
Citation: Shi, W.; He, Z.; Gu, C.; Ran,

N.; Ma, Z. Performance Optimization

for a Class of Petri Nets. Sensors 2023,

23, 1447. https://doi.org/10.3390/

s23031447

Academic Editor: Mengchu Zhou

Received: 27 December 2022

Revised: 19 January 2023

Accepted: 21 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Performance Optimization for a Class of Petri Nets
Weijie Shi 1, Zhou He 2,* , Chan Gu 2, Ning Ran 3 and Ziyue Ma 4

1 School of Electro-Mechanical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
2 School of Electrical and Control Engineering, Shaanxi University of Science and Technology,

Xi’an 710021, China
3 College of Electronic and Information Engineering, Heibei University, Baoding 071002, China
4 School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
* Correspondence: hezhou@sust.edu.cn

Abstract: Petri nets (PNs) are widely used to model flexible manufacturing systems (FMSs). This
paper deals with the performance optimization of FMSs modeled by Petri nets that aim to maximize
the system’s performance under a given budget by optimizing both quantities and types of resources,
such as sensors and devices. Such an optimization problem is challenging since it is nonlinear; hence,
a globally optimal solution is hard to achieve. Here, we developed a genetic algorithm combined with
mixed-integer linear programming (MILP) to solve the problem. In this approach, a set of candidate
resource allocation strategies, i.e., the choices of the number of resources, are first generated by using
MILP. Then, the choices of the type and the cycle time of the resources are evaluated by MILP; the
promising ones are used to spawn the next generation of candidate strategies. The effectiveness and
efficiency of the developed methodology are illustrated by simulation studies.

Keywords: flexible manufacturing systems; Petri nets; evolutionary techniques; resource allocation

1. Introduction

Performance optimization in flexible manufacturing systems has received great atten-
tion in recent decades [1]. Such automated systems with synchronization, concurrency, and
time delay can usually be modeled by timed marked graphs (TMGs), an important subclass
of PNs that are proven to be useful in modeling manufacturing systems, queue systems,
and railway transportation systems [2–10]. The performance of a system modeled with
TMGs is usually characterized by the cycle time that represents the normalized time for one
cycle of production. This issue was first studied in ordinary TMG (i.e., TMGs in which the
weights on the arcs are unitary). In the literature, ordinary TMGs are simply called “TMGs”
by omitting the term “ordinary”. The cycle time can be obtained by exploring the periodic
dynamic evolution of a TMG [11]. On the other hand, the exact cycle time of a TMG can
also be computed analytically by using the linear programming technique [12]. Algebraic
approaches based on (max,+) or (min,+) algebra have also been applied for computing the
cycle time of TMGs [13]. Based on these results, various methods have been developed
for the performance optimization problems in TMGs, i.e., to minimize the total cost of the
system’s resources (machines, devices, tasks, etc.) without compromising the desired level
of throughput. The optimization targets include the initial resource allocation [14–20] and
the server-type selection under a given budget [21–23].

Timed weighted marked graphs (TWMGs) are more general than ordinary TMGs and
are useful in modeling systems with batch processes (i.e., instead of processing tasks one by
one, they wait until a batch of tasks are available and process them simultaneously) [24,25].
Nevertheless, obtaining the exact cycle time of a TWMG is much more complicated than
that of a TMG. In [26], the authors prove that for a given TWMG, the optimization of the
server type is NP-hard. A widely used method for computing the cycle time of a TWMG is
to first transform it into an equivalent TMG [27,28] followed by the linear programming

Sensors 2023, 23, 1447. https://doi.org/10.3390/s23031447 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031447
https://doi.org/10.3390/s23031447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2486-1246
https://doi.org/10.3390/s23031447
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031447?type=check_update&version=1

Sensors 2023, 23, 1447 2 of 19

technique in [12]. However, such a transformation is computationally heavy, initially
marking-dependent, and usually yields a TMG much larger than the original TWMG. To
overcome such a problem, in [29], a method is proposed to transform a TWMG (with an
undetermined initial marking) into an equivalent parametric TMG so that the scale of the
corresponding linear programming remains solvable. Some approximation methods [30]
are also developed to estimate the upper bound of the cycle time of a TWMG. A lineariza-
tion method for TWMGs to obtain linear representation in (min,+) was developed [31].
Based on the obtained linear model, the performance of the TWMGs can be analyzed.

The performance optimization problem in TWMGs is also more complex than that
of TMGs. Relatively few works have been conducted on the performance optimization of
TWMGs in the literature. Since the equivalent TMG classes of a TWMG is finite, by solving
a mixed-integer linear programming problem (MILPP) for each equivalent TMG class, a
globally optimal initial marking can be obtained [32,33]. Nevertheless, the computational
load of this precise algorithm is unsatisfactory, since the number of equivalent TMG classes
is exponential in the number of places in the corresponding TWMG. Therefore, people turn
to hybrid algorithms, such as heuristics combined with simulation and MILPPs, which
are fast and provide near-optimal solutions [34–36]. In [34], a TWMG is initialized with a
sufficiently large initial marking so that the performance requirement is satisfied. Then,
a greedy algorithm is applied to decrease the total cost in which tokens are iteratively
removed until the cycle time reaches a lower bound threshold. A heuristic method com-
bined with integer linear programming was proposed in [35]. However, both heuristics
in [34,35] rely on the detection of the so-called critical places and, hence, a time-consuming
simulation of the TWMG has to be performed in each iteration. This method is further
improved in [36] in which the critical places are determined by linear programming, which
greatly improves the efficiency of the heuristic algorithm. Computational efficient solutions
for the performance optimization of TWMGs are still missing.

In practice, the execution time of a process may vary when different types of resources
(machine, robot, transporting vehicle, etc.) are deployed. Therefore, the optimization of
the types and quantities of resources, (so that the performances are maximized) has also
received considerable attention in different areas, such as manufacturing systems [37–39]
and enterprise systems [40]. However, as far as we know, no work has been done on such a
problem in TWMGs. Solving this problem is challenging since it is a nonlinear quadratic
optimization (which we will see in Section 3) and, thus, a globally optimal solution is hard
to achieve. The search space for selecting the types and quantities of resources is quite huge
even though the system size is small.

In this paper, we explore the performance optimization problem in TWMGs where
both quantities and types of resources are simultaneously optimized. The exact value
of the cycle time of TWMGs is efficiently evaluated by using linear algebraic methods.
Precisely speaking, our aim is to minimize the cycle time of a given TWMG subject to a
given budget limit, while both quantities and types of resources are variables.

The main contribution of this work is summarized as follows. We developed a hybrid
method that is a genetic heuristic combined with MILP. Initially, a set of candidate resource
allocation strategies, i.e., the choices of the number of resources, are first generated by
solving a MILPP. Then, among all of the possible types of resources whose numbers
grow exponentially with respect to the system size, we originally developed a MILPP to
determine the optimal one. This was done by transforming the determined TWMG of the
candidate strategy into an equivalent TMG with parametric firing delays. In the latter, a
MILPP was applied to compute its cycle time and the gross cost (scored as fitness). The
promising strategies, i.e., those with high fitness, were used to spawn the next generation of
candidate strategies. The procedure above was repeated for a pre-set number of generations,
and eventually, a near-optimal resource allocation strategy was obtained. Simulation results
show that the developed approach can provide a good trade-off between the near-optimality
of the solution and the computational load.

Sensors 2023, 23, 1447 3 of 19

This paper is structured as follows. The basic concepts used in this paper are discussed
in Section 2. Section 3 formulates the performance optimization problem studied in this
paper. In Section 4, a genetic algorithm-based approach is presented. Simulation studies
are investigated in Section 5. Conclusions and future work are presented in Section 6.

