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SUMMARY 

 

This report investigates the performance of several viscous damping formulations in the inelastic 

seismic response of moment-frame buildings.  The evaluation employs a detailed model of a 20-

story steel structure.  Damping schemes included in the study are Rayleigh, condensed Rayleigh, 

Wilson-Penzien, tangent Rayleigh, elastic velocity Rayleigh, and one implementation of capped 

damping.  Caughey damping is found not to be computationally viable.  Differences among the 

damping schemes, as quantified by amounts of plastic hinge rotations and story drifts, become 

noticeable once these quantities reach the 3% level.  In order of least to greatest hinge rotations 

and story drifts that occur under lateral response to horizontal ground motion, the damping 

schemes rank as Rayleigh (most damping action), condensed Rayleigh, Wilson-Penzien, tangent 

Rayleigh and capped damping, which are about the same, and elastic velocity Rayleigh (least 

damping action).  Performance of Rayleigh damping under vertical ground motion is discussed, 

including the effect of soil-structure interaction.  The propensity of Rayleigh damping to 

generate excessive damping forces and moments during inelastic seismic analysis is explained, 

and a parameter is introduced that can predict the potential magnitude of the effect.  A review of 

some literature on the role of viscous damping on the inelastic seismic response of moment 

frame buildings is also presented.  

 

Arup damping is discussed in Appendix 8 (added August 2019).  It gives results for the 20-story 

building similar to tangent Rayleigh damping. 
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1. INTRODUCTION 

 

Energy dissipation that occurs during seismic response is usually considered to arise from 

hysteretic action in the components of the structure and from damping.  The existence of 

damping in an actual building has been revealed from field testing and system identification 

studies at low levels of vibration for which a linear model of the structure suffices [1-11].  Such 

damping is often quantified in terms of modal damping ratios, and typical values recommended 

for use in inelastic seismic analysis are on the order of 2% to 4%, with the lower end of this 

range appropriate for steel buildings and the higher end appropriate for reinforced concrete 

buildings [12].    Additional suggestions are that these values should be used with fairly complete 

models of structural hysteresis and should be reduced for buildings taller than 30 stories [12].  

Other data suggest the estimate for steel buildings is a little low [13]. 

 

Damping mechanisms in structures are poorly understood.  A list of possible damping sources 

includes rate dependent structural behavior, nonlinear interaction between the structural frame 

and nonstructural elements such as cladding and partitions, friction between sliding surfaces, 

cracking, and opening and closing of cracks and gaps.   Inelastic soil and foundation behavior as 

well as radiation of energy via the ground are additional mechanisms of energy dissipation, and 

although they can be modelled explicitly, their effect is often included with the structural 

damping.  It is reasonable to expect that damping sources behave differently during low level 

vibration as compared to strong earthquake shaking.  However, knowledge about the latter is 

scant, and the few detailed experimental studies that have been performed [14,15] did not focus 

on moment-frame buildings.  So, an analyst has little guidance with which to construct a 

damping model appropriate for strong ground motions. 

 

Notwithstanding this lack of knowledge about damping during seismic shaking, computed 

damping forces and moments that reach an appreciable fraction of corresponding structural 

forces and moments should be treated skeptically.   For example, if the peak resultant damping 

force acting laterally on a building during an inelastic seismic analysis reaches, say, 20% of the 

peak horizontal structural force acting through the first-story structural elements (base shear 

force), the results of the analysis should be viewed as dubious since there is no plausible 

damping mechanism that could produce such a large force.  What is a reasonable level of 

damping forces and moments is a question that the analyst must ultimately answer. 

 

That computed damping forces and moments during inelastic response can reach values that 

seem too large has been concluded in many studies [16-26].  Such results occur in varying 

degrees when damping is of the linear viscous type, i.e., included in the equation of motion by a 

damping matrix of constant terms that multiplies a velocity vector, such as Rayleigh damping.  

In an inelastic analysis, structural forces and moments are bounded by strengths of the structural 

members, but linear viscous damping forces and moments can increase in proportion to the 
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velocities without limit.  Further, the yielding itself of structural members can cause velocities of 

the associated degrees of freedom to increase, which contributes to higher computed damping 

forces and moments. 

 

The purpose of this report is to provide insight into the viscous damping forces and moments that 

occur during inelastic seismic analysis.  The structural system considered here is a moment-

frame building where yielding takes place at plastic hinges.  The phenomenon of concern can 

occur for other structural systems as well, such as a braced frame when the braces yield or 

buckle, but these cases are left to future study.  Types of viscous damping formulations 

examined in this study are Rayleigh, a modified Rayleigh in which massless rotational degrees of 

freedom are condensed out, Wilson-Penzien [27], Caughey [28], two versions of Rayleigh that 

employ the tangent stiffness matrix [26], which are therefore nonlinear, and capped damping 

[20,29], which is also nonlinear.  Some previous papers on the subject are interpreted to provide 

additional insight, presented toward the end of this report to draw upon the prior discussion.  

Arup damping is discussed in Appendix 8 (added July 2019). 

 

Although greatly needed, this report does not provide additional data to characterize actual 

damping mechanisms.  The focus is entirely on understanding analytical treatments of viscous 

damping.  Hysteretic damping is not considered, although some potential difficulties associated 

with this type of damping are discussed in Appendix 1.  

 

 

2. BASIC CONCEPTS 

 

The spatially discretized equation of motion for nonlinear dynamic structural analysis appears as [𝑀]{𝑎̈(𝑡)} + [𝐶]{𝑎̇(𝑡)} + {𝑅(𝑡)} = {𝑓(𝑡)},  (1) 

where [𝑀] is the mass matrix; [𝐶] is the damping matrix; 𝑡 denotes time; {𝑅(𝑡)} is the vector of 

nonlinear structural forces; {𝑎(𝑡)} is the vector of nodal displacements, with an over dot 

denoting time differentiation; and {𝑓(𝑡)} is the load vector.  For seismic loading, {𝑎(𝑡)} is 

relative to the ground and {𝑓(𝑡)} contains gravity loads and other time-dependent loads 

involving the earthquake ground motion.  For linear analysis, {𝑅(𝑡)} is  {𝑅(𝑡)} = [𝐾]{𝑎(𝑡)},  (2) 

where [𝐾] is the stiffness matrix.  In Equation 1, the damping forces have been assumed to be 

linear, but this does not always have to be the case.   

Implicit integration of Equation 1 over time involves time stepping, linearizing the stiffness 

forces, and iteration.  Thus, the equation for the 𝑗th iteration in advancing from time 𝑡 to time 𝑡 +𝛥𝑡 is [𝑀]{𝑎̈(𝑗+1)(𝑡 + 𝛥𝑡)} + [𝐶]{𝑎̇(𝑗+1)(𝑡 + 𝛥𝑡)} + [𝐾𝑇(𝑗)]{𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)},  (3) 
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where [𝐾𝑇(𝑗)] is the current tangent matrix and (𝑡 + 𝛥𝑡)(𝑗)
 denotes the approximation to the value 

at 𝑡 + 𝛥𝑡 obtained after 𝑗 − 1 iterations.  Insertion of a time integration scheme, such as constant 

average acceleration, leads to [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶 + 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)} − [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶] {𝑎(𝑗)(𝑡 + 𝛥𝑡)} + [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶] {𝑎(𝑡)} + [ 4𝛥𝑡 𝑀 + 𝐶] {𝑎̇(𝑡)} + [𝑀]{𝑎̈(𝑡)}.  (4) 

Once Equation 4 is solved for the nodal displacement increments {𝛥𝑎(𝑗)}, the new approximation 

to the solution at time 𝑡 + 𝛥𝑡 is found as {𝑎(𝑗+1)(𝑡 + 𝛥𝑡)} = {𝑎(𝑗)(𝑡 + 𝛥𝑡)} + {𝛥𝑎(𝑗)}.  (5) 

Iterations continue until convergence and then a new time step commences. 

 

For many cases, dynamic analysis of a linear structure with damping can be carried out using 

modal coordinates with assigned modal damping ratios based on an assumption of viscous 

damping. There is no need for a damping matrix.  However, an equivalent (classical) damping 

matrix of constant terms does exist.  This damping matrix would fully couple all degrees of 

freedom that contain mass, and the terms of the matrix would not be recognizable as 

corresponding to any underlying physical damping mechanism that is realistic.  But this should 

not be of great concern because the modal representation of viscous damping for a linear system 

is usually adequate because it agrees well with actual vibration data in the linear range. 

 

For nonlinear analysis, the matrix equation of motion is typically solved directly, and a 

representation of damping is more difficult.  Ideally, the actual damping mechanisms would be 

modeled as they really exist, but this is not possible given gaps in current knowledge.  Instead, 

crude representations are used, and so the computed damping actions must be monitored to 

ensure they are not unreasonable according to the analyst’s judgement.  Several types of 

quantities can be employed to assess the behavior of a damping formulation.  For example, the 

maximum rate of energy dissipation due to damping can be compared to that due to hysteretic 

action of the structure.  The rate of energy dissipation for viscous damping is given by 𝐸𝐷̇(𝑡) = 〈𝑎(̇t)〉{𝑅𝐷(𝑡)},   (6) 

where {𝑅𝐷(𝑡)} contains the damping forces and moments.  In general, any assessment of 

damping is more meaningful if the underlying damping mechanism is physical and realistic.  

This is especially true if an assessment is to include the local damping forces and moments that 

are produced.  The attributes of being physical and realistic are desirable in any case. 

 

Toward the goal of assessing the behavior of a damping formulation during inelastic analysis, the 

damping ratios corresponding to the instantaneous mode shapes and frequencies have been 

tracked [22, 30-32].  However, since the frequencies are constantly changing as well as the mode 

shapes (in the typical case of nonuniform stiffness changes), the information is hard to interpret.  

Therefore, this writer prefers to focus on quantities such as maximum rate of energy dissipation 

due to damping and the actual damping forces and moments that are generated.  
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To illustrate some of the points, consider Rayleigh damping used for a moment-frame model 

containing translational and rotational degrees of freedom.  The damping matrix consists of mass 

and stiffness proportional parts: [𝐶𝑅] = 𝛼0[𝑀] + 𝛼1[𝐾],   (7) 

where 𝛼0 and 𝛼1 are constants.  The mass proportional term 𝛼0[𝑀] corresponds to dampers that 

connect the structure’s degrees of freedom to the ground, which is a physical mechanism but not 

a realistic one.  Therefore, a question arises about whether such unrealistic forces should be 

accepted as a source of damping.  The stiffness proportional term 𝛼1[𝐾] corresponds to viscous 

elements in parallel with the structural beams and columns of the frame.  Damping forces and 

moments are generated by rates of deformation of these viscous elements, which is physical and 

somewhat realistic.  At the element level, these stiffness proportional damping forces and 

moments can be computed as {𝑅𝑆𝑃𝐷(𝑡)}𝑒 = 𝛼1[𝐾]𝑒{𝑎̇(𝑡)}𝑒,   (8) 

where 𝑒 denotes element quantity.  An assessment of such damping forces and moments can 

conveniently be made by comparison to forces and moments of the associated structural 

elements, which are bounded by strength quantities (plastic moment, for example).  

 

Some of the first concerns about the behavior of Rayleigh damping in inelastic seismic analysis 

focused on large damping moments that accompanied yielding at plastic hinge locations in 

moment frames [16,17].  Other work on simple shear building models that contain no rotational 

degrees of freedom showed that Rayleigh damping forces from both the stiffness and mass 

proportional terms can also attain amplitudes that seem to be too large [20].  These latter findings 

indicate that potential problems with Rayleigh damping may be broad based.  This report deals 

mainly with moment frames. 

 

 

3. LINEAR VISCOUS DAMPING FORMULATIONS 

 

The following sub-sections provide insight into the behavior of various viscous damping 

formulations that employ constant damping matrices.  Only a subset of constant [𝐶] matrices is 

considered here: classical damping matrices, for which the eigenvectors of the damped and 

undamped linear systems are the same.  Typically, a damping matrix is formed with the goal that 

the imparted modal damping ratios 𝜉𝑖 of the linear system are close to desired values for all 

modes whose frequencies 𝜔𝑖 are within a frequency range of interest bounded above by 𝜔𝑚𝑎𝑥.  

This process involves specifying damping ratios 𝜉𝑟 at frequencies 𝜔̂𝑟 (or periods 𝑇̂𝑟).  The 

frequency sets 𝜔𝑖 and 𝜔̂𝑟 can be the same, in which case the 𝜉𝑟 values will be imparted to the 𝜉𝑖, 
but in general the frequency sets differ.  Usually, the desired damping ratios are equal to some 

constant value 𝜉, although some evidence exists for a nominal increase of 𝜉𝑖 with 𝜔𝑖 [10].  In this 

report, the desired level of damping is taken to be constant. 
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3a.  Standard Rayleigh damping 

 

As mentioned above, the Rayleigh damping matrix [𝐶𝑅] consists of stiffness and mass 

proportional parts (Equation 7).  For linear response, the actual damping ratio 𝜉𝑖 imparted to 

mode 𝑖 with frequency 𝜔𝑖 depends on the constants 𝛼0 and 𝛼1 as follows: 𝜉𝑖 = 𝛼0/2𝜔𝑖 + 𝜔𝑖𝛼1/2,     (9) 

where it is evident that damping for the higher modes essentially increases in proportion to 𝜔𝑖.  
After selecting 𝜔̂1, 𝜔̂2 and 𝜉, 𝛼0 and 𝛼1 are found from 𝛼1 = 2𝜉/(𝜔̂1 +  𝜔̂2); 𝛼0 = 𝜔̂1𝜔̂2 𝛼1.   (10) 

The frequency 𝜔̂1 is usually set around the first modal frequency 𝜔1, and then 𝜔̂2 could be set to 

a multiple of 𝜔1 (3𝜔1 to 5𝜔1) depending on 𝜔𝑚𝑎𝑥.  

 

Damping moments generated by Rayleigh damping during inelastic response depend on details 

of beam modelling, such as whether plastic hinges are represented implicitly or explicitly, the 

latter with rotational springs.  Several cases are shown in Figure 1 for a beam in a planar moment 

frame where plastic hinges are of the implicit type.  If there is no mass associated with the 

rotational degrees of freedom, then damping moments are generated by the 𝛼1[𝐾] term only.   

 

For the element shown in Figure 1a, for which shear deformation is included, the Rayleigh 

damping moments are given by {𝑀𝐵𝐷1(𝑡)𝑀𝐵𝐷2(𝑡)} = 𝛼1 𝐸𝐼𝐵𝐿𝐵(1+𝛹𝐵) [4 + 𝛹𝐵 2 − 𝛹𝐵2 − 𝛹𝐵 4 + 𝛹𝐵] {𝜙̇1(𝑡)𝜙̇2(𝑡)},   (11) 

where 𝐵 denotes beam and 𝐷 indicates damping, 𝛹𝐵 = 12𝐸𝐼𝐵𝐺𝐴𝑆𝐵𝐿𝐵2 , 𝐸 = Young’s modulus, 𝐼𝐵 = 

moment of inertia, 𝐿𝐵 = element length, 𝐴𝑆𝐵 = shear area, 𝐺 = shear modulus, and 𝜙𝑖(𝑡) = the 

rotation at node 𝑖 relative to the chord of the beam.  This equation applies whether plastic hinges 

are active or not, and it also is applicable to columns.  For a beam in a frame under lateral load, 

which can be approximately assumed to bend in double curvature so that 𝜙̇1(𝑡) = 𝜙̇2(𝑡), 

Equation 11 reduces to  𝑀𝐷𝐵𝑖(𝑡) = 𝛼1 6𝐸𝐼𝐵𝐿𝐵(1+𝛹𝐵) 𝜙̇𝑖(𝑡).   (12) 

Thus, the only response variable is the velocity of the chord-relative end rotation of the beam.  

This velocity can increase upon formation of plastic hinges in a beam because it is the beam 

moments that resist joint rotation.  The amount of speed-up depends on several parameters, but it 

can be above a factor of 1.6 for W30 beams attached to W14 columns (see Appendix 2), which 

can increase the beam damping moments significantly.  Speed-up is also discussed in Reference 

17. 

 

Once plastic hinges form in the beams, the rates of bending deformation in the adjacent columns 

decrease, and so too will the column damping moments.  Therefore, the amplified damping 
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moment in a beam at a node because of plastic hinging there is largely resisted by increased 

structural moments in the adjacent columns.  To the extent that the beam damping moments are 

excessive, demands on columns will be overestimated and false column hinging may occur 

during analysis.  This behavior during nonlinear response differs from that of the linear case for 

which the sum of beam damping moments at a node is equal and opposite to the sum of column 

damping moments at a node [17], assuming no rotational mass. 

