
Performance Optimization of
Multi-Tenant Software Systems

Performance Optimization of
Multi-Tenant Software Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 14 april 2014 om 10 uur door

Cor-Paul BEZEMER

Master of Science - Informatica

geboren te Den Haag.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Copromotor Dr. A.E. Zaidman

Samenstelling promotiecomissie:

Rector Magnificus voorzitter

Prof. dr. A. van Deursen Delft University of Technology, promotor

Dr. A.E. Zaidman Delft University of Technology, copromotor

Prof. dr. M. Di Penta University of Sannio in Benevento, Italy

Prof. dr. A.E. Hassan Queen’s University, Canada

Prof. dr. S. Brinkkemper Utrecht University, The Netherlands

Prof. dr. ir. H.J. Sips Delft University of Technology

Prof. dr. ir. M.J.T. Reinders Delft University of Technology

This work was carried out as part of the Multi-Tenant Software (MTS) project,

under the auspices of the research school IPA (Institute for Programming research

and Algorithmics). This project was partially supported by Exact.

SERG

Copyright c© 2014 by Cor-Paul Bezemer

Cover: Image ‘Hi-tech runner’ by Steve A. Johnson.

Printed and bound in The Netherlands by Gildeprint Drukkerijen.

ISBN: 978-90-79982-16-5

It is an immutable law in business that words are words, explanations are

explanations, promises are promises but only performance is reality.

– Harold S. Geneen

Acknowledgments

In 2008, I started working on my master’s thesis at Exact, under the supervision

of Ali Mesbah. While I never expected to pursue an academic career, Ali was able

to motivate me and guided me towards my first paper publication. After finishing

my master’s degree at Exact, I was offered the opportunity to pursue my PhD there

as well. Without Ali’s supervision during my time at Exact, I probably would have

never accepted this opportunity. Thank you Ali, for showing me how much fun

doing research can be.

A large part of the fun is due to working with fun colleagues. I had the privilege

of having colleagues from three different teams; at Exact, at SERG and during the

final 8 months of my PhD, the people from PDS.

First of all, I would like to thank Exact for funding my project. Second, I would

like to thank the research and EOL team for embracing me from my first days at

Exact and for listening to and helping me with all my problems. Especially, I would

like to thank Bart, who was always there for some laughs and listening to my rants

when I needed to. Also, I would like to thank Ad, Maarten, Remko and Andre for

helping me out during the final phase of my research at Exact.

I would like to thank all my colleagues from SERG for the fun times I have

had on the 8th floor. Especially, I would like to thank my office mates, Cuiting and

Tiago, for the numerous laughs, post cards and bizarre yet hilarious discussions.

I am looking forward to your PhD defenses and am hoping we will stay in touch

in the future. I would also like to thank Arie, my promotor, for always offering a

critical yet honest opinion. Also, thank you for keeping faith in me and including

me whenever there was something official or interesting to do. Last, but definitely

not least, I would like to thank Andy, my supervisor / copromotor, for his advise,

support, mentorship and the tremendous amount of time he made available to

supervise me. Andy, I think it is incredible how much progress I have made under

4 years of your supervision. You were always able to motivate me, especially when

vii

it was much needed after (another) paper rejection. Thank you for keeping the

faith in me. I truly enjoyed working together with you and hope that we can work

together again some day.

I would like to thank my colleagues from PDS, where I have spent the final days

of my PhD. Thank you Johan, for inviting me to the Tribler team and for offering

me a postdoc position. I am looking forward to working with you the following

years. Also, I would like to thank Elric for descending together with me to the

Systemtap hell. Without your help, I would probably not have managed.

Finally, I would like to thank my family and friends, for enduring my mono-

logues and rants about my work. I must have been terrible at times. Mom, dad,

Rinze and Nelske, thank you for always supporting me and pushing me to make

the best of myself. I love you. My dear Nadia, thank you for always being there for

me. The years I have spent with you have been the best years of my life so far and

you were right, they have also been the most productive. I love you and I cannot

wait to find out what the future will bring us.

