; (Ft)0�t�T ;P), and let the �ltration (Ft)0�t�T
be the one generated by (wt; w

0
t)0�t�T . Then w0 is independent of w and we

can write w0
t in (2) as

w0
t = �wt + �w0t; (3)

where � =
p
1� �2. Denote by (Gt)0�t�T the �ltration generated by (w0

t )0�t�T ,

the Brownian motion driving the non-traded asset price.

An agent with risk preferences expressed via an exponential utility function

U (x) = � exp(�
x); (4)

with constant risk aversion parameter 
 2 (0; 1), has the objective of maximiz-

ing expected utility of terminal wealth at time T . The investor can trade a

dynamic self-�nancing portfolio containing �t shares of the traded asset St at

time t 2 [0; T ], with the remainder invested in a cash account at interest rate

r. In addition, the investor's account is credited at time T with n units of the

derivative payo� h(YT ).

The wealth in the investor's cash and share portfolio, (Xt)0�t�T , then follows

the process

dXt = rXtdt+ �t((� � r)dt+ �dwt); (5)

where we have de�ned �t := �tSt; 0 � t � T , as the wealth invested in the

stock. We note that there is no explicit dependence on S in (5), so that we

may use (5) in place of (1) in the equations describing the dynamics of the state

variables (X;Y ) instead of (S; Y ).

The investor's optimization problem is as follows: starting at time t 2 [0; T ]

with endowment Xt = x, and with initial non-traded asset price Yt = y, the
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investor seeks a trading strategy � := (�t)0�t�T to achieve the supremum

Fn(t; x; y) := sup
�2P

Et;x;yU (XT + nh(YT )): (6)

The supremum is taken over a suitable class P of admissible trading strategies,

de�ned precisely below, and Et;x;y denotes P-expectation conditional on Xt =

x; Yt = y. The superscript n on the left-hand-side of (6) will denote the number

of derivative payo�s credited at time T , and the cases n = 0 and n = �1 will

concern us for the most part.

As is well known [6, 11], to ensure that (6) results in a meaningful opti-

mization problem with exponential utility, we must assume that the random

endowment nh(YT ) is bounded below. This covers long positions in calls and

puts, short positions in puts, but excludes short call positions. The case of

hedging short calls on the non-traded asset will be revisited in future papers.

A trading strategy is an adapted process (�t)0�t�T satisfying
R T
0
�2t dt <1

almost surely. Denote by P0 the set of trading strategies. The set of admissible

trading strategies is de�ned following [27] via the following construction:

Pb = f� 2 P0 : Xt � a� 2 R a:s: 8t 2 [0; T ]g;
Ub = fF 2 L0(
;FT ;P) : F � XT + nh(YT ); for � 2 Pb and EjU (F )j <1g
U = fU (F ) : F 2 Ubgc;
P = f� 2 P0 : U (XT + nh(YT ) 2 Ug; (7)

where f: : :gc denotes the closure in L1(
;FT ;P).
The intuition behind the above de�nitions is that one �rst seeks trading

strategies whose gains processes are bounded below, in order to eliminate dou-

bling strategies [10], resulting in the class Pb. But this class is not big enough
to ensure locating the optimal strategy by searching only within it. When the

utility function U (x) is de�ned for all x 2 R, it is necessary to consider strategies
with wealths which are not necessarily bounded from below.

Denote the optimal trading strategy that achieves the supremum in (6) by

�� = (��t )0�t�T . We shall use the optimization problem (6) to de�ne various

candidate time-t prices p(t; x; y) for the claim, consistent with the investor's

utility maximization objective, as shown in the next section.

2.1 The Case of Perfect Correlation

If � = 1, then as shown in [5], absence of arbitrage implies that, given �; �0, the

drifts �; �0 are related by
�0 � r
�0

=
�� r
�

: (8)

In this case, perfect hedging of the claim on Y is possible by trading S, the

hedging strategy at time t 2 [0; T ] being to hold a number of shares given by

�0Yt

�St

@

@s
BS(Yt; 0; �0); (9)
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where BS(s; q; �) denotes the BS formula with underlying asset price s, dividend

yield q and volatility �.

3 Utility Based Pricing

Consider some special cases of the optimization problem (6). For n = 0 there

is no dependence on the claim. The dynamics of the non-traded asset Y do not

in
uence the problem at all and we recover a variant of the classical Merton

problem [19, 20]. We set F 0(t; x; y) = F (t; x) to signify that there is no de-

pendence on n or y in this case. The cases n = �1 correspond to a credit and

debit of one unit of the option payo� h(YT ), so with a suitable adjustment to

the initial endowment of �p(t; x; y), represent the cases where the investor buys
or sells one claim for price p(t; x; y).