 

The maximum damping moment from Equation 12 can be compared to the plastic moment 

strength of the beam 𝑀𝑃𝐵 = 𝑍𝐵𝜎𝑦,   (13) 

where 𝑍𝐵 is the plastic section modulus, and 𝜎𝑦 is the material yield strength.  The moment ratio 

is defined as  𝑀𝑟𝑎𝑡 = 𝑀𝐷𝐵𝑖𝑀𝑃𝐵 = 𝛼1 6𝐸𝐼𝐵𝐿𝐵(1+𝛹𝐵) 1𝑍𝐵𝜎𝑦 𝜙̇𝑖,𝑚𝑎𝑥 .   (14) 

The potential to affect column behavior can be quantified by substituting the following for 𝑀𝑃𝐵 

in Equation 14:  half the sum of the plastic moment strengths 𝑀𝑃𝐶 for the columns above and 

below for an interior column, or the unhalved sum for an exterior column. 

 

Sometimes multi-element beams are employed to capture static loads and mass from supported 

secondary floor beams; see Figure 1b where third-point nodes are used.  With plastic hinges 

active at the two ends, the constant velocity solution of the three-element beam in double 

curvature has zero velocities for all degrees of freedom at the two third-point nodes if the hinge 

behavior is perfectly plastic.  This means that the damping moments generated at the two ends 

are given by Equation 12 with the 6 replaced by 4 + 𝛹𝐵, 𝐿𝐵 replaced by 𝐿𝐵/3, and 𝛹𝐵 evaluated 

with 𝐿𝐵/3.  Thus, the damping moments are larger than what occurs with the single beam 

element when the plastic hinges are active, as much as a factor of two if shear deformation is 

small (small 𝛹𝐵). 

 

The beam length 𝐿𝐵 in Equation 12 is shorter if joints are modelled with finite dimensions and, 

further, if cover-plated elastic end segments are present, as shown in Figure 1c.  Such an 

arrangement can increase damping moments at the ends of the beam (nodes 1 and 2) due to the 

smaller 𝐿𝐵 and because 𝜙̇𝑖(𝑡) increases due to the vertical displacements of nodes 1 and 2 as the 

joints rotate.   

 

So far in this discussion, plastic hinges have been represented implicitly; however, they can also 

be modelled explicitly using nonlinear rotational springs.  Because any rotation across the spring 

when the plastic hinge is not active should be small, a relatively large value is used for the initial 

rotational stiffness 𝐾𝐻 of the spring.  This, in turn, can lead to a very large damping moment 

from the stiffness proportional term of Rayleigh damping when the plastic hinge is active.  

Essentially,  
6𝐸𝐼𝐵𝐿𝐵(1+𝛹𝐵) in Equation 12 is replaced by 𝐾𝐻.  This problem has been dealt with by 
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omitting contributions from the rotational springs to the stiffness proportional damping term 

[23,33].  Such a technique is closely related to tangent Rayleigh damping discussed in Section 4 

(see Appendix 3), and it should produce similar results. 

 

Damping forces produced by the mass proportional term 𝛼0[𝑀] depend on the velocity of the 

translational degrees of freedom relative to the ground.  Its contribution to the damping action 

can be comparable to that of the 𝛼1[𝐾] term, as will be demonstrated in Section 6 by examining 

the maximum rate of energy dissipation from damping. 

 

3b.  Condensed Rayleigh damping 

 

A modification to Rayleigh damping to eliminate damping moments is possible when the 

rotational degrees of freedom are massless [17].  The stiffness proportional damping term is 

formed with the massless rotational degrees of freedom condensed out of the initial stiffness 

matrix. Thus, [𝐶𝐶𝑅] = 𝛼0[𝑀] + 𝛼1[𝐾̅],   (15) 

where [𝐾̅] is the condensed stiffness matrix, which has been filled with zeroes for all terms 

situated in a row or column corresponding to a rotational degree of freedom.   The mass 

proportional term is unchanged, as are 𝛼0 and 𝛼1.  With the degrees of freedom partitioned into 

type 1 without mass (𝑁1 rotational degrees of freedom) and type 2 with mass (𝑁2 translational 

degrees of freedom), [𝑀] and [𝐾̅] appear as: [𝑀] = [0 00 𝑀22] ,  [𝐾̅] = [0 00 𝐾̅22].   (16) 

Dimensions of the lower right submatrices are 𝑁2 by 𝑁2.  This partitioning is used for notational 

purposes only as the original degree of freedom numbering can be retained. 

 

For linear response, use of [𝐶𝐶𝑅] gives the same results as the standard Rayleigh damping matrix [𝐶𝑅].   This follows from both the condensed and original systems having the same eigenvectors, 

frequencies and modal damping values.   

 

The absence of damping moments with [𝐶𝐶𝑅] means that no amplified damping moments can 

occur at plastic hinges (implicit or explicit) during inelastic analysis.  However, a drawback of [𝐶𝐶𝑅] is that the elemental interpretation of the stiffness proportional part is lost because of the 

condensation.  In fact, the condensed [𝐾̅]  fully couples the translational degrees of freedom.  

The damping forces of the 𝛼1[𝐾̅] term still depend on rate of deformation, a mechanism distinct 

from that of the 𝛼0[𝑀] term.   

 

The coupling present in [𝐾̅] destroys the bandedness of the left-side matrix in Equation 4, 

entailing a computational penalty.  However, some of this penalty can be mitigated by using a 

banded approximation to [𝐶𝐶𝑅] on the left side of Equation 4 and then eliminating the error 
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through iterations, which must be done anyway because of the structural nonlinearities.  This 

approximation to [𝐶𝐶𝑅] can be formed by truncation, i.e., zeroing the terms of [𝐾̅] outside some 

appropriate bandwidth.  See Section 7 for further discussion.  

 

3c.  Wilson-Penzien damping 

 

This damping matrix is defined as [27] [𝐶𝑊𝑃] = [𝑀][𝑉][diag(2𝜉𝜔𝑖)][𝑉]𝑇[𝑀],   (17) 

where [𝑉] contains eigenvectors of the undamped system as columns, normalized with respect to [𝑀].  If [𝐶𝑊𝑃] is used in a linear analysis, a mode will have damping 𝜉𝑖 = 𝜉 if it is included in 

Equation 17, or it will have zero damping if it is not included.  Construction of [𝐶𝑊𝑃] entails the 

expense of solving for eigenvectors and frequencies.  However, the number of modes needed in 

Equation 17 to produce converged results for inelastic analysis may be relatively few [24] for 

horizontal ground motion. 

 

The appeal of [𝐶𝑊𝑃] is the ability to set as many modal damping ratios as desired, although the 

physical mechanism underlying [𝐶𝑊𝑃] is even more obscure under inelastic response than that 

for [𝐶𝐶𝑅].  In addition, like [𝐶𝐶𝑅], [𝐶𝑊𝑃] does not produce any damping moments corresponding 

to rotational degrees of freedom if they are massless.  This is evident from Equation 17 and the 

distribution of zeroes imposed by the [𝑀] matrix onto [𝐶𝑊𝑃], which is the same as for [𝐶𝐶𝑅]. 
 [𝐶𝑊𝑃] has the same non-zero pattern as [𝐶𝐶𝑅], so the bandedness of the left-side matrix in 

Equation 4 is similarly destroyed.  However, much of the computational penalty can be avoided 

[16,21] by truncating [𝐶𝑊𝑃] at the bandwidth of [𝐾] for use on the left side of Equation 4; see 

Section 7. 

 

3d.  Caughey damping 

 

This damping matrix is defined as [28] [𝐶𝐺] =  [𝑀] ∑ 𝛼𝑚[[𝑀]−1[𝐾]]𝑚𝑀−1+𝐿𝑚=𝐿 ,   (18) 

where the summation contains 𝑀 terms (not to be confused with the damping matrix [𝑀]).  𝑀 is 

selectable and 𝐿 can be negative, zero or positive.  Three suggested ranges for the index 𝑚 are 

from 1 − 𝑀 to zero, from zero to 𝑀 − 1, and from 1 to 𝑀 [17 ,34].  Note that 𝑀 = 1 and 𝐿 = 0 

is mass proportional damping 𝛼0[𝑀], 𝑀 = 1 and 𝐿 = 1 is stiffness proportional damping 𝛼1[𝐾], 
and 𝑀 = 2 and 𝐿 = 0 is Rayleigh damping 𝛼0[𝑀] + 𝛼1[𝐾].  Also, any 𝑚 > 1 term involves 

products with [𝑀]−1, so the mass matrix must be nonsingular, and any 𝑚 < 0 term involves 

products with  [𝐾]−1, so the stiffness matrix must be nonsingular.  Finally, the bandwidth of [𝐶𝐺] 
increases with 𝑚 due to the 𝑚 > 1 terms, and the presence of any 𝑚 < 0 term causes [𝐶𝐺] to be 

a full matrix. 
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To determine the coefficients 𝛼𝑚 in Equation 18, select 𝑀 frequencies 𝜔̂𝑟 spanning up to the 

maximum frequency of interest 𝜔𝑚𝑎𝑥 and solve the 𝑀 simultaneous equations ∑ 𝛼𝑚𝜔̂𝑟2𝑚−1𝑀−1+𝐿𝑚=𝐿 = 2𝜉 .   (19) 

Once the 𝛼𝑚 are determined, the actual value of the modal damping ratio 𝜉𝑖 imparted to mode 𝑖 
with frequency 𝜔𝑖 can be found from  𝜉𝑖 = ½ ∑ 𝛼𝑚𝜔𝑖2𝑚−1𝑀−1+𝐿𝑚=𝐿 .   (20) 

The damping values 𝜉𝑖 for higher modes with frequencies 𝜔𝑖 above 𝜔𝑚𝑎𝑥 tend to be controlled 

by the last terms in the summation of Equation 20.  For the range of 𝑚 where 𝐿 is negative or 

zero and the last value of 𝑚 is zero, then 𝛼0 > 0 and 𝜉𝑖 → 0 from the positive side as 𝜔𝑖 → ∞.  

Thus, the damping in the higher modes will be smaller than 𝜉.  For the range of 𝑚 where 𝐿 

equals 0 or 1 and the last value of 𝑚 is odd and positive, then 𝛼𝑀−1+𝐿 > 0 and 𝜉𝑖 → ∞ as 𝜔𝑖 →∞.  Thus, the higher modes will have large positive damping, increasing rapidly with 𝑀.  For the 

range of 𝑚 where 𝐿 equals 0 or 1 and the last value of 𝑚 is even and positive, then 𝛼𝑀−1+𝐿 < 0 

and 𝜉𝑖 → −∞ as 𝜔𝑖 → ∞, so this situation should be avoided because of the negative damping. 

 

Two recognized difficulties can arise in computing [𝐶𝐺].  First, the set of equations in Equation 

19 can be ill-conditioned to a degree that restricts the number 𝑀 of terms that can be included in 

Equation 18.  Second, the 𝜉𝑖 vs. 𝜔𝑖 relation of Equation 20 can show wide variations depending 

on the choice for the 𝜔̂𝑟 that determines the 𝛼𝑚.  However, recent work has shown that these two 

issues may be resolvable [34].  

 

Another issue is that, for application to moment frames where the rotational masses are usually 

taken as zero, the terms with 𝑚 > 1 in Equation 18 involve the inversion of a singular [𝑀].  This 

situation was not encountered in Reference 34, which considered only a shear building that 

consisted of a single translational degree of freedom for each floor mass.  To avoid the problem 

when dealing with moment frames, [𝑀22] and [𝐾̅22] (see Equation 16) can be used in Equation 

18 in place of [𝑀] and [𝐾], and the result is then expanded to include the rotational degrees of 

freedom by adding zeroes.  Large damping will still be present for the higher modes with 

frequencies 𝜔𝑖 above 𝜔𝑚𝑎𝑥.  This situation is different than Wilson-Penzien; however, like 

Wilson-Penzien, no damping moments will be produced. 

 

The moment-frame example described in Section 6 was tried with Caughey damping using four 

terms with 𝑚 = 0,1,2,3.  [𝐶𝐺] proved to be much less amenable to being approximated as a 

banded matrix for use on the left side of Equation 4, compared to [𝐶𝑊𝑃] and [𝐶𝐶𝑅], and thus 

Caughey damping was not computationally efficient.  Also, terms of [𝐶𝐺] corresponding to 

degrees of freedom with relatively low mass and high stiffness tended to blow up in the repeated 

multiplications by [𝑀]−1[𝐾].  An extreme example of this is the vertical degree of freedom at a 

column splice node, where the axial stiffness can be high (especially for a multiple-story 

building) and mass comes only from the column itself.  However, even the tributary floor mass 
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for a corner column can be small enough to be problematic.  Caughey damping will not be 

considered further in this report. 

 

 

4. TANGENT RAYLEIGH DAMPING 

 

In tangent Rayleigh damping, the forces and moments associated with the stiffness proportional 

damping term are expressed in terms of the current tangent stiffness matrix [𝐾𝑇], which is 

otherwise used to relate increments in displacement to increments in the structural forces and 

moments as {𝑑𝑅} = [𝐾𝑇]{𝑑𝑎} .  (21) 

With the definition  [𝐶𝑇𝑅] = 𝛼0[𝑀] + 𝛼1[𝐾𝑇],  (22) 

two versions of tangent Rayleigh damping have been identified [21]:  an incremental version 

based on {𝑑𝑅𝐷} = [𝐶𝑇𝑅]{𝑑𝑎̇}  (23) 

and a total version based on {𝑅𝐷(𝑡)} = [𝐶𝑇𝑅]{𝑎̇(𝑡)}.  (24) 

Here, 𝛼0 and 𝛼1 are computed using initial properties and kept constant, rather than updated 

using current properties [22,35]. 

 

Regarding the incremental version, Equation 23 defines how the damping forces and moments 

are updated during an analysis.  However, [𝐶𝑇𝑅] is not a proper tangent matrix for damping 

because it does not contain the requisite partial derivatives with respect to nodal velocities.  

Therefore, Equation 23 must be regarded as ad hoc, and furthermore, it can lead to nonsensical 

results.  {𝑅𝐷(𝑡)} updated by Equation 23 will generally not return to zero when the nodal 

velocities become zero at the end of an analysis [21].  In addition, the phasing between {𝑅𝐷(𝑡)} 

and {𝑎̇(𝑡)} may become such that energy is fed into the structure rather than dissipated.  For 

these reasons, the incremental version of tangent Rayleigh damping is not recommended by this 

writer. 

 

In the total version of tangent Rayleigh damping, [𝐶𝑇𝑅] in Equation 24 serves as a secant matrix.  

As a simple illustration of how this type of damping works, consider a spring of elastic stiffness 𝑘 and post-yield stiffness 𝑘/20 stretching at a velocity 𝑣.  Prior to yielding of the spring, the 

stiffness proportional damping force is equal to 𝛼1𝑘𝑣; at yield the damping force suddenly drops 

by 95% and it remains at 𝛼1𝑘𝑣/20 until the spring unloads.  Thus, there will be discontinuities in 

the damping force time history, with low damping force during the spring’s yield excursions.  
Proponents of Equation 24 believe that this behavior avoids the false duplication of dissipated 

energy [26], but this writer sees little reason why the rules governing a damping mechanism 

should be tied to the yield state of the structure, sharply reducing when and where yielding is 
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active.  In addition, tangent stiffness damping may become negative during episodes of 

softening.  Other justifications [36] for the use of Equation 24 have been addressed by this writer 

elsewhere [37]; see Appendix 4. 

 

Experimental results, such as summarized in Reference 38, have also been cited in support of 

tangent Rayleigh damping [26,35].  However, previous comparisons of test results with analyses 

that use tangent Rayleigh damping and ones that omit damping altogether do not show 

convincingly that the former is better than the latter.  This finding is partly due to the test 

specimens being bare frames without multiple sources of damping.  Furthermore, older analytical 

models tended to use Equation 23, which may not provide consistent damping.   

