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Abstract
Nowadays, turn-by-turn beam position monitor data is

increasingly utilized in many accelerators, as it allows for

fast and simultaneous measurement of various optics pa-

rameters. The accurate harmonic analysis of turn-by-turn

data costs beam time when needed online. Generally, the

electronic noise is avoided by cleaning of the data based on

singular value decomposition. In this paper, we exploit the

cleaning procedure to compress the data for the harmonic

analysis. This way the harmonic analysis is sped up by an

order of magnitude. The impact on measurement accuracy

is discussed.

INTRODUCTION
Optics measurements in storage rings can be performed

by exciting the beam and acquiring turn-by-turn (TbT) beam

position monitor (BPM) data of the coherently oscillating

beam [1]. In the analysis process, TbT BPM data is first

cleaned, which reduces the amount of information. Later the

harmonic analysis is performed on cleaned TbT data BPM by

BPM. A framework presented here implements new methods

to increase the speed of harmonic analysis. This framework

replaces SUSSIX [2, 3] in optics measurements analysis

software in the LHC. It also implements BPM by BPM

harmonic analysis, further referred to as "bpm" method.

SINGULAR VALUE DECOMPOSITION
In order to improve analysis precision and accuracy, TbT

data needs to be cleaned of the noise, for example BPM

electronic noise. This is done using methods [4–6] based on

Singular Value Decomposition (SVD). The SVD of a matrix

A is given by

A = USVT , (1)

where columns of U and V are normalized eigenvectors of

AT A (left-singular vectors) and AAT (right-singular vectors),

respectively. S is a positively definite diagonal matrix of

singular values ordered in decreasing order. The TbT BPM

data decomposition contains all temporal and spatial infor-

mation about physical modes of beam motion. The noise

floor removal is performed by keeping only the modes corre-

sponding to the largest singular values, as shown in Figure 1.

Table 1 presents the typical TbT matrix dimensions in the

LHC, NBPMs and Nturns , together with Nmodes , number of

singular values to be kept. This reduces the size of data and

information. Matrix A with dimensions (500x6600) is ap-

proximated by USVT matrices with dimensions: (500x12),

Table 1: Typical Parameters of TbT Data and its SVD Clean-

ing

NBPMs No. BPMs (per plane) 500

Nturns No. turns acquired 6600

Nmodes No. singular values 12

(12x12) and (12x6600). In the second step, TbT data are re-

composed by matrix multiplication of the reduced matrices.

The size of the data after the recomposition is the same as

the input one (500x6600), which is about a factor 40 larger

than the reduced USVT matrices. However, the amount of

information is still reduced.

HARMONIC ANALYSIS
The actual lattice properties are contained in the frequency

information of TbT BPM data. The Discrete Fourier Trans-

form (DFT) is obtained performing Fast Fourier Transfor-

mation (FFT) on the cleaned TbT data from a single BPM

xn:

Xk =

N−1∑
n=0

xne−i2πkn/N (2)

The equation has the form of inner product of xn and

e−i2πkn/N , which means that Xk is a multiplicative com-

plex coefficient of a signal with frequency k/N . In case of

FFT k is an integer smaller than N . The refined frequency of

the strongest signal is found using Jacobsen frequency inter-

polation with bias correction [7] based on 3 DFT peaks (the

maximal amplitude |Xkp | and two neighbouring samples

Xkp±1):

δ =
tan (π/N)
(π/N)

Real

⎡⎢⎢⎢⎢⎢⎣

(
Xkp−1 − Xkp+1

)
(
2Xkp − Xkp−1 − Xkp+1

)
⎤⎥⎥⎥⎥⎥⎦
, (3)

where δ ∈ [−0.5, 0.5] is a correction to the frequency of

DFT peak. The refined complex amplitude of the signal is

obtained from the inner product of a unit signal with pure

frequency
(
kp + δ

)
/N with the TbT data:

Xkp+δ =

N−1∑
n=0

xnei2πn(kp+δ)/N (4)

This signal is subtracted from the TbT data and the whole

procedure starting with FFT is repeated [8], in the LHC

typically 300 times. As a result the TbT data is approximated

by the sum of the 300 strongest harmonics h
∑299

j=0 hj . The

basis forms a linear vector space.
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Figure 1: Sketch of the TbT data recomposition for noise floor removal. The decomposition of raw TbT data (in blue) gives

full matrices, which are then reduced, as only several largest singular values are kept for the clean TbT data recomposition

(in brown edges).