We can use these special cases to de�ne various utility based prices for the

claim. At time t, the utility indi�erence selling price (or simply the ask price)

of the claim, pa(t; x; y), is de�ned by

F (t; x) = F�1(t; x+ pa(t; x; y); y): (10)

Similarly the utility indi�erence buying price (or the bid price) of the claim,

pb(t; x; y), is de�ned by

F (t; x) = F 1(t; x� pb(t; x; y); y): (11)

The marginal price pm(t; x; y) for the claim is given by

pm(t; x; y) =
Et;x;y [U

0(X�
T )h(YT )]

Fx(t; x)
; (12)

where U 0(x) denotes the derivative of U (x), Fx(t; x) denotes the partial deriva-

tive of F (t; x) with respect to x, and (X�
t )0�t�T , denotes the optimal wealth

process under the optimal trading strategy (��t )0�t�T , which achieves the supre-

mum in (6) for n = 0. The original de�nition of the marginal price in [4] was as

the price which left the investor's maximum utility unchanged for an in�nites-

imal diversion of funds into the purchase or sale of a claim, and this reduces

to the representation in (12) when the value function in (6) satis�es appropri-

ate smoothness conditions, as shown in [18]. For a recent analysis of a general

de�nition of the marginal price, which involves treating the number of claims

traded as a variable of the optimization problem, see [15, 16].

4 Equivalent Measures

4.1 Measures Equivalent on FT

Consider how the asset price dynamics under P in (1) and (2) alter under a

change of measure. Measures Q equivalent to P on FT have densities of the
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form
dQ

dP
= ZT ; (13)

where (Zt)0�t�T is the P-local martingale given by

Zt = exp

�
�
Z t

0

mudwu �
Z t

0

gudw
0
u �

1

2

Z t

0

m2
udu�

1

2

Z t

0

g2udu

�
; (14)

with mt; gt being Ft-adapted processes satisfying
R T
0
m2
tdt <1,

R T
0
g2t dt <1,

P-almost surely.

Under Q the two-dimensional process ( ew; ew0) = ( ewt; ew0t)0�t�T , de�ned by

ewt := wt +

Z t

0

mudu; (15)

ew0t := w0t +

Z t

0

gudu; (16)

is two-dimensional Brownian motion.

Then under Q the asset price dynamics become

dSt = (� �mt�)Stdt+ �Std ewt; (17)

dYt = (�0 � �0(�mt + �gt))Ytdt+ �0Ytd ew0
t ; (18)

where ew0
t is a Brownian motion de�ned by

ew0
t = � ewt + � ew0t; (19)

so that d ew0
td ewt = �dt.

4.2 Local Martingale Measures

For Q to be a local martingale measure we require the process (e�rtSt)0�t�T to

be a Q-local martingale. From (17) this is true only if ��mt� = r, that is if

mt = � :=
�� r

�
; (20)

while gt can be arbitrary. Therefore the set M of equivalent local martingale

measures is in one-to-one correspondence with the set of integrands gt in (14).

De�nition 1 (Minimal Martingale Measure) The minimal martingale mea-
sure Q0 2 M corresponds to gt = 0; 0 � t � T .

There are many characterizations of the minimal martingale measure, and the

reader is referred to the review by Schweizer [28] for further details.
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4.3 Measures Equivalent on GT

Consider measures eP equivalent to P on GT . Recall that (Gt)0�t�T is the �l-

tration generated by (w0
t )0�t�T , the Brownian motion driving the non-traded

asset price Y . We shall have recourse to discuss such measures in the sequel.

They have densities of the form

deP
dP

= eZT ; (21)

where ( eZt)0�t�T is the P-local martingale given by

eZt = exp

�
�
Z t

0

�udw
0
u �

1

2

Z t

0

�2udu

�
; (22)

and where �t is a Gt-adapted process satisfying
R T
0
�2t dt <1, P-almost surely.

Under eP the process ( ew0
t )0�t�T , de�ned by

ew0
t := w0

t +

Z t

0

�udu; (23)

is Brownian motion, and the process followed by asset price Y becomes

dYt = (�0 � �0�t)Ytdt+ �0Ytd ew0
t : (24)

Comparing (24) with (18) shows that the dynamics of the non-traded asset Y

are the same under Q and ePwhenever the integrands mt; gt; �t are related by

�mt + �gt = �t; 0 � t � T: (25)

5 The Asking Price of a Claim

5.1 The Hamilton-Jacobi-Bellman Equation

By the Bellman optimality principle for dynamic programming (which amounts

to the fact that the utility process is a supermartingale, and a martingale at the

optimum strategy), Fn(t; x; y) is conjectured to satisfy the PDE

max
�t

LFn(t; x; y) = 0; (26)

where L is the di�erential operator de�ned by

L�(t; x; y) = �t(t; x; y) + (rx+ �t(�� r))�x(t; x; y) + �0y�y(t; x; y)

+
1

2
�2�2t�xx(t; x; y) +

1

2
�20y

2�yy(t; x; y)

+ ���0�ty�xy(t; x; y): (27)
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If one can �nd a classical solution to this equation to which Itô's lemma can be

applied, then proof of optimality follows from standard veri�cation theorems.

See [7], for instance.

Formally carrying out the maximization over �t yields the optimal strategy

��t as

��t = � [(�� r)Fn
x (t; x; y) + ���0yF

n
xy(t; x; y)]

�2Fn
xx(t; x; y)

: (28)

Substituting this into (26) gives the HJB equation for Fn(t; x; y) in the form

Fn
t (t; x; y) + rxFn

x (t; x; y) + �0yF
n
y (t; x; y) +

1

2
�20y

2Fn
yy(t; x; y)

� 1

2Fn
xx(t; x; y)

�
�Fn

x (t; x; y) + ��0yF
n
xy(t; x; y)

�2
= 0; (29)

with terminal boundary condition Fn(T; x; y) = �e�
(x+nh(y)), and � de�ned

in (20).