 

Recently, a physical interpretation of Equation 24 has been offered [26].  Similar to plasticity 

theory where strains are divided into elastic and plastic parts, the nodal displacements are 

expressed as {𝑎(𝑡)} = {𝑎𝑒𝑙(𝑡)} + {𝑎𝑝𝑙(𝑡)},  (25) 

where the elastic part is  {𝑎𝑒𝑙(𝑡)} = [𝐾]−1{𝑅(𝑡)},  (26) 

and the plastic part {𝑎𝑝𝑙(𝑡)} is the difference between the total and elastic displacements.  The 

Rayleigh damping forces and moments are modified as  {𝑅𝐷(𝑡)} = 𝛼0[𝑀]{𝑎̇(𝑡)} + 𝛼1[𝐾]{𝑎̇𝑒𝑙(𝑡)},   (27) 

where the stiffness proportional part depends on the elastic velocities.  Substitution of the rate 

expressions  {𝑎̇𝑒𝑙(𝑡)} = [𝐾]−1{𝑅̇(𝑡)}  (28) 

from Equation 26 and  {𝑅̇(𝑡)} = [𝐾𝑇]{𝑎̇(𝑡)}  (29) 

from Equation 21 into Equation 27 leads to {𝑅𝐷(𝑡)} = [𝛼0𝑀 + 𝛼1𝐾𝑇]{𝑎̇(𝑡)},  (30) 

which is the same as Equation 22/24.  However, a physical basis does not imply that a method is 

realistic, and there is no evidence of which this writer is aware to support the dependence of the 

stiffness proportional damping forces and moments on the elastic part of the nodal velocities.   

 

A further modification is to use the elastic velocities {𝑎̇𝑒𝑙(𝑡)} for the mass proportional term as 

well, referred to as elastic velocity damping [26], which will tend to reduce the mass 

proportional damping forces during inelastic response.  In this case, [𝐶𝐸𝑉𝑅] = [𝛼0𝑀𝐾−1𝐾𝑇 + 𝛼1𝐾𝑇],   (31) 

which is obtained by making the appropriate substitutions in the results above, and where EVR 

denotes elastic velocity Rayleigh.  With Equation 31, the damping forces and moments are 

significantly reduced throughout the structure during inelastic response, and the rate of energy 

dissipation due to damping can even become zero or negative whenever the structure forms a 

mechanism of plastic hinges. 
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Implementation of tangent Rayleigh damping by simply substituting Equation 22 or 31 into 

Equation 4 for [𝐶] may encounter convergence problems due to the sudden changes in [𝐾𝑇].  An 

alternative method is described in Reference 26.  First, for Equation 22, [𝐶]{𝑎̇(𝑗+1)(𝑡 + 𝛥𝑡)} 

from Equation 3 is replaced by  {𝑅𝐷(𝑗+1)(𝑡 + 𝛥𝑡)} = 𝛼0[𝑀]{𝑎̇(𝑗+1)(𝑡 + 𝛥𝑡)} + 𝛼1{𝑅̇(𝑗+1)(𝑡 + 𝛥𝑡)};   (32) {𝑅̇(𝑗+1)(𝑡 + 𝛥𝑡)} is expressed using a backward difference in time as  {𝑅̇(𝑗+1)(𝑡 + 𝛥𝑡)} = 1𝛥𝑡{𝑅(𝑗+1)(𝑡 + 𝛥𝑡) − 𝑅(𝑡)};   (33) 

and {𝑅(𝑗+1)(𝑡 + 𝛥𝑡)} is linearized as {𝑅(𝑗+1)(𝑡 + 𝛥𝑡)} = {𝑅(𝑗)(𝑡 + 𝛥𝑡)} + [ 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)}.   (34) 

After substitution into Equation 3, the resulting version of Equation 4 corresponding to Equation 

22 is [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶 + (1 + 1𝛥𝑡𝛼1) 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)} − 1𝛥𝑡𝛼1{𝑅(𝑗)(𝑡 + 𝛥𝑡) − 𝑅(𝑡)} − [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶] {𝑎(𝑗)(𝑡 + 𝛥𝑡)} + [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶] {𝑎(𝑡)} + [ 4𝛥𝑡 𝑀 + 𝐶] {𝑎̇(𝑡)} + [𝑀]{𝑎̈(𝑡)}.   (35) 

where [𝐶] is equal to 𝛼0[𝑀].  Or, for Equation 31, the result is [ 4𝛥𝑡2 𝑀 + (𝐼 + 1𝛥𝑡𝛼0𝑀𝐾−1 + 1𝛥𝑡𝛼1𝐼) 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)} − 1𝛥𝑡[𝛼0𝑀𝐾−1 + 𝛼1𝐼]{𝑅(𝑗)(𝑡 + 𝛥𝑡) − 𝑅(𝑡)} +[𝑀] {− 4𝛥𝑡2 𝑎(𝑗)(𝑡 + 𝛥𝑡) + 4𝛥𝑡2 𝑎(𝑡) + 4𝛥𝑡 𝑎̇(𝑡) + 𝑎̈(𝑡)},   (36) 

where [𝐼] is the identity matrix.  To avoid dealing with [𝐾−1] in the left-side matrix of Equation 

36, the problem solved in Section 6 demonstrates that the product of [𝐾−1 ] and [ 𝐾𝑇(𝑗)] on the 

left side can be replaced by the identity matrix [𝐼].  With this replacement, Equation 36 does not 

have any bandwidth increase in the left-side matrix from damping; neither does Equation 35.   

 

 

5.  CAPPED DAMPING 

 

One way to control excessive damping forces and moments during inelastic response is to 

enforce limits on these quantities [20,29].  For example, in the stiffness proportional part of 

Rayleigh damping, the damping moments can be capped at some fraction 𝜆 of the plastic 

moment of the associated beam.  So, basically, the damping mechanism is given a “yield” 
capability. 

 

The formulation of capped viscous damping presented in this report has the following 

characteristics.  Mass proportional damping is omitted, the reasons being that this component of 

damping is unrealistic and there is also no obvious way to come up with cap values.  Stiffness 
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proportional damping with caps is employed for axial deformation in beams and columns and for 

shear deformation in rectangular viscous elements bounded by adjacent columns left and right 

and individual beams above and below.  No damping moments associated with rotational degrees 

of freedom are generated with this implementation of capped damping. 

 

Damping forces can be linearized as {𝑅𝐷(𝑗+1)(𝑡 + 𝛥𝑡)} = {𝑅𝐷(𝑗)(𝑡 + 𝛥𝑡)} + [𝐶𝑇𝑃(𝑗)]{𝛥𝑎̇(𝑗)},   (37) 

where [𝐶𝑇𝑃(𝑗)] is the tangent form of the capped damping matrix.  [𝐶𝑇𝑃(𝑗)] is assembled with 

contributions [𝐶𝑇𝑃(𝑗)]𝑒 from the beam and column elements (axial component only) and 

rectangular viscous elements.   Equation 37 is substituted into Equation 3 for 

 [𝐶]{𝑎̇(𝑗+1)(𝑡 + 𝛥𝑡)}, and {𝛥𝑎̇(𝑗)} is replaced by {𝛥𝑎̇(𝑗)} = −{𝑎̇(𝑡)} − {𝑎̇(𝑗)(𝑡 + 𝛥𝑡)} + 2𝛥𝑡{𝑎(𝑗)(𝑡 + 𝛥𝑡) + 𝛥𝑎(𝑗) − 𝑎(𝑡)}.   (38) 

The result, corresponding to Equation 4, is [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡 𝐶𝑇𝑃(𝑗) + 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)} − {𝑅𝐷(𝑗)(𝑡 + 𝛥𝑡)} − [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡  𝐶𝑇𝑃(𝑗)] {𝑎(𝑗)(𝑡 + 𝛥𝑡)} +[𝐶𝑇𝑃(𝑗)]{𝑎̇(𝑗)(𝑡 + 𝛥𝑡)} + [ 4𝛥𝑡2 𝑀 + 2𝛥𝑡  𝐶𝑇𝑃(𝑗)] {𝑎(𝑡)} + [ 4𝛥𝑡 𝑀 +  𝐶𝑇𝑃(𝑗)] {𝑎̇(𝑡)} + [𝑀]{𝑎̈(𝑡)}.   (39) 

 

The rectangular viscous element is 𝐻 by 𝑊 with unit thickness, and it connects to four nodes of a 

frame (Figure 2).  There are eight translational degrees of freedom 𝑎𝑖(𝑡), numbered as shown.  

Such elements fill the entire frame.  The shear strain rate at the center of the element is given by 𝛾̇(𝑡) = 12〈1𝐻     −1   𝑊     −1  𝐻     −1   𝑊    −1  𝐻       1𝑊       1𝐻       1𝑊〉 {𝑎̇(𝑡)}𝑒 = 〈𝐵〉{𝑎̇(𝑡)}𝑒,   (40) 

where {𝑎̇(𝑡)}𝑒 lists the nodal velocities 𝑎̇𝑖(𝑡).   The linear material behavior of the element is 

characterized by a damping shear modulus 𝐺𝐷 so that the shear stress 𝜏(𝑡) at the element center 

equals 𝐺𝐷𝛾̇(𝑡).  Yielding occurs when |𝛾̇(𝑡)| exceeds the yield shear strain rate 𝛾̇𝑦; in which 

case, |𝜏(𝑡)| equals the shear yield stress 𝜏𝑦 (cap value).  In terms of the shear stress, the element 

damping forces are  {𝑅𝐷(𝑡)}𝑒 = {𝐵}𝐻𝑊𝜏(𝑡) .   (41) 

Elemental contributions to the tangent damping matrix are [𝐶𝑇𝑃(𝑗)]𝑒 = {𝐵}𝐺𝑇𝐷(𝑗)𝐻𝑊〈𝐵〉,   (42) 

where the tangent modulus 𝐺𝑇𝐷(𝑗)
 equals 𝐺𝐷 if |𝛾̇(𝑡)| < 𝛾̇𝑦 or equals zero if |𝛾̇(𝑡)| ≥ 𝛾̇𝑦. 

 

Parameters for a rectangular viscous element can be chosen as follows.  The building model is 

subjected to an earthquake ground motion strong enough to produce significant yielding.  The 

peak shear force in each story, denoted by 𝐹𝑘 for story 𝑘, is extracted from the analysis. For 

those stories that experience yielding, these forces should be indicative of story strength.  The 

yield stress for each viscous element in story 𝑘 is then found from 
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𝜏𝑦,𝑘 = 𝜆𝐹𝑘𝑊𝑁𝑘 ,  (43) 

where 𝑁𝑘 is the number of elements in story 𝑘 and 𝜆 is the capping fraction.  The yield shear 

strain rate 𝛾̇𝑦, assumed to apply to the entire building and which determines 𝐺𝐷 for each element 

as 𝜏𝑦,𝑘/𝛾̇𝑦, is found by ensuring that the first mode damping ratio equals the desired value 𝜉 

under linear conditions: 〈𝑉1〉[𝐶𝑃]{𝑉1} = 2𝜉𝜔1 .  (44) 

Finally, the capping fraction is taken as 𝜆 = 2𝜉, based on 2𝜉 being the ratio of damping forces to 

stiffness forces when a linear structure is vibrating in a mode at the resonant frequency of that 

mode.    

 

A concern about capped damping as implemented here is that because it is based only on the 

stiffness proportional term, higher modes have more damping than desired.  However, the caps 

themselves can mitigate this effect to some extent.  Figure 3 illustrates how a capped viscous 

damping force 𝐹𝐷(𝑡) behaves during harmonic motion with increasing frequency at a given 

displacement amplitude 𝑋𝑎, approaching a frequency independent state.   

 

 

6.  ANALYSIS OF A 20-STORY BUILDING 

 

The purpose of this section is to demonstrate the concepts and formulations discussed in previous 

sections.  The building analyzed is a 20-story steel moment frame that was designed as part of 

the SAC project for post-Northridge criteria in Los Angeles [39].   Complex features provide a 

realistic test of damping models, including geometric nonlinearity, strain hardening and 

deterioration in plastic hinges, flexible panel zones that yield, tri-element beams to represent 

cover-plated ends, and mid-story column nodes at splice locations.  Implicit plastic hinges are 

employed.  See Appendix 5 for a description of the software and details of the building model, 

which has a fundamental period of 3.61sec.   

 

The ground motion is also from the SAC project and was generated for Los Angeles with an 

exceedance probability of 2% in 50 years [40].  Two horizontal components identified as LA35 

and LA36 are combined into the direction that maximizes the peak-to-peak ground velocity; see 

Appendix 6.  Maximum values for this ground motion are 996 cm/sec2 for acceleration, 316 

cm/sec for velocity, 477 cm/sec for peak-to-peak velocity, and 121 cm for displacement.  For the 

particular building considered here, this ground motion was the most severe from the 2% in 50 

year set generated for Los Angeles.  Accordingly, the ground motion had to be scaled down 

amplitude-wise, and a scale factor 𝐹 in the range of 0.20 to 0.60 is employed. 

 

A total of seven damping cases are considered:  Rayleigh (R), condensed Rayleigh (CR), 

Wilson-Penzien (WP), tangent Rayleigh based on Equation 22 (TR), elastic velocity Rayleigh 
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based on Equation 31 (EVR), capped (P) and no damping (N).  Case abbreviations are used in 

the figures.  The damping ratio 𝜉 is selected as 0.03 at periods 𝑇̂1 and 𝑇̂2 equal to 4 sec and 1sec, 

respectively, for Rayleigh, condensed Rayleigh, tangent Rayleigh and elastic velocity Rayleigh.  

For Wilson-Penzien, eight translational modes are included, for which 𝜉 = 0.03.  For capped 

damping, 𝜉 = 0.03 at 𝑇1= 3.61sec, and 𝜆 = 0.06.  The earthquake analysis to determine the story 𝜏𝑦,𝑘 values (see Equation 43) used the LA35/LA36 motion scaled down to 40% of original 

amplitude, and 𝛾̇𝑦 was determined from Equation 44 as 6.9 cm/sec.  The undamped case serves 

as a reference.  For the damped analyses, the level 𝜉 = 0.03 seems reasonable for a 20-story steel 

building [13].  

 

Results of the analyses are presented in Figures 4 to 6.  Most of the yielding occurs in the form 

of plastic hinges in the beams of the moment frame at the sections where the cover plates stop 

and in the columns at ground level.  Panel zone yielding is minor. 

 

Time history plots are shown in Figure 4.  The lateral displacement of the12th floor (part a) 

shows that a significant permanent offset occurs after 10 seconds, and so the other parts of the 

figure focus in on the time interval from 9 to 14 seconds:  maximum absolute value of the plastic 

hinge rotation (part b) and damping moment (part c) among all 5th-floor beams, damping force in 

the 4th story of the half-building model (part d), and rate of energy dissipation by damping over 

the half-building model (part e).  A story damping force is computed as the sum of the horizontal 

damping forces acting on all nodes above the floor at the base of that story.  The results in Figure 

4 are for the ground motion scaled amplitude-wise by 𝐹 = 0.50. 

 

As seen for the 12th-floor lateral displacement (part a of Figure 4), the amount of permanent 

offset depends on the damping scheme.  The smallest offset occurs for Rayleigh, becoming 

progressively larger for condensed Rayleigh, Wilson-Penzien, capped and tangent Rayleigh, 

which are about the same, and finally elastic velocity Rayleigh, which is closer to the undamped 

case than to Rayleigh.  Comparable results are seen for the plastic hinge rotations for the 5th-floor 

beams (part b).  The peak plastic hinge rotations range from 6.4% for Rayleigh to 7.4% for 

elastic velocity Rayleigh to 7.9% for the undamped case.  

 

Damping moments are generated by Rayleigh, tangent Rayleigh and elastic velocity Rayleigh, 

and the time histories for Rayleigh and elastic velocity Rayleigh are shown in part c of Figure 4 

for 5th-floor beams, those for tangent Rayleigh and elastic velocity Rayleigh being similar.  The 

peak Rayleigh damping moment is 282 kN-m (2497 in-k), which is 17% of the beam’s plastic 
moment strength computed using 𝜎𝑦 = 317 MPa (46 ksi), i.e., 𝑀𝑟𝑎𝑡 = 0.17 (see equation 14), a 

high value considering 𝜉 = 0.03.  This peak occurs at 10.0 seconds during active hinge yielding.  