2. Background
2.1. Generalities

A PN is a 4-tuple N = (P, T, Pre, Post), where P is a set of n places; T is a set
of m transitions; Pre : P × T → N and Post : P × T → N are the pre- and post-
incidence functions that specify the arcs, respectively, and are also denoted by matrices
in Nn×m, where N = {0, 1, 2, . . .}; C = Post− Pre ∈ Zn×m is the incidence matrix, where
Z = {0,±1,±2, . . .}. A PN is said to be ordinary when all of its arc weights are unitary, i.e.,
Pre, Post ∈ {0, 1}n×m.

A vector y = (y1, y2, . . . , yn)T ∈ Nn (resp., x = (x1, x2, . . . , xm)T ∈ Nm) such that
y 6= 0 and yT · C = 0 (resp., x 6= 0 and C · x = 0) is a P-semiflow (resp., T-semiflow). The
support of a P-semiflow (resp., T-semiflow) is defined by || y ||={pi ∈ P | yi > 0} (resp.,
|| x ||={ti ∈ T | xi > 0}). A P-semiflow y (resp., T-semiflow x) is minimal if (i) || y || (resp.,
|| x ||) is not a superset of the support of any other P-semiflow (resp., T-semiflow), and
(ii) all yi, yj (resp., xi, xj) where i 6= j are mutually prime.

The set of output (resp., input) places of transition ti ∈ T is defined as t•i = {p ∈
P | Post(p, ti) > 0} (resp., •ti = {p ∈ P | Pre(p, ti) > 0}). The notions for •p and p• are
analogously defined.

A marking is a mapping M : P→ N that assigns to each place of a PN a non-negative
integer number of tokens, which is also described as an n-component vector M ∈ Nn. The
number of tokens of place p at marking M is denoted by M(p). A Petri net system 〈N, M0〉
is a net N with an initial marking M0.

A weighted marked graph (WMG) is a PN in which each place has exactly one input
and one output transition. A marked graph (MG) is a WMG whose weights on arcs
are unitary.

Given a PN N, a path is a sequence of nodes o1o2 · · · oq where oi ∈ P ∪ T for all
i ∈ {1, . . . , q} and oi+1 ∈ o•i holds for all i ∈ {1, . . . , q− 1}. A PN is said to be strongly
connected if, for any o, o′ ∈ P ∪ T, there exists a path from o to o′. A path o1o2 · · · oq is a
circuit if o1 = oq. A circuit o1o2 · · · oq−1o1 is an elementary circuit, denoted by γ, if for all
i, j ∈ {1, . . . , q}, i 6= j indicates oi 6= oj. The set of all elementary circuits of N is denoted
by Γ.

A WMG is neutral if for each elementary circuit γ it holds that ∏pj∈γ

Pre(pj ,p•j)
Post(pj ,•pj)

= 1.

In the rest of this paper, we limit our study to neutral and strongly connected WMGs.

2.2. Timed Petri Nets

In the literature, two types of timed Petri nets (TPNs) [41] are mainly studied, namely
transition-timed PNs (TTPNs) and place-timed PNs (PTPNs) [42]. A transition-timed Petri
net is a pair Nd = (N, δ) where

• N = (P, T, Pre, Post) is a PN;
• δ = [δ(t1), δ(t2), . . . , δ(tm)]T ∈ Qm

≥0 is an m-component vector, called the firing delay
vector of Nd, which assigns a non-negative rational value to each transition to represent
its firing delay, where Q denotes the set of rational numbers.

For a PTPN, a non-negative rational duration δ(p) is assigned to each place p to
represent the residual time that a token must spend in p before it becomes available for its
output transitions.

Given a TTPN Nd = (N, δ), the enabling degree of a transition t logically enabled
at a marking M, denoted as en(M, t), is the largest integer r, such that r · Pre(·, t) ≤ M.
The TTPNs considered in this paper follow the so-called infinite server semantics [42]. In
plain words, each transition represents an operation that can be executed as many times as

Sensors 2023, 23, 1447 4 of 19

the number of available servers, i.e., each enabled transition can fire as many times as its
enabling degree.

A TTPN (N, δ) is called a TWMG if net N is a weighted marked graph. A TWMG
system is a triple G = 〈N, δ, M0〉, where (N, δ) is a TWMG and M0 is an initial marking.

2.3. Cycle Time of TWMGs

The cycle time of a TWMG system G = 〈N, δ, M0〉, denoted by χ(G), is the aver-
age period to fire one time the minimal T-semiflow x = [x1, . . . , xm] [28,34]. The steady
evolution of a strongly connected TWMG system is repetitive. Let fi denote the firing
frequency of transition ti during the repetitive period. Then, the cycle time of a TWMG
system G = 〈N, δ, M0〉 can be defined as:

χ(G) =
xi
fi

, ∀ti ∈ T. (1)

We denote by χγ(G) the cycle time of elementary circuit γ and by χγ∗(G) = max
γ∈Γ

χγ(G)

the critical time. For a TMG system, the cycle time is equal to the critical time, i.e.,

χ(G) = χγ∗(G).

However, for a TWMG system, reference [35] shows that the cycle time is greater than
or equal to the critical time, i.e.,

χ(G) ≥ χγ∗(G).

The cycle time of a TWMG can be determined by the simulation. The work of [12,30]
provides a lower bound and an upper bound of the cycle times that are easy to compute.
However, in general, such approximations may be far from the actual cycle time and,
hence, cannot be used as guidelines for performance optimization. On the other hand, a
TWMG system G = 〈N, δ, M〉 can be transformed into an equivalent place-timed marked
graphs (PTMGs) system Ĝ = 〈N̂, δ̂, M̂〉 as shown in Algorithm 1, which describes the
same behavior, transition firing language, and cycle time [28]. Then, the cycle time χ(G) of
the original TWMG system can be obtained by solving the following linear programming
problem (LPP) for the equivalent PTMG system Ĝ [12,33]:

min χ(Ĝ)
s.t. Ĉ · α + χ(Ĝ) · M̂ ≥ Dp · ˆPost · v (2)

where χ(G) = χ(Ĝ) ∈ R+, α ∈ Rm̂, v =~1m̂×1 is the visit ratio vector, and Dp ∈ Nn̂×n̂ is a
diagonal matrix such that

Dp(i, j) =

{
δ̂(pi), if i = j,
0, otherwise.

(3)

Note that tin(pj)
, tout(pj)

, b·c, and d·e in Algorithm 1 represent the unique input transi-
tion of place pj, the unique output transition of place pj, the floor operator, and the ceiling
operator, respectively.

Sensors 2023, 23, 1447 5 of 19

Algorithm 1 Transformation of a TWMG into a PTMG [12].

