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ABSTRACT
We derive analytically, the performance optimal throttling curve for
a processor under thermal constraints for a given task sequence. We
found that keeping the chip temperature constant requires an expo-
nential speed curve. Earlier works that propose constant throttling
only keep the package/case temperature constant, and are hence
suboptimal. We develop high-level thermal and power models that
are simple enough for analysis, yet account for important effects
like the power-density variation across a chip (hotspots), leakage
dependence on temperature (LDT), and differing thermal character-
istics of the silicon die and the thermal solution. We use a piecewise-
linear approximation for the exponential leakage dependence on
temperature, and devise a method to remove the circular depen-
dency between leakage power and temperature. To solve the multi-
task speed control problem, we first solve analytically, the single
task problem with a constraint on the final package temperature
using optimal control theory. We then find the optimum final pack-
age temperature of each task by dynamic programming. We com-
pared the total execution time of several randomly generated task
sequences using the optimal control policy against a constant speed
throttling policy, and found significantly smaller total execution
times. We compared the thermal profiles predicted by the proposed
high-level thermal model to that of the Hotspot thermal model, and
found them to be in good agreement.
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1. INTRODUCTION
As technology scaling puts hundreds of millions of transistors

on ever shrinking dies, both the total power consumption and the
power density of these chips have risen exponentially. Power (espe-
cially leakage) and thermal issues have greatly curbed the increas-
ing clock speeds of chips. In recent years, processor manufacturers
have deployed a variety of techniques like power gating, sleep tran-
sistors, multiple cores, improved process technology, and micro-
architectural refinements, all to limit the power consumption. In
spite of these improvements, the worst-case power consumption re-
mains high enough to require expensive cooling solutions to sustain
it indefinitely.

Most modern high-performance processors support some form
of dynamic thermal management (DTM), where the processor is
throttled if its temperature exceeds a specified threshold to avoid
damaging the chip. As processor workloads only rarely result in
worst-case power consumption, DTM allows a processor’s pack-
aging and cooling solution to be designed for the average case.
The throttling mechanism allows the processor to gracefully han-
dle workloads with a mix of high and low power tasks by running
low power tasks at full speeds, and the more intense ones at lower
speeds. The ideal DTM strategy maintains the chip temperature at
or below the specified maximum with minimum performance loss
due to throttling.

1.1 Thermal and power models
Previous works on DTM have operated at either at the architecu-

ral or system level. Architecture-level works [1–4] have explored
the effect of various thermal management techniques (e.g. feed-
back control fetch throttling, task migration, localized voltage fre-
quency scaling for multi-core processors) on SPEC benchmarks
by using detailed power/performance/thermal simulators like Sim-
plescalar, Wattch, PTScalar and Hotspot. The system-level tech-
niques, on the other hand, have used high-level analytical power
and thermal models to derive optimal or near-optimal DTM strate-
gies [5–11].

Analytical results provide many advantages to system design-
ers that are not available from low-level simulation tools. They
can provide bounds on the system performance under thermal con-
straints and they can serve as good nominal models for designing
feedback control systems for DTM. Different control schemes can
be compared more readily using high-level models, especially for
long duration workloads for which low-level simulation is expen-
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sive. Further, analytical results present expressions that relate per-
formance metrics (like the execution time of a task) to design pa-
rameters (like the leakage power consumption, thermal resistance
of the package, etc). Such expression provide greater insight for de-
signers to perform tradeoffs. Finally, analytical results for system-
level DTM (for example, heuristics for thermal-aware task schedul-
ing) are amenable for software implementation in the operating
system, while architecture-level DTM is best suited for hardware
implementations.

However, the models used in the existing system-level approaches
were very simple, and did not capture one or more of the following
important effects: (1) the variations of power-density over differ-
ent chip blocks, which leads to hotspots [2], (2) leakage depen-
dence on temperature (LDT), which is significant for 65 nm and
beyond [8, 12], and (3) the differing thermal characteristics of the
die and package. For example, [5,6,8–10,13,14] use a single ther-
mal resistance and capacitance, and hence cannot account for (3).
The methods described in [6, 9, 10, 14] modeled only the full-chip
power using lumped RC circuit models and ignored the power-
density variations across the chip, and [5, 7, 9–11, 14] neglected
LDT. Thus, these approaches would not be able to accurately pre-
dict the chip temperature.

1.2 The need for high-level analytical models
A compact thermal model of a processor was proposed in [2]

that constructs an equivalent thermal RC circuit of the processor
chip, the thermal packaging and the cooling system. This ther-
mal model was implemented as a portable tool called Hotspot [2],
which has been used in a variety of micro-architectural studies on
thermal management. Hotspot constructs an equivalent RC circuit
for a given floorplan. The circuit has one capacitance for each func-
tional block (typically, around 20) and eleven for the package.

Detailed power models [8, 15] have been proposed that model
the static power of each functional block including its dependence
on that block’s temperature. Unfortunately, these models are too
complex. The Hotspot model for for the Alpha 21264 processor
is of the order 31. This, together with the exponential LDT mod-
els, constitute a system of coupled non-linear differential equations
which cannot be solved analytically. But, why do we need analyti-
cal thermal and power models?