The damping moments from the two other schemes track the Rayleigh ones except during times 

of hinge yielding, when they drop to much lower values.  As a result, the peak damping moment 

for tangent Rayleigh and elastic velocity Rayleigh is 77 kN-m (682 in-k) at 13.2 seconds. 
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As seen in part d of Figure 4, maximum values of the 4th-story damping force occur during the 

large yield excursion, with the largest values produced by Wilson-Penzien and condensed 

Rayleigh.  The Rayleigh damping force is smaller because, as indicated in Section 3a, amplified 

damping moments are largely resisted by structural moments in the columns, which produce 

larger structural shear forces in the columns.  Damping forces from tangent Rayleigh and 

Rayleigh, which share the common effect of mass proportional damping, are similar.  For elastic 

velocity Rayleigh, the initial peak in the damping force drops off quickly due to its specific 

treatment of the mass proportional damping term.  The flat tops of capped damping are the 

lowest peaks among all damping schemes during the strongest portion of the response.  As seen 

in the figure, the caps are reached during subsequent lower but more high frequency response 

due to capped damping being based only on the stiffness proportional damping term. 

 

Part e of Figure 4 shows histories of the rate of energy dissipation by damping.  During the large 

yield excursion, Rayleigh is dissipating the most energy, followed by condensed Rayleigh, 

Wilson-Penzien, tangent Rayleigh, capped, and elastic velocity Rayleigh (least dissipative).  The 

lower dissipation rate for elastic velocity Rayleigh compared to tangent Rayleigh is due mainly 

to the different treatment of the mass proportional damping term.  Although the peak dissipation 

rates of elastic velocity Rayleigh and capped damping are about the same, their mechanisms and 

consequently their time variations are quite different.  Also, as seen in the figure, the energy 

dissipation rate of elastic velocity Rayleigh is briefly negative. 

 

Figure 5 presents distributions over the height of the building for peak plastic hinge rotation 

among the beams on each floor (part a) and the peak damping force in each story of the half-

building model (part b).  Results in Figure 5 are for 𝐹 = 0.50, the same ground motion scale 

factor used in Figure 4.   

 

The plastic hinge rotations in part a of Figure 5 indicate that most of the yielding occurs over the 

lower half of the building.  The variation in amplitude among the damping formulations is 

similar to that in the time history plot of Figure 4b.   As seen in part b of Figure 5, the peak 

damping forces show more differences in the lower part of the building where much of the beam 

plastic hinging takes place, with capped damping producing the smallest forces and Wilson-

Penzien producing the largest.  The peak Wilson-Penzien damping forces in the 1st and 5th stories 

are 11% and 16%, respectively, of the peak structural forces in those stories, high values for 𝜉 = 

0.03.  These ratios for capped damping are about 6%, uniform over the building height, as 

intended, and there is no evidence of unduly amplified damping forces due to higher mode 

effects in these results.  

 

Variations in four quantities as a function of the scale factor for the LA35/LA36 ground motion 

are shown in Figure 6:  peak plastic hinge rotation in any beam (part a), peak drift in any story 

(part b), ratio of peak rate of energy dissipation by damping to the peak rate of hysteretic energy 
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dissipation in the structural members (part c), and the same energy dissipation rate ratio but only 

including the mass proportional damping term (part d, Wilson-Penzien and capped damping not 

relevant).  The ground motion scale factor 𝐹 is varied from 0.20 to 0.60 in increments of 0.05.   

 

As shown in Figure 6a, peak plastic hinge rotation increases with ground motion scale factor, 

with the average value of the six formulations with damping increasing from 0.6% to 10% as 𝐹 

varies from 0.20 to 0.60.  The differences among these formulations also increase with 𝐹, 

becoming noticeable once the plastic hinge rotations exceed about 3%.  The ratio of peak plastic 

hinge rotation for elastic velocity Rayleigh (highest) to that for Rayleigh (lowest) is 1.05 at 𝐹 = 

0.20, and it rises to 1.28 at 𝐹 = 0.60.  The elastic velocity Rayleigh plastic rotations are closer to 

those of the undamped case than to Rayleigh for 𝐹 ≥ 0.35.  Results for peak story drift (part b of 

Figure 6) show similar trends, although the differences among the various damping formulations 

are not quite as large.   

 

The ratios of peak damping to peak hysteretic energy dissipation rates (part c of Figure 6) 

diverge significantly as 𝐹 increases.   All the curves start out at high values as expected due to 

the relatively small rate of hysteretic dissipation at low values of 𝐹.  The rate ratios for Rayleigh, 

condensed Rayleigh and Wilson-Penzien drop to the 14% to 16% range at 𝐹 = 0.40 and then 

increase to the 20% to 29% range at 𝐹 = 0.60.  These values correspond to energy dissipation 

rates for damping that seem unrealistically large for 𝜉 = 0.03.  This is true to a lesser extent for 

tangent Rayleigh, whose rate ratio increases from 11% to 14% for 𝐹 between 0.40 and 0.60.  

However, the rate ratio for elastic velocity Rayleigh decreases throughout the entire range of 𝐹, 

reaching 10% at 𝐹 = 0.40 and then 6% at 𝐹 = 0.60, which seems reasonable for 𝜉 = 0.03.  

However, as noted from Figure 4e, energy dissipation due to elastic velocity Rayleigh largely 

disappears during structural yielding.  For capped damping, the peak energy dissipation rate ratio 

is similar to that of elastic velocity Rayleigh, but the damping dissipation continues through 

yielding (Figure 4e).  Finally, as can be deduced from part d of Figure 6, the contribution of the 

mass proportional term to the peak rate of energy dissipation due to damping is significant.  

Depending on the damping scheme and the value of 𝐹, the mass proportional term contributes 

from nearly 50% to close to 100% of the total. 

 

The results in Figures 4 to 6 indicate that the choice of damping formulation makes a noticeable 

difference in a building’s response when the building is excited well into the inelastic range.  In 

terms of response quantities such as plastic hinge rotation and story drift, elastic velocity 

Rayleigh damping is the most conservative choice.  Next conservative are tangent Rayleigh and 

capped damping, whose plastic hinge rotations and story drifts are similar. 

 

Appendix 7 presents additional results of the seismic analysis of the 20-story building for the 

higher damping value of 𝜉 = 0.05.  The purpose is to explore sensitivity to the damping ratio and 

to indicate, perhaps crudely, what could be expected for a reinforced concrete moment frame for 
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which 𝜉 = 0.05 may be appropriate.  The results in Appendix 7 appear in figures similar to 

Figures 4 to 6, although some of the axis ranges have been altered.  With the higher damping, the 

spread exhibited by the various damping schemes increases. For example, with reference to 

Figure A10a, which corresponds to Figure 6a, the ratio of peak plastic hinge rotation for elastic 

velocity Rayleigh/ to that for Rayleigh is 1.09 at 𝐹 = 0.20, and it rises to 1.38 at 𝐹 = 0.60.  

These ratios are 1.05 and 1.28, respectively for 𝜉 = 0.03. 

 

 

7.  COMPUTATIONAL PERFORMANCE 

 

The choice of a damping scheme affects computational requirements.  This is especially true if 

the damping matrix is not banded, such as for condensed Rayleigh and Wilson-Penzien.  

However, as mentioned earlier, for these cases much of the computational penalty can be 

avoided by forming a banded approximation to the damping matrix via truncation, for use on the 

left side of the equation of motion.  A tradeoff exists between the bandwidth chosen for the 

damping matrix and the number of iterations per step.  The original damping matrix should be 

used on the right side.  For Wilson-Penzien, right-side vector multiplication by [𝐶𝑊𝑃] can be 

done component wise by the terms of Equation 17:  first by [𝑉]𝑇[𝑀], then by [𝑑𝑖𝑎𝑔(2𝜉𝜔𝑖)], 
then by [𝑀][𝑉], which is much faster than using [𝐶𝑊𝑃] directly.  No such shortcut exists for 

condensed Rayleigh. 

 

The analyses reported in the previous section were run for 2500 time steps with a step size of 

0.01 sec.  The building model has 1722 degrees of freedom and the half bandwidth of the 

stiffness matrix is 76.  Wilson-Penzien and condensed Rayleigh damping matrices were 

truncated to half bandwidths of 76 and 128, respectively, for use on the left side of the equation 

of motion.  These values are close to optimum regarding computation time.  No such truncation 

is needed for Rayleigh, tangent Rayleigh and elastic velocity Rayleigh.  For capped damping, the 

actual half bandwidth of the damping matrix, equal to 120, was used.  The larger half bandwidths 

for condensed Rayleigh and capped damping could have been reduced by 36 had mid-story 

nodes for column splice locations not been employed.  For all analyses, the tangent stiffness 

matrix [𝐾𝑇(𝑗)] was replaced by a weighted average of the elastic stiffness matrix (10%) and the 

current tangent stiffness matrix (90%).  For capped damping, the tangent damping matrix [𝐶𝑇𝑃(𝑗)] 
was replaced by a weighted average of the initial damping matrix (10%) and the current tangent 

damping matrix (90%).  The left-side matrix was formed and factored in every iteration of every 

time step for all damping schemes. 

 

Computational parameters of the analyses appear in Table 1, and for each run include the 

average number of iterations per time step, the maximum number of iterations for any time step, 

and the CPU time.  The computer employed was a Dell laptop with Intel i7-6700HQ 2.60GHz  
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processor, and all analyses were run under external power.  The Fortran code was compiled with 

g77 using -O optimization.  Observations are as follows:  1.)  Rayleigh converged in the fewest  

iterations and is consequently fastest overall.  2.) Tangent Rayleigh and elastic velocity Rayleigh 

are next fastest as they required only a few more iterations compared to Rayleigh.  3.) Wilson-

Penzien required additional iterations to account for the left-side truncation of the damping 

matrix, but it is still within a factor of two of Rayleigh in terms of CPU time.  The solution for 

the eight eigenvectors and eigenvalues took only about 2 CPU seconds.  4.) Capped damping 

suffered from the larger half bandwidth because of the presence of column splice nodes, and so it 

is about three times slower than Rayleigh.  5.) Condensed Rayleigh was affected by larger half 

bandwidth, right side multiplications with the untruncated damping matrix, and the need for 

significantly more iterations.  It is an order of magnitude slower than Rayleigh.  6.)  Lack of 

convergence was not an issue for any of the schemes, although capped damping experienced a 

few slow-to-converge time steps. 

 

 

Damping 

scheme 

 

Half 

bandwidth 

Scale factor 𝐹 = 0.20 Scale factor 𝐹 = 0.60 

Average 

iters/step 

Maximum 

iters/step 

CPU 

time 

(sec) 

Average 

iters/step 

Maximum 

iters/step 

CPU 

time 

(sec) 

R 76 1.6 4 46 2.0 5 56 

CR 128 5.6 7 607 6.1 12 651 

WP 76 2.3 9 74 2.9 18 91 

TR 76 1.8 9 53 2.6 19 74 

EVR 76 1.8 10 51 2.7 19 74 

P 120 1.8 10 97 2.8 51 152 

 

Table 1.  Computational parameters for the analyses of Section 6 at two ground motion scale 

factors.  

 

 

8. REVIEW OF SOME LITERATURE 

 

The literature reviewed in this section consists of quantitative studies that are concerned with the 

amplitude of damping forces and moments generated in inelastic analysis.  Only results from 

simulation of time history responses of moment frames to earthquake ground motions are of 

interest here.  For use in this section, Equation 14 is rewritten as  𝑀𝑟𝑎𝑡 = 𝛽𝜙̇𝑖,𝑚𝑎𝑥,  (45) 

where 𝛽 = 𝛼1𝐾𝑟𝑜𝑡 1 𝑀𝑃𝐵  and 𝐾𝑟𝑜𝑡 is the double-curvature rotational stiffness of the beam.  The 

terms 𝛽 and 𝜙̇𝑖,𝑚𝑎𝑥 will be used as a convenient way to compare results from different moment 

frames and ground motions regarding beam damping moments that are generated with Rayleigh 

damping.  The constant 𝛽 depends on properties of the building and the amount of damping, and 

it has units of sec/rad.  As an example, consider the 20-story building from Section 6 with 
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Rayleigh damping (𝜉 = 0.03) and subjected to the 𝐹 = 0.50 scaled LA35/LA36 ground motion.  

The peak damping moment in Figure 4c for a 5th-floor beam gives 𝑀𝑟𝑎𝑡 = 0.17 as noted 

previously.  For this beam, 𝛽 = 1.7 sec/rad, and a value 𝜙̇𝑖,𝑚𝑎𝑥 = 0.10 rad/sec is obtained from 

the analysis.  The product of these terms gives the same value for 𝑀𝑟𝑎𝑡. 

 

8a. References 16,18,19,21 

 

The problem with Rayleigh damping generating excessive damping moments in inelastic seismic 

analysis of moment frames appears to have been first noted in Reference 16.  In that study, 

several reinforced concrete frames, each two bays wide, were subject to the S16E component of 

the 1971 record from Pacoima Dam abutment (peaks of 1148 cm/sec2 acceleration, 114 cm/sec 

velocity, 37 cm displacement); see Appendix 6.  Plastic hinges were modelled implicitly with 

perfectly plastic moment-rotation behavior, and the analysis included finite joint size and 

member shear deformation.  In the case of a 6-story frame using 𝜉 = 0.08 at the frequencies of 

the first two modes, the peak resultant Rayleigh damping moment at the interior node on the 

second floor was 118 kN-m, and the moment strength of each beam at this location was 137 kN-

m.  From this writer’s analysis based on the structural details provided in Reference 41, the peak 

elemental damping moment for these beams is about 55 kN-m, which gives 𝑀𝑟𝑎𝑡 = 0.40.  Such a 

large damping moment should not be surprising considering 𝛽 = 4.4 sec/rad, and the very strong 

ground motion generated a 𝜙̇𝑖,𝑚𝑎𝑥 of about 0.09 rad/sec from this writer’s analysis.   The main 

reason why 𝛽 is large is the high damping level chosen.  Note also that the product of 𝛽 and 𝜙̇𝑖,𝑚𝑎𝑥 gives the same value for 𝑀𝑟𝑎𝑡.  Additional results for a 12-story frame are presented in 

Reference 16 and the other cited references. 

 

The explanation offered in the cited references as to why such large damping moments 

occur with Rayleigh damping is summarized as follows:   Mass for rotational degrees of freedom 

is thought to be important and so it is included in the analyses.    The presence of this rotational 

mass creates high frequency modes, and they contribute significantly to inelastic response.  

Large damping moments are generated by such modes due to their high modal damping values 

that are imparted by Rayleigh damping.  However, in this writer’s opinion, results of inelastic 

analysis should be insensitive as to whether mass for the rotational degrees of freedom is 

included or not.  An appropriate amount of rotational mass is too small to cause excessive 

Rayleigh damping moments. 

 

Remedies to large damping moments suggested in the cited references include the use of Wilson-

Penzien damping with uniform damping in all modes (including modes associated with the 

rotational degrees of freedom), Rayleigh damping with the second frequency 𝜔̂2 increased so 

that the damping imparted to the highest of the rotational modes is below critical damping, and 

tangent Rayleigh damping.  With uniform Wilson-Penzien damping, results of inelastic analysis 

should be similar if rotational mass is present and the associated modes are included in the 



25 

 

formulation along with the translational modes, or if rotational mass is omitted and only the 

translational modes are included.  Damping moments will be small in the first case and zero in 

the second case.  The suggestion to reduce Rayleigh damping moments by increasing 𝜔̂2 is 

effective because 𝛼1 is reduced (see Equation 10), which reduces 𝛽 in Equation 45.  Results will 

be similar whether rotational mass is included or not.  Also, as 𝜔̂2 is increased, Rayleigh 

damping approaches mass proportional damping. 

 

A final comment has to do with the amount of mass associated with the rotational degrees of 

freedom in the cited references, which appears to be too large.  Per Reference 41, a rotational 

mass is summed from contributions 
1105 𝑚𝑖𝐿𝑖3 from the beams and columns connected to a node, 

where 𝑚𝑖 is the element mass per unit length and 𝐿𝑖 is the element length.  The mass 𝑚𝑖 includes 

element dead weight and, for beams, the tributary floor load.  The term 
1105 𝑚𝑖𝐿𝑖3 is the diagonal 

term of the consistent mass matrix corresponding to a rotational degree of freedom [42].  

However, a more accurate choice is 
1420 𝑚𝑖𝐿𝑖3, which is appropriate for double curvature bending 

and which should be reduced further when plastic hinging occurs.  However, even the too-large 

values used in the cited references should be within the range where the damping moments 

directly resulting from rotational mass are small.  This has been confirmed by this writer’s 
analysis of the 6-story frame.  