Under exponential utility, it is possible to factor out the initial cash endow-

ment x because the index of risk aversion, �U 00(x)=U 0(x) = 
, is constant. To

be more precise about this commonly made argument, note that the solution

to the stochastic di�erential equation (5) gives the terminal wealth XT (given

Xt = x) as

XT = �(t; T )x +G(t; T ); (30)

where we have de�ned the accumulation factor

�(t; T ) := er(T�t); 0 � t � T; (31)

and the gains from trading process

G�(t; T ) � G(t; T ) := (� � r)erT
Z T

t

e�ru�udu+ �erT
Z T

t

e�ru�udwu: (32)

Consequently, with U (x) given by (4), we have

U (XT + nh(YT )) = e�
�(t;T )x
�
�e�
(G(t;T )+nh(YT )

�
: (33)

The constant term involving the initial capital x then factors out of the value

function Fn(t; x; y), so that

Fn(t; x; y) = e�
�(t;T )xFn(t; 0; y) =: e�
�(t;T )xWn(t; y): (34)

We have thus reduced the dimensionality of the problem, expressing it in terms

of the function Wn(t; y) := Fn(t; 0; y).

Using (34) we rewrite the HJB equation (29) for Fn(t; x; y) in terms of

Wn(t; y). All terms involving the initial capital x disappear, and we are left

with the following non-linear equation for Wn(t; y):

Wn
t (t; y) + (�0 � �0��) yWn

y (t; y) +
1

2
�20y

2Wn
yy(t; y)

� 1

2
(�0�y)

2
(Wn

y (t; y))
2

Wn(t; y)
� 1

2
�2Wn(t; y) = 0; (35)
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with terminal boundary condition Wn(T; y) = �e�
nh(y).

5.2 Distortion

At �rst sight it appears di�cult to �nd a simple representation for the solution

to the PDE (35). However, a simple power transformation can help. To this

end, write

Wn(t; y) = (fn(t; y))� ; (36)

for some arbitrary parameter � and a function fn(t; y). This technique is called

distortion by Zariphopoulou [30, 31] and is also employed in [11, 12]. There are

links to the dual approach to solving the optimization problem, involving the

Legendre transform of the value function. These links are discussed further in

[22].

Rewriting the PDE (35) as a PDE for fn(t; y) results in

fnt (t; y) + (�0 � �0��) yfny (t; y) +
1

2
�20y

2fnyy(t; y)

+
1

2
�20y

2[(� � 1) � ��2] (f
n
y (t; y))

2

fn(t; y)
� 1

2

�2

�
fn(t; y) = 0; (37)

with terminal boundary condition fn(T; y) = �e�
nh(y)=�. This non-linear

equation is readily reduced to a linear one by an appropriate choice of �, namely

� =
1

1� �2 : (38)

With this choice of �, (37) becomes

fnt (t; y) + Afn(t; y) � �fn(t; y) = 0; (39)

with terminal condition fn(T; y) = � exp(�
(1 � �)2nh(y)). The parameter �

in (39) is given by

� =
1

2
�2(1� �2) =

1

2

�
� � r
�

�2

(1� �)2; (40)

and A is a di�erential operator given by

A�(y) = (�0 � �0��) y�y(y) +
1

2
�20y

2�yy(y): (41)

In other words A is the generator of the one-dimensional di�usion

dYt = (�0 � �0��) Ytdt+ �0Ytd ew0
t ; (42)

where ew0 is a Brownian motion.

The dynamics in (42) are the same as those of asset Y in (2) with an adjusted

drift, and therefore under some measure P0, equivalent to Pon some �-algebra

B, large enough to contain the information from observing Y over [0; T ].
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There are two possible choices for B: either B = FT , or B = GT , since both
FT and GT contain the information from observing the non-traded asset price

Y .

If we choose B = FT , then comparing (42) with (18) we see that P0 = Q,

corresponding to integrands (mt; gt)0�t�T in (14) that satisfy

�mt + �gt = ��; 0 � t � T: (43)

If we choose B = GT , then comparing (42) with (24) we see that P0 = eP,
corresponding to an integrand (�t)0�t�T in (22) satisfying

�t = ��; 0 � t � T: (44)

De�nition 2 De�ne by N the class of probability measures equivalent to the
physical measure P on FT and which correspond to Girsanov densities with
integrands (mt; gt)0�t�T satisfying (43). In other words

N := fP0 � P on FT : �mt + �gt = ��; 0 � t � T:g (45)

Since GT � FT , the class N includes the measure eP equivalent to P on GT
which satis�es (44). In this case (mt; gt) = (�2�; ���); 0 � t � T , as shown in

Lemma 1 below.

Returning to the solution of (39), the Feynman-Kac Theorem implies that

fn(t; y) has the probabilistic representation

fn(t; y) = E0t;y

�
�e��(T�t)�
(1��)2nh(YT )

�
; (46)

where E0t;y denotes expectation under P0 2 N , conditional on Yt = y.

Then, using (36) and (38) we get the following representation for Wn(t; y):

Wn(t; y) =
h
E0t;y

�
�e��(T�t)�
(1��)2nh(YT )

�i(1��2)�1
: (47)

The value function for the original optimization problem is then obtained from

(34) as

Fn(t; x; y) = e�
�(t;T )x
h
E0t;y

�
�e��(T�t)�
(1��)2nh(YT )

�i(1��2)�1
: (48)

Finally, using the above result along with (10) we obtain the following repre-

sentation for the ask price of the claim.