There is a large body of work on processor dynamic speed con-
trol and task scheduling to achieve energy efficiency under per-
formance constraints (see [16–21] for some representative works).
Due to the simple cubic relationship between dynamic power and
speed, researchers were able to propose efficient heuristics and
in some special cases, polynomial time algorithms, to solve these
challenging problems. Similarly, high-level analytical battery mod-
els were used in [22,23] to derive task sequencing and voltage scal-
ing heuristics that maximize battery lifetime.

However, due to the complexity of block-level thermal models,
there is no known expression that relates the temperature of the
hottest chip block to the chip speed and task power parameters.
Hence, it is very difficult to solve problems of this kind (like task se-
quencing and throttling to minimize total execution time, through-
put optimal stochastic speed control for sporadic workloads, etc.)
when thermal constraints are added. In this paper, we propose a
high-level thermal model that is an approximation of the Hotspot
model, and represents an acceptable tradeoff between accuracy and
analytical tractability.

1.3 Performance optimal throttling
We use this thermal model to derive analytically the time-varying

speed control that minimizes the total execution time of a given

sequence of tasks (having different power profiles), subject to an
upper bound on the maximum chip temperature. At the microar-
chitecture level, a feedback control approach to this problem was
proposed in [24], where a controller adjusts the speed dynamically
based on the hottest chip temperature. The actual shape of the con-
trol trajectory was however, not a focus of the latter work. At the
system level, simple lumped thermal and power models were used
to solve the above problem, but for a single task [5,9]. These works
predicted that a constant speed curve would keep the chip temper-
ature at the specified maximum. We show that due to the differing
thermal characteristics of the die and the package, an exponentially
time-varying speed curve is needed, and results in lower perfor-
mance loss than the constant throttling.

Also, our work accounts for the effect of a task’s power con-
sumption on future tasks. For example, a task could leave the pack-
age at a sufficiently high temperature so that the next task would be
forced to throttle and suffer lower performance. We propose a two-
stage optimization procedure that selects the intermediate package
temperature between tasks, and then adjusts the individual tasks
speeds to meet those package temperatures. Recently, [10] used
simpler power and thermal models to devise energy efficient task
scheduling heuristics in the presence of thermal constraints. Our
work focuses on performance optimization, which is often the ob-
jective in high-performance server processors. While our goal in
this paper is to find performance-optimal speed control techniques
for a given task sequence, we plan to extend this framework to de-
vise thermal-aware task scheduling heuristics.

We have organized the rest of the paper as follows. Section 2 de-
scribes the task, thermal and power models used. In Section 3, we
obtain preliminary results that are then used in Section 4 to obtain
the optimal speed profile. In Section 5, we compare the effective-
ness of the optimal speed profile against a constant speed throt-
tling, and also verify the thermal profiles with Hotspot. Section 6
concludes the paper.

2. SYSTEM MODEL

2.1 Task model
Thermal issues are most critical for processors used in high-

performance servers. Such servers are typically assigned a batch
of tasks to be executed on a first-come first serve basis (i.e. a
queue). Server workloads can consist of short sporadically arriving
tasks that can be serviced at the same rate as they arrive (like web
page requests), or small sets of long duration workloads that arrive
quickly but take a long time to be serviced (e.g. scientific/industrial
simulations). As the latter set of jobs are more performance (and
hence thermally intensive), we use it as our task model.

We further restrict our analysis to tasks whose durations are in
the range of ten seconds to ten minutes, so that they are compa-
rable to the largest thermal time constant in the processor’s ther-
mal equivalent circuit (which is around one minute). Tasks that
are smaller than ten seconds do not cause substantial temperature
increase and hence do not benefit from the proposed optimization,
while tasks longer than ten minutes are better suited for steady-state
analysis to determine the optimum (constant) speed control [25].
We assume that the server consists of a single-core processor that
is assigned a sequence of L tasks to be executed as fast as possible,
subject to thermal constraints. The number of cycles N to be exe-
cuted, and the power consumption characteristics 1 of each task is
assumed to be known a priori, making this a static optimization.

1The power of each functional block as a function of the degree of
throttling and block temperature.
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2.2 Thermal model
We developed a high-level thermal model based on the Hotspot

thermal RC circuit model [24]. Hotspot uses an analogy between
electrical circuit phenomena and heat transfer phenomena. The
equivalent circuit consists of one node for each chip functional
block, and eleven blocks for the package. Heat transfer through
conduction between neighboring nodes is modeled through con-
necting thermal resistances, and the heat storage in each node by
thermal capacitances. Each chip node is also connected to a cur-
rent source that models its power consumption, and this power is
dissipated as heat with a uniform power density over the block’s
surface.

For the Alpha 21264 processor, there are M = 20 functional
blocks, and the resulting Hotspot circuit has 31 capacitances. The

2All temperatures are relative to the internal ambient temperature.