 

8b.  Reference 17 

 

This study also documented large Rayleigh damping moments in inelastic seismic analysis of a 

moment frame, which had four stories and two bays and was modelled without finite joint size 

and panel zones and without shear deformation in the elements.  Yielding was confined to 

perfectly plastic moment-rotation behavior in beam plastic hinges (implicit type).  Using 𝜉 = 

0.05 at the first two modal frequencies, the beam damping moment at the top exterior node 

reached 85% of the beam strength at that location (𝑀𝑟𝑎𝑡 = 0.85).  This result was obtained with 

the S00E component of the 1940 El Centro ground motion (peaks of 342 cm/sec2 acceleration, 

33 cm/sec velocity and 11 cm displacement), a relatively moderate excitation (Appendix 6).  The 

reason for such a high Rayleigh damping moment is the values used for beam stiffness and 

strength, giving 𝛽 = 24 sec/rad as computed by this writer.  From the reference, the roof beam’s 
moment of inertia 𝐼𝐵 is 70,200 cm4 (1686 in4), and its plastic moment strength 𝑀𝑃𝐵 is 20.3 kN-m 

(180 in-kips).  For comparison, a steel W21X73 has similar 𝐼𝐵 of 66,600 cm4 but a much larger 𝑀𝑃𝐵 of 700 kN-m (assuming 𝜎𝑦 = 248 MPa).  Thus, this example problem is not realistic and 

produces greatly exaggerated damping moments relative to a beam’s strength.  

 

An argument is made in the reference that excessive damping moments can occur with Rayleigh 

damping because the associated rotational degrees of freedom are massless (or have small mass).  

The contrast with the argument discussed above in Section 8a is noted.  The point of view of this 
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writer is that an appropriate amount of rotational mass hardly affects the speed-up phenomenon 

that can contribute to amplification of damping moments; see Appendix 2 for a demonstration.  

Reference 17 also suggests using condensed Rayleigh damping (as discussed in Sections 3b, 6 

and 7) for inelastic analysis of moment frames to eliminate damping moments.   

 

8c.  References 22,23,33 

 

A simplified 5-story single-bay moment frame with explicitly modelled plastic hinges in the 

beams was examined in Reference 22.  Rayleigh damping of 2% at the 1st and 3rd modal 

frequencies was used, including for the rotational springs used to model the plastic hinges.  The 

ground motion employed was the S00E component of 1940 El Centro.  In one of the cases 

considered, the initial stiffness of the rotational springs was set to a value high enough to limit 

hinge rotation during linear response, and the damping moment in the 2nd-floor beam exceeded 

twice the plastic moment capacity of the beam.  The induced column moments led to a 

significantly amplified structural base shear force.  Such effects, which can occur even with light 

damping and moderate seismic excitation, are a demonstration of the egregious problem 

mentioned in Section 3a that can occur when damped plastic hinges are represented explicitly.  

Among its recommendations, Reference 22 favors the use of tangent Rayleigh damping. 

 

Explicitly modelled plastic hinges were also used for the moment frames examined in Reference 

33.  To avoid generating large damping moments in the plastic hinges, no contributions from the 

hinge rotational springs were included in the Rayleigh damping matrix, as mentioned in Section 

3a.  A plastic hinge stiffness was set at 10 times the double-curvature rotational stiffness of the 

elastic beam, which provided the desired rigidity without causing numerical difficulties.  

Adjustments were made to the stiffness and damping of the elastic beam to offset the added 

flexibility of the hinges.  This technique was further developed in Reference 23, where some 

time history comparisons were presented using a 1-bay, 1-story moment frame for various 

damping cases with 𝜉 = 0.10.  Attention was paid to increased structural moments in the 

columns when amplified beam damping moments occur, but insufficient structural details 

prevent an assessment of the results here.   

 

8d.  Reference 43 

 

Results of analyses of 3 and 9-story moment frames designed for Los Angeles under the SAC 

project [39] are presented in terms of median responses from sets of SAC ground motions 

developed for this site at various exceedance probabilities.  Plastic hinges were modelled 

implicitly with a 2% strain hardening stiffness ratio.  The damping schemes employed were mass 

proportional, tangent stiffness proportional and tangent Rayleigh (presumably Equation 22/24).  

The damping level was 𝜉 = 0.05.  For tangent Rayleigh, the 1st and 3rd modal frequencies were 

used as well as other pairs of frequencies intended to account for structural softening or to avoid 



27 

 

suppressing higher modes.  Regarding the 9-story building subjected to the ground motions with 

2% exceedance probability in 50 years, the median peak story drifts were all below 3%, yet the 

median ratios of peak damping force on the building to peak structural base shear reached the 

15% to 17% range for two of the tangent Rayleigh schemes.  The study concluded that tangent 

Rayleigh behaves satisfactorily, although the basis of this finding seems to be that tangent 

Rayleigh generally produces intermediate levels of response between mass proportional damping 

and tangent stiffness proportional damping.  

 

8e.  References 24,25  

 

The 20-story post-Northridge moment-frame building designed for Seattle as part of the SAC 

project [39] was examined in the study.  Cover plates on the beams were omitted from the 

analyses, and joints were modelled without finite dimensions and panel zones.  Some building 

models used implicit plastic hinges (referred to as distributed plasticity) and others used rotation 

springs.  Damping formulations included Rayleigh, tangent Rayleigh (Equation 22/24) and 

Wilson-Penzien.  When Rayleigh damping was used for the explicit plastic hinge models, it was 

added to the rotational springs in one case and omitted for another.  Damping level was 𝜉 = 0.02 

(at 1st and 3rd modal frequencies for Rayleigh and tangent Rayleigh).  A horizontal ground 

motion identified as SE30, which was developed by the SAC project [40] for Seattle to have a 

2% exceedance probability in 50 years, was employed (peaks of 1544 cm/sec2 acceleration, 88 

cm/sec velocity, 28 cm displacement).  SE30 has considerably less long-period content than the 

ground motion LA35/LA36 used in Section 6, even at 50% scale for the latter; see Appendix 6.   

 

All damping schemes gave similar results except Rayleigh when damping was included for the 

rotational springs.  In this case, the large damping moments nearly eliminated any permanent 

deformation in the building.  A conclusion of the study was that Rayleigh damping has no 

intrinsic problem for inelastic response history analysis of buildings, but damping should be 

omitted from rotational springs used to represent plastic hinges.  Despite the comparable 

performance of tangent Rayleigh, its use was not advised for conceptual reasons.  However, as 

explained in Appendix 3, Rayleigh without rotational spring damping and tangent Rayleigh are 

closely related, and the corresponding results presented in the cited references are practically 

identical.  Wilson-Penzien damping, for which damping moments do not occur, was also 

recommended. 

 

The study’s conclusions should be qualified based on the moderate level of nonlinearity 

exhibited by building.  Peak plastic hinge rotations barely exceeded 2% at a few upper floors and 

were less than 1% over the lower half of the building.  At these levels, the results presented in 

Section 6 show little difference among various damping schemes, even with 𝜉 = 0.03, which is 

higher than 𝜉 = 0.02 used in the cited references.  In addition, this writer computes 𝛽 in the 

range of 0.5 to 0.7 using beam properties in the upper part of the building where most of the 
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yielding takes place, so any amplification of Rayleigh damping moments would be expected to 

be fairly low. 

 

 

9.  OTHER RELATED TOPICS 

 

9a.  Vertical ground motion 

 

Past studies have argued that the vertical component of ground motion can be important and 

should be included in seismic analysis of structures, including frame buildings [44,45].  The 

high-frequency nature of vertical ground motion is effective in exciting axial forces in columns, 

possibly putting splices in steel columns under tension as well as affecting the bending strength 

and shear strength of concrete columns.  When vertical ground motion is included in seismic 

analysis, the damping scheme must appropriately damp the vertical motions.  However, damping 

for vertical vibration of buildings is even less well understood than damping for lateral vibration.  

The reasons are that vertical modes are not generally excited in forced vibration tests, and they 

are difficult to identify from earthquake records.  In addition, Rayleigh damping (including 

condensed Rayleigh, tangent Rayleigh and elastic velocity Rayleigh) does not have sufficient 

parameters to control the damping adequately over the wide frequency range that spans 

horizontal and vertical responses. 

 

Consider the 20-story building from Section 6 for which the fundamental period of lateral 

vibration is 3.61s.  The lowest vertical modes are a cluster of twelve (because there are twelve 

columns in the model) with periods around 0.18 sec and lower.  With Rayleigh damping of 𝜉 = 

0.03 at 𝑇̂1 =4.0 sec and 𝑇̂2 =1.0 sec as used in Section 6, the vertical mode damping would be at 

least 13% of critical.  Alternatively, if 𝑇̂1 and 𝑇̂2 are chosen as 4.0 sec and 0.18 sec, respectively, 

then the lateral modes with intermediate periods would receive low damping.   

 

To demonstrate the effect of damping on the potential for columns to develop axial tension, the 

building of Section 6 is subjected to gravity loads and the vertical component of the Tarzana 

ground motion (peaks of 1028 cm/sec2 acceleration, 72 cm/sec velocity and 17 cm displacement) 

from the 1994 Northridge earthquake.  This component is quite strong with a pseudo acceleration 

response spectrum value of 3.8 g in the 0.18 sec range at 3% damping (Appendix 6); even so, the 

response of the building is essentially linear since the horizontal component of ground motion is 

omitted.  Two Rayleigh damping cases are considered, both with 𝜉 = 0.03:  one with 𝑇̂1 =4.0 sec 

and 𝑇̂2 =1.0 sec as used in Section 6, which damps the vertical response at around 13% of 

critical, and the other with 𝑇̂1 =0.3 sec and 𝑇̂2 =0.1 sec, which damps the vertical response a 

little under 3% of critical.  Time histories of axial force are shown in Figure 7 for an interior 

moment-frame column in the 2nd story where column splices are located.  Tension excursions 

occur for both damping cases but are a factor of two lower when Rayleigh damping is based on 
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the lateral periods (part a) compared to the vertical periods (part b).  For reference, the peak axial 

forces of 4.7 MN tension and 10.1 MN compression (Figure 7b) compare to an axial yield 

strength of this column of 23.6 MN.  Because the building response is essentially linear under the 

vertical ground motion, condensed Rayleigh, tangent Rayleigh and elastic velocity Rayleigh 

exhibit results similar to those of Rayleigh damping.   

 

Ideally, both horizontal and vertical ground motions would be applied simultaneously.  In this 

case, to avoid the high damping of the vertical response when parameters of Rayleigh damping 

(including condensed Rayleigh, tangent Rayleigh and elastic velocity Rayleigh) are set using the 

periods of the lateral modes, contributions to stiffness proportional damping from bending 

deformations and to mass proportional damping from horizontal degrees of freedom can be 

based on lateral mode periods, and contributions to stiffness proportional damping from axial 

deformations and to mass proportional damping from vertical degrees of freedom can be based 

on vertical mode periods.  This suggestion involves an approximation because lateral modes also 

involve some column axial deformation and vertical inertia forces. 

 

Wilson-Penzien damping should perform satisfactorily for the vertical component of ground 

motion.  Care should be taken to ensure that the major vertical modes, at least equal to the 

number of columns, are included at the desired damping level in the construction of the damping 

matrix.  For the example problem described above, results will be similar to those in Figure 7b 

when 𝜉 = 0.03. 

 

When capped damping is employed in an analysis where both horizontal and vertical ground 

motions are applied, the stiffness proportional damping used for axial deformation of beams and 

columns can be based on the predominant period of the vertical modes.  With 𝜉 = 0.03 and 𝑇̂1 =0.18 sec, results very close to those in Figure 7b have been obtained for the example 

problem.  With the caps set at 0.06 of the axial yield strength, no capping of the axial damping 

forces occurs. 

 

9b.  Soil-structure interaction 

 

Damping can be contributed by soil-structure interaction during an earthquake through material 

damping in the soil and foundation and by energy radiation away from the building via the 

ground.  Soil-structure interaction tends to be more significant for stiffer buildings, softer soil 

and stronger shaking.  

 

Established techniques are available for modelling foundations and soil in the seismic analysis of 

a building [46].  The simplest is to assume that the building rests on a half space and that the 

base of the building translates and rotates as a rigid plane.  The half space can be represented by 

frequency-dependent impedance functions, which in many cases can be well approximated by 
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constant stiffness and damping terms for each degree of freedom of the rigid base.  Results are 

available to account for inhomogeneous properties of the ground, foundation embedment, the 

level of material damping of the soil, etc.  Seismic loading is considered to be free-field ground 

motions. 

 

When soil-structure interaction is important for a case where the building undergoes inelastic 

behavior, foundations and soil should always be modelled explicitly as opposed to using a fixed-

base structure with an equivalent amount of damping that is larger than that of the fixed-based 

building.  The potential for excessive damping forces and moments occurring in the building, as 

discussed in this report, will be less in the former case. 

 

For flexible moment-frame buildings, such as the one considered in Section 6, the effect of soil-

structure interaction on lateral vibration is generally not too important, although damping in 

higher modes may increase somewhat [47].  However, the much higher vertical stiffness of a 

building means that soil-structure interaction can significantly affect its response under vertical 

ground motion.  To demonstrate this effect, the analysis of Section 9a using vertical ground 

motion is repeated with soil-structure interaction included. The basement level of the building is 

constrained to move as a rigid plane in the vertical direction with half-space stiffness and 

damping constants of 16,500 MN/m (94,300 k/in) and 920 MN-sec/m (5,300 k-sec/in), 

respectively.  These values are computed using the graphs and formulas in Reference 48 for 

rectangular foundation dimensions 30.5 m by 36.6 m (100 ft by 120 ft), surface shear modulus 𝐺0 =145 MN/m2 (3019 k/ft2), surface shear wave velocity 𝑣𝑆0 =274 m/sec (900 ft/sec), Poisson’s 
ratio 𝜈 = 0.3, non-dimensional frequency parameter 𝑎0 = 2, and mid-range of the parameters 

accounting for increase of shear modulus with depth.  No soil/foundation material damping is 

included.  Half values of the half-space stiffness and damping constants are used for the half-

building model.  Rayleigh damping of 𝜉 = 0.03 at 𝑇̂1 =0.3 sec and 𝑇̂2 =0.1 sec is employed for 

the superstructure, as in Figure 7b.  Results in Figure 7c show that the column response is 

reduced nearly to that of Figure 7a for which the effective damping for vertical vibration is 13% 

of critical.  Indeed, a free vibration simulation of the building without superstructure damping 

but including soil-structure interaction shows a significant damping effect due to the interaction.  

This radiation effect would be less for shallow soil underlain by rock. 

 

A final note is that the formulations presented in Sections 3, 4 and 5 need to be modified to 

include soil-structure interaction.  For example, with Rayleigh damping, the soil/foundation 

damping terms are evaluated and added into [𝐶𝑅] individually and do not include the product of 𝛼1 and the soil/foundation stiffnesses.  For Wilson-Penzien, soil/foundation damping should be 

included in the modal damping values, which requires a separate determination.  In addition, 

when the damping formulation employed for the building contains a mass proportional term, the 

building’s velocities used for this term should be relative to a frame attached to the base of the 

building that contains the additional movement of the base due to the interaction.  Then, rigid 
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translation and rotation of the entire building receive damping from the soil/foundation only.  

This feature is included for the results shown in Figure 7c. 

 

 

10. CONCLUSIONS 

 

This report has examined the performance of various viscous damping schemes when used in 

inelastic seismic analysis of moment-frame buildings.  Following is a list of the most important 

conclusions. 

 

1.  This writer does not recommend Rayleigh damping for use in inelastic seismic analysis 

because of its potential to generate excessive damping moments and forces.  Beyond debate is 

the egregious case where plastic hinges are modelled explicitly with stiff rotational springs that 

are included in the stiffness proportional damping term.  For implicit plastic hinges, the effects 

are more benign, being less severe than indicated by some early studies but more important than 

concluded in a recent one; see Section 8 for a review of pertinent literature.  Nevertheless, these 

effects are unconservative and can become noticeable regarding amount of plastic hinge rotation 

and story drift as the degree of inelastic behavior increases, say, for plastic hinge rotations above 

3% as demonstrated in Section 6 for a 20-story moment-frame building.  Details of the modelling 

also play a role.  Greater damping moments occur for smaller distance between plastic hinge 

locations in beams (when finite joint dimensions are included and/or when cover-plated lengths 

at the ends of beams are present) or if beams are divided into multiple elements between plastic 

hinge locations, as discussed in Section 3a.  The potential for developing excessive damping 

moments in a given structure can be assessed by computing a 𝛽 factor; refer to Section 

8 for details. 