Theorem 1 The utility indi�erence asking price at time t � T of a European
claim with payo� h(YT ) is given by

pa(t; y) =
e�r(T�t)


(1 � �2)
log
h
E0t;y

�
e
(1��

2)h(YT )
�i
; (49)

where E0t;y denotes expectation conditional on Yt = y under any probability
measure P0 2 N .
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We observe that pa(t; y) is independent of the agent's initial cash endowment

x, as is always the case under exponential preferences.

Remark 1 The expectation in (49) is under any equivalent probability measure

in the class N . The distribution of the non-traded asset price is the same under

any measure in N , so the price in (49) is indeed uniquely �xed.

Henderson [11] and Musiela & Zariphopoulou [24] obtain similar (but not

identical) representations to (49) for the ask price, the results di�ering in the

probability measure appearing in the non-linear representation (49). In [11]

the measure used was the minimal martingale measure Q0, corresponding to

(mt; gt) = (�; 0). This is the only martingale measure in N , that is, N \M =

Q0, and measures outside M were not considered in [11].

In [24] the chosen measure corresponded to (mt; gt) = (�2�; ���). This choice

was arrived at by considering measures eP, equivalent to Pon GT (as opposed to

FT ), and under which the drift of asset Y would be that given in (42). This leads

to (mt; gt) = (�2�; ���), as shown in Lemma 1 below. The measures appearing

in [11] and [24] are both in the class N , so the results in [11] and [24] are special

cases of Theorem 1.

Lemma 1 The unique measure eP� P on GT which lies in N corresponds to
(mt; gt) = (�2�; ���); 0 � t � T .

Proof First note that any measure in N , and therefore equivalent to P on

FT , will necessarily be equivalent to P on GT � FT . Second, if eP � P on

FT corresponds to (mt; gt) = (�2�; ���); 0 � t � T , then (43) is satis�ed, so

that eP is indeed in N . Then the integrand (�t)0�t�T in (22) must satisfy (44).

Using the de�nition (3) of w0, along with (21) and (22), we then have, with

�t = ��; 0 � t � T :

deP
dP

= exp

 
�
Z T

0

�tdw
0
t �

1

2

Z T

0

�2t dt

!

= exp

 
�
Z T

0

��(�dwt + �dw0t)�
1

2

Z T

0

(��)2dt

!

= exp

 
�
Z T

0

�2�dwt �
Z T

0

���dw0t �
1

2

Z T

0

�
(�2�)2 + (���)2

�
dt

!
;

where we have applied the identity (��)2 =
�
(�2�)2 + (���)2

�
. Comparing with

(13) and (14) completes the proof.

�

5.3 A PDE for the Reservation Ask Price

We can derive a PDE satis�ed by the ask price. From (49) we have

pa(t; y) =
e�r(T�t)


(1 � �2) log (t; y); (50)
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where by the Feynmac-Kac formula,  (t; y) solves

 t(t; y) +A (t; y) = 0;  (T; y) = e
(1��
2)h(y); (51)

and A is the operator de�ned in (41). It readily follows that pa(t; y) solves

pat (t; y) +Apa(t; y) � rpa(t; y) +
1

2

�20(1� �2)y2�(t; T )(pay(t; y))

2 = 0; (52)

with terminal condition pa(T; y) = h(y).

Remark 2 For � = 1 the above PDE reduces to the BS PDE with volatility

�0, and the asking price becomes the BS price with this volatility.

The nonlinear nature of (52) illustrates the usefulness of the distortion

method and the expectation representation (49), which would certainly not be

obvious from (52). Note that the left-hand-side of (52) contains terms reminis-

cent of a BS-type equation, with the last term being a non-linear perturbation,

which can be regarded as small for values of � close to 1. One can envisage

trying to solve the PDE via classical perturbation analysis, familiar in physics

[2]. A natural perturbation parameter would be � = 1� �2. We shall not solve

the PDE in this way, but instead derive a perturbation expansion directly from

the expectation representation (49).

5.4 Optimal Hedging Strategy

The optimal trading strategy in the presence of the random endowment nh(Yt)

at the terminal time is given by (28). For n = 0, and using (48), this gives the

optimal trading strategy in the absence of the claim as

��t = e�r(T�t)
�
� � r
�2


�
; (53)

which is the well-known solution to the Merton optimal investment problem

with exponential utility.

For the case of the writer of a claim, we must take n = �1 in (28). Now, for
general n, di�erentiating (48) yields

Fn
x (t; x; y) = �
�(t; T )Fn(t; x; y); (54)

Fn
xx(t; x; y) = 
2�2(t; T )Fn(t; x; y); (55)

Fn
xy(t; x; y) = �
�(t; T )Fn

y (t; x; y): (56)

The derivatives of the value function with respect to x are proportional to the

value function itself. To get a similar result for Fn
xy(t; x; y) = �
�(t; T )Fn

y (t; x; y)

in the case n = �1, proceed as follows. Di�erentiate (10) with respect to

y, and recall that the ask price is independent of the initial capital x (i.e.

pa(t; x; y) = pa(t; y)), to give

F�1
y (t; x; y) = �F�1

x (t; x; y)pay(t; y): (57)
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Using this in (56), along with (54), 55) and (28) gives the optimal trading

strategy of the writer as

��t = e�r(T�t)
�
�� r
�2


�
+
��0y

�
pay(t; y): (58)

The strategy in (58) is very intuitive. The �rst term represents the optimal

investment strategy in the absence of a claim, and the second term is the ad-

justment to this strategy caused by the introduction of the claim, that is, the

hedging strategy for the claim. This de�nition of a hedging strategy for a claim

associated with a utility-based pricing scheme has been used in models with

transaction costs [21], and shown to be a natural one. We therefore have the

following result.