Symbol Meaning
U Processor clock frequency

Umax Maximum processor clock frequency
u Normalized processor clock speed
N Number of cycles to be executed by a task
M Number of functional units in the chip
L Number of tasks in the given task sequence
Pi Actual power consumed by block i

Ps,i Actual leakage power of block i
Pd,i Actual dynamic power of block i at full speed
P′

s,i Apparent leakage power of block i
P′

d,i Apparent dynamic power of block i at full speed
Ti Temperature of block i 2

ki Slope of leakage vs temperature curve for block i
ζi Leakage power factor of block i
Ri Vertical thermal resistance of block i
h Index of hottest block
Th Temperature of hottest block

P′
s,h Apparent leakage power of hottest block

P′
d,h Apparent dynamic power of hottest block at umax

ζh Leakage power factor of hottest block
Rh Vertical thermal resistance of hottest block
P′

s Total apparent leakage power
P′

d Total apparent dynamic power at maximum speed
P′(u) Total apparent power at speed u
P′

max Total apparent power at speed umax
Tp Temperature of package

Tc,max Maximum allowed chip temperature
Tp,max Package temperature when u = 1 and Th = Tc,max
ur(t) Optimum throttling curve
ur0 Initial value of throttling curve
ur,ss Steady-state value of throttling curve
Tpi Initial package temperature
Tp f Final package temperature
Tp,ss Steady-state value of package temperature
τr Time-constant of throttling curve
Rp Actual package thermal resistance
R′

p Apparent package thermal resistance
Cp Package thermal capacitance
G A parameter that relates R′

p to Rp

tm Time at which package heats up to Tp,max
tc Time at which all task cycles are completed
t f Task completion time

Table 1: Notation.

Rp

Cp

Tp

Chip Block i

Pi

Ri

Ti
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R1 Rl

T1 Tl

Package

Internal Ambient

Figure 1: High level thermal model of a processor.

number of thermal resistances is more than 31 due to lateral re-
sistances on the chip between neighboring functional blocks. This
large number of parameters make it difficult for analysis. On ex-
amining the parameter values of the Hotspot circuit for the Alpha
21264, we made the following approximations:

1. The thermal resistance Rconv and capacitance Cconv of the
cooling system are much larger than that of the other com-
ponents of the package. Also, the thermal constraint is spec-
ified for the chip, and not for any component of the package.
Hence, the package can be well approximated with a reduced
first order model.

2. The lateral resistances between chip units were at least four
times larger than the vertical resistances that connected chip
units to the package, i.e. most of the heat flow in the chip oc-
curs vertically. Hence, we neglect lateral resistances on chip.
Note that this assumption does not eliminate the occurrence
of hotspots and thermal gradients as they are mainly caused
by differences in power density among chip blocks.

3. The thermal RC time-constant of the die was of the order of
ten milliseconds, while that of the package was of the order
of one minute. This means that the silicon die cannot store
as much heat as the packaging and cooling solution, and its
temperature changes much faster than that of the package.
As the task durations discussed above are much larger than
the die’s time-constant, but are comparable to the package
time-constant, we can ignore the die thermal capacitances.3

With the above approximations, we obtain the high-level thermal
RC circuit shown in Figure 1. The package is reduced to a first
order RC circuit. Each chip block i is modeled by a current source
Pi (representing its power consumption) and a thermal resistance Ri
(representing conduction vertically through the silicon). The values
for Ri were set equal to the vertical resistance connecting each chip
block to the spreader-top block in the original Hotspot circuit. The
voltage across the capacitance Cp (Ci) is the temperature (relative
to the internal ambient) of the lumped package Tp (ithchip block
Ti). LDT makes the current source Pi of each block dependent on
its voltage Ti.

3However, we do use the concept of die thermal capacitance in
Section 3.1 to remove the circular dependency between leakage and
temperature.
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2.3 Power model
The active power Pi consumed by block i has two parts, dynamic

and static. In this work, we model the dynamic power consump-
tion as a linear function of the speed u. Most of the DTM mecha-
nisms (including Dynamic Frequency Scaling (DFS), clock gating,
and fetch throttling, but excluding Dynamic Voltage and Frequency
Scaling (DVFS)) involve a linear reduction in power with the de-
gree of throttling (which we call the speed). Hence, using a linear
power-speed model covers most of them. A majority of modern
processors (even those that have DVFS) use a mechanism with lin-
ear power-speed relationship for DTM purposes [26, 27]. Further,
as supply voltages reduce with technology scaling, there is lesser
scope for DVFS to scale down voltages.

Hence, we use DFS as the DTM mechanism in this work, and we
define the speed u as the normalized clock frequency U/Umax. The
dynamic power as a function of speed is then given by u Pd,i where
Pd,i is the dynamic power at the maximum speed u = 1. The static
power Ps,i is an increasing function of the temperature of the block,
Ti [8,15]. Thus, the block power is a function Pi(u,Ti) of the speed
and block temperature. However, we know from the thermal model
that Ti in turn depends on Pi, thus creating a circular dependence.
We show how to resolve this dependence in Section 3.1.

Piecewise-linear approximation for LDT. Figure 2 shows
the total leakage power of a processor versus the chip temperature,
and is based on the leakage models in [8]. The leakage here doubles
every 20◦C. From this figure, it can be seen that the exponential
LDT model can be approximated well by a piecewise linear model.