 

2.  Condensed Rayleigh and Wilson-Penzien damping schemes eliminate damping moments, but 

they do not appear to be entirely effective in dealing with the excessive damping effects 

associated with Rayleigh damping.  For the 20-story building analysis presented in Section 6, 

using implicit plastic hinges and 3% damping, observations includ the following.  a.) The peak 

values of story damping force for condensed Rayleigh and Wilson-Penzien exceeded that for 

Rayleigh damping over the part of the building experiencing the most inelastic behavior.  b.)  

The ratio of peak rate of energy dissipation by damping to the peak rate of energy dissipation by 

hysteresis of the structural members, evaluated over the entire building, was in the range of 14% 

to 27% for condensed Rayleigh and Wilson-Penzien when the ground motion was scaled to 

produce significant inelastic behavior.  While less than the corresponding values for Rayleigh 

damping, this 14% to 27% range is quite high for 3% damping. 

 

3.  Caughey damping is not suitable for general use due to computational issues. 
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4.  For the 20-story building analysis of Section 6 (3% damping, implicit plastic hinges), tangent 

Rayleigh damping and elastic velocity Rayleigh damping gave more conservative results in 

terms of plastic hinge rotations and story drifts, i.e. larger values of these quantities, compared to 

Rayleigh, condensed Rayleigh and Wilson-Penzien.   For building response involving significant 

inelastic behavior, tangent Rayleigh damping gave results approximately midway between 

Rayleigh and the undamped case.  Elastic velocity Rayleigh gave results closer to the undamped 

case.  While serious questions can be raised on conceptional grounds about these two methods, 

some performance measures, such as the energy dissipation rate ratio, showed improvement over 

the other damping schemes, especially for elastic velocity Rayleigh damping.  However, elastic 

velocity Rayleigh exhibits a marked decrease in damping action as a structure moves through a 

collapse mechanism, with the possibility of negative damping, so it may be overly conservative.  

Both tangent Rayleigh damping and elastic velocity Rayleigh damping can be implemented very 

efficiently, with only modest increases in computation time compared to Rayleigh damping. 

 

5. An alternative to tangent Rayleigh damping is capped damping, a form of which is developed 

in this report.  The main feature is a rectangular viscous element that damps inter-story and inter-

bay shear strain rates without the use of damping moments as described in Section 5.  Capped 

damping utilizes a calibration run to define the lateral strength of each story, and then the caps to 

the damping forces are set to the product of the story strength and twice an appropriate fraction 

of critical damping.  For the 20-story building considered in Section 6, the plastic hinge rotations 

and story drifts were comparable to those obtained with tangent Rayleigh damping.  

Computational efficiency of capped damping is reasonable, although not as good as tangent 

Rayleigh damping and elastic velocity Rayleigh damping. 

 

6.  One scheme to avoid the excessive damping moments produced by Rayleigh damping is to 

represent plastic hinges explicitly with rotational springs and then omit the stiffness contributions 

of the springs when forming the stiffness proportional part of the damping matrix.  As explained 

in Appendix 3, this process is essentially equivalent to the tangent Rayleigh approach. 

 

7.  Damping of responses to vertical ground motion deserves special attention.  Rayleigh 

damping does not have enough range to damp both the lateral motions of a building and the 

higher frequency vertical ones appropriately, even in the linear case.  As an approximate remedy, 

contributions to stiffness proportional damping from bending deformations and to mass 

proportional damping from horizontal degrees of freedom can be based on lateral mode periods, 

and contributions to stiffness proportional damping from axial deformations and to mass 

proportional damping from vertical degrees of freedom can be based on vertical mode periods.  

This procedure can also be applied to condensed Rayleigh, tangent Rayleigh and elastic velocity 

Rayleigh as well as to the part of capped damping associated with axial stiffness.  Damping from 

soil-structure interaction may or may not be important, but it is more likely to affect responses to 

vertical ground motion.  In such a case, soil-structure interaction should be modelled explicitly. 
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8.  Excessive forces and moments from the stiffness proportional term of Rayleigh damping can 

be associated with any type of structural element that is initially stiff and which experiences high 

deformation rates after yielding or buckling.  In addition to plastic hinging in moment frames, 

examples include panel zones in moment frames that are weaker than the adjacent beams, braces 

in braced frames, fuses in eccentrically braced frames, and coupling beams in shear walls.    Such 

systems merit further study.  

 

 

APPENDIX 1:  HYSTERETIC DAMPING 

 

A characteristic of hysteretic damping is that the energy dissipated per cycle is independent of 

frequency, which may agree better with experimental data than viscous damping.  Although 

several versions of hysteretic damping are available, usage has been limited compared to viscous 

damping models.  Two simple types of hysteretic damping are discussed below with reference to 

a single degree of freedom oscillator.  A possible application could be as an inter-story shear 

damper in a multi-story building. 

 

In the first form of hysteretic damping, the damper force is proportional to displacement of the 

mass but opposes its velocity [42, first edition only].  The damper force is given by 𝐹𝐻1(𝑡) = 𝛼𝑘𝑋(𝑡) 𝑋̇(𝑡)|𝑋̇(𝑡)| ,  (A1) 

where 𝑘 is the stiffness of the oscillator spring, 𝛼 is a constant, and 𝑋(𝑡) is the displacement of 

the mass.  See Figure A1a for a plot of 𝐹𝐻1(𝑡) vs 𝑋(𝑡) (solid line) over a cycle of displacement 

amplitude 𝑋𝑎.  The energy dissipated over this cycle is given by 𝐸𝐻1 = 2𝛼𝑘𝑋𝑎2 ,  (A2)  

which represents the enclosed area of the 𝐹𝐻1(𝑡) vs 𝑋(𝑡) relation. 

 

An expression for the constant 𝛼 can be obtained by relating the hysteretic damper to a viscous 

one, with the viscous damping force given by 𝐹𝑉(𝑡) = 2𝜉𝑘 1𝜔1 𝑋̇(𝑡) ,  (A3) 

where 𝜔1 is the natural frequency of the oscillator and 𝜉 is its fraction of critical damping.  Over 

a cycle of harmonic motion at frequency 𝜔1 with displacement amplitude 𝑋𝑎, the energy 

dissipated by the viscous damper is 

  𝐸𝑉 = 2𝜋𝜉𝑘𝑋𝑎2 ,  (A4) 

which, like 𝐸𝐻1, is proportional to 𝑋𝑎2.  The expression for the constant 𝛼 comes from equating 𝐸𝐻1 and 𝐸𝑉; thus, 𝛼 = 𝜋𝜉.  So, for example, 𝜉 = 0.03 gives 𝛼 = 0.094.  Under the stated 

conditions, the maximum force of the hysteretic damper exceeds that of the viscous damper by a 

factor of 
𝜋2.  This factor is reflected in Figure A1a where 𝐹𝑉(𝑡) vs 𝑋(𝑡) (dashed line) is plotted 

with an enclosed area equal to that of 𝐹𝐻1(𝑡) vs 𝑋(𝑡). 
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This first type of hysteretic damping has some major drawbacks.  The peak of 𝐹𝐻1(𝑡) occurs just 

as the mass is stopping, and then 𝐹𝐻1(𝑡) suddenly changes sign as the mass begins to reverse.  

This behavior is neither realistic nor mathematically well posed, and it can present computational 

difficulties.  In addition, for an inelastic system, 𝐹𝐻1(𝑡) can reach unrealistically high values as 

yielding occurs.  Further, when the mass oscillates around a permanent displacement, the damper 

force jumps back and forth between positive and negative values of the non-zero damper force at 

the permanent displacement.  This behavior continues as the mass tries to come to rest.  In 

conclusion, these problems would seem to rule out this form of hysteretic damping unless 

significant modifications can be made.  

 

A possibly more promising second form of hysteretic damping is provided by a hysteretic spring 

that is separate and distinct from the oscillator spring.  For this discussion, consider the oscillator 

spring to have yield displacement 𝑋𝑦 and yield force 𝐹𝑦, and the damper spring to be elastic-

perfectly plastic with stiffness 𝛼𝑘, yield displacement 𝛽𝑋𝑦 and yield force 𝜙𝐹𝑦.  A damper force 𝐹𝐻2(𝑡) vs 𝑋(𝑡) relation is shown in Figure A1b (solid line) for a cycle of displacement amplitude 𝑋𝑎 that exceeds 𝛽𝑋𝑦.  No damping occurs if 𝑋𝑎 does not exceed 𝛽𝑋𝑦.  Also, the energy 

dissipated per cycle grows only linearly with 𝑋𝑎 due to the upper bound on the damper force.  

The energy dissipated per cycle is given by  𝐸𝐻2 =4𝜙𝐹𝑦(𝑋𝑎 − 𝛽𝑋𝑦) ,  (A5) 

which is the enclosed area of the 𝐹𝐻2(𝑡) vs 𝑋(𝑡) relation. 

 

Since 𝜙 = 𝛼𝛽, there are two independent parameters of the damper spring to be determined.  An 

expression involving these parameters is obtained here by equating 𝐸𝐻2 to 𝐸𝑉  from Equation A4 

for a cycle of displacement amplitude 𝑋𝑎 = 𝑋𝑦 (yield displacement of the oscillator spring).  

This leads to an expression for 𝛼 in terms of 𝛽: 𝛼 = 𝜋𝜉2 1𝛽(1−𝛽) ,  (A6) 

where 𝛽 < 1.  It is desirable to make 𝛼, 𝛽 and 𝜙 as small as possible.  The choice 𝛽 = 0.5 

minimizes 𝛼 to the value 2𝜋𝜉, which is twice what was obtained for the first hysteretic damping 

model.  For example, 𝜉 = 0.03 gives 𝛼 = 0.188, which is a significant addition to the oscillator 

stiffness.  Also, 𝜙 equals 𝜋𝜉 with 𝛽 = 0.5, which is higher than the value of 2𝜉 recommended as 

a ratio of maximum damper force to maximum structural force for capped damping in Section 5.  

The choice 𝛽 = 0.215 reduces 𝜙 to 2𝜉 but it increases 𝛼 to 9.31𝜉.  The 𝐹𝐻2(𝑡) vs 𝑋(𝑡) relation 

plotted in Figure A1b is for 𝛽 = 0.5, and 𝐹𝑉(𝑡) vs 𝑋(𝑡) (dashed line) is shown with an enclosed 

area equal to that of 𝐹𝐻2(𝑡) vs 𝑋(𝑡).  The ratio of the peak damping forces in Figure A1b is 
𝜋2.   

 

So, the main drawbacks of this second type of hysteretic damping are the significant increase to 

oscillator stiffness when the damper spring in not in a yield state and the absence of damping at 

low amplitudes of motion. A curvilinear 𝐹𝐻2(𝑡) vs 𝑋(𝑡) relation can provide damping at low 
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amplitudes, but it will be small.  Such a relation is also a less efficient energy dissipater than the 

elastic-perfectly plastic one, which makes the selection of appropriately low values for 𝛼 and 𝜙 

even more difficult than for the elastic-perfectly plastic relation. 

 

 

APPENDIX 2:  SPEED-UP IN JOINT ROTATION 

 

Shown in Figure A2 is a one-bay-wide portion of a moment frame that extends vertically to mid-

levels of adjacent stories.  𝐿𝐶 and 𝐿𝐵 are the story height and bay width, and joint dimensions are 

assumed to be zero for simplicity.   𝐼𝐵 and 𝐼𝐶 are the moments of inertia of the beam and 

columns.  The bay is an interior one, and so half values of 𝐼𝐶 are used for the columns.  For this 

analysis, plastic hinges occur only in the beam.  These hinges are of the implicit type and are 

assumed to have perfectly plastic moment-rotation behavior.  

 

The frame in Figure A2 is under lateral load and experiences a differential horizontal velocity of 𝛥𝑋̇ from bottom to top that is assumed to be constant.  The columns bend in double curvature 

with points of inflection assumed to occur at mid-story.  For linear behavior before any plastic 

hinges form, the rotational velocity of the nodes 𝜙̇, which is relative to the beam chord, can be 

found by structural analysis as 𝜙̇ = 𝛥𝑋̇𝐿𝐶 (1 + 𝐿𝐶𝐿𝐵 𝐼𝐵𝐼𝐶 (1+𝛹𝐶)(1+𝛹𝐵))−1
  before hinging. (A7) 

After plastic hinges form in the beam, the columns rotate as rigid bodies and the rotational 

velocity of the joints increases to 𝜙̇ = 𝛥𝑋̇𝐿𝐶   after hinging. (A8) 

The ratio of these two rotational velocities is the speed-up factor 𝑆 = 1 + 𝐿𝐶𝐿𝐵 𝐼𝐵𝐼𝐶 (1+𝛹𝐶)(1+𝛹𝐵).  For 

example, for a W30X116 beam and W14X342 column with 𝐿𝐶 = 3.81 m and 𝐿𝐵 = 6.10 m, 𝑆 

equals 1.68.  Speed-up contributes to the amplified damping moments after hinges form.  An 

additional consideration is that 𝛥𝑋̇ may increase as well once hinges form. 

 

The above analysis neglects the role of damping, which may impede the speed-up of joint 

rotation after hinges form in the beam.  Figure A3 shows the time variation of 𝜙̇(𝑡) with 

damping omitted (curve 1) and included (𝜉 = 0.03 at periods 𝑇̂1 = 3 sec and 𝑇̂2 = 1 sec, curve 2).  

Parameters of the analysis are W30X116 beam, W14X342 column, 𝐿𝐶 = 3.81 m, 𝐿𝐵 = 6.10 m, 𝜎𝑦 = 317 MPa (46 ksi) and 𝛥𝑋̇ = 0.381 m/sec.  The beam does not accelerate, so the results do 

not depend on translational floor mass.  With damping included, the speed-up is complete in 

about 0.04 sec, which is fast compared to the expected duration of a yield excursion.  This means 

that the contribution of speed-up to the amplified damping moment is not moderated 

significantly by the presence of damping itself.  
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Curve 3 of Figure A3 shows the additional effect of rotational mass that is added to the two 

nodes.  At each node, the rotational mass is computed as 
1105 𝑚𝑖𝐿𝐵3  where 𝑚𝑖 is taken as a full-

node tributary weight of 133kN (30 kips) divided by 𝑔𝐿𝐵.  Despite this rotational mass being at 

least four times too large, as discussed in Section 8a, its effect on nodal rotational velocity is 

negligible, which will also be true for amplified damping moment.   

 

 

APPENDIX 3:  RELATION BETWEEN TWO INELASTIC MODELS WITH DIFFERENT 

PLASTIC HINGE REPRESENTATIONS AND DAMPING SCHEMES 

 

Consider two inelastic models that are equivalent in the absence of damping:  one uses implicit 

plastic hinges at the ends of the beam elements and the other uses rotational springs to represent 

plastic hinges that are essentially rigid in the unyielded state.  Assume initially that the plastic 

hinges are perfectly plastic.  Damping is added to both models:  tangent Rayleigh (Section 4, 

Equation 22/24) to the first one and Rayleigh to the second one except that no damping is added 

to the rotational springs as discussed in Section 3a and 8c.  These two models with damping are 

also equivalent.  There is no damping action associated with the plastic hinges in either model.  

The implicit hinges are either rigid or have a tangent stiffness of zero during yielding, and the 

rotational springs are undamped.  Thus, all damping action is associated with elastic deformation 

of the beams, which is the same for both models.  Also, the mass proportional damping terms act 

identically in both models.  In practice, small differences may result due to how solution 

methods for the two models are implemented.  Small differences may also result if the rotational 

springs are not completely rigid below yield.  Even so, the two inelastic models with different 

plastic hinge representations and different damping schemes are closely related.   

 

Consider now that the plastic hinges are not perfectly plastic, with the two inelastic models again 

being equivalent in the absence of damping.  If damping is added as described above, there will 

be some damping action associated with the implicit plastic hinges, which causes the results of 

the two models to differ.  However, such differences are expected to be small in typical 

situations, so, again, the two inelastic models can be considered closely related.    

 

 

APPENDIX 4:  JUSTIFICATION FOR TANGENT-STIFFNESS DAMPING BY OTHERS 

 

A tangent-stiffness damping component is mainly active in elements during loading, unloading 

and reloading below the yield point.  Justifications for the use of the tangent stiffness as a 

damping mechanism have been offered [36].  These arguments are restated in italics and 

addressed below. 
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In hysteretic models, for cycles prior to initial yield that are typically modelled as linear, but 

which can show some hysteresis in materials such as concrete, tangent-stiffness damping can 

supply the missing energy dissipation without affecting the forces and moments at yield.  This 

argument sees tangent-stiffness damping as a remedy of a defect in common hysteretic models.  