viii

Contents

Acknowledgements vii

1 Introduction 1

1.1 Research Questions . 3

1.2 Research Context . 4

1.3 Research Methodology . 5

1.4 Contributions . 5

1.5 Thesis Outline . 6

1.6 Origin of Chapters . 7

2 Multi-Tenancy 9

2.1 Multi-Tenancy . 11

2.2 Challenges . 16

2.3 Multi-Tenancy Reengineering Pattern . 17

2.4 Exact Codename . 20

2.5 Case Study: CodenameM T . 22

2.6 Lessons Learned & Discussion . 26

2.7 Conclusion . 29

3 Performance Optimization of Deployed SaaS Applications 31

3.1 Detecting Performance Improvement Opportunities 33

3.2 Analyzing Performance Improvement Opportunities 39

3.3 Implementation . 43

3.4 Experimental Setup . 45

ix

3.5 Proof-of-Concept: Case Study I for SARATIO Classification Estimation 47

3.6 Case Study II: Evaluation of Exact Online Analysis Results 55

3.7 Discussion . 62

3.8 Threats to Validity . 65

3.9 Related Work . 66

3.10 Conclusion . 69

4 Visualizing Performance: Wedjat 71

4.1 Background . 73

4.2 Approach . 74

4.3 Tool Implementation: Wedjat . 77

4.4 Design of the Field User Study . 80

4.5 Results of the Field User Study . 86

4.6 Discussion . 89

4.7 Related Work . 91

4.8 Conclusion . 92

5 Improving the Diagnostic Capabilities of a Performance Optimization

Approach 95

5.1 Problem Statement . 97

5.2 Background . 98

5.3 Our Approach . 101

5.4 Experimental Setup . 108

5.5 Evaluation Results . 109

5.6 Discussion . 115

5.7 Related Work . 117

5.8 Conclusion . 118

6 Detecting and Analyzing Performance Regressions Using a Spectrum-

Based Approach 119

6.1 Motivational Examples . 121

6.2 Problem Statement . 122

6.3 Spectrum-Based Fault Localization (SFL) 123

6.4 Approach . 124

6.5 Implementation . 128

6.6 Design of the Field User Study . 130

6.7 Evaluation . 133

x

6.8 Discussion . 138

6.9 Related Work . 140

6.10 Conclusion . 141

7 Conclusion 145

7.1 Summary of Contributions . 145

7.2 The Research Questions Revisited . 147

7.3 Recommendations for Future Work . 150

Bibliography 155

Summary 167

Samenvatting 169

Curriculum Vitae 171

xi

List of Acronyms

CRM Customer Relationship Management

EOL Exact Online

ERP Enterprise Resource Planning

MT Multi-Tenancy/Multi-Tenant

P2P Peer-to-Peer

PIO Performance Improvement Opportunity

RUBiS Rice University Bidding System

SaaS Software-as-a-Service

SC Similarity Coefficient

SFL Spectrum-based Fault Localization

SARatio Slow-to-All-actions-ratio

SLA Service Level Agreement

SLO Service Level Objective

SME Small and Medium Enterprises

xiii

1.
Introduction

Over the last years, the Internet and its usage have exploded. Reports show that

in 2012, 2.4 billion people1 were using the Internet. In synergy with its popularity,

improvements to hardware and bandwidth have been made possible. Amongst

other things, these improvements have led to a shift in the way software vendors

are offering their products [Mertz et al., 2010].

In the traditional setting, customers buy an application to run on their computer

(on-premise software). As a result, they pay a relatively large fee for the software

product. In addition, they often have expensive maintenance contracts with the

software vendor [Dubey and Wagle, 2007].

Improved Internet facilities, and opportunities such as Internet connections on

mobile devices, have led to a new licensing scheme, in which the customer uses

an application over the Internet through a lightweight client that runs in a web

browser without installation. In this so-called Software-as-a-Service (SaaS) scheme,

customers rent a service from the software vendor. The service delivered by the

software vendor consists of hosting and maintaining the software [Kaplan, 2007].

Instead of paying a large fee for the software installation, customers now pay a

relatively small monthly fee to the vendor for using the application.

Despite the smaller fee, customers still have the same requirements for their

software [Kwok et al., 2008; Bezemer and Zaidman, 2010]:

• The software should offer the same functionality as if it were running

on their own computer - The customer expects to be able to perform tasks

such as saving his work, importing and exporting data and printing reports.

• The software should offer the same user experience as the desktop ver-

sion would have - The customer expects aspects such as security and perfor-

mance to be at least at the same level as for desktop software.

• The software should offer the same degree of customizability as the

desktop version would have - The customer wants to be able to customize

the software to his needs; this may include simple cosmetic customizations

1www.internetworldstats.com/stats.htm (last visited: October 22, 2013)

1

2 Chapter 1. Introduction

such as theming, but also more complex customization such as the workflow

of the application.

An additional characteristic of SaaS is that customers tend to be less loyal2, due

to the low costs of changing vendors. In order to be able to offer software which

fulfills these requirements, at a minimal price – so that customers are not attracted

by other, cheaper vendors –, vendors must optimize their operational costs. One

opportunity for lowering the operational costs is to minimize the hardware used

per customer. As a result, methods have been developed for sharing (hardware) re-

sources between customers. These methods can be roughly divided in two groups:

the multi-instant and the multi-tenant approaches [Bezemer and Zaidman, 2010;

Chong et al., 2006].