Ps,i =

(
Ps,i,mid−ki1(Tc,mid −Ti), Tc,min < Ti ≤ Tc,mid,

Ps,i,max−ki2(Tc,max −Ti), Tc,mid < Ti ≤ Tc,max,
(1)

for all i ∈ {1, . . . ,M}. Here ki1 and ki2 quantify the sensitivity
of leakage to temperature of the ith block in the two temperature
ranges. Tc,min is usually chosen to be the ambient temperature,
Tc,max as the manufacturer specified thermal threshold for the pro-
cessor, and Tc,mid chosen suitably to have the linear approximation
lie above but close to the exponential curve. In the interest of clar-
ity, we will present the forthcoming analysis as though there is a
single set of leakage coefficients ki, instead of using one for each
temperature range. The results in Section 5 however, were ob-
tained using the two-piece linear leakage model, with the correct
set of coefficients employed depending on the instantaneous value
of the chip temperature.

3. PRELIMINARY RESULTS
In this section, we obtain many preliminary results that we then

use to find the optimal speed profile. (1) In Section 3.1, we devise a
method to remove the circular dependency between leakage power
and temperature by expressing both of them in terms of the package
temperature. (2) The resulting expression for power consumption
is used in Section 3.2 to obtain a differential equation for the pack-
age temperature. We then redefine certain groups of parameters
into “apparent” static and dynamic powers, and apparent thermal
resistance, so that the differential equation has the same form as it
would without LDT. (3) In Section 3.3, we show how to identify
the hottest block in a chip for a given task.

3.1 Decoupling leakage and chip temperature
We first note that due to the relatively large package time con-

stant, Tp(t) changes much slower than Ti(t). For time durations
of the order of 0.1RpCp, Tp(t) can be assumed constant. Figure 3
shows the effective thermal RC circuit for block i over such a time
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Figure 2: Leakage vs temperature and piece-wise linear ap-
proximation.

duration. We then have

CidTi(t)/dt = −(Ti(t)−Tp)/Ri +Pi(u,Ti(t)) (2)

From Section 2.3, the power consumed by block i is

Pi(t) = Ps,i,max−ki(Tc,max −Ti)+u(t)Pd,i. (3)

Substituting for Pi from (3) in (2) results in a linear ordinary dif-
ferential equation (ODE), which we solve to get

Ti(t) = Ti(0)e−βit +(αi/βi)(1−e−βi t), (4)

where αi = (1/Ci)(Ps,i,max − kiTc,max + uPd,i + Tp/Ri) and βi =
(1/Ci) (1/Ri − ki). If ki > 1/Ri for any chip block, that block will
experience thermal runaway. This is a sufficient but not necessary
condition. But, if ki ≤ 1/Ri for all chip blocks, the chip temper-
atures Ti → αi/βi. This is because, for time periods of length t ∼
0.1RpCp, we have βit ∼ (0.1RpCp)/(RiCi)∼ (0.1×100 s)/(10 ms) =
103, so that e−βit → 0. Assuming the chip design ensures no ther-
mal runaway for Ti ≤ Tc,max, we now have by the end of the time
period t = 0.1RpCp,

Ti(t) ≈ αi/βi = ζiTp(t)+(P′
s,i +u(t)P′

d,i)Ri, (5)

Ti

Ci
Tp

Ri

Pi(u,Ti)

P1(u,T1)

PM(u,TM)

TM

T1 R1

RM

CM

C1

Figure 3: Effective thermal RC circuit for decoupling leakage
and chip temperature.
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Figure 4: Different response of chip and package temperature
to sudden changes in processor speed.

where we have introduced the following quantities: ζi � 1/(1 −
kiRi) (leakage power factor), P′

s,i � ζi (Ps,i,max−kiTc,max) (appar-

ent static power), and P′
d,i � ζiPd,i (apparent dynamic power). The

above equation suggests that the effect of the initial chip tempera-
ture Ti(0) decays away by time 0.1RpCp, and the chip temperature
is now dependent on the package temperature Tp(t) as well as the
instantaneous speed u(t).

Figure 4 illustrates the thermal response of the chip and package
to sudden changes in the speed u(t). Over a time period 0.1RpCp,
the package temperature Tp(t) changes very little, but the block
temperature changes faster due to the small capacitance value of
Ti. The exponential behavior of Ti(t) over this small interval is
predicted by (4). By the end of this interval, the chip temperature
has mostly settled to the value αi/βi, and now continues to change
slowly as Tp (and hence αi changes). If the speed changes suddenly
again, transients in Ti appear and fade as before.

The advantage of using the “apparent” quantities defined above
is that the resulting equations have a form that is close to what we
would have if there was no LDT. We now show how Ps,i can be ex-
pressed independent of Ti, thus removing the circular dependency.
Starting from Ps,i = Ps,i,max − ki (Tc,max −Ti), we substitute for Ti.
After some manipulation, it can be shown that the total power of
block i is given by

Pi(t) = P′
s,i +u(t)P′

d,i +(ζi −1)Tp(t)/Ri (6)

The chip power still depends on temperature, but of the package
rather than the chip. We note that in the absence of LDT, ki ≡
0,ζi = 1 ∀ i, and the above equations reduce to Ti(t) = Tp(t) +
(Ps,i +u(t)Pd,i)Ri and Pi = Ps,i +u(t)Pd,i as expected.