However, the presence of tangent-stiffness damping would not be wanted for the unloading and 

reloading segments of a cycle extending into the yield range because, presumably, the looping 

would have been calibrated to dissipate the appropriate amount of energy from structural 

hysteresis.  Additionally, for low-amplitude cycles that take place after yielding has occurred, 

hysteresis is already present in stiffness degrading models due to the stiffness change as the 

deformation axis is crossed, so again the presence of tangent-stiffness damping would be 

unwanted.  Thus, the addition of tangent-stiffness damping to correct a deficiency in hysteretic 

models before first yield can be problematic.  

 

When foundation damping is represented by structural damping instead of being modelled 

explicitly, tangent-stiffness damping in the structure can capture the disappearance of 

foundation damping during those intervals when structural yielding causes the forces applied to 

the foundation to remain constant.  Firstly, structural yielding generally does not cause the 

applied foundation forces to remain constant, including overturning moment, except in the case 

of a single-degree-of-freedom cantilever.  Secondly, even if such forces did become constant, 

foundation damping would not disappear.  Consider a simple foundation modelled by a spring 

and a dashpot subjected to a force than increases over time before levelling off.  The dashpot 

force does not suddenly become zero when the applied force becomes constant. 

 

Tangent-stiffness damping is appropriate to model damping arising from hysteresis and sliding 

of nonstructural elements because these effects are expected to be small in modern buildings or 

would quickly degrade at low story drifts.  This seems to be an argument that damping from 

nonstructural elements should be bounded to fairly low values rather than it exhibit some feature 

that is intrinsically captured by tangent-stiffness damping.   

 

 

APPENDIX 5:  COMPUTER CODE AND BUILDING MODEL  

 

The computer code is written in Fortran by this writer.  Gravity loads are applied first in a static 

analysis followed by earthquake ground motion in a dynamic analysis.  Geometric nonlinearity is 

included through geometric stiffness at the element level and by updating the geometry of the 

model based on current displacements.  Equations solved are those given earlier in the text 

except that the tangent stiffness matrix [𝐾𝑇(𝑗)] in Equation 4 is replaced by a weighted sum of the 

elastic and tangent stiffness matrices, the weighting factors being input parameters.  All damping 

formulations discussed in Sections 3, 4 and 5 are included.  Other features of the program can be 

gleaned from the description of the building analyzed below. 
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The structure is a 20-story steel moment-frame building designed under the SAC project [39] for 

Los Angeles using post-Northridge criteria.  All member sizes, beam cover plate data, column 

orientations, column splice locations and doubler plate data are given in the reference.  The plan 

and profile of the building are shown in Figure A4, and the horizontal ground motion is applied 

in the short direction of the building.  The computer model takes advantage of symmetry and 

consists of one planar moment frame and one planar gravity frame linked together at floor levels 

by diaphragm springs.  The members of the gravity frame are appropriately scaled to represent 

2½ such frames from the actual building.  Gravity loads and mass are calculated from floor and 

roof loads of 3.50 kPa (73 psf) dead and 0.48 kPa (10 psf) live, 1.20 kPa (25 psf) cladding load 

on the exterior surface, plus member weight.  Beam and column yield strengths are 317 MPa (46 

ksi) and 372 MPa (54 ksi), respectively.  The foundation is taken to be rigid except as described 

in Section 9b. 

 

Beams and columns are represented by two-node cubic beam elements with implicit plastic 

hinge capability at the nodes [49].  Moment strength, in terms of original plastic moment 

strength 𝑀𝑃, is defined as a function of maximum historical plastic rotation as shown in Figure 

A5, which exhibits strain hardening followed by weakening.  Hardening permits an increase in 

bending strength of 20% above 𝑀𝑃 at a plastic rotation of 0.02 radians, and the softening reduces 

the strength to zero at a plastic rotation of 0.14 radians for beams or 0.20 radians for columns, 

but a lower bound of 10% 𝑀𝑃 is enforced.  In terms of hardening and strength degradation, the 

model approximately agrees with experimental data [50].  Strain rate effects are omitted. 

 

Each beam of the moment frame consists of three elements:  an interior inelastic one and elastic 

ones on the ends with 100% increase in stiffness and strength to account for cover plates.  Each 

beam of the gravity frame consists of a rigidly connected single element with stiffness and 

strength reduced by 90% to reflect pinned conditions.  The reduced plastic moment 𝑀𝑃𝑟𝑒𝑑 for a 

column as a function of current axial force 𝑃 is given by 𝑀𝑃𝑟𝑒𝑑 = 𝑀𝑃 · Min [1, (1 − |𝑃|𝑃𝑦 ) 10.85],  (A9) 

which is appropriate for strong axis bending and where 𝑃𝑦 is the axial yield strength of the 

column section.  An inter-story node exists at all column splice locations.   

 

Panel zones at beam-to-column intersections are modelled by shear elements with finite 

dimensions and an elastic-plastic relation using a 10% strain hardening stiffness ratio [51].   Such 

joint nodes employ an extra rotational degree of freedom to include panel zone flexibility.  Joint 

thickness accounts for the presence of doubler plates. 

 

The complete model has 548 nodes and 1722 degrees of freedom.  Nodes are numbered floor-

wise progressing up the building to minimize the bandwidth, resulting in a half bandwidth of 76.  



39 

 

A larger half bandwidth is used to accommodate some damping schemes.  The first three lateral 

modes of the building have periods of  3.61 sec, 1.24 sec and 0.71 sec and effective masses of 

78.8%, 11.6% and 3.7%. 

 

 

APPENDIX 6:  GROUND MOTIONS 

 

Time history responses are computed for two ground motions in this report, and the acceleration 

time histories and pseudo acceleration response spectra (3% damping) for these ground motions 

are shown in Figure A6.  The one designated LA is from the SAC project and was generated for 

Los Angeles with an exceedance probability of 2% in 50 years [38].  Two horizontal components 

identified as LA35 and LA36 are combined into the direction that maximizes the peak-to-peak 

ground velocity.  Maximum values for this component of ground motion are 996 cm/sec2 for 

acceleration, 316 cm/sec for velocity, 477 cm/sec for peak-to-peak velocity, and 121 cm for 

displacement.  For use in Section 6, this ground motion is scaled amplitude-wise by factors 

ranging from 0.2 to 0.6.   The other ground motion is the vertical component from Tarzana and 

was recorded during the 1994 Northridge earthquake.  It is denoted by TZ, and has peaks of 1028 

cm/sec2 acceleration, 72 cm/sec velocity and 17 cm displacement.  This motion is used full scale 

in Section 9. 

 

Three other ground motions are mentioned in the literature review of Section 8.  Time histories 

and pseudo acceleration response spectra (3% damping) of these motions are shown in Figure 

A7.  The one designated PD is the S16E component from Pacoima Dam and was recorded during 

the 1971 San Fernando earthquake.  If has peak values of 1148 cm/sec2 acceleration, 114 cm/sec 

velocity and 37 cm displacement.  EL is the S00E component from El Centro recorded during 

the 1940 Imperial Valley earthquake.  Peak values are 342 cm/sec2 acceleration, 33 cm/sec 

velocity and 11 cm displacement.  The third ground motion is a horizontal component identified 

as SE30 from the SAC project and was generated for Seattle with an exceedance probability of 

2% in 50 years [38].  It is designated SE in Figure A7 and has maximum values of 1544 cm/sec2 

acceleration, 88 cm/sec velocity and 28 cm displacement. 

 

The ground motions recorded during actual earthquakes can be downloaded from the COSMOS 

website at http://www.cosmos-eq.org/  

 

 

APPENDIX 7: SEISMIC RESPONSE OF THE 20-STORY BUILDING WITH HIGHER 

DAMPING 

 

The results for 𝜉 = 0.05 are presented in Figures A8 to A10, which correspond to Figures 4 to 6.  

See Section 6 for a description of the details of the analysis and the quantities plotted. 

http://www.cosmos-eq.org/
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APPENDIX 8:  ARUP DAMPING 

 

A recent paper [52] describes a viscous damping scheme that achieves frequency independent 

damping over a wide frequency range.  This damping method is referred to as Arup damping 

within this appendix since it was developed by the engineering group at the Arup company.  

Details of the methodology, in addition to what is described here, can be found in the cited 

reference. 

 

Characteristics of Arup damping are as follows: 

• The frequency range over which frequency independent damping can be attained is wider 

than what can be achieved with Rayleigh damping.  Outside of this range, at both the low 

and high ends, the damping level drops off, which is opposite to the trend present in 

Rayleigh damping. 

• An increase in stiffness with increasing frequency is produced.  While this could be 

viewed as a drawback, arguments are presented in Reference 52 that such behavior is 

realistic.  The merits of this argument will not be discussed further here. 

• A mass proportional damping term is not employed; thus, the non-physical nature of 

mass-proportional damping is avoided, and rigid body motions are not damped. 

• The tendency of stiffness-proportional damping to produce large damping forces during 

yielding, especially for stiff components, is also avoided. 

• Arup damping is computationally efficient and involves no increase in bandwidth or loss 

of symmetry in the left-side matrix in the equation of motion.  Implementation is straight 

forward. 

 

A8a.  Formulation 

 

The notation from Reference 52 is modified to match the notation used elsewhere in this report.  

First, consider the derivation in Section 4 of this report (Tangent Rayleigh Damping) neglecting 

mass-proportional damping, specifically Equations 29 and 30, which combine to give  {𝑅𝐷(𝑡)} = 𝛼1{𝑅̇(𝑡)},    (A10) 

where 𝛼1 = 2𝜉/𝜔̂1 from Equation 10, and 𝜉 is the desired damping ratio.  Thus, the damping 

forces are proportional to the time rate of change of the structural forces, and the latter can be 

nonlinear.   In Arup damping, {𝑅(𝑡)} is replaced by a set of 𝑁 filtered force histories {𝑅𝑛(𝑡)}, 𝑛 = 1, 𝑁.  Thus,  {𝑅𝐷(𝑡)} = 2𝜉 ∑ 𝜒𝑛𝜔𝑐𝑛𝑁𝑛=1 {𝑅̇𝑛(𝑡)},    (A11) 

where the 𝜒𝑛 are additional dimensionless parameters to be determined, and the 𝜔𝑐𝑛 are cutoff 

frequencies used in the filtering process.  [Compared to Reference 52, damping ratio is used here 

instead of damping factor, and 𝜒𝑛 replaces 2𝛼𝑛.]  The {𝑅𝑛(𝑡)} are solutions to  {𝑅𝑛(𝑡)} + 1𝜔𝑐𝑛 {𝑅̇𝑛(𝑡)} = {𝑅(𝑡)},    (A12) 

each one a filtered version of {𝑅(𝑡)}, dependent on the cutoff frequency. 
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The method of selection for the parameters 𝜒𝑛 and 𝜔𝑐𝑛 becomes clear after a transformation of 

the above to the frequency domain.  Taking the Fourier transforms of the time functions in 

Equations A11 and A12 leads to {𝑅𝐷(𝜔)} = 2𝜉 ∑ [𝜒𝑛 ( 𝜔𝜔𝑐𝑛 + 𝑖) 𝜙𝑛]𝑁𝑛=1 𝑅(𝜔),   (A13) 

where 𝜙𝑛 = 𝜔𝜔𝑐𝑛 / (1 + 𝜔2𝜔𝑐𝑛2 ), 𝜔 is the frequency parameter and 𝑖 = √−1.  [There is a factor of 2 

difference in the definition of 𝜙𝑛 between Reference 52 and here.]  In order to have frequency 

independent damping at the desired damping ratio 𝜉 over a frequency range 𝜔𝑐1 to 𝜔𝑐𝑁, the term ∑ 𝜒𝑛𝜙𝑛𝑁𝑛=1  from the imaginary part of Equation A13 should be approximately equal to one over 

this range.  For a given set of 𝑁 cutoff frequencies 𝜔𝑐𝑛, this can be accomplished by a least 

squares procedure to determine values for the 𝑁 𝜒𝑛 by minimizing the quantity 𝛹(𝜔) = ∫ [∑ 𝜒𝑛𝜙𝑛𝑁𝑛=1 − 1]2dω 𝜔𝑐𝑁 𝜔𝑐1 .    (A14) 

To keep the set of 𝜒𝑛 within the same order of magnitude, the cutoff frequencies should be 

chosen so that each 𝜔𝑐𝑛 for 𝑛 > 1 is the same multiple of the next lower cutoff frequency.  Once 

the 𝜒𝑛 are determined, the resulting damping ratio as a function of frequency is given by 𝜉(𝜔)  = 𝜉 ∑ 𝜒𝑛𝜙𝑛𝑁𝑛=1 .    (A15) 

 

Equation A13 also reveals that the damping forces are not pure damping forces; they contain a 

stiffness increment, which is the real part of Equation A13.  This increment, as a fraction of the 

static stiffness, is given as a function of frequency by 𝛾(𝜔)  = 2𝜉 ∑ 𝜒𝑛 𝜔𝜔𝑐𝑛 𝜙𝑛𝑁𝑛=1 .    (A16) 

The increment equals zero at 𝜔 = 0 and increases with frequency to an upper bound of 2𝜉 ∑ 𝜒𝑛𝑁𝑛=1 .  Although referred to as a stiffness increment, this component represents a dynamic 

load carrying mechanism that augments that of the structure. 

 

Evident from the frequency domain equations, Arup damping is equivalent to 𝑁 Maxwell 

elements in parallel.  See Reference 52. 

 

As an example, consider 𝑁 = 4 with cutoff frequencies chosen as 1, 4, 16 and 64 rad/sec.  

Values of 𝜒𝑛 are determined from the least squares procedure as 1.262, 0.935, 0.705 and 1.441 in 

the order from 𝑛 =1 to 4.  For a desired damping ratio of 𝜉 = 0.03, the resulting damping 𝜉(𝜔) 

is plotted in Figure 11a as a function of frequency.  For the same parameters, the stiffness 

increment 𝛾(𝜔) is plotted in Figure 11b, the upper bound being 0.26.  The vertical ordinates in 

Figures 11a and b are both proportional to the desired damping ratio 𝜉, which is evident from 

Equations A15 and A16.   

 

The cutoff frequencies of 1, 4, 16 and 64 rad/sec used in Figure 11 would be appropriate for an 

analysis of the 20-story building considered here in this report, whose first three modal periods 
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are 3.61, 1.24 and 0.71 sec, corresponding to frequencies of 1.74, 5.1 and 8.8 rad/sec.  These 

three modal frequencies are marked in Figure 11 with dots.  Damping ratios are close to the 

desired 0.03 for all three modes.  The stiffness increment 𝛾(𝜔) varies from 6.6% for the 

fundamental mode to 13% for the third mode. 

 

A8b.  Numerical implementation (1) 

 

Equations 11 and 12 are discretized in the time domain as 12 {𝑅𝐷(𝑡 + 𝛥𝑡)+𝑅𝐷(𝑡)} = 2𝜉 ∑ 𝜒𝑛𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 {𝑅𝑛(𝑡 + 𝛥𝑡) − 𝑅𝑛(𝑡)}    (A17) 

and 12 {𝑅𝑛(𝑡 + 𝛥𝑡)+𝑅𝑛(𝑡)} + 1𝜔𝑐𝑛𝛥𝑡 {𝑅𝑛(𝑡 + 𝛥𝑡) − 𝑅𝑛(𝑡)} = 12 {𝑅(𝑡 + 𝛥𝑡) + 𝑅(𝑡)}.    (A18) {𝑅𝑛(𝑡 + 𝛥𝑡)} is found from Equation A18 as {𝑅𝑛(𝑡 + 𝛥𝑡)} = 𝜔𝑐𝑛𝛥𝑡2+𝜔𝑐𝑛𝛥𝑡 {𝑅(𝑡 + 𝛥𝑡) + 𝑅(𝑡)} + 2−𝜔𝑐𝑛𝛥𝑡2+𝜔𝑐𝑛𝛥𝑡 {𝑅𝑛(𝑡)},    (A19) 

which is substituted into Equation A17 to get the following expression for {𝑅𝐷(𝑡 + 𝛥𝑡)}: {𝑅𝐷(𝑡 + 𝛥𝑡)} = (4𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 ) {𝑅(𝑡 + 𝛥𝑡) + 𝑅(𝑡)} −  8𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 {𝑅𝑛(𝑡)} − {𝑅𝐷(𝑡)}.    (A20) 

Linearization and introduction of the iteration format give {𝑅𝐷(𝑗+1)(𝑡 + 𝛥𝑡)} = (4𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 ) {𝑅(𝑗+1)(𝑡 + 𝛥𝑡) + 𝑅(𝑡)} − 8𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 {𝑅𝑛(𝑡)} − {𝑅𝐷(𝑡)}    (A21) = (4𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 ) [𝐾𝑇(𝑗)]{𝛥𝑎(𝑗)} + {𝑅𝐷(𝑗)(𝑡 + 𝛥𝑡)},    (A22) 

where [𝐾𝑇(𝑗)] is the tangent stiffness matrix. 