Input: A TWMG system G = 〈N, δ, M〉 and the minimal T-semiflow x = (x1, . . . , xm)T of
net N;

Output: An equivalent PTMG system Ĝ = 〈N̂, δ̂, M̂〉 such that χ(Ĝ) = χ(G);
for each transition ti ∈ T do

delete ti and its corresponding arcs;
add xi transitions t1

i , t2
i , . . ., txi

i and xi places q1
i , q2

i , . . ., qxi
i such that •qa

i = ta
i , qa

i
• =

ta mod xi+1
i , ∀a = 1, . . . , xi;

let


M̂(q1

i) = M̂(q2
i) = · · · = M̂(qxi−1

i) := 0,
M̂(qxi

i) := 1,
δ̂(q1

i) = δ̂(q2
i) = · · · = δ̂(qxi

i) := 0.
(4)

end for
for each place pj ∈ P begin do

delete pj and its corresponding arcs;
let a := 0, s := 1;
repeat

b :=

⌊
M(pj) + Post(pj, tin(pj)

) · a
Pre(pj, tout(pj)

)
+ 1

⌋
(5)

a :=
⌈

Pre(pj ,tout(pj)
)·b−M(pj)

Post(pj ,tin(pj)
)

⌉
(6)

if a ≤ xin(pj)
then

Add place ps
j such that •ps

j = ta
in(pj)

, ps
j
• = t

(b−1) mod xout(pj)
+1

out(pj)

M̂(ps
j) :=

⌊
b− 1

xout(pj)

⌋
(7)

δ̂(ps
j) := δ(tin(pj)

) (8)

nj := s (9)

s := s + 1
end if

until a ≥ xin(pj)

end for

3. Problem Statement

In a TWMG that models a practical system, each transition ti models an operation
performed by machines, robots, etc., which we call the servers. A server is modeled by a
server place psi self-looped with ti. We consider the performance optimization problem
in TWMGs where both quantities and types of servers are variables to be simultaneously
optimized. Precisely speaking:

• For each transition, ti with ki ∈ N>0 choices of server types, we use a ki-component
binary vector Zi = [Zi(1), Zi(2), . . . , Zi(ki)]

T ∈ {0, 1}ki to describe the server type
selection of it, where

Zi(j) =

{
1, the j-th type of server is selected,
0, otherwise.

Moreover, to ensure that the operation is consistent, we require that—among all of the
ki types of servers of transition ti—only one type can be selected, i.e.,

Sensors 2023, 23, 1447 6 of 19

Zi(1) + Zi(2) + · · ·+ Zi(ki) = 1

• For each transition ti, different servers have different performances (i.e., the fir-
ing delay) and costs. We use δ(ti, j) and λ(ti, j) (j ∈ {1, . . . , ki}) to denote the
firing delay and the unit cost of server type j, respectively. We denote the firing
delay vector of transition ti and the unit cost vector of transition ti by δ(ti) =

[δ(ti, 1), δ(ti, 2), . . . , δ(ti, ki)]
T ∈ Qki

≥0, and λ(ti) = [λ(ti, 1), λ(ti, 2), . . . , λ(ti, ki)]
T ∈

Qki
≥0, respectively.

• For each transition ti, we use M(psi) to denote the server quantity of it, i.e., the
number of servers to equip. Then, we use M = [M(ps1), M(ps2), . . . , M(psm)]

T ∈ Nm

to represent the server quantity of all servers in the gross TWMG system.

Therefore, the firing delay δ(ti) and the unit cost λ(ti) of transition ti are determined
by the following equation:

λ(ti) = ZT
i · λ(ti),

δ(ti) = ZT
i · δ(ti),

Zi(1) + Zi(2) + . . . + Zi(ki) = 1,
i = 1, . . . , m.

(10)

Moreover, the choices of server types and quantities must be subject to a given budget
limit R ∈ R. Then, we can formulate the performance optimization problem as the following.

Problem 1 (Performance optimization problem). Given a TWMG model N, a budget
R ∈ R, a unit cost vector λ(ti), and a firing delay vector δ(ti), determine a server-type selection
Zi = [Zi(1), Zi(2), . . . , Zi(ki)]

T and a server quantity M = [M(ps1), M(ps2), . . . , M(psm)]
T ,

such that λT ·M ≤ R while the cycle time χ(G) is minimized (i.e., the performance is maximized).

In plain words, solving Problem 1 is equivalent to solving the following optimization
problem

min χ(G)

s.t.



λT ·M ≤ R, (11a)
λ(ti) = ZT

i · λ(ti),
δ(ti) = ZT

i · δ(ti),
Zi(1) + Zi(2) + . . . + Zi(ki) = 1,
i = 1, . . . , m,

 (11b)
(11)

where

• χ(G) represents the cycle time of the TWMG system G = 〈N, δ, M〉,
• λ = [λ(t1), . . . , λ(tm)]T represents the cost vector of the TWMG,
• M = [M(ps1), . . . , M(psm)]

T is the server quantity of the TWMG,
• δ = [δ(t1), . . . , δ(tm)]T is the firing delay vector of the TWMG.

However, we note that solving this problem is challenging since it is a quadratic
optimization: in general, a globally optimal solution is hard to achieve. Therefore, in the
next section, we develop a hybrid method composed of genetic heuristics and MILP. The
following example will be used as a running example in the sequel of this paper.

Example 1. Consider the TWMG model N depicted in Figure 1 that represents a cyclic manu-
facturing system. It is composed of two different operations performed by machines MA1 and
MA2, respectively. Transitions t1 and t2 represent the operation performed by machinesMA1
andMA2, respectively. Place p1 is an idle place that represents the raw material to proceed, place
p2 is an activity place that represents the manufacturing process, and places ps1 and ps2 are the
server places corresponding to t1 and t2, respectively. Tokens in places ps1 and ps2 represent the

Sensors 2023, 23, 1447 7 of 19

numbers of machinesMA1 andMA2, respectively. Initially, there are one hundred raw materials
to be proceeded, i.e., M(p1) = 100, and no semi-products are being produced, i.e., M(p2) = 0.

p2

100
2 3

2 3

1
S

p
2

S
p

1
p

1
t

2
t

Figure 1. The TWMG model for Example 1.

Assume that we have k1 = 3, k2 = 2, i.e., transition t1 has three choices of server types and
transition t2 has two choices. The firing delay and the unit cost of each type choice are listed in
Table 1. 

λ(t1) = [λ(t1, 1), λ(t1, 2), λ(t1, 3)]T = [4, 10, 15]T ,
λ(t2) = [λ(t2, 1), λ(t2, 2)]T = [5, 9]T ,
δ(t1) = [δ(t1, 1), δ(t1, 2), δ(t1, 3)]T = [15, 4, 2]T ,
δ(t2) = [δ(t2, 1), δ(t2, 2)]T = [20, 18]T .

The performance optimization problem (11) is to determine the quantities of servers of tran-
sitions M = [M(ps1), M(ps2)]

T and the server-type selections Z1 = [Z1(1), Z1(2), Z1(3)] and
Z2 = [Z2(1), Z2(2)] subject to a given budget R so that the cycle time of the system is minimized.

Table 1. The unit cost and the firing delays of each server on the transitions for Example 1.

Transition Server Type Unit Cost of Server Type j Firing Delay
ti j λ(ti, j) δ(ti, j) [s]

t1

1 4 15
2 10 4
3 15 2

t2
1 5 20
2 9 18

4. Genetic MILP Approach for Performance Optimization in TWMGs

Due to the existence of weights on arcs of the TWMGs and the nonlinear constraint
(11a), it is quite difficult to find an analytical approach to solve problem (11). Hence, in this
section, we develop a hybrid method composed of genetic heuristics and mixed-integer
linear programming, which makes the problem solvable.

As mentioned before, a possible server allocation strategy consists of two parts (M, Z)
where M characterizes the choice of the quantity while Z = (Z1, . . . , Zm) characterizes the
choice of the server type. In our method, the two parts are optimized in an alternative manner.
For small systems, it could be possible to enumerate the server type Z first and determine the
quantity M subsequently. However, it is not possible for practical systems even with medium
sizes. In addition, it was shown in [33] that for a TWMG whose server type Z is given, the
optimal quantity M can be obtained by transforming it into a finite number of equivalent
PTMG classes and solving a MILPP for each equivalent class. The computational cost of
this approach is high since the number of equivalent PTMG classes increases exponentially
w.r.t. the number of places of the original TWMG. In practice, it is inefficient to solve the
performance optimization in TWMGs by exploring all the equivalent PTMGs.