3.2 Package temperature computation
We first define the following quantities: P′

s �
PN

i=1 P′
s,i (Total

apparent static power), P′
d �

PN
i=1 P′

d,i, (Total apparent dynamic

power at u = 1), P′
max � P′

s + P′
d (Total apparent power at u = 1),

and G �
PN

i=1(ζi − 1)/Ri. Now, from the high-level thermal RC
circuit obtained before (which is reproduced in Figure 5(a)), the

R′
p

Cp

Tp

P′

Rp

Cp

Tp

Chip Block i

Pi

Ri

Ti

P1 Pl

R1 Rl

T1 Tl

Package

Internal Ambient

Package

Chip

P′

Internal Ambient(a)

(b)

Figure 5: (a) Complete high-level thermal model, (b) Effective
circuit for computing the Tp.

package temperature Tp is given by the following equation

dTp(t)
dt

= − Tp(t)
RpCp

+
1

Cp

NX
i=1

Pi(t)

= − Tp(t)
RpCp

+
1

Cp

NX
i=1

»
P′

s,i +u(t)P′
d,i +

(ζi −1)Tp(t)
Ri

–
(7)

= − Tp(t)
RpCp

+
1

Cp

ˆ
P′

s +u(t)P′
d +GTp(t)

˜
(8)

= − Tp(t)
R′

pCp
+

P′
s +u(t)P′

d

Cp
, (9)

where R′
p � Rp/(1−GRp). The significance of (8) is that in spite of

LDT, one can compute the package temperature by solving a first
order linear ODE. To do so, we first compute the total apparent
power consumption P′ = P′

s + uP′
d of the chip, and the apparent

package thermal resistance R′
p. Then, Tp is simply the response

of a first order thermal RC circuit with input current P′, thermal
resistance R′

p and thermal capacitance Cp, as shown in Figure 5(b).

3.3 Identifying the hottest chip block
The hottest block h is defined as the one that maximizes Ti over

i = 1, . . . ,N. From (5), we can see that hottest block of a chip cor-
responds to the one with the largest power-resistance product (i.e.
largest power density). This would, in general, be a function of the
speed, and is given by h(u) = {h|Ph(u)Rh = maxi=1,...,l Pi(u)Ri}.
In general, different blocks within a given core can become the
hottest depending on the speed. However, we have found that this
is usually not the case, and that the hottest block at u = 1 (which is
henceforth denoted by the index h) remains the hottest at all speeds.

4. THE OPTIMAL SPEED CURVE

4.1 The optimal throttling curve
We first obtain the optimal throttling curve assuming the chip

temperature has already reached Tc,max, and then analyze the case
for arbitrary initial package temperature. Once the temperature of
the hottest block Th reaches Tc,max (say, at time tm) the processor
must be throttled to maintain the maximum chip temperature at
Tc,max. We set u(t) to equal the throttling curve ur(t) for all t > tm.
Using (5), we get

Tc,max = ζhTp(t)+
“

P′
s,h +ur(t)P′

d,h

”
Rh. (10)
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Substituting for Tp(t) from the above equation into (8), and rear-
ranging terms, it can be shown that we get for all t > tm

dur(t)
dt

=
Tc,max −P′

s,hRh −ζhP′
sR′

p

R′
pCpP′

d,hRh
−

P′
d,hRh +ζhP′

dR′
p

R′
pCpP′

d,hRh
ur(t)

The above first order ODE in ur(t) has the following solution

ur(t) = ur0e−(t−tm)/τr +ur,ss(1−e−(t−tm)/τr ), where (11)

ur,ss �
Tc,max −P′

s,hRh −ζhP′
sR′

p

P′
d,hRh +ζhP′

dR′
p

, and (12)

τr � R′
pCp

P′
d,hRh

P′
d,hRh +ζhP′

dR′
p
. (13)

We note that ur0 in (11) must be chosen to satisfy the boundary con-
dition Th(tm) = Tc,max. By employing the above exponential speed
profile, the hottest chip temperature Th is maintained at Tc,max,
while the package temperature asymptotically approaches the value
Tp,ss =

`
P′

s +ur,ssP′
d

´
R′

p.
We can now see the advantage of using different thermal resis-

tances to model the die and the package, when compared to a single
lumped resistance. The latter model can only predict the package
temperature, and in the event of a thermal emergency, will try to
maintain the package temperature constant by reducing the speed
immediately to a constant speed u ≈ ur0 [9]. However, by using the
throttling curve ur(t), the package temperature can be allowed to
change while still maintaining the chip temperature constant, thus
obtaining better performance from the processor.

4.2 Optimal speed control for multiple tasks
Given a set of L tasks that must be executed in a given sequence,

and given an initial package temperature Tp0, we wish to find the
speed control u(t) for each task such that the total execution time is
minimized, and the maximum chip temperature is maintained be-
low Tc,max. We note that the final package temperature Tp f ,k of task
k is the initial package temperature Tpi,k+1 of task k + 1. As the
execution time of a task is affected by its initial package tempera-
ture, we see that each task affects its future tasks’ performance by
its choice of final package temperature. We now use the following
technique to solve the multiple task speed control problem.