Theorem 2 The hedging strategy for the sale of the claim at the asking price
pa(t; y) at time t 2 [0; T ] is to hold �a

u shares of the traded asset S at time
u > t, given by

�a
u =

��0Yu

�Su

@pa

@y
(u; Yu); t � u � T: (59)

It is easy to see that this reduces to the strategy in (9) when � = 1.

6 Perturbation Expansions

Having presented the derivation of the representation (52) for the ask price of

the claim, we proceed to derive a power series expansion for it, and also for

its derivative with respect to y, which has application in hedging, as given by

Theorem 2. Further perturbative expansions of the type described below, and

for other utility functions, are derived in [23].

Let a random variable X have variance �2 and write �k = E(Xk ); k 2 N.
De�ne the skewness skw(X) and kurtosis kur(X) of X by

skw(X) :=
E
�
(X � �1)3

�
�3

; (60)

kur(X) :=
E
�
(X � �1)4

�
�4

� 3: (61)

Observe that with the above de�nitions we have the identities

�3skw(X) = �3 � 3�1�2 + 2�31 (62)

�4kur(X) = �4 � 3�22 + 12�21�2 � 4�1�3 � 6�41: (63)

We then have the following expansion for the asking price pa(t; y) of the

claim on the non-traded asset with payo� h(YT ).
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Theorem 3 The function pa(t; y) representing the asking price of the claim
with payo� h(YT ) at time T � t has the perturbative representation

pa(t; y) =
1

�(t; T )

�
E
0
t;yh(YT ) +

1

2

�2var0t;yh(YT ) +

1

3!
(
�2)2�3skw0

t;yh(YT )

+
1

4!
(
�2)3�4kur0t;yh(YT ) +O(�8)

�
; (64)

where O(�8) denotes terms proportional to �8 and to higher powers of �. The
expansion is valid for model parameters satisfying E0t;y exp(
�

2h(YT )) � 2.

In the above Theorem, var0t;y denotes the variance operator conditional on Yt =

y, under any measure P0 2 N , with a similar convention for skw0
t;y and kur0t;y.

Proof Expanding the exponential in (49) using Taylor's Theorem gives

pa(t; y) =
1

�(t; T )
�2
log

�
1 + 
�2E0t;yh(YT ) +

1

2

2�4E0t;yh

2(YT )

+
1

3!

3�6E0t;yh

3(YT ) +
1

4!

4�8E0t;yh

4(YT ) +O(�10)

�
: (65)

The power series expansion of f(x) = log(1 + x) is valid for �1 < x � 1. The

terms inside the logarithm in (65) are non-negative, and when summed over all

powers of �2 they give the exponential in (49). This implies that the logarithm

in (65) can be expanded as a Taylor series provided E0t;y exp(
�
2h(YT )) � 2.

This proves the last assertion in the theorem.

Expanding (65), initially keeping all terms up to order �10, then simplifying,

gives

pa(t; y) =
1

�(t; T )

�
M1 +

1

2

�2
�
M2 �M2

1

�
+

1

3!

2�4

�
M3 � 3M1M2 + 2M3

1

�
+

1

4!

3�6

�
M4 � 3M2

2 + 12M2
1M2 � 4M1M3 � 6M4

1

�
+ O(�8)

�
; (66)

where, for brevity, we have introduced the notation

Mk := E
0
t;yh

k(YT ); k 2 N: (67)

Then, in view of the identities (62) and (63), the proof is complete.

�

6.1 Explicit Results for a Put Option

Suppose h(y) = (K�y)+ for a positive constant K. Then it is a straightforward,

though lengthy, process to establish explicit results for pa(t; y) and pay(t; y). We

14



use the fact that under P0 2 N , and conditional on Yt = y, logYT is normally

distributed with mean m and variance s2, given by

m = log y +
�
r � q � �20=2

�
(T � t) ; (68)

s2 = �20(T � t); (69)

where we have de�ned the \dividend yield" q by

q = r � (�0 � �0��): (70)

We make extensive use of the (easily veri�able) integrals

E0t;y

�
Y k
T IYT�K

�
= ek(m+ks2=2)N (�d1 � (k � 1)s)

= ykek(r�q+(k�1)�
2

0
=2)(T�t)N (�d1 � (k � 1)s); (71)

(k 2 f0; 1; 2; 3; 4g):

In (71), IA denotes the indicator function of event A, N (:) denotes the standard

cumulative normal distribution function and we have de�ned the variable d1 by

d1 =
log(y=K) + (r � q + �20=2)(T � t)

�0
p
T � t

: (72)

This is the familiar argument of N (�) which appears in the BS formula.