 

The damping forces as expressed by Equation A22 replace the ones in Equation 4 to produce  [ 4𝛥𝑡2 𝑀+ (1 + 4𝜉 ∑ 𝜒𝑛2+𝜔𝑐𝑛𝛥𝑡𝑁𝑛=1 ) 𝐾𝑇(𝑗)] {𝛥𝑎(𝑗)} = {𝑓(𝑡 + 𝛥𝑡)} − {𝑅(𝑗)(𝑡 + 𝛥𝑡)} − {𝑅𝐷(𝑗)(𝑡 + 𝛥𝑡)} − [ 4𝛥𝑡2 𝑀] {𝑎(𝑗)(𝑡 + 𝛥𝑡)} + [ 4𝛥𝑡2 𝑀] {𝑎(𝑡)} + [ 4𝛥𝑡 𝑀] {𝑎̇(𝑡)} + [𝑀]{𝑎̈(𝑡)}.    (A23) 

During an iteration after the structural forces are updated to {𝑅(𝑗+1)(𝑡 + 𝛥𝑡)}, the damping 

forces are updated using Equation A21 to {𝑅𝐷(𝑗+1)(𝑡 + 𝛥𝑡)}.  Once convergence is achieved in a 

time step, the filtered structural forces {𝑅𝑛(𝑡 + 𝛥𝑡)} are found from Equation A19. 

 

When a dynamic analysis using Arup damping is applied following a static analysis, such as due 

to gravity loads, damping forces are initially zero.  This means that when using Equation A21, {𝑅(𝑗+1)(𝑡 + 𝛥𝑡)}, {𝑅(𝑡)} and {𝑅𝑛(𝑡)} should all initially be set to the static load vector. 

 
(1) Y. Huang of Arup company provided direct input to this section. 
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A8c.  Performance 

 

To examine the performance of Arup damping in a simple way, a single-degree-of-freedom 

oscillator with period the same as the fundamental period 3.61 sec of the 20-story building 

(frequency of 1.74 rad/sec), is subjected to sinusoidal displacement histories at frequencies of 

1.74, 5.1 and 8.8 rad/sec, the same as the frequencies of the first three modes of the 20-story 

building.  The spring of the oscillator is elastic perfectly plastic with yield force denoted by 𝐹𝑦  

and yield displacement denoted by 𝛥𝑦.  The desired damping ratio 𝜉 = 0.03 and the cutoff 

frequencies 1, 4, 16 and 64 rad/sec are employed.  Plots of the spring force (dashed line) and the 

damping force at the three frequencies (solid lines) as a function of oscillator displacement are 

shown in Figures 12 and 13 for Arup damping (parts a), Rayleigh (parts b), tangent Rayleigh 

(parts c) and capped damping (parts d).  For capped damping, the cap is set at 2𝜉𝐹𝑦.  In Figure 

12, the displacement amplitude equals the yield displacement 𝛥𝑦, in which case the spring force 

is linear.  In Figure 13, the displacement amplitude equals four times the yield displacement 

(4𝛥𝑦).  The plots in the figures correspond to steady-state conditions, and the spring force is 

independent of frequency and damping type. 

 

For cycling at the yield displacement (Figure 12), the energy dissipated per cycle from damping 

(area within loop) is independent of frequency for Arup damping.  With capped damping, 

frequency independence is approached for higher frequencies since the cap is reached earlier in 

the cycle.  The energy dissipated per cycle for Rayleigh and tangent Rayleigh increases linearly 

with frequency, and their damping forces are the same because the spring does not yield.  The 

inclination of the loops for Arup damping is due to the presence of the stiffness component, 

which increases with frequency as indicated in Figure 11b.  However, the energy dissipated per 

cycle is not affected.  When the excitation frequency equals the fundamental frequency of the 

oscillator (1.74 rad/sec), all four damping schemes dissipate the same energy per cycle. 

 

The damping behavior is more complex when the oscillator is cycled into the yield range of the 

spring (Figure 13, where the displacement amplitude reaches four times the yield displacement 

of the spring).  The results can be quantified using the ratio of energy dissipated by the damper to 

the energy dissipated by the spring over a cycle as the frequency increases from 1.74 rad/sec to 

8.8 rad/sec.  For Arup damping, this ratio goes from 12% to 18%, exhibiting some moderate 

frequency dependence.  With capped damping, the ratio is essentially constant at 8%.  Both 

Rayleigh and tangent Rayleigh show linear frequency dependence, with the energy dissipation 

ratio being much larger for Rayleigh, going from 25% to 127% compared to 5% to 25% for 

tangent Rayleigh.  Since the bottoms of these ranges correspond to a structure vibrating in its 

fundamental mode, the expectation is that Arup damping would give structural responses 

somewhere between Rayleigh (more damped) and tangent Rayleigh and capped (less damped).  
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Arup damping is now considered for the same 20-story building analyzed in Section 6 of this 

report.  Damping ratios 𝜉 of 0.03 and 0.05 are considered, and the cutoff frequency set 1, 4, 16 

and 64 rad/sec is again employed.  As before, the ground motion is the combined LA35/LA36 

horizontal component only with rigid foundation.  This motion is scaled amplitude wise by 

factors 𝐹 ranging from 0.2 to 0.6.  The results presented are a subset of those shown in Section 6 

and Appendix 7.  Damping moment, damping force and rate of energy dissipation are omitted 

here because it is not possible to separate the stiffness and damping components of Arup 

damping, and so the results would not be comparable with the previous results using other types 

of damping.  Thus, only floor displacement, story drift and plastic hinge rotation are shown 

below.  Comparisons are made with corresponding results from Rayleigh, tangent Rayleigh and 

no damping.  In the figures, these plots are denoted by R, TR and N, respectively, while plots 

using Arup damping are denoted by A. 

 

Shown in Figure 14 are time histories using the ground motion scale factor 𝐹 = 0.5.  Part a shows 

the 12th-floor lateral displacement history for the no damping case and Arup damping with 𝜉 of 

0.03 and 0.05.  A purpose of this plot is to examine the frequency shift due to the stiffness 

component of Arup damping, which is visible but not pronounced, but more so with the higher 

damping.  Parts b (𝜉 = 0.03) and c (𝜉 = 0.05) of Figure 14 show plastic hinge rotation (maximum 

among all 5th-floor beams).  Arup damping gives results that are between Rayleigh and tangent 

Rayleigh, and closer to tangent Rayleigh.  

 

Figure 15 presents peak plastic hinge rotation in any beam and peak drift in any story for 𝜉 = 

0.03 in parts a and b and for 𝜉 = 0.05 in parts c and d as a function of ground motion scale factor 𝐹 varied from 0.20 to 0.60 in increments of 0.05.  In agreement with the previous figure, Arup 

damping consistently gives results that are slightly smaller (more damped) than tangent 

Rayleigh. 

 

Finally, regarding computational performance for the 20-story building, Table A1 below 

reproduces part of Table 1 and includes results for Arup damping (labelled A) at 𝜉 = 0.03.  

Results are comparable to tangent Rayleigh damping. 

 

 

Damping 

scheme 

 

Half 

bandwidth 

Scale factor 𝐹 = 0.20 Scale factor 𝐹 = 0.60 

Average 

iters/step 

Maximum 

iters/step 

CPU 

time 

(sec) 

Average 

iters/step 

Maximum 

iters/step 

CPU 

time 

(sec) 

R 76 1.6 4 46 2.0 5 56 

TR 76 1.8 9 53 2.6 19 74 

A 76 2.0 10 58 2.6 50 72 

 

Table A1.  Computational parameters for two analyses of the 20-story building from Section 6 

and for Arup damping of Appendix 8 at two ground motion scale factors.  
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12. FIGURES 

 

 

 

 

 

 

 
 

Figure 1.  Three representations of a beam in a moment frame with implicit plastic hinges at the 

ends:  (a) single beam element, (b) three-element model with third-point nodes and (c) single 

beam element with reduced span.  Beam plastic hinges form at nodes 1 and 2, and 𝐿𝐵 is the 

distance between these two nodes. 
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Figure 2.  Rectangular viscous element showing position in a frame and numbering of the 

degrees of freedom.  The panel has 4 nodes and 8 degrees of freedom. 

 

 

 

 

 
 

Figure 3.  Damping force 𝐹𝐷(𝑡) vs displacement 𝑋(𝑡) for a capped viscous damper under 

harmonic motion with increasing frequency at constant displacement amplitude 𝑋𝑎.    
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Figure 4.  Time history plots for the 20-story building subjected to the LA35/LA36 ground 

motion scaled amplitude wise by 𝐹 = 0.50:  (a) 12th-floor lateral displacement, (b and c) 

maximum absolute value of the plastic hinge rotation and damping moment among all 5th-floor 

beams, (d) 4th-story damping force, and (e) rate of energy dissipation by damping.   
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Figure 5.   Distributions over the height for the 20-story building subjected to the LA35/LA36 

ground motion scaled amplitude wise by 𝐹 = 0.50:  (a) peak plastic hinge rotation among the 

beams on each floor and (b) peak damping force in each story .   
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Figure 6.  Variations in four quantities for the 20-story building as a function of the scale factor 𝐹 for the LA35/LA36 ground motion varied from 0.20 to 0.60 in increments of 0.05:  (a) peak 

plastic hinge rotation in any beam, (b) peak drift in any story, (c) ratio of peak rate of energy 

dissipation by damping to the peak rate of energy dissipation by hysteresis of the structural 

members, and (d) the same energy dissipation rate ratio but only including the mass proportional 

damping term. 
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Figure 7.  Column axial force time histories for the 20-story building due to the vertical 

component of the Tarzana ground motion (interior moment-frame column in the 2nd story):  (a) 

Rayleigh damping with 𝜉 = 0.03 at 𝑇̂1 =4.0 sec and 𝑇̂2 =1.0 sec, (b) Rayleigh damping with 𝜉 = 

0.03 at 𝑇̂1 =0.3 sec and 𝑇̂2 =0.1 sec, and (c) Rayleigh damping with 𝜉 = 0.03 at 𝑇̂1 =0.3 sec and 𝑇̂2 =0.1 sec and soil-structure interaction is included.   
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Figure A1.  Force 𝐹𝐻(𝑡) vs displacement 𝑋(𝑡) for two types of hysteretic dampers:  (a) force 

proportional to displacement and opposing velocity and (b) elastic-perfectly plastic.  The dotted 

line in each part represents the force vs. displacement relation for a viscous damper under 

harmonic motion, and the plots are scaled such that the hysteretic and viscous dampers dissipate 

the same amount of energy per cycle under equal displacement amplitudes 𝑋𝑎. 
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Figure A2.  Partial moment frame used to demonstrate speed-up in joint rotations after plastic 

hinging occurs in the beam.  One node is present at each beam-to-column joint.  Finite joint 

dimensions are not included. 

 

 

 

 

 

 

 
 

Figure A3.  Nodal rotational velocity vs. time for the partial moment frame of Figure A2.  Curve 

1:  neither damping nor rotational mass included.  Curve 2:  damping included but not rotational 

mass.  Curve 3:  both damping and rotational mass included.  Hinge formation occurs at time 

zero.  See the text for the parameters of the analysis. 
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Figure A4.  Plan view (left) and moment frame (right, displaying nodal layout) of the building 

analyzed.  The enlargement shows panel zone with joint node, beam nodes at ends of cover-

plated sections, and column-splice node.  The gravity frame is similar except cover plates and the 

associated interior beam nodes are not present. 

 

 
 

Figure A5.  Moment vs. rotation relation for the plastic hinges, showing variable strength hinges 

for beams and columns. 
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Figure A6.  Acceleration time histories and pseudo acceleration response spectra for two ground 

motions:  combined horizontal LA35 and LA36 from the SAC project (LA) and the vertical 

component from Tarzana recorded during the 1994 Northridge earthquake (TZ).  Response 

spectra are computed with 3% damping. 
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Figure A7.  Acceleration time histories and pseudo acceleration response spectra for three 

ground motions:  horizontal component S16E at Pacoima Dam recorded during the 1971 San 

Fernando earthquake (PD), horizontal component S00E in El Centro recorded during the 1940 

Imperial Valley earthquake (EL), and horizontal SE30 from the SAC project (SE).  Response 

spectra are computed with 3% damping. 
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Figure A8.  Time history plots for the 20-story building subjected to the LA35/LA36 ground 

motion scaled amplitude wise by 𝐹 = 0.50:  (a) 12th-floor lateral displacement, (b and c) 

maximum absolute value of the plastic hinge rotation and damping moment among all 5th-floor 

beams, (d) 4th-story damping force, and (e) rate of energy dissipation by damping.  Same as 

Figure 4 except damping is increased to 𝜉 = 0.05. 
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Figure A9.   Distributions over the height of the 20-story building subjected to the LA35/LA36 

ground motion scaled amplitude wise by 𝐹 = 0.50:  (a) peak plastic hinge rotation among the 

beams on each floor and (b) peak damping force in each story.   Same as Figure 5 except 

damping is increased to 𝜉 = 0.05. 
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Figure A10.  Variations in four quantities for the 20-story building as a function of the scale 

factor 𝐹 for the LA35/LA36 ground motion varied from 0.20 to 0.60 in increments of 0.05:  (a) 

peak plastic hinge rotation in any beam, (b) peak drift in any story, (c) ratio of peak rate of 

energy dissipation by damping to the peak rate of energy dissipation by hysteresis of the 

structural members, and (d) the same energy dissipation rate ratio but only including the mass 

proportional damping term.  Same as Figure 6 except damping is increased to 𝜉 = 0.05. 
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Figure A11.  Damping 𝜉(𝜔) (part a) and stiffness increment 𝛾(𝜔) (part b) for Arup damping at 𝜉 

= 0.03.  Cutoff frequencies are 1, 4, 16 and 64 rad/sec.  The dots are at the three lowest modal 

frequencies of the 20-story building (1.74, 5.1 and 8.8 rad/sec).  (This figure is similar to one in 

Reference 52.) 
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Figure A12.  Spring force (dashed line) and damper force (solid lines) vs. displacement for a 

single degree of freedom oscillator subjected to a sinusoidal displacement at the yield 

displacement.  Four damping cases are shown:  Arup damping (part a), Rayleigh (part b), tangent 

Rayleigh (part c) and capped damping (part d).  The damper force curves correspond to 

frequencies of 1.74 rad/sec (inner loop), 5.1 rad/sec (middle loop) and 8.8 rad/sec (outer loop). 
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Figure A13.  Spring force (dashed line) and damper force (solid lines) vs. displacement for a 

single degree of freedom oscillator subjected to a sinusoidal displacement at four times the yield 

displacement.  Four damping cases are shown:  Arup damping (part a), Rayleigh (part b), tangent 

Rayleigh (part c) and capped damping (part d).  The damper force curves correspond to 

frequencies of 1.74 rad/sec (inner loop), 5.1 rad/sec (middle loop) and 8.8 rad/sec (outer loop). 
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Figure A14.  Time history plots for the 20-story building subjected to the LA35/LA36 ground 

motion scaled amplitude wise by 𝐹 = 0.50:  (a) 12th-floor lateral displacement and (b and c) 

maximum absolute value of the plastic hinge rotation among all 5th-floor beams.   Damping is as 

noted for part a, 𝜉 = 0.03 for part b, and 𝜉 = 0.05 for part c. 

 

 

 

 

 

 

 



68 

 

 

 

 

 

 

 

 
 

Figure A15.  Variations in two quantities for the 20-story building as a function of the scale 

factor 𝐹 for the LA35/LA36 ground motion varied from 0.20 to 0.60 in increments of 0.05:  (a 

and c) peak plastic hinge rotation in any beam and (b and d) peak drift in any story.  𝜉 = 0.03 for 

parts a and b, and 𝜉 = 0.05 for parts c and d. 

 

 

 