We first derive analytically the optimum speed control technique
under thermal constraints for a single task, for a given initial pack-
age temperature Tpi, and a given final package temperature Tp f .
This gives us the optimum execution time t∗f (Tpi,Tp f ), as well as
the optimum speed control u∗(Tpi,Tp f ,t), in terms of the unknown
initial and final package temperatures. The optimum speed control
in the absence of final temperature constraint is similarly derived to
obtain the functions t∗f (Tpi) and u∗(Tpi,t). We then select the pack-
age temperatures between neighboring tasks in such a way that the
total execution time of all tasks is minimized. Formally, we have:

Problem MULTI-TASK:

min
{Tpi,k,Tp f ,k, k=1,...,L−1}

L−1X
k=1

t∗f ,k(Tpi,k,Tp f ,k)+ t∗f ,L(Tpi,L), (14)

subject to, Tpi,k+1 = Tp f ,k ∀ k = 1, . . . ,L−1,(15)

Tpi,1 = Tp0, (16)

Tp f ,k ≥ 0 ∀ k = 1, . . . ,L−1. (17)

We have used task subscripts for the t∗f functions because they are
different for each task (due to differences in number of clock cycles
and power parameters). However, the functions all have the same

form, and are derived in Section 4.3. Section 4.4 presents a solution
methodology for the above problem. The resulting optimum initial
and final temperatures, T ∗

pi,k,T
∗
p f ,k can then be used to obtain the

optimum speed profiles for the individual tasks u∗(T ∗
pi,k,T

∗
p f ,k,t).

4.3 Optimum speed control for a single task
We first solve the problem with final package temperature con-

straint. Given a processor whose initial package temperature is Tpi
and final package temperature must be Tp f , and given a task with
known power parameters (Ps,i(Ti), Pd,i(u), ki for all i = 1, . . . ,N),
how should the speed of the processor u(t) be chosen to complete
a specified number of clock cycles N in the least possible time
t f , while ensuring that the following constraints are met: Th(t) ≤
Tc,max and 0 ≤ u(t) ≤ 1 for all 0 ≤ t ≤ t f ? Denoting the number
of cycles executed at time t as x(t), this problem can be formally
stated as follows:

min
u(t),t f

t f =
Z t f

0
1 dt, (18)

s.t.
dx(t)

dt
= u(t), (19)

x(0) = 0, x(t f ) = N/Umax � X , (20)

dTp(t)
dt

= − Tp(t)
R′

pCp
+

P′
s +u(t)P′

d

Cp
, (21)

Tp(0) = Tpi, Tp(t f ) = Tp f , (22)

ζhTp(t)+
“

P′
s,h +u(t)P′

d,h

”
Rh ≤ Tc,max ∀ t, (23)

0 ≤ u(t) ≤ 1 ∀ t. (24)

The above formulation is a problem in optimal control [28], with a
variable endpoint t f , two state variables x and Tp, fixed boundary
conditions at both ends (20), (22), bounds on the control (24), and
a mixed state-control point-wise inequality (23). The presence of
the latter inequality makes the solution process complicated. In the
interest of clarity, and due to lack of space, we omit the derivation,
and instead present the final solution.

First, we use (5) to compute the package temperature Tp,max
when the chip reaches Tc,max when operating at maximum speed:

Tp,max =
h
Tc,max −

“
P′

s,h +P′
d,h

”
Rh

i
/ζh. (25)

Case 1: Tp0 ≤ Tp,max. The optimum policy operates at max-
imum speed until the chip temperature reaches Tc,max at time tm.
Then, it employs the throttling curve ur(t) until the required X
clock cycles are completed at time tc. Finally, it drops the speed
to 0 to achieve the final package temperature Tp f at time t f . The
throttling chooses ur0 = 1 to ensure that Th(tm) = Tc,max. The opti-
mum speed control is thus obtained as

u∗(t) =

8><
>:

1, 0 ≤ t ≤ tm,

e−(t−tm)/τr +ur,ss

“
1−e−(t−tm)/τr

”
, tm < t ≤ tc,

0, tc < t ≤ t f .

Here, tm is calculated using

tm = R′
pCp log

 
P′

maxR′
p −Tp0

P′
maxR′

p −Tp,max

!
. (26)
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The area under the normalized speed curve u over [0,tc] must equal
X , or

f (tc) = tm +(1−ur,ss)τr

“
1−e−(tc−tm)/τr

”
+ ur,ss (tc − tm)−X = 0. (27)

Solving the implicit equation (27) numerically gives tc. The opti-
mum task completion time t∗f is then

t∗f = tc + τp log

 
P′

sR′
p −Tpc

P′
sR′

p −Tp f

!
, (28)

where τp = R′
pCp, and Tpc is the package temperature at time tc,

which is computed using

Tpc = Tp,maxe−(tc−tm)/τp +
`
P′

s +ur,ssP
′
d

´“
1−e−(tc−tm)/τp

”
+

τr (1−ur,ss)
τr − τp

P′
dR′

p

“
e−(tc−tm)/τr −e−(tc−tm)/τp

”
. (29)

It can be shown that if Tp f > Tpc for any task, the resulting total ex-
ecution time of all tasks would be worse than if Tp f = Tpc, i.e. there
is no performance benefit in heating up the package after the task
is complete, which is intuitively satisfying. Hence, we only need to
consider the cases where Tp f ≤ Tpc, which requires a cooling pe-
riod t f − tc. We also note that if tm > X or if P′

maxR′
p < Tp,max, the

maximum chip temperature is not exceeded before the task com-
pletes, in which case, the optimum speed control reduces to

u∗ =

(
1, 0 ≤ t ≤ tc,

0, tc < t ≤ t f .
(30)

where tc = X , and t∗f is calculated using (28).