As an illustration, the zeroth order term in the expansion for pa(t; y) is

pa;0(t; y) given by

pa;0(t; y) = e�r(T�t)E0t;yh(YT ) = e�r(T�t)E0t;y [(K � YT )IYT�K ] : (73)

Using (71) this becomes

pa;0(t; y) = Ke�r(T�t)N (�d1 + �0
p
T � t)� ye�q(T�t)N (�d1)

= BSp(y;K; q; �0; T � t); (74)

where BSp(y;K; q; �0; T � t) denotes the Black-Scholes put option formula with
underlying asset price y, strike K, dividend yield q, volatility �0 and time to

expiration T � t.
In a similar manner we establish all other necessary results. The essential

formulae are summarized below.

E0t;yh(YT ) =M1 = KN (�d1 + s) � ye(r�q)(T�t)N (�d1); (75)

E0t;yh
2(YT ) =M2 = K2N (�d1 + s) � 2Kye(r�q)(T�t)N (�d1)

+ y2e(2(r�q)+�
2

0
)(T�t)N (�d1 � s); (76)

E
0
t;yh

3(YT ) =M3 = K3N (�d1 + s) � 3K2ye(r�q)(T�t)N (�d1)
+ 3Ky2e(2(r�q)+�

2

0
)(T�t)N (�d1 � s)

� y3e3(r�q+�
2

0
)(T�t)N (�d1 � 2s); (77)
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E
0
t;yh

4(YT ) =M4 = K4N (�d1 + s) � 4K3ye(r�q)(T�t)N (�d1)
+ 6K2y2e(2(r�q)+�

2

0
)(T�t)N (�d1 � s)

� 4Ky3e3(r�q+�
2

0
)(T�t)N (�d1 � 2s)

+ y4e2(2(r�q)+3�
2

0
)(T�t)N (�d1 � 3s): (78)

These results can then be substituted into (64) or (66) for numerical computa-

tion of the asking price.

6.1.1 Put Option Delta

Di�erentiating (64) with respect to y gives the following expansion for pay(t; y):

Corollary 1 The derivative of the asking price pa(t; y) with respect to y has
the perturbative expansion

@pa

@y
(t; y) =

1

�(t; T )

�
@M1 +

1

2

�2 (@M2 � 2M1@M1)

+
1

3!

2�4

�
@M3 � 3M2@M1 � 3M1@M2 + 6M2

1@M1

�
+

1

4!

3�6

�
@M4 � 6M2@M2 + 12M2

1@M2 + 24M1M2@M1

� 4M1@M3 � 4M3@M1 � 24M3
1@M1

�
+O(�8)

�
; (79)

where we have used the notation

@Mk �
@Mk

@y
=
@E0t;yh

k(YT )

@y
: (80)

The partial derivatives needed to apply the above corollary are obtained by

di�erentiating (75){(78). This yields the following formulae:

@M1 = �e(r�q)(T�t)N (�d1); (81)

@M2 = �2e(r�q)(T�t)
h
KN (�d1)� ye(r�q+�

2

0
)(T�t)N (�d1 � s)

i
; (82)

@M3 = �3e(r�q)(T�t)
h
K2N (�d1)� 2Kye(r�q+�

2

0
)(T�t)N (�d1 � s)

+ y2e(2(r�q)+3�
2

0
)(T�t)N (�d1 � 2s)

i
(83)

@M4 = �4e(r�q)(T�t)
h
K3N (�d1)� 3K2ye(r�q+�

2

0
)(T�t)N (�d1 � s)

+ 3Ky2e(2(r�q)+3�
2

0
)(T�t)N (�d1 � 2s)

� y3e3(r�q+2�
2

0
)(T�t)N (�d1 � 3s)

i
: (84)

The above recipe is su�cient to give fast computation of the asking price of

the put option on the non-traded asset and the associated hedging strategy.
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6.2 Numerical Results

Using the expectation representation (49) it is a simple matter to produce nu-

merical values for the ask price of the claim, and for its derivative with respect to

y, by simulation. This was done for 2 million samples, and the numerical values

compared with those from the perturbation expansions in the last section. The

goal is to establish the accuracy (or otherwise) of the expansions across a range

of values of the correlation �. The simulations were also used to check that

the model parameters we used did indeed satisfy the restrictions of Theorem 2,

needed for the perturbation expansions to be valid. All results reported below

were for valid model parameters. It was found that risk aversion values 
 below

about 0.05 guaranteed validity, regardless of other parameter choices. Typical

risk aversion parameters for market participants are around 10�6 [13], so this is

a very mild restriction.

A detailed account of the accuracy of the perturbation expansions is given

in [23]. We limit ourselves here to the results shown in Table 1 for pa(t; y)

and pay(t; y) at time zero, for 
 = 0:001 and various values of �. The results

produced by the perturbation expansion at order �2 and beyond are remarkably

in line with those from simulation. Accurate results are obtained across all

values of correlation when the risk aversion parameter is below about 0.05, with

the accuracy increasing with increasing j�j and decreasing 
 [23].

The signi�cance of these results is that we now have a very fast route to

computing option prices and hedging strategies. This allows for practical im-

plementation, and for an e�cient testing program of the hedging performance

of optimal strategies versus the \naive" strategies which simply use the traded

asset as a proxy for the non-traded one. Such a testing procedure is carried out

below.