In this paper, the quantity-component M, i.e., the initial token distribution for server
places in the TWMG, is first treated as a chromosome in the genetic heuristics. Then,
among all the possible server types Z whose number grows exponentially with respect to

Sensors 2023, 23, 1447 8 of 19

the system size, we originally develop a MILPP to determine the optimal one. Therefore,
the computational cost can be reduced significantly compared with the existing methods
in [33]. Moreover, the result from the MILPP is also used to score the chromosome, i.e.,
the fitness of the quantity–component M, which provides a guideline for generating the
next generation of candidate chromosomes. This alternated optimization is done when a
pre-given number (Ge) that represents the maximum number of generation is reached. The
main steps of the approach are sketched in the flow chart in Figure 2.

In the following subsections, we will discuss the main elements of the developed
approach:

• Coding and decoding;
• Initial population generation;
• Calculation of the objective function and fitness value;
• The overall genetic algorithm: selection, crossover, and mutation.

Net structure, informations of system and

basic parameters of the genetic algorithm

Population initialization

 Objective function and fitness

computAtion using MILPPs

Output cycle time and server optimal

solution

Exit

Evolve to the maximum

number of generations Ge ?

N

Y
Genetic operations

Figure 2. Flow chart of the developed approach based on genetic algorithm.

Sensors 2023, 23, 1447 9 of 19

4.1. Coding and Decoding

A server allocation strategy (i.e., server quantity) M can be coded as a chromosome
Chm that is an m-dimensional nonnegative integer vector such that

Chm = [e1, e2, . . . , em]
T = M, (12)

where ei represents the quantities of servers of transition ti, i.e., the number of tokens in the
server place ps

i . For instance, the chromosome of the TWMG model N depicted in Figure 1
can be expressed as Chm = [e1, e2]

T , where e1 = M(ps
1) and e2 = M(p2

1). Therefore, we
can decode Chm into a marking MChm = [4, 0, e1, e2]

T of the TWMG model.

4.2. Population Generation and Feasibility Screening

In each iteration in the genetic algorithm, a set of candidate chromosomes are gen-
erated from promising ones in the previous generation. However, not all of the newly
generated chromosomes—in our case the initial server distribution—are feasible. For ex-
ample, some initial server distribution may result in the system eventually dying. Hence,
a pre-screening step is performed to remove such unfeasible chromosomes from the pool
of candidates.

First, a marking MChm that is decoded by a chromosome Chm should guarantee the
liveness of a TWMG. A TWMG is live if and only if each elementary circuit is live [24].
Hence, a feasible chromosome necessarily satisfies the following condition:

(∀γ ∈ Γ) yT ·MChm > yT ·Mγ
D (13)

where y is the minimal T-semiflow corresponding to γ and Mγ
D = [Pre(p1, p•1) − 1, . . . ,

Pre(pn, p•n)− 1]T is a marking restricted to γ.
On the other hand, a chromosome Chm is feasible only if there exists at least one

server-type selection Zi = [Zi(1), . . . , Zi(ki)] for every transition ti ∈ T, such that the total
cost of servers does not beyond the budget R. This indicates that the following constraint is
necessarily feasible: 

λT ·M ≤ R,
M = Chm,
λ(ti) = ZT

i · λ(ti),
Zi(1) + Zi(2) + . . . + Zi(ki) = 1,

(14)

Combining the results in (13) and (14), both the liveness and feasibility of a chromo-
some Chm can be guaranteed by the following constraints:

y ·MChm > y ·Mγ
D, ∀γ ∈ Γ,

λT ·M ≤ R,
M = Chm,
λ(ti) = ZT

i · λ(ti),
Zi(1) + Zi(2) + . . . + Zi(ki) = 1,

(15)

where MChm is a marking decoded from chromosome Chm.

4.3. Objective Function and Fitness Score: A MILPP Approach

Given a chromosome Chm and its decoded marking MChm of a TWMG model N, we
aim to determine the optimal server-type selection Z = (Z1, . . . , Zm), such that the cycle
time χ(G) of the TWMG system G = 〈N, δ, MChm〉 is minimized while the cost of the
servers corresponding to (M, Z) do not exceed the budget R.

As we discussed in Section 2.3, a TWMG system G = 〈N, δ, MChm〉 with a known ini-
tial marking MChm can be transformed into an equivalent PTMG system Ĝ = 〈N̂, δ̂, M̂Chm〉
with the same cycle time. Hence, the cycle time χ(G) of G can be obtained by solv-

Sensors 2023, 23, 1447 10 of 19

ing LPP (2) for its equivalent PTMG system Ĝ. Note that here the firing delay vector
δ = [δ(t1), . . . , δ(tm)]T of G is dependent on the server-type selection Z which is unde-
termined yet. Hence, the firing delays in the corresponding equivalent PTMG system Ĝ
δ̂ = [δ̂(p1), . . . , δ̂(pn̂)] is also to be determined. Now we show such an optimal server-type
selection can be obtained by solving a MILPP for the equivalent PTMG.

Proposition 1. Given a performance optimization problem (11) for a TWMG system G whose
equivalent PTMG system is Ĝ, let (χ(Ĝ), α, λ, δ, δ̂, Dp, Zi) be the optimal solution of the
following MILPP:

min χ(Ĝ)

s.t.



Ĉ · α + χ(Ĝ) · M̂Chm ≥ Dp · ˆPost · v, (16a)
λT ·M ≤ R,
M = Chm,

}
(16b)

λ(ti) = ZT
i · λ(ti),

δ(ti) = ZT
i · δ(ti),

}
(16c)

Zi(1) + Zi(2) + . . . + Zi(ki) = 1, (16d)
i = 1, . . . , m, (16e)
δ̂(qa

i) = 0, a = 1, . . . , xi,
δ̂(ps

j) = δ(tq), ∀•pj = tq, s = 1, . . . , nj

}
(16f)

(16)

Then, Zi (i = 1, . . . , m) is an optimal server-type selection of problem (11) with respect to a
given server quantity M = Chm.

Proof. Constraint (16b) ensures that the choice of server types subject to server quantity
M = Chm does not exceed the budget R. Constraints (16c), (16d), and (16e) jointly
enforce Equation (10). Combining the results in Equations (2) and (6), constraint (16f)
ensures the correctness of the firing delay equivalence between the original TWMG and
the PTMG. According to the results in [12,33], constraint (16a) can provide an optimal
solution for performance optimization if Ĉ and MChm are given. Therefore, Zi (i = 1, . . . , m)
is an optimal server-type selection of problem (11) restricted to a given server quantity
M = Chm.

Given a chromosome Chm, the cycle time χ(Ĝ) in the optimal solution of MILPP (16)
is denoted as F(MChm) = χ∗. Let Ni denote the pool of chromosomes in the i-th iteration,
i.e., the i-th generation, we define

Fmin = min
Chm∈Ni

F(Chm)

and
Fmax = max

Chm∈Ni
F(Chm)

the minimum and maximum objective functions (i.e., cycle time) of the population in the
current generation, respectively. Then, the fitness of a chromosome Chm is defined as

f itness(Chm) = 1− F(Chm)− Fmin
Fmax − Fmin

(17)

Example 2. Let us consider again the TWMG model N discussed in Example 1 with a minimal
T-semiflow x = [3, 2]T and a chromosome Chm = [4, 5]T . Then, the decoded initial marking is
MChm = [100, 0, 4, 5]T . The equivalent PTMG system Ĝ = 〈N̂, δ̂, M̂Chm〉 corresponding to MChm
is shown in Figure 3, where the firing delay vector δ̂ is to be determined.