Case 2: Tp0 ≥ Tp,max. If Tp0 ≥ Tp,max, we cannot use the
speed u = 1 as that would raise the chip temperature beyond Tc,max.
Effectively, tm = 0, and the optimum policy deploys the throttling
curve ur(t) at time t = tm = 0, with the initial throttling speed ur0
again chosen such that Th = Tc,max, and is given by

ur0 =
“

Tc,max −ζhTpi −P′
s,hRh

”
/
“

P′
d,hRh

”
. (31)

The required number of cycles X are completed by time tc, after
which the speed drops to 0 to achieve the required final temperature
Tp f at time t f . The optimum speed control is given by

u∗(t) =

(
ur0e−t/τr +ur,ss

“
1−e−t/τr

”
, 0 < t ≤ tc,

0, tc < t ≤ t f .
(32)

The area of the speed curve over [0,tc] equals X , or

f (tc) = (ur0 −ur,ss)τr

“
1−e−tc/τr

”
+ur,sstc −X = 0. (33)

Solving (33) numerically gives tc. The task completion time t∗f
is obtained as above using (28) and (29). We note that if Tp0 =
Tp,max, we get ur0 = 1, tm = tc = 0, and the two cases give the same
solution.

Optimum speed control with no final temperature con-
straint:. For the last task in the given sequence, there is no final
temperature constraint. It can be shown that the optimal speed pol-
icy for this case is obtained by simply omitting the last segment of
the above speed profiles and setting t∗f = tc, i.e. no cooling period.

4.4 Dynamic programming solution for
multiple tasks

Having solved the single task optimization, we return to the prob-
lem MULTI-TASK that we defined in Section 4.2. We now show
that this problem has a property that makes it amenable for a dy-
namic programming solution. Given an initial package temperature
Tpi,k , let the optimum total execution time for tasks k,k +1, . . . ,M
be denoted as t∗f ,≥k(Tpi,k). Then, given the optimal initial package
temperature T ∗

pi,k for task k, the optimum final package temperature
T ∗

p f ,k can be computed as follows:

T ∗
p f ,k = arg min

0≤Tp f ,k≤Tc,max

h
t∗f ,k(T

∗
pi,k,Tp f ,k)+ t∗f ,≥k+1(Tp f ,k)

i
. (34)

Thus, the problem MULTI-TASK satisfies the principle of optimal-
ity as the sub-solutions of the optimal solution t∗f ,≥k are themselves
optimal solutions for their subproblems. If we discretize the range
of package temperatures [0,Tc,max] to, say Np levels, we can solve
the above recursion using dynamic programming.

To do so, we first construct a table with Np rows (corresponding
to package temperature values) and M columns (corresponding to
tasks in the given sequence). The cell (i, j) will store the optimal
solution for the sub-problem with tasks j, j + 1, . . . ,M, given an
initial package temperature (i− 1)Tc,max/(Np − 1). The dynamic
programming algorithm starts at cell (i0,1), where i0 is the discrete
level that corresponds to package temperature Tp0. It then finds
the optimum final temperature by trying all possible cells in the
second column, and computing the corresponding total execution
times according to (34). Thus, it takes O(Np) time to fill each cell
in columns 1 to M−1, and O(1) for each cell in the last column (as
there is no final temperature constraint for the last task). As the size
of the table is NpM, the running time of the dynamic programming
algorithm is O(N2

pM).
Note: In theory, the use of idle periods at the end of a task, while

worsening the performance of that task, could improve the total ex-
ecution time of the task sequence. Hence, the formulation MULTI-
TASK. However, after performing simulations with thousands of
random task sequences, we found that the optimum final temper-
atures for the MULTI-TASK problem were such that no idle peri-
ods were actually used at the end of any of the tasks. This means
that we could simply compute the single task optimal speed policy
without final temperature constraint independently for each task to
achieve the global optimum execution time. This also reduces the
running time from O(N2

pM) to O(M) as we do not need to use the
dynamic programming solution any more. While we currently have
no proof that this will always be true, we have not encountered a
contradiction so far in our simulations.

5. RESULTS

5.1 Experiment setup
We first obtained the equivalent thermal RC circuit for the Alpha

21264 floorplan using the Hotspot tool [2]. We then applied the ap-
proximations mentioned in Section 2.2 to this Hotspot circuit and
obtained our high-level thermal model. We modified the convec-
tion thermal resistance in Hotspot from 0.8 W/◦C to 0.4 W/◦C to
better reflect the power-thermal characteristics of modern server-
grade processors [26, 29]. This lower value represents improved
packaging and cooling technology and was chosen to allow a chip
maximum temperatures Tc,max = 110◦C, and a steady-state power
consumption (with throttling) of about 120 W. We set the maximum
clock speed to be Umax = 4 GHz.
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Figure 6: Speed and thermal profiles for the optimum throt-
tling policy.