7 Hedging Performance of Optimal Strategies

To analyze hedging performance, we suppose that a put option on asset Y

is sold at time zero for price pa(0; Y0), de�ning the initial endowment in our

hedging portfolio, and hedged using strategy (�a
t )0�t�T given in Theorem 2.

Denote the wealth in the hedging portfolio by (Xa
t )0�t�T , given by (5) with

�t = �a
tSt. The evolution of this wealth in discrete time will be used in the

numerical simulations below.

We simulate a path for both asset prices (S; Y ) := (St; Yt)0�t�T with given

correlation �, and choose a number of times that the hedge is rebalanced in

the option lifetime. The formulae established in the previous section are used

to compute the hedge portfolio \delta" at each rehedging time. Then for each

asset price path simulated we compute the terminal tracking error

ET := Xa
T � (K � YT )+: (85)

The above calculation is repeated over a large number M (say, 10,000) of asset

price paths.
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Table 1: Put ask prices pa(0; Y0) and \deltas" pay(0; Y0) from the perturbative

expansion and from simulation. The parameters are those in Table 2. The

exception to this is the case � = 1, in which case no-arbitrage considerations

�x �0 = � � �0� = 0:11, and the option value is the BS value with volatility

�0 and dividend yield 0. Figures in parentheses are standard deviations of the

observations that were averaged for the simulation results.

PUT OPTION ASKING PRICES, 
 = 0:001, 2� 106 simulations

� o(�0) o(�2) o(�4) o(�6) Simulation

-0.95 5.3914 5.4016 5.4016 5.4016 5.4001 (0.0111)

-0.75 5.6320 5.6566 5.6567 5.6567 5.6564 (0.0023)

-0.50 6.0493 6.0944 6.0946 6.0946 6.0970 (0.0246)

-0.25 6.4870 6.5471 6.5474 6.5474 6.5465 (0.0131)

0 6.9451 7.0133 7.0138 7.0138 7.0113 (0.0034)

0.25 7.4238 7.4917 7.4922 7.4922 7.4913 (0.0020)

0.50 7.9231 7.9806 7.9809 7.9809 7.9791 (0.0128)

0.75 8.4428 8.4783 8.4784 8.4784 8.4806 (0.0241)

0.95 8.8733 8.8815 8.8815 8.8815 8.8790 (0.0136)

1 9.3542 9.3542 9.3542 9.3542 9.3514 (0.0180)

PUT OPTION DELTAS

� o(�0) o(�2) o(�4) o(�6) Simulation

-0.95 -0.2634 -0.2639 -0.2639 -0.2639 -0.2632

-0.75 -0.2715 -0.2726 -0.2726 -0.2726 -0.2723

-0.50 -0.2850 -0.2870 -0.2870 -0.2870 -0.2866

-0.25 -0.2986 -0.3011 -0.3012 -0.3012 -0.3006

0 -0.3123 -0.3151 -0.3151 -0.3151 -0.3145

0.25 -0.3260 -0.3287 -0.3287 -0.3287 -0.3280

0.50 -0.3397 -0.3418 -0.3419 -0.3419 -0.3411

0.75 -0.3533 -0.3546 -0.3546 -0.3546 -0.3540

0.95 -0.3641 -0.3644 -0.3644 -0.3644 -0.3644

1 -0.3757 -0.3757 -0.3757 -0.3757 -0.3752
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Table 2: Model parameters.

S0 Y0 K r � � �0 �0 T

100 100 100 5% 10% 25% 12% 30% 1year

Finally, we repeat the entire calculation over the same simulated paths, but

use a \naive" approach which assumes we sell the option for BSp(Y0;K; 0; �0; T )

and hedge using the strategy given in (9).

7.1 Results

The results reported below used the parameters shown in Table 2 as a base case,

and the options were re-hedged 200 times during their life.

Figures 1 and 2 illustrate the nature of the simulations. The upper graphs

show the traded (solid line) and non-traded (broken line) asset prices along

a path, while the middle and lower graphs show the hedge ratios and hedge

portfolio values along the paths for the optimal (solid line) and naive (broken

line) strategies. The terminal option payo� is also marked with a cross (�).
Figure 3 shows histograms illustrating the distribution of the terminal hedg-

ing error produced by the optimal (upper graph) and naive (lower graph) hedg-

ing strategies. The results, over 10,000 simulations, are for � = 0:65 and


 = 0:001. Both graphs are plotted on the same scales for ease of compari-

son. It is immediately apparent that the optimal hedging procedure produces

a more sharply peaked distribution, with a higher proportion of errors around

and just above zero, compared with the naive hedging strategy. The shapes of

the histograms show how the optimalmethod will tolerate small negative errors,

but not large losses.

To put some concrete numbers on these visual observations, we give sum-

mary statistics for the distributions in Table 3. The standard deviation of the

naive hedging error distribution is about 7% higher than that of the optimal

hedging policy. The really signi�cant statistic, however, is the median of the

distributions. The median hedging error from the optimal policy is 78% higher

than that from the naive hedging policy. In other words, the optimal policy re-

sults in positive hedging errors far more frequently than the naive policy. This

is precisely what one would require of a good hedging policy. The mean of

the distribution is fairly meaningless in this context, as the �gures in the Table

show. Note also how the range of the hedging error is larger with the naive

hedging policy. In other words, sometimes one will be lucky and make a large

pro�t, while at other times one will incur a large loss. Systematic improvements

are therefore made by the optimal procedure.