Sensors 2023, 23, 1447 11 of 19

t1

1t1

1

t1

2t1

2

t1

3t1

3

q1

1q1

1

q1

2q1

2

q1

3q1

3

t2

1t2

1

t2

2t2

2

q2

2q2

2 q2

1q2

1

p2

1p2

1p2

1

p2

2p2

2p2

2

p1

1p1

1p1

1

p1

2p1

2p1

2

1

3

sp

1

2

sp

1

1

sp
2

1

sp

2

2

sp
16

17

1

1

1

2
1

2

3

Figure 3. The equivalent PTMG corresponding to the TWMG model N in Figure 1 with an initial
marking MChm = [100, 0, 4, 5].

Let R = 100 be the budget limit. According to Proposition 1, a MILPP can be established as
shown in Equation (18). By solving MILPP (18), we obtain Z = (Z1, Z2) where Z1 = [0, 1, 0]T

and Z2 = [0, 1]T . Thus, to optimize the performance of the PTMG (which is equal to that of the
original TWMG), transition t1 should be equipped with the second type of server while transition
t2 should be equipped with the second type. The optimal cycle time χ(G) = χ(Ĝ) = 7.2 of the
TWMG system G = 〈N, , δ, MChm〉. Finally, the objective function of chromosome Chm = [4, 5]T

is F(Chm) = 7.2, and its fitness can be computed according to Equation (17).

min χ(Ĝ)

s.t.



Ĉ · α + χ(Ĝ) · M̂Chm ≥ Dp · ˆPost · v,
λT ·M ≤ R,
M = Chm,

}
λ(t1) = Z1(1) · λ(t1, 1) + Z1(2) · λ(t1, 2) + Z1(3) · λ(t1, 3),
δ(t1) = Z1(1) · δ(t1, 1) + Z1(2) · δ(t1, 2) + Z1(3) · δ(t1, 3),
λ(t2) = Z2(1) · λ(t2, 1) + Z2(2) · λ(t2, 2),
δ(t2) = Z2(1) · δ(t2, 1) + Z2(2) · δ(t2, 2),


Z1(1) + Z1(2) + Z1(3) = 1,
Z2(1) + Z2(2) = 1,

}
i = 1, 2,
δ̂(q1

1) = 0, δ̂(q2
1) = 0, δ̂(q3

1) = 0,
δ̂(q1

2) = 0, δ̂(q2
2) = 0,

δ̂(p1
1) = δ(t2), δ̂(p2

1) = δ(t2),
δ̂(p1

2) = δ(t1), δ̂(p2
2) = δ(t1),

δ̂(p1
s1
) = δ(t1), δ̂(p2

s1
) = δ(t1),

δ̂(p3
s1
) = δ(t1),

δ̂(p1
s2
) = δ(t2), δ̂(p2

s2
) = δ(t2),



(18)

4.4. The Overall Genetic Algorithm

Now we are ready to introduce the overall genetic algorithm in our approach.

Sensors 2023, 23, 1447 12 of 19

4.4.1. Selection

The purpose of the selection operation is to save chromosomes with higher fitness
values in the parent population and to eliminate chromosomes with low fitness values.
The selection rule we used here combines the classical roulette wheel selection [43] (also
called the proportional selection, which ensures the diversity of genes inherited by the next
generation) and the optimal retention [43] (that can effectively retain the optimal individual
of each generation). In a roulette selection, the probability of each chromosome Chm to be
selected is proportional to its fitness value f itness(Chm). In generation i with population
Ni, the probability of selecting a chromosome Chm is given by:

Prob(Chmi) =
f itness(Chm)

∑Chmj∈Ni
f itness(Chmj)

. (19)

Note that it may eliminate chromosomes with large fitness values during the roulette
wheel selection operation. Therefore, we retain the chromosome with the highest fitness
value through the optimal retention method before the roulette wheel selection operation.

4.4.2. Crossover

In the genetic algorithm, new chromosomes are generated through the crossover
operation by exchanging gene segments from two parent chromosomes to find better
offspring. In the literature, several crossover operations have been proposed, such as
single-point crossover, multi-point crossover, and uniform crossover [43]. In this paper, we
used a single-point crossover operation for the genetic algorithm.

4.4.3. Mutation

The mutation operation is to randomly—usually with a pre-set probability—perturb
one or several genes of a chromosome. The mutation operation is of great significance
in the genetic algorithm to maintain population diversity, prevent falling into the local
optimal solution, and enrich the gene pool. The mutation operation uses site mutation, i.e.,
one or more genes of a chromosome are randomly selected and changed with a mutation
probability. In this paper, we use the single-point mutation operation, i.e., at most one gene
in each chromosome is mutated for each operation.

Note that during the crossover operation and mutation operation, a newly generated
chromosome Chm may not always satisfy the constraints in Equation (15), i.e., the TWMG
may not be live at the decoded marking MChm, or the total cost of servers corresponding
to MChm exceeds the budget. In such a case, the chromosome that leads to an infeasible
solution is immediately discarded, and a fully randomized chromosome, which satisfies
the constraint (15) is added to the pool.

The entire hybrid method that combines genetic heuristics with MILP is presented
as Algorithm 2, whose inputs are: a TWMG model N, the budget R, the unit cost vector
λ(ti), the firing delay vector δ(ti), the population size Np (i.e., N), the maximum number
of generations Ge, the crossover probability Pc, and the mutation probability Pm.

Sensors 2023, 23, 1447 13 of 19

Algorithm 2 Genetic MILP method for performance optimization in TWMGs.

Input: A TWMG model N, R ∈ R, λ(ti) ∈ Qm
≥0, δ(ti) ∈ Qm

≥0, Np ∈ N, Ge ∈ N, Pc ∈ R≥0,
Pm ∈ R≥0, T0 ∈ R≥0, Te ∈ R≥0, and ε ∈ R≥0;

Output: Server-type selection Z = [Z1, . . . , Zm]T and server quantity M =
[M(ps1), . . . , M(psm)]

T ;
while k ≤ Ge do

for j = 1, . . . ,Np do
Transform 〈N, MChmk

j
〉 into 〈N̂, M̂Chmk

j
〉 according to Algorithm 1;

Solve MILPP (16) for 〈N̂, M̂Chmk
j
〉;

Calculate f itness(Chmk
j) according to Equation (17);

end for
Let j∗ = arg max

Chmk
j∈Nk

f itness(Chmk
j);

Let M := MChmk
j∗

be the server quantity and Z := (Z1, . . . , Zm) be the server type

selection corresponding to chromosome Chmk
j∗ ;

if k + 1 ≤ Ge then
k := k + 1;
Execute selection, crossover, and mutation to generate an offspring generation

Nk = {Chmk
1, . . . , Chmk

Np
};

else
Output M and Z

end if
end while

5. Illustrative Examples

In this section, the developed approach in Section 4 is illustrated by investigating
the TWMG model discussed in Example 1 and a real flexible manufacturing system. The
algorithms are implemented by MATLAB 2017 with YALMIP R20181012 subroutines on a
computer installed Windows 10 operating system with CPU Intel Core i5 at 3.0 GHz and
RAM 8 GB.

5.1. First Example

Example 3. Let us continue Example 1 and assume that the upper bound on the cost of servers
is R = 100. Parameters in the developed approach are set as the population size Np = 10, the
crossover probability Pc = 0.7, and the mutation probability Pm = 0.1.