Given a floorplan of a future processor, the formulas for com-
puting thermal resistances are well-known because they depend on
properties (like thermal conductivity) that do not change much with
technology scaling. However, obtaining block-level power data
(especially leakage) for future processors is much harder because
it depends on many technology-dependent parameters (like sub-
threshold leakage dependence per transistor). Hence, we use the
following general approach. First, we obtain leakage and dynamic
power data for different functional blocks using the temperature-
aware models from [8]. We then scale the leakage power (function
of temperature) and dynamic power (function of speed), keeping
relative block numbers the same, to obtain power numbers that are
representative of a modern single-core server processor. Finally,
we perform the piecewise-linear approximation shown in Figure 2
to obtain the leakage-sensitivity factors ki for each chip block. This
represents the power profile of a base task.

We note that as we mentioned in Section 4.4, the optimum multi-
task dynamic programing solution (with final temperature constraints)
reduced to the optimum single-task greedy solution (with no final
temperature constraints) for every case we simulated. Hence, we
show results for the latter policy and compare it with the constant-
speed throttling policy used in [5, 9].

5.2 Optimal vs constant throttling
Figure 6 shows the optimum throttling policy and its correspond-

ing thermal profile for a sequence of three tasks. The total execu-
tion time was found to be 656.9 s. Figure 7 shows the correspond-
ing profiles for a constant throttling policy, which had an execu-
tion time of 740.8 s, giving the optimum policy an improvement of
11.3%. As can be seen from the figures, this is because the opti-
mum policy is able to maintain the chip temperature at the thermal
threshold by gradually reducing or increasing its speed, whereas
the constant throttling policy is conservative, and reduces the tem-
perature will below the maximum limit.

The above plots also show the temperature profiles predicted
by the proposed high-level model compared against the detailed
Hotspot thermal model with exponential leakage model. The pro-
posed model mispredicts the temperature of the hottest unit of the
chip by a maximum of about 7◦ C and on average about 4◦ C.
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Figure 7: Speed and thermal profiles for constant throttling
policy.

The general trend of the thermal profile is predicted well by the
high-level model, in spite of using much fewer model parameters.
Hence, the high-level model can be used for comparative studies,
for example, comparing two DTM strategies, or estimating the im-
provement in performance by using improved packaging.

5.3 Improvements for random task sets
We generated random task sets as follows: we used the static and

dynamic power profiles of the base task, namely Ps(T ) and Pd(u),
as the mean. We then selected a value of standard deviation for the
static and one for the dynamic power, namely 25% and 8%. These
standard deviations were kept independent of the temperature T
and speed u to preserve the monotonicity of Ps(T ) and Pd(u) re-
spectively. Then, the power profile for each task is selected from
a normal distribution with the above mean and standard deviation.
The number of task cycles to be executed is chosen from a uniform
distribution of [Umax ×10 s,Umaxtmax]. We tried different values of
tmax to simulate task mixes of different task durations.

Table 2 shows the improvement in total execution time of opti-
mum speed policy over constant throttling policy for 1000 random
task sets. The first set of improvements are reported for maximum
task durations tmax = 5 min, with the number of tasks varying from
1 to 20. It is seen that as the number of tasks increases, the aver-
age improvement increases slightly, while the maximum improve-
ment increases significantly. The cases where improvements reach
around 99% are achieved for the following reason: after a hot task
leaves the package temperature Tp0 greater than the Tp,max of the
next task, the latter is forced to employ a low initial speed ur0 to
satisfy the thermal constraint Th ≤ Tc,max.

The optimal speed control smartly increases the speed towards
the higher value of ur,ss while the constant throttling policy, by def-
inition, is unable to change the speed from its low initial value, and
hence takes a very long time to complete task execution. The sec-
ond set of improvements are reported for task sets with 10 tasks
but with the maximum task durations being varied from 1 min to
20 min s. It can be seen that the improvements increase as task
durations increase. The reason for this is similar to that above –
the constant speed throttling starts at low initial speeds, and suffers
these low speeds for longer time durations.
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Number tmax Average Maximum
of tasks (min) Improvement (%) Improvement (%)

1 5 5.5 26.2
5 5 6.6 41.3

10 5 7.6 99.8
15 5 7.7 99.7
20 5 7.8 99.8
10 1 3.6 7.5
10 4 5.2 28.7
10 10 7.9 99.9
10 20 8.2 99.9

Table 2: Improvement in total execution time of optimum speed
policy over constant throttling policy.

6. CONCLUSION
There is a need for high-level analytical thermal models to ad-

dress a number of important problems involving thermal constraints.
In this work, we proposed such a thermal model, which also over-
comes the limitations of existing simple lumped RC thermal mod-
els. Specifically, it accounts for hotspots by modeling each func-
tional block on the chip with a separate current source and thermal
resistance, and uses a two-level resistance network that more ac-
curately reflects the different thermal conductivity and heat capac-
ity of the chip and the package. The latter factor was instrumen-
tal in deriving the speed profile required to hold the chip’s max-
imum temperature at the specified threshold, which turned out to
be an exponentially time-varying curve. This throttling curve re-
sulted in lower performance loss when compared to the earlier con-
stant throttling technique. We demonstrated the usefulness of the
proposed thermal model by solving the problem of performance
optimal speed control under thermal constraints for a given task
sequence. Leakage dependence on temperature is an important,
but often ignored factor affecting modern processors. We approxi-
mated the non-linear power-temperature relationship with a piece-
wise linear form and then showed how the circular power-temperature
relation can be decoupled. The proposed models and approaches
serve as a useful framework for future works on thermal aware task
scheduling and speed control.
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