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Abstract—To improve the quality of computation experience
for mobile devices, mobile-edge computing (MEC) is emerging
as a promising paradigm by providing computing capabilities
within radio access networks in close proximity. Nevertheless,
the design of computation offloading policies for a MEC system
remains challenging. Specifically, whether to execute an arriving
computation task at local mobile device or to offload a task
for cloud execution should adapt to the environmental dynamics
in a smarter manner. In this paper, we consider MEC for a
representative mobile user in an ultra dense network, where one
of multiple base stations (BSs) can be selected for computation
offloading. The problem of solving an optimal computation
offloading policy is modelled as a Markov decision process, where
our objective is to minimize the long-term cost and an offloading
decision is made based on the channel qualities between the
mobile user and the BSs, the energy queue state as well as
the task queue state. To break the curse of high dimensionality
in state space, we propose a deep Q-network-based strategic
computation offloading algorithm to learn the optimal policy
without having a priori knowledge of the dynamic statistics.
Numerical experiments provided in this paper show that our
proposed algorithm achieves a significant improvement in average
cost compared with baseline policies.

I. INTRODUCTION

With the proliferation of smart devices, more and more

mobile applications, such as location-based virtual/augmented

reality and online gaming, are emerging and gaining popularity

[1]. However, the mobile devices are in general resource-

constrained, for example, the battery capacity and the local

CPU computation power are limited. The tension between

computation-intensive applications and resource-constrained

mobile devices creates a hurdle of having satisfactory Quality-

of-Service (QoS) and Quality-of-Experience (QoE), and is

hence driving a revolution in terms of computing infrastructure

[2].

Mobile-edge computing (MEC) is envisioned as a promis-

ing paradigm to address the hurdle by providing computing

capabilities within radio access networks (RANs) in close

proximity to mobile users (MUs) [3], [4]. By offloading com-

putation tasks to the resource-rich MEC servers, not only the
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computation QoS and QoE can be greatly improved, but the

capabilities of mobile devices can be augmented for running

resource-demanding applications. Recently, lots of efforts have

been centered on the design of computation offloading policy.

In [5], Wang et al. developed an alternating direction method

of multipliers-based algorithm to resolve the issue of revenue

maximization by optimizing computation offloading decisions,

resource allocation and content caching strategies. In [6], Hu

et al. proposed a two-phase based method for joint power

and time allocation while considering cooperative computation

offloading in a wireless power transfer-assisted MEC system.

The policies in these works are primarily based on one-shot

optimization and fail to characterize long-term computation

offloading performance.

For a MEC system, the computation offloading process

requires wireless data transmission, for which the design of

computation offloading policies should take into account the

existing environmental dynamics, such as the time-varying

channel quality and the task arrival and energy status at a

mobile device. In [7], Liu et al. formulated the problem of

delay-optimal computation task offloading under a Markov

decision process (MDP) framework and developed an efficient

one-dimensional search algorithm to find the optimal solution.

The challenge for the work in [7] lies in the dependence

on statistical information of channel quality variations and

task arrivals. In [8], Mao et al. investigated a dynamic com-

putation offloading policy for a MEC system with wireless

energy harvesting-enabled mobile devices using Lyapunov

optimization techniques. However, the Lyapunov optimization

can only construct an approximately optimal solution. Xu et al.

developed in [9] a reinforcement learning based algorithm to

learn the optimal computation offloading policy, which at the

same time does not need a priori knowledge of environmental

statistics.

When the MEC meets an ultra dense RAN, a number of base

stations (BSs) are available with different data transmission

qualities. In this context, the explosion in state space makes the

conventional reinforcement learning algorithms [9]–[11] infea-

sible. The focus of this paper is to consider the MEC in an ultra

dense system, where the mobile devices are wireless charging

enabled. The problem of designing an optimal computation

offloading policy is formulated as a MDP. We resort to a deep

neural network based function approximator to deal with the

curse of state space explosion [12]. As a major contribution,

we propose an online strategic computation offloading policy

based on a deep Q-network (DQN), with which a typical MU

http://arxiv.org/abs/1804.00514v1
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Fig. 1. Illustration of a mobile-edge computing system with wireless charging
enabled mobile devices.

in the ultra dense MEC system is able to realize a significant

performance improvement.