Figure 4 shows similar histograms for a higher value of the correlation,

namely � = 0:85. The pattern is similar, as the summary statistics in Table

4 show. This time, the median hedging error for the optimal strategy is about
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Figure 1: Asset prices (upper graph), hedge ratios (middle graph) and hedge

portfolio wealths (lower graph) along a simulated path. The solid line in the

lower two graphs corresponds to the optimal hedge, while the broken line cor-

responds to the naive hedge. The parameters are as in Table 2, and � = 0:8,


 = 0:01.

Table 3: Hedging error statistics for the histograms in Figure 3.

Max Min Mean SD Median

Optimal Hedge 25.65 -48.09 0.1145 9.6342 2.6534

Naive Hedge 37.22 049.68 0.4303 10.3618 1.4892
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Figure 2: Asset prices (upper graph), hedge ratios (middle graph) and hedge

portfolio wealths (lower graph) along a simulated path. The solid line in the

lower two graphs corresponds to the optimal hedge, while the broken line cor-

responds to the naive hedge. The parameters are as in Table 2, and � = 0:6,


 = 0:001.
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Figure 3: Histograms of terminal hedging error over 10,000 sample paths for the

optimal hedging strategy (upper graph) and the naive strategy (lower graph).

The parameters are as in Table 2, and � = 0:65, 
 = 0:001.
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Table 4: Hedging error statistics for the histograms in Figure 4.

Max Min Mean SD Median

Optimal Hedge 22.24 -32,78 0.1816 6.9951 1.1908

Naive Hedge 26.49 -32.27 0.5098 7.0880 0.8173

Table 5: Hedging error statistics for the histograms in Figure 5.

Max Min Mean SD Median

Optimal Hedge 28.28 -47.46 0.5155 9.6606 2.9861

Naive Hedge 40.13 -57.04 0.4808 10.3793 1.4568

45% higher than that for the naive strategy, and the standard deviation is about

1% higher for the naive strategy. In other words, the optimal strategy is still

an improvement over the naive policy, even for a higher correlation.

Figures 5 and 6 show hedging error distributions for � = 0:65 and � = 0:85,

but now with a larger risk aversion parameter, 
 = 0:01. Summary statistics

for these distributions are given in Tables 5 and 6 respectively. The results are

similar to those reported earlier. For � = 0:65, the median hedging error for the

optimal strategy is about twice (100% higher) that for the naive strategy, and

the standard deviation is about 7% higher for the naive strategy. For � = 0:85,

the median hedging error for the optimal strategy is about 75% higher that

for the naive strategy, and the standard deviation is about 1% higher for the

naive strategy. In other words, the improvements are similar, and in terms of

the median, perhaps even greater for the case of a higher risk aversion. This is

intuitively correct, of course, as \optimality" should be of greater bene�t when

one is more sensitive to risk. Similar results, not reported here, hold for other

model parameters.

Table 6: Hedging error statistics for the histograms in Figure 6.

Max Min Mean SD Median

Optimal Hedge 24.70 -34.17 0.3879 6.9340 1.2318

Naive Hedge 28.53 -35.94 0.5183 7.0033 0.7019
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Figure 4: Histograms of terminal hedging error over 10,000 sample paths for the

optimal hedging strategy (upper graph) and the naive strategy (lower graph).

The parameters are as in Table 2, and � = 0:85, 
 = 0:001.
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Figure 5: Histograms of terminal hedging error over 10,000 sample paths for the

optimal hedging strategy (upper graph) and the naive strategy (lower graph).

The parameters are as in Table 2, and � = 0:65, 
 = 0:01.
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Figure 6: Histograms of terminal hedging error over 10,000 sample paths for the

optimal hedging strategy (upper graph) and the naive strategy (lower graph).

The parameters are as in Table 2, and � = 0:85, 
 = 0:01.

26



8 Conclusions

Using a non-linear expectation representation for the asking price of a claim

on a non-traded asset we have derived analytic perturbation expansions for the

price and hedging strategy of the claim. These formulae were used to show how

optimal risk management, arising from the embedding of the pricing problem

in a utility maximization framework, gives marked improvement in hedging

performance over naive policies which use a traded asset as a proxy for the non-

traded one. This improvement was measured by computing the distribution of

terminal hedging error, and noting the increased frequency of pro�ts over losses,

as measured by the median hedging error.

The tests initiated here could be carried out using di�erent risk measures

and utility functions, as it would be interesting to see what sort of hedging

strategies o�er the greatest improvement. The issue of formalizing appropriate

metrics to measure risk management performance enters the fray here, and there

are presumably links with the coherent measures of risk in [1].

In general, the computation of hedging error distributions is a task that has

not received much attention, despite being a natural way to assess the merits

of a risk management program. Most studies have simply taken a \snapshot"

of the hedging error over a limited number of scenarios [17]. The application

of the methods advocated here to other incomplete markets scenarios, such as

stochastic volatility models, is certainly feasible and desirable.

It would also be interesting to add features such as transaction costs to the

model analyzed in this paper. If one could develop suitable analytic formulae

for prices and hedging strategies, along the lines of [29], then it becomes feasible

to determine which market imperfection, (basis risk or transaction costs) is the

most severe, in terms of the hedging errors that must be tolerated.
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