In Table 2, we show the best solution (i.e., the minimal cycle time), the worst solution (i.e., the
maximal cycle time), the average solution, and the average CPU time for the developed approach
(i.e., genetic MILP) by testing a different maximum number of generations Ge. For each generation,
we executed the developed approach ten times. An optimal/suboptimal solution is found as follows:

M = [2, 14]T , Z1 = [0, 0, 1]T , Z2 = [1, 0]T ,

which means that the optimal quantity of server of t1 and t2 are 2 and 14, respectively, while the
third type of server of t1 and the first type of server of t2 are selected. By enumerating all possible
server-type selections and server quantities, we found that the solutions obtained by the proposed
approach are optimal. In addition, we also implemented the developed approach without MILP
(i.e., genetic in Table 2), which means that both quantities and types of servers are generated by the
genetic algorithm. It can be observed that the qualities of the solutions are improved by using the
MILP we developed.

Sensors 2023, 23, 1447 14 of 19

Table 2. Simulation results of Example 3.

Obtained Results
Approaches Genetic MILP Genetic

Maximal number of generation Ge 1 2 5 15 1 2 5 15
Best solution 3.0 3.0 3.0 3.0 3.3 3.3 3.3 3.1

Worst solution 4.5 4.0 3.0 3.0 6.0 5.0 5.0 4.0
Average solution 3.7 3.2 3.0 3.0 4.4 4.2 3.7 3.7

Average CPU time [s] 7.5 11.0 20.5 59.4 3.1 4.6 9.1 24.2

5.2. Application to a Real Flexible Manufacturing System

In this subsection, we apply the developed approach to a hydraulic torque converter
production line that is taken from [36]. The hydraulic torque converter is assembled with
four different products as shown in Table 3. The production process of these products
include 25 operations operated on 17 different machines (denoted byMA1, . . . ,MA17).
We mention that the turbine is also assembled by two different products. Note that
some machines are shared by one or more production lines, such asMA1,MA3,MA4,
andMA6.

Table 3. Production process of the flexible manufacturing system.

Pump wheel MA1 →MA2 →MA3 →MA4 →MA5 →MA6

Turbine MA1 →MA7 →MA3 →MA8 →MA10 →MA11 →MA12
MA3 →MA9 →MA6 →MA10 →MA11 →MA12

Guide wheel MA1 →MA4 →MA13

Cover wheel MA14 →MA4 →MA15 →MA6

Hydraulic torque converter MA16 →MA17

The TWMG model is shown in Figure 4, which has 25 transitions and 54 places. It is
composed of three different types of elementary circuits, i.e., process circuits that represent
the manufacturing process, server circuits that represent the usage of machines, and mixed
circuits that consist of both process circuits and server circuits. Tokens in places p1, p8, p13,
p20, and p24 represent the raw materials for each production line that are assumed to be
1000, i.e., M(pj) = 1000 (j = 1, 8, 13, 20, 24).

In Table 4, we present the unit costs of servers and the firing delays of the correspond-
ing transitions. The budget is set to R = 300. Simulation results for different cases are
presented in Table 5. Parameters in the developed approach are the same as in Example 3.

For all of the cases, we execute each approach ten times. Since the best solution for the
maximum number of generations Ge = 5 is identical to the solution obtained for generation
Ge = 10, there is no need to test more generations for the genetic MILP approach. An
optimal/suboptimal solution is found by the developed approach with the cycle time
χ(G) = 68, and the server-type selection and server quantity are as follows:

M = [1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1]T ,
Z1(1) = 1, Z2(1) = 1, Z3(3) = 1, Z4(1) = 1, Z5(1) = 1,
Z6(5) = 1, Z7(1) = 1, Z8(1) = 1, Z9(3) = 1, Z10(1) = 1,
Z11(3) = 1, Z12(1) = 1, Z13(5) = 1, Z14(1) = 1, Z15(1) = 1,
Z16(2) = 1, Z17(1) = 1, Z18(1) = 1, Z19(1) = 1, Z20(2) = 1,
Z21(1) = 1, Z22(1) = 1, Z23(5) = 1, Z24(3) = 1, Z25(1) = 1.

Sensors 2023, 23, 1447 15 of 19

p3p2

p1

p4t1

t2

t3

4 4

t4

Server circuit

p5 t5 p6 t6 p7

p10p9

p8

p11t7

t8

t9

t10

p12

p15

p14
p13

p16t11

t12

t13

2

p17

p18

p21 p20

p23

t17 t18

t19

p19

p22

p25

p24

p27t20 t21

t22

p26 p28t23

p29
t24

t25

t14

t15 t16
2 2

2 2 2
2 2
2

2 2

4 4 2 2

2

2

2 2
4 4

2 2
Process circuit

2sp

5s
p

8s
p 10sp

12sp
14sp

15sp
16sp

20sp

22sp

24sp

25sp

1s
p

7s
p

17sp

3s
p

9s
p

11sp

4s
p

18sp

21sp

13sp

23sp

6s
p

19sp

Figure 4. The TWMG model of the flexible manufacturing system.

Note that due to the shared usage of resources, some different operations (transitions)
are executed by the same machineMAi (i = 1, 3, 4, 6). Therefore, the server quantities of
machineMAi equals the sum of the server quantities of all the transitions corresponding
toMAi; the server types of all the transitions corresponding toMAi should be identical.

Server quantity ofMA1 : M(ps1) + M(ps7) + M(ps17) = 4,
Server quantity ofMA3 : M(ps3) + M(ps9) + M(ps11) = 4,
Server quantity ofMA4 : M(ps4) + M(ps18) + M(ps21) = 4,
Server quantity ofMA6 : M(ps6) + M(ps13) + M(ps23) = 2.

From the simulation results, we can conclude that in the case of the same maximum
number of generations, the cycle time (i.e., the objective function) obtained by the genetic
MILP approach is smaller than that of the Genetic approach, i.e., the solution obtained by
the genetic approach is improved by using the MILP.

We conclude this section by discussing the previous works. The approaches developed
in [33–36] can provide optimal or near-optimal solutions under the condition that the types
of resources are given. In this paper, we further extend these works by assuming that the
types of resources are variables that also have to be optimized. Therefore, the existing
approaches in [33–36] cannot provide a solution for the problem considered in this paper.

Sensors 2023, 23, 1447 16 of 19

Table 4. Unit costs of the servers and the firing delays of each operation.

Transition Machine Server Type Unit Cost of Server Firing Delay Transition Machine Server Type Unit Cost of Server Firing Delay
ti MA j λ(ti, j) δ(ti, j) [s] ti MA j λ(ti, j) δ(ti, j) [s]

t1 MA1

1 7 27

t13 MA6

2 7 34

2 15 19 3 8 29

3 20 15 4 10 26

4 23 13 5 11 20

t2 MA2
1 4 25

t14 MA10
1 10 45

2 8 22 2 14 38

t3 MA3

1 7 40
t15 MA11

1 8 17

2 8 37 2 12 13

3 9 25
t16 MA12

1 5 18

t4 MA4

1 8 16 2 9 12

2 9 15

t17 MA1

1 9 15

3 10 9 2 15 14

4 12 6 3 20 10

t5 MA5

1 3 29 4 23 6

2 6 25

t18 MA4

1 8 18

3 8 20 2 9 16

t6 MA6

1 6 38 3 10 16

2 7 35 4 12 13

3 8 32

t19 MA13

1 13 24

4 10 28 2 17 19

5 11 25 3 20 13

t7 MA1

1 9 26
t20 MA14

1 7 38

2 15 23 2 11 31

3 20 18

t21 MA4

1 8 25

4 23 12 2 9 22

t8 MA7

1 2 31 3 10 20

2 5 26 4 12 14

3 7 20
t22 MA15

1 10 36

t9 MA3

1 7 33 2 14 30

2 8 25

t23 MA6

1 6 37

3 9 16 2 7 32

t10 MA8
1 2 11 3 8 29

2 7 8 4 10 24

t11 MA3

1 7 26 5 11 20

2 8 22

t24 MA16

1 14 58

3 9 10 2 21 42

t12 MA9

1 5 47 3 30 20

2 8 42

t25 MA17

1 7 13

3 13 35 2 8 10

t13 MA6 1 6 35 3 12 6

Table 5. Simulation results of the developed approach for the flexible manufacturing system.

Obtained Results
Approaches Genetic MILP Genetic

Maximal number of generation Ge 1 2 5 10 2 5 10 40 70 100
Best solution 76.0 72 68.0 68.0 130.0 102.0 102.0 90.0 90.0 90.0

Worst solution 84.0 77.3 76.0 76.0 212.0 204.0 180.0 168.0 130.0 130.0
Average solution 79.7 75.2 71.3 70.6 171.8 159.4 152.2 126.2 120.8 111.7

Average CPU time [s] 72.9 152.9 396.5 1059.3 4.7 12.7 28.8 142.8 433.3 843.8

Sensors 2023, 23, 1447 17 of 19

6. Conclusions

In this paper, we study the performance optimization for a class of PNs to maximize
the throughput of the system subject to a given budget, while both quantities and typesof
servers are decision variables. A genetic algorithm combined with mixed-integer linear
programming was originally developed to obtain a near-optimal solution. The developed
approach is based on linear programming techniques and provides an efficient solution
for solving the performance optimization problem where both quantities and types of
resources are simultaneously optimized. Our future work will focus on exploring an
analytical solution for the considered optimization problem. On the other hand, we will
consider improving the efficiency of the developed approach by using some advanced
hybrid methods [44].

Author Contributions: Conceptualization, Z.H. and W.S.; methodology, Z.H. and C.G.; software, W.S.
and Z.M.; validation, N.R. and Z.M.; formal analysis, Z.H. and W.S.; investigation, Z.H. and W.S.; re-
sources, Z.H.; data curation, not applicable; writing-original draft preparation, W.S.; writing—review
and editing, Z.H. and Z.M.; visualization, C.G. and N.R.; supervision, Z.H.; project administra-
tion, Z.H.; funding acquisition, Z.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant nos. 61703321, 61803246, 61903119, and 62003201, the China Postdoctoral Science Foundation
under grant no. 2019M663608, Shaanxi Provincial Natural Science Foundation under grant nos.
2022JM-323 and 2023-JC-YB-564, the Hebei Province Foundation for Returned Overseas Chinese
Scholars under grant C20190319, and the Fundamental Research Funds for the Central Universities
under grant JB210413.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to every reviewer of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PN Petri net
FMS flexible manufacturing system
MILP mixed-integer linear programming
TMG timed marked graph
TWMG timed weighted marked graph
MILPP mixed-integer linear programming problem
WMG weighted marked graph
MG marked graph
TPN timed Petri net
TTPN transition-timed Petri net
PTPN place-timed Petri net
PTMG place-timed marked graph

References
1. He, Z.; Tang, B.; Luan, F. An improved African vulture optimization algorithm for dual-resource constrained multi-objective

flexible job shop scheduling problems. Sensors 2023, 23, 90. [CrossRef]
2. Declerck, P. Optimization of the time durations by exploiting time margins in time interval models. IEEE Trans. Control Syst.

Technol. 2022, 30, 755–766. [CrossRef]
3. Huang, B.; Zhou, M.; Lu, X. Scheduling of Resource Allocation Systems with Timed Petri Nets: A Survey. ACM Comput. Surv.

2023, 1–28 . [CrossRef]
4. Benabid-Najjar, A. Periodic schedules for bounded timed weighted event graphs. IEEE Trans. Autom. Control 2012, 57, 1222–1232.

[CrossRef]

http://doi.org/10.3390/s23010090
http://dx.doi.org/10.1109/TCST.2021.3077975
http://dx.doi.org/10.1145/3570326
http://dx.doi.org/10.1109/TAC.2012.2191871

Sensors 2023, 23, 1447 18 of 19

5. Kim, H.; Lee, J.; Lee, T. Schedulability analysis for noncyclic operation of time-constrained cluster tools with time variation. IEEE
Trans. Autom. Sci. Eng. 2016, 13, 1409–1414. [CrossRef]

6. Huang , B.; Zhou, M. Symbolic Scheduling of Robotic Cellular Manufacturing Systems with Timed Petri Nets. IEEE Trans. Autom.
Sci. Eng. 2022, 30, 1876–1887. [CrossRef]

7. Huang, B.; Zhou, M.; Abusorrah, A. Scheduling Robotic Cellular Manufacturing Systems with Timed Petri Net, A* Search and
Admissible Heuristic Function. IEEE Trans. Autom. Sci. Eng. 2022, 19, 243–250. [CrossRef]

8. Liu, C. Formal modeling and discovery of multi-instance business processes: A cloud resource management case study. IEEE/CAA
J. Autom. Sin. 2022, 9, 2151–2160. [CrossRef]

9. Zhao, Z.; Liu, S.; Zhou, M. Heuristic scheduling of batch production processes based on Petri nets and iterated greedy algorithms.
IEEE Trans. Autom. Sci. Eng. 2022, 19, 25–261. [CrossRef]

10. You, D.; Wang, S.; Zhou, M. Supervisory control of Petri nets in the presence of replacement attacks. IEEE Trans. Autom. Sci. Eng.
2021, 67, 1466–1473. [CrossRef]

11. Millo, J.; Simone, R.D. Periodic scheduling of marked graphs using balanced binary words. Theor. Comput. Sci. 2012, 458, 113–130.
[CrossRef]

12. Campos, J.; Chiola, G.; Colom, J. Properties and performance bounds for timed marked graphs. IEEE Trans. Fundam. Theory Appl.
1992, 39, 386–401. [CrossRef]

13. Baccelli, F.; Cohen, G.; Olsder, G. Synchronization and Linearity: An Algebra for Discrete Event Systems; Wiley: New York, NY,
USA, 1992.

14. He, Z.; Ma, Z.; Tang, W. Performance safety enforcement in strongly connected timed event graphs. Automatica 2021, 128, 109605.
[CrossRef]

15. Panayiotou, C.; Cassandras, C. Optimization of kanban-based manufacturing systems. Automatica 1999, 35, 1521–1533. [CrossRef]
16. Li, R.; Reveliotis, S. Performance optimization for a class of generalized stochastic Petri nets. Discret. Event Dyn. Syst. 2015, 25,

387–417. [CrossRef]
17. Rodriguez, R.; Julvez, J.; Merseguer, J. On the performance estimation and resource optimization in process Petri nets. IEEE Trans.

Syst. Man Cybern. Syst. 2013, 43, 1385–1398. [CrossRef]
18. Ma, Z.; Li, Z.; Giua, A. Marking estimation in a class of time labeled Petri nets. IEEE Trans. Autom. Control 2020, 65, 493–506.

[CrossRef]
19. He, Z.; Li, Z.; Giua, A. Some remarks on State estimation and fault diagnosis of labeled time Petri net systems with unobservable

transitions. IEEE Trans. Autom. Control 2019, 64, 5253–5259. [CrossRef]
20. Seatzu, C. Modeling, analysis, and control of automated manufacturing systems using Petri nets. In Proceedings of the 24th IEEE

International Conference on Emerging Technologies and Factory Automation, Zaragoza, Spain, 10–13 September 2019; pp. 27–30.
21. Lafit, S.; Proth, J.; Xie, X. Marking Optimization in Timed Event Graphs; Springer: Berlin/Heidelberg, Germany, 2019; pp. 281–300.
22. Giua, A.; Piccaluga, A.; Seatzu, C. Firing rate optimization of cyclic timed event graph. Automatica 2002, 38, 91–103. [CrossRef]
23. He, Z.; Liu, M.; Ran, N. Firing rate optimization of deterministic timed event graphs by server performance improvement. IEEE

Access 2019, 6, 70866–70873. [CrossRef]
24. Teruel, E.; Chrzastowski-Wachtel, P.; Colom, J. On weighted T-Systems. Appl. Theory Petri Nets 1992, 616, 348–367.
25. Cottenceau, B.; Hardouin, L.; Boimond, J. Modeling and control of weight-balanced timed event graphs in dioids. IEEE Trans.

Autom. Control 2014, 59, 1219–1231. [CrossRef]
26. Marchetti, O.; Munier, A. Complexity results for weighted timed event graphs. Discrete Optim. 2010, 7, 166–180. [CrossRef]
27. Munier, A. Régime asymptotique optimal d’un graphe d’événements temporisé généralisé: Application à un problème

d’assemblage. RAIPO-APII 1992, 27, 487–513.
28. Nakamura, M.; Silva, D.M. Cycle time computation in deterministically timed weighted marked graphs. In Proceedings of the

7th IEEE International Conference on Emerging Technologies and Factory Automation, Barcelona, Spain, 18–21 October 1999;
Volume 2, pp. 1037–1046.

29. He, Z.; Ma, Z.; Li, Z. Parametric transformation of timed weighted marked graphs: Applications in optimal resource allocation.
IEEE/CAA J. Autom. Sin. 2021, 8, 179–188. [CrossRef]

30. Kahouadji, H.; Hamaci, S.; Labadi, K. A new upper bound of cycle time in weighted marked graphs. In Proceedings of the
International Conference on Control, Decision and Information Technologies (CoDIT), Hammamet, Tunisia, 6–8 May 2013;
pp. 137–142. [CrossRef]

31. Benfekir, A.; Hamaci, S.; Boimond, J.L. Performance evaluation of nonlinear weighted T-system. Int. J. Syst. Sci. 2013, 44,
1948–1955. [CrossRef]

32. He, Z.; Li, Z.; Giua, A. Cycle time optimization of deterministic timed weighted marked graphs by transformation. IEEE Trans.
Control Syst. Technol. 2017, 25, 1318–1330. [CrossRef]

33. He, Z.; Li, Z.; Giua, A. Performance optimization for timed weighted marked graphs under infinite server semantics. IEEE Trans.
Autom. Control 2018, 63, 2573–2580. [CrossRef]

34. Sauer, N. Marking optimization of weighted marked graphs. Discret. Event Dyn. Syst. 2003, 13, 245–262. [CrossRef]
35. He, Z.; Li, Z.; Giua, A. Optimization of deterministic timed weighted marked graphs. IEEE Trans. Autom. Sci. Eng. 2017, 14,

1084–1095. [CrossRef]

http://dx.doi.org/10.1109/TASE.2016.2531105
http://dx.doi.org/10.1109/TCST.2021.3123963
http://dx.doi.org/10.1109/TASE.2020.3026351
http://dx.doi.org/10.1109/JAS.2022.106109
http://dx.doi.org/10.1109/TASE.2020.3027532
http://dx.doi.org/10.1109/TAC.2021.3063699
http://dx.doi.org/10.1016/j.tcs.2012.08.012
http://dx.doi.org/10.1109/81.139289
http://dx.doi.org/10.1016/j.automatica.2021.109605
http://dx.doi.org/10.1016/S0005-1098(99)00074-6
http://dx.doi.org/10.1007/s10626-014-0189-3
http://dx.doi.org/10.1109/TSMC.2013.2245118
http://dx.doi.org/10.1109/TAC.2019.2907413
http://dx.doi.org/10.1109/TAC.2019.2910168
http://dx.doi.org/10.1016/S0005-1098(01)00189-3
http://dx.doi.org/10.1109/ACCESS.2018.2880460
http://dx.doi.org/10.1109/TAC.2013.2294822
http://dx.doi.org/10.1016/j.disopt.2010.03.006
http://dx.doi.org/10.1109/JAS.2020.1003477
http://dx.doi.org/10.1109/CoDIT.2013.6689533
http://dx.doi.org/10.1080/00207721.2012.670306
http://dx.doi.org/10.1109/TCST.2016.2613967
http://dx.doi.org/10.1109/TAC.2017.2766202
http://dx.doi.org/10.1023/A:1024055724914
http://dx.doi.org/10.1109/TASE.2015.2490538

Sensors 2023, 23, 1447 19 of 19

36. He, Z.; Liu, M.; Ma, Z. An improved approach for marking optimization of timed weighted marked graphs. Discret. Event Dyn.
Syst. 2019, 29, 127–143. [CrossRef]

37. Qudeiri, J.A.; Yamamoto, H.; Ramli, R. Genetic algorithm for buffer size and work station capacity in serial-parallel production
lines. Artif. Life Rob. 2008, 12, 102–106. [CrossRef]

38. Nahas, N.; Nourelfath, M.; Gendreau, M. Selecting machines and buffers in unreliable assembly/disassembly manufacturing
networks. Int. J. Prod. Econ. 2014, 154, 113–126. [CrossRef]

39. Liu, L.C.; Yan, C.B.; Li, J.S. Modeling, analysis, and improvement of batch-discrete manufacturing systems: A systems approach.
IEEE Trans. Autom. Sci. Eng. 2022, 19, 1567–1585. [CrossRef]

40. Zhang, W.; Wang, J.; Lin, Y. Integrated design and operation management for enterprise systems. Enterp. Inf. Syst. 2019, 13,
424–429. [CrossRef]

41. Wang, J. Charging information collection modeling and analysis of GPRS networks. IEEE Trans. Syst. Man Cybern. 2007, 37,
473–481. [CrossRef]

42. Schuppen, J.V.; Silva, M.; Seatzu, C. Control of discrete-event systems-Automata and Petri Net perspectives. Lect. Notes Control
Inf. Sci. 2012, 433, 319–340.

43. Mirjalili, S. Genetic algorithm. Evol. Algorithms Neural Netw. 2019, 780, 43–55.
44. Bi, J.; Yuan, H.; Zhai, J. Self-adaptive bat algorithm with genetic operations. IEEE/CAA J. Autom. Sin. 2022, 9, 1284–1294.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10626-019-00278-w
http://dx.doi.org/10.1007/s10015-007-0449-5
http://dx.doi.org/10.1016/j.ijpe.2014.04.011
http://dx.doi.org/10.1109/TASE.2021.3127048
http://dx.doi.org/10.1080/17517575.2019.1597169
http://dx.doi.org/10.1109/TSMCC.2007.897338
http://dx.doi.org/10.1109/JAS.2022.105695

	Introduction
	Background
	Generalities
	Timed Petri Nets
	Cycle Time of TWMGs

	Problem Statement
	Genetic MILP Approach for Performance Optimization in TWMGs
	Coding and Decoding
	Population Generation and Feasibility Screening
	Objective Function and Fitness Score: A MILPP Approach
	The Overall Genetic Algorithm
	Selection
	Crossover
	Mutation

	Illustrative Examples
	First Example
	Application to a Real Flexible Manufacturing System

	Conclusions
	References