The multi-instant approaches, such as virtualization, run several copies (in-

stances) of the same application on a server. These approaches provide each cus-

tomer with an isolated part of the server, on which the application runs. As a result,

virtualization imposes a much lower limit on the number of customers per server

due to the high memory requirements for every virtual server [Li et al., 2008]. Ad-

ditionally, it introduces a maintenance challenge, as all instances must be changed

in case of a software update.

Multi-tenant approaches try to overcome these challenges by letting customers

share the same application and database instance [Kwok et al., 2008]. As a re-

sult, only one application and database have to be maintained. Because of the

high number of customers that share the same resources in a multi-tenant setting,

performance is essential. As explained above, customers should not be affected by

other customers on the shared resources. In order to let tenants share resources,

without negatively affecting their perceived performance, it is necessary to opti-

mize multi-tenant applications as much as possible. Performance optimization can

be done at various levels:

• At the hardware level - By searching for possible improvements in the in-

frastructure and task schedule, server or other hardware bottlenecks can be

found.

• At the software level - By searching for possible improvements in the code,

bottlenecks in algorithms or resource hogs can be found.

• At a combination of the hardware and software level - By implementing

hardware-specific versions of software, hardware-specific optimizations can

be made.

2http://businessoverbroadway.com/creating-loyal-customers-for-saas-
companies-video

1.1. Research Questions 3

In this research, we will investigate methods for the first two levels of perfor-

mance optimization. In our work, we do not address optimization of a combination

of these two levels. The main reason for this is that we are interested in finding

techniques which are agnostic to the type of hardware used in the system. While

this does allow us to propose techniques for finding hardware bottlenecks, it does

not allow us to propose hardware-specific optimizations, as this would require a

different technique for every type of hardware. In the next section, we will first

present our research questions.

1.1 Research Questions
In many situations, performance optimization is done manually by a small team of

performance experts. Often, these experts have been with the development team

for a long time and have deep knowledge of the application to optimize.

As multi-tenant applications are a relatively new breed of software, knowledge

about the applications and infrastructure may be more limited. Semi-automated

analysis tools can help provide insight in the application and infrastructure. In

addition, they can guide and accelerate the performance optimization process.

The goal of the research presented in this dissertation is to investigate semi-

automated methods which assist the performance expert in optimizing the perfor-

mance of a multi-tenant application. First, we investigate whether multi-tenancy

increases the challenge of performance optimization, in comparison to optimizing

traditional applications. To get a better understanding of the differences between

traditional single-tenant and multi-tenant software which could lead to such an

increase, we first focus on the following research question:

RQ1: What are the differences between a single-tenant and a multi-tenant

system?

In Chapter 2, we will investigate these differences, and analyze the challenges

introduced by multi-tenancy. We will do this by converting a single-tenant applica-

tion into a multi-tenant application. From this process, we will get a better under-

standing of the consequences of multi-tenancy for performance optimization. With

this understanding, we can focus on the following research questions:

RQ2: How can we assist developers with the optimization of the perfor-

mance of a multi-tenant system with regard to its hardware?

We divide RQ2 into three subquestions. To be able to optimize the performance of

a system with regard to its hardware, we must be able to detect which hardware

components form the bottleneck of the system:

RQ2a: How can we detect and analyze hardware bottlenecks?

4 Chapter 1. Introduction

In Chapter 3, we present an approach which assists performance experts by giving

a diagnosis that contains a description of the detected bottlenecks. The next chal-

lenge is to find an appropriate method for reporting or visualizing this diagnosis,

so that performance experts can quickly interpret the analysis results.

RQ2b: How can we report and visualize the diagnosis of the bottleneck

component(s)?

In Chapter 4, we present WEDJAT, our open source tool for visualizing the diagnosis

given by our bottleneck detection approach.

The level of assistance a performance expert gets from our approach depends on

the quality of the diagnosis given. Therefore, we investigate how we can improve

the quality of this diagnosis in Chapter 5, in which we focus on the following

research question:

RQ2c: How can we improve the quality of the diagnosis?

In addition to optimization at the hardware level, a multi-tenant application must

be optimized at the software level. In Chapter 6, we present an approach for detect-

ing and analyzing performance regressions. We show that our approach can assist

the developer by guiding the performance optimization process. In Chapter 6, we

focus on the following research question:

RQ3: How can we assist developers with the optimization of the perfor-

mance of a multi-tenant system with regard to its software?

1.2 Research Context
The research described in this dissertation was done in collaboration with