HARMONIC ANALYSIS OF
DECOMPOSED DATA

As SVD and refined harmonic analysis are both linear

operations, they can be combined. The cleaned TbT data

(Equation (2)) can be reconstructed from SVD matrices

elements:

xjn =
Nmodes−1∑

l=0

u jlsllvnl, (5)

where j is the BPM number. The complex coefficients cor-

responding to an arbitrary frequency a/N are given by:

Xja =

N−1∑
n=0

Nmodes−1∑
l=0

u jlsllvnlei2πna/N = (6)

=

Nmodes−1∑
l=0

u jl

N−1∑
n=0

sllvnlei2πna/N, (7)

second summation represents the complex coefficient corre-

sponding to frequency a/N in a lth row of SVT .

Putting all this together, we obtain complex coefficients

corresponding to frequency a/N in cleaned TbT data from

all BPMs as a linear combination of complex coefficients

corresponding to the same frequency in the rows of SVT

with the multiplication factor being the rows of U. In order

to measure the frequencies, two algorithms were developed,

performing harmonic analysis on:

• the sum
∑Nmodes−1

l=0
sllvnl of the rows of reduced SVT

giving a single set of frequencies, hereafter referred to

as "fast" method

• each of the rows of reduced SVT , giving a union of

frequencies, found for every row, hereafter referred to

as "svd" method

The complex coefficients, corresponding to such sets of

frequencies, are calculated for each of the rows of reduced

SVT matrix by the inner product in time domain (last sum

in Equation (7)). At this point the vectors in frequency

domain are no longer orthogonal. The perturbation of the

orthogonality of the two vectors (in frequency domain) is

influenced by two factors:

• the difference (in the time domain) between the vector

under study and the vector the harmonic analysis was

performed on

• the spectral response of a windowing function, that can

be used to filter the signal in time domain

A rectangular window, which does not change the signal and

has the best frequency resolution, is used in the following.

On the other hand, the rectangular window has larger spectral

response in other frequencies compared to other windowing

functions [9], which should be kept in mind.

ACCURACY
The accuracy of the harmonic analysis performed on de-

composed TbT data is studied in this section. TbT data

matching the LHC lattice injection optics was simulated

along with the betatron resonances of known frequency,

phase and amplitude. Realistic noise of about 8 % am-

plitude compared to coherent betatron motion at focusing

quadrupoles was added. Results of the afore-mentioned

analysis corresponding to a given spectral line consist of its

frequency ∈ (0, 1), initial phase in units of 2π and its ampli-

tude. The accuracy is estimated by the root mean square of

the difference to the value defined in a simulation in a set of

all BPMs. The two methods ("svd" and "fast") are compared

to the original harmonic analysis the "bpm" method. The

betatron tune is found in the spectra from all three methods.

Accuracies of the frequency and phase of the found betatron

tunes as a function of number of turns are shown in Figures 2

and 3.

Both "svd" and "fast" methods have comparable accuracy

or slightly better accuracy in frequency and phase compared

to the "bpm" method. An exception is the "svd" analysis

performed on a low number of turns, where it shows less

accurate results. The differences in relative amplitude accu-

racy are not shown as they are negligible. Generally, "svd"

and "fast" methods seem to be better suited for larger number
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Figure 2: Accuracy of the betatron tune (the strongest spec-

tral line) frequency as a function of number of turns.

Figure 3: Accuracy of the betatron tune (the strongest spec-

tral line) phase as a function of number of turns.

of turns and larger noise levels. For small number of turns or

small noise levels, the situation is opposite. Additionally, a

weaker spectral line with about 14 % amplitude at focusing

BPMs and 0.01 away in frequency from the betatron tune

was investigated. Here, the methods perform all similarly in

terms of frequency accuracy, as shown in Figure 4. In terms

of its phase accuracy, shown in Figure 5, the "bpm" method

is better than the other two. The amplitude accuracy shows

similar behaviour as the phase accuracy.

Figure 4: Frequency accuracy of weaker spectral line as a

function of number of turns.

Figure 5: Phase accuracy of weaker spectral line as a func-

tion of number of turns.

SPEED UP
Harmonic analysis performed on decomposed TbT BPM

data is faster by up to a factor of NBPM/Nmodes using the

"svd" method and up to a factor of NBPM in the "fast"

method. Harmonic analysis by "fast" method of one set

of LHC TbT BPM data takes about 2 seconds in a single

thread compared to about 18 seconds in 32 threads in the

"bpm" method.

CONCLUSIONS AND OUTLOOK
New techniques combining data cleaning together with

harmonic analysis have been developed. Their usage results

in a speed up by factor about 300 in the LHC. This is pos-

sible by analysing decomposed data directly instead of the

recomposed data. The analysis is comparably or more ac-

curate in terms of frequency. However currently, it is less

accurate in terms of phase and amplitude of smaller spectral

lines. This can be potentially overcome by the choice of a

windowing function, addressing the orthogonality perturba-

tion, which will be studied. It needs to be stressed, that both

new algorithms are better suited for noisy data, compared to

standard method.
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