The rest of the paper is organized as follows. In the next

section, we describe the system model and the basic assump-

tions considered in this paper. In Section III, we formulate

the problem of designing an optimal computation offloading

policy as a MDP. We detail the proposed algorithm in Section

IV. To validate the proposed study, we provide numerical

experiments under various settings in Section V. Finally, we

draw the conclusions in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

As depicted in Fig. 1, we shall consider in this paper

an ultra dense networking environment covered by a set

N = {1, · · · , N} of BSs. The BSs are connected via the fiber

cables to a resource-rich computing infrastructure, namely, the

telecom cloud, which is deployed by the network operator.

By strategically offloading the computation tasks for cloud

execution, the wireless charging enabled MUs can expect a

significantly improved computation experience. In the analysis

that follows, we focus on a representative MU in the dense

RAN. The time horizon is discretized into epochs, each of

which is of equal duration δ (in seconds) and is indexed by

an integer k ∈ N+. The whole system operates over a common

spectrum, and we denote the frequency bandwidth by W (in

Hz).

We denote the channel gain state between the MU and a

BS n ∈ N during each epoch k as gkn, which independently

picks a value from a finite state space Gn. The channel state

transitions across the epochs are modelled as a finite-state

discrete-time Markov chain. We let µ (in bits) represent the

input data size of a computation task. The computation task

arrivals at the MU are assumed to be an independent and

identically distributed sequence of Bernoulli random variables

with a common parameter λ(t) ∈ [0, 1]. More specifically,

we choose Ak
(t) ∈ {0, 1} as the task arrival indicator, that is,

Ak
(t) = 1 if a task is generated at the beginning of epoch k and

otherwise, Ak
(t) = 0. Then, Pr{Ak

(t) = 1} = 1 − Pr{Ak
(t) =

0} = λ(t), where Pr{·} denotes the probability of an event.

In our considered MEC system, the computation task can

be either executed locally at the mobile device of the MU

or offloaded to and executed at the telecom cloud. At the

beginning of each epoch k, the MU makes a joint decision

regarding computation offloading T k ∈ {−1} ∪ {0} ∪ N and

energy allocation Ek (in energy units). Note that T k = −1
is the case the MU decides not to execute the computation

task, and there will be no computation task execution delay

and Ek = 0, hence leading to the dropping of an arrived task.

We have T k = 0 if the computation task is executed locally

at the mobile device of the MU during an epoch k. Let ν be

the number of CPU cycles required to process one input bit of

the computation task. Then the allocated CPU-cycle frequency

at the MU can be calculated as

fk
(l) =

√

Ek

τµν
, (1)

with the given energy Ek, where τ is the effective switched

capacitance that depends on chip architecture of the mobile

device [13]. Moreover, the CPU-cycle frequency is constrained

by fk
(l) ≤ f . The incurred delay for local computation

execution at epoch k can be hence expressed by

bk(l) =
µν

fk
(l)

. (2)

At the beginning of epoch k, if the MU decides to offload

the computation task to the telecom cloud for execution via

a BS n ∈ N , namely, T k = n, the input data should be first

transmitted to the cloud. In a dense networking scenario, the

achievable data rate can be written as

Rk = W log2

(

1 + I−1gkn
Ek

bk(c),(tr)

)

, (3)

where I is the received average power of interference and

additive background noise, while bk(c),(tr) is the transmission

time and is the solution of

Rkbk(c),(tr) = µ. (4)

In (4) above, we suppose that the energy Ek is evenly assigned

to the input bits of the computation task [14]. After receiving

the input bits of the offloaded computation task, the telecom

cloud proceeds to execute it. We let f(c) be the constant CPU-

cycle frequency assigned to the MU, which is based on the

subscribed cloud-computing contract between the MU and the

network operator. The execution time of the computation task

at the cloud takes up to

b(c),(ex) =
µν

f(c)
. (5)

Therefore, the overall delay resulted from offloading compu-

tation task for cloud execution is

bk(c) = bk(c),(tr) + b(c),(ex), (6)



where as in the existing works [8], [15], we neglect the time

consumed for sending the computation outcomes from the

telecom cloud back to the MU.

Let Hk be the energy queue length of the MU at the

beginning of epoch k, which evolves according to

Hk+1 = min
{

Hk − Ek +Ak
(e), H

}

, (7)

where H limits the maximum number of energy units that

can be stored and Ak
(e) is the number of energy units acquired

from the wireless environment by the end of epoch k.

III. PROBLEM FORMULATION

The computation task arrivals from the MU can be offloaded

to the telecom cloud depending on the channel qualities, the

energy queue state and the computation task queue state. We

denote xk = (Ak
(t), H

k,gk) ∈ X = {0, 1} × {0, 1, · · · , H} ×
{×n∈NGn} as the network state of the MU at each epoch

k, where gk = (gkn, n ∈ N ). With observation xk at the

beginning of epoch k, the MU strategically decides an action

yk = (T k, Ek) ∈ Y = {{−1} ∪ {0} ∪ N} × {0, 1, · · · , H}
following a stationary control policy Φ = (Φ(t),Φ(e)), where

Φ(t) and Φ(e) are, respectively, the computation offload-

ing and the energy allocation policies. That is, Φ(xk) =
(Φ(t)(x

k),Φ(e)(x
k)) = (T k, Ek). Given Φ, the {xk : k ∈

N+} is a controlled Markov chain with the state transition

probability as below,

Pr
{

xk+1|xk,Φ
(

xk
)}

=

(

∏

n∈N

Pr
{

gk+1
n |gkn

}

)

Pr

{

Ak+1
(t)

}

× Pr
{

Hk+1|Hk,Φ
(

xk
)}

. (8)

When the MU is associated with a BS at epoch k, which is

different from the previous one, additional handover delay is

incurred. We assume that the energy consumption during the

handover procedure is negligible for the MU and the delay

during the occurrence of one handover is ζ (in seconds). Then

the handover delay bk(h) = b(h)(x
k,yk) at epoch k is

b(h)
(

xk,yk
)

= ζ1{〈Tk∈N〉∧〈T j∈N〉∧〈Tk 6=T j〉}, (9)

where 1{Ω} is an indicator function that equals 1 if condition

Ω is met and otherwise, 0, and j = max{ℓ : T ℓ ∈ N , ℓ ∈
N+, ℓ < k}. The experienced delay is the key performance

indicator for evaluating the quality of a task computing expe-

rience. In addition, due to the sporadic nature of energy units

that can be received across the epochs, the newly arriving

computation tasks at an epoch may have to be dropped, the

cost bk(d) = b(d)(x
k,yk) of which is defined to be

b(d)
(

xk,yk
)

= Pr

{

Ak
(t) = 1

}

1{Tk=−1}. (10)

In line with the discussions in previous sections, we define

the task execution cost pk = p(xk,yk) at each epoch k as the

weighted sum of the execution delay, the handover delay and

the computation task dropping cost, namely,

p
(

xk,yk
)

= b
(

xk,yk
)

+ ρbk(h) + ϕbk(d), (11)

where ρ, ϕ ∈ R+ are the weights of the handover delay and

the computation task dropping cost, respectively, and

b
(

xk,yk
)

=











0, if T k = −1;

bk(l), if T k = 0;

bk(c), otherwise.

(12)

Taking expectation with respect to the per-epoch task exe-

cution costs over the randomized network states xk and the

actions yk induced by a given control policy Φ, the expected

long-term cost of the MU conditioned on an initial network

state x1 can be expressed as

V (x,Φ) = EΦ

[

(1 − γ)

∞
∑

k=1

(γ)k−1pk|x1 = x

]

, (13)

where x = (A(t), H,g) with g = (gn : n ∈ N ), γ ∈ [0, 1)
is the discount factor, and (γ)k−1 denotes the discount factor

to the (k− 1)-th power. The objective of the MU is to design

an optimal control policy Φ∗ = (Φ∗
(t),Φ

∗
(e)) that minimizes

V (x,Φ), for any given initial network state x, which can be

formally formulated as

Φ∗ = argmin
Φ

V (x,Φ), ∀x ∈ X . (14)

We denote V (x) = V (x,Φ∗) as the optimal state-value

function, ∀x ∈ X .

IV. SOLVING THE OPTIMAL CONTROL POLICY

The formulated computation offloading optimization in (14)

is in essential a single-agent infinite-horizon MDP with the dis-

counted cost criterion. In this section, we shall first investigate

the optimal solution within the conventional MDP framework

and then proceed to propose a deep reinforcement learning

based scheme with limited network statistics information.

A. Optimal MDP Solution

The optimal state-value function, namely, V (x), ∀x ∈ X ,

can be achieved by solving the Bellman’s optimality equation

as in the following lemma [11].

Lemma 1. The optimal state-value function {V (x), ∀x ∈ X}
satisfies the Bellman’s optimality equation, that is, ∀x,

V (x) =

min
y∈Y

{

(1− γ)p(x,y) + γ
∑

x′∈X

Pr{x′|x,y}V (x′)

}

, (15)

where p(x,y) is the task execution cost when action y is

performed under network state x and x′ = (A′
(t), H

′,g′) is

the subsequent network state with g′ = (g′n : n ∈ N ).
Remark 1: The size X of the network state space X can

be calculated as X = 2 × (1 +H) ×
∏

n∈N |Gn|, where |G|
means the cardinality of the set G. It can be observed that X

grows exponentially as the number N of BSs increases.

Remark 2: The traditional solutions to (15) are based on

the value or the policy iteration [11], which not only need

complete knowledge of the channel state transition probabili-

ties, the computation task arrival and the received energy unit
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Fig. 2. Deep Q-network (DQN) based mobile-edge computing system.

statistics but suffer from exponential computation complexity

due to the extremely huge network state space even with a

reasonable number of BSs. Suppose there is a MEC system

with 6 BSs and for each BS, the channel gain is quantized into

8 states. If we set H = 4 as in the numerical experiments, there

are astonishing 2621440 local network states in total for the

MU.

The next subsection thereby focuses on developing a prac-

tically efficient scheme to approach the optimal policy.

B. Deep Reinforcement Learning

Define the right-hand side of (15) as the optimal action-

value function Q : X × Y → R, which is

Q(x,y) = (1− γ)p(x,y) + γ
∑

x′∈X

Pr{x′|x,y}V (x′), (16)

∀(x,y) ∈ X × Y , we have V (x) = miny∈Y Q(x,y), ∀x ∈
X . To address the first technical challenge in Remark 2, we

adopt a model-free reinforcement learning scheme called Q-

learning [10], which allows us to learn the optimal control

policy without any information of dynamic network statistics.

The Q-learning scheme is a simple Q-function update step,

which is performed at the beginning of an epoch. Based on

the observations of the network state xk, the action yk, the

received task execution cost p(xk,yk), the computation task

arrival Ak+1
(t) , the number of received energy units Ak

(e) at each

epoch k, and the resulting network state xk+1 at the next epoch

k + 1, the MU updates Q-function on-the-fly,

Q
(

xk,yk
)

← Q
(

xk,yk
)

+ (17)

αk

(

(1− γ)p
(

xk,yk
)

+ γmin
y∈Y

Q
(

xk+1,y
)

−Q
(

xk,yk
)

)

,

where αk ∈ [0, 1) is a time-varying learning rate. It has been

proven that if 1) the network state transition probability under

the optimal stationary control policy is stationary, 2)
∑∞

k=1 α
k

is infinite and
∑∞

k=1(α
k)2 is finite, and 3) all state-action pairs

are visited infinitely often, the convergence of the Q-learning

process is ensured [10]. The last condition can be satisfied if

the probability of choosing any action in any network state

is non-zero (i.e., exploration). Meanwhile, the MU has to

exploit the current knowledge in order to perform well (i.e.,

Algorithm 1 DQN-based Online Strategic Computation Task

Offloading

1: initialize the replay memory Ok with a size of U , the

mini-batch Õk with a size of S, and the Q-function with

two sets θ
k and θ̂

k of random weights, for k = 1.

2: repeat

3: At the beginning of epoch k, observe the network state

xk ∈ X and select an action yk ∈ Y randomly with

probability ǫ or yk = argminy∈Y Q(xk,y; θk) with

probability 1− ǫ.

4: After deploying yk , observe the cost p(xk,yk) and the

new network state xk+1 ∈ X .

5: Store mk = (xk,yk, p(xk,yk),xk+1) in Ok.

6: Sample a random mini-batch of transitions Õk ⊆ Ok.

7: Update θ
k+1 with the gradient given by (19).

8: Regularly perform θ̂
k+1 = θ

k.

9: Update epoch index by k ← k + 1.

10: until A predefined stopping condition is satisfied.

exploitation). A classical way to balance the trade-off between

exploration and exploitation is the ǫ-greedy strategy [11].

Remark 3: The Q-learning rule, which is formulated in (17),

relieves the dependence on full network statistics information,

but still has to face the curse of a huge network state space,

as pointed out in Remark 2.

Hereinafter, we adopt a DQN to online estimate the Q-

function [12]. That is, Q(x,y) ≈ Q(x,y; θ), where (x,y) ∈
X × Y and the set of weights is denoted by θ. The pro-

posed DQN-based strategic computation offloading for our

considered MEC system is illustrated in Fig. 2. The MU

utilizes a replay memory of a finite size U to store the

transition mk = (xk,yk, p(xk,yk),xk+1) that is happened

at the end of each epoch k. The memory pool is characterized

by Ok = {mk−U+1, · · · ,mk}. According to the experience

replay technique, the MU randomly samples an experience at

each epoch k, i.e., a mini-batch Õk ⊆ Ok of S transitions,

from Ok to train the DQN in the direction of minimizing

the loss function in (18), where the set of weights of the

DQN at an epoch k is denoted as θ
k, and θ̂

k is a second

set of weights for evaluating the action values and is updated

to be θ
k in the next epoch. The gradient of (18) is given by

(19). Algorithm 1 summarizes the DQN-based online strategic

computation offloading for the MU in a MEC system.

V. NUMERICAL EXPERIMENTS

In this section, we proceed to quantify the performance

from our proposed DQN-based online strategic computation

offloading.

A. General Setup

For the DQN, the replay memory is assumed to have a

capacity of U = 5000 and we select the size of the mini-

batch as S = 100. Throughout the numerical experiments, we

suppose there are N = 6 BSs in the MEC system connecting

the MU with the telecom cloud. The channel gain states



L
(

θ
k+1
)

= E(x,y,p(x,y),x′)∈Õk

[

(

(1 − γ)p(x,y) + γQ

(

x′, argmin
y′∈Y

Q
(

x′,y′; θ̂k
)

; θk

)

−Q
(

x,y; θk+1
)

)2
]

(18)

∇θk+1L
(

θ
k+1
)

=

E(x,y,p(x,y),x′)∈Õk

[(

(1− γ)p(x,y) + γQ

(

x′, argmin
y′∈Y

Q
(

x′,y′; θ̂k
)

; θk

)

−Q
(

x,y; θk+1
)

)

∇θk+1Q
(

x,y; θk+1
)

]

(19)

between the MU and the BSs are from a common finite set

{−18,−16,−14,−12,−10,−8,−6,−4} (dB), the transitions

of which happen across the epochs following respective ran-

domly generated matrices. Each energy unit corresponds to

5× 10−5 J, and the energy units harvested from the wireless

environment follow a Poisson arrival process with average

arrival rate λ(e). We set ρζ = 0.9δ and β = 9δ. In addition,

γ = 0.9, W = 106 Hz, I = 10−3 W, δ = 10−3 second,

H = 4, µ = 103 bits, τ = 10−28, ν = 600 cycles per bit,

f = 1.9 GHz, and f(c) = 3.9 GHz. For comparisons, we

simulate three baselines as well, namely,

1) Local – Whenever a computation task arrives, the MU

executes it at the local mobile device using the queued

energy units.

2) Cloud – All arriving computation tasks are offloaded to

the telecom cloud for computing via the BSs with the

best channel qualities.

3) Greedy – When the computation task queue as well as

the energy queue are not empty at an epoch k, the MU

decides to execute the task locally or at the cloud to

achieve the minimum current delay, i.e., min{bk(l), b
k
(c)}.

B. Experimental Results

We carry out numerical experiments under various settings

to validate the proposed work.

1) Experiment 1 – Convergence performance: In this ex-

periment, the goal is to validate the convergence property of

our proposed DQN-based online computation task offloading

algorithm. We set λ(t) = 0.6 and λ(e) = 0.5. The DQN

consists of one hidden layer of 128 neurons. In Fig. 3, we

plot the simulated variations in the loss function defined as

in (18), which reveals that the convergence of our proposed

algorithm can be ensured. Based on the convergence of loss

function, each result in the following experiments is obtained

from one system configuration running for 9× 105 epochs.

2) Experiment 2 – Performance under different DQN struc-

tures: This experiment tries to demonstrate the MEC perfor-

mance for the MU in terms of the average cost per epoch

using a DQN with different numbers of layers and neurons

structures. We choose λ(t) = 0.4 and λ(e) = 0.8 in simulations

for the MU. The results are exhibited in Fig. 4. In the upper

plot, the number of neurons per hidden layer is fixed to be

64. It can be observed that a deeper DQN leads to worse

average cost performance. The reason is that over a limited

Lo
ss

Fig. 3. Illustration of convergence property of our proposed algorithm.

Fig. 4. Average cost per epoch versus numbers of layers and neurons.

time horizon, adding more hidden layers to the DQN leads to

higher training errors [16]. In the lower plot, only one hidden

layer is implemented in the DQN. From the curve, better

performance is achieved with a bigger number of neurons.

In our considered MEC scenario, a wider (NOT deeper) DQN

can better approximate the Q-function.

3) Experiment 3 – Performance with changing λ(t) and

λ(e): We do this experiment to simulate the average perfor-

mance achieved from the proposed DQN-based algorithm and

other three baselines versus the average energy arrival rates.

With the findings from Experiment 2, we configure a DQN of



Fig. 5. Average cost per epoch versus average energy unit arrival rate.

Fig. 6. Average execution delay per epoch versus average energy unit arrival
rate.

one hidden layer with 512 neurons. The per epoch averages

of cost, execution delay, handovers and task drops under

λ(t) = 0.3 and λ(t) = 0.5 across the entire learning period are

depicted in Figs. 5, 6, 7 and 8. From Fig. 5, we can clearly

see that compared to the baselines, our proposed algorithm

achieves a significant performance improvement in average

cost, up to 56%. A higher task arriving probability indicates a

longer average delay for executing more computation tasks,

more handovers between BSs and more task drops, hence

a higher average cost. As the number of energy arrivals

increases, the average cost decreases. This is a result of less

computation task drops, which dominate the cost function

for the weight choices. Interestingly, the increase in energy

arrivals does not necessarily reduce the task execution delay

and the handovers. This can be explained by the fact that more

energy arrivals provide more opportunities for the MU to select

a BS with better channel gain to execute a computation task,

rather than simply drop it.

VI. CONCLUSIONS

In this paper, we put our emphasis on investigating the

design of a smart computation offloading policy for a MU in

Fig. 7. Average handovers per epoch versus average energy unit arrival rate.

Fig. 8. Average task drops per epoch versus average energy unit arrival rate.

an ultra dense network by taking into account the dynamics

generated from time-varying channel qualities between the

MU and the BSs, harvested energy units and task arrivals.

To solve the formulated MDP, we propose a DQN-based

online strategic computation offloading algorithm that survives

the curse of high dimensionality in state space and needs

no a priori information of dynamics statistics. We find from

numerical experiments that compared to three baselines, our

proposed algorithm can achieve minimum long-term cost,

up to 56% in performance improvement, which indicates an

optimal tradeoff among the computation task execution delay,

the handover delay and the task dropping cost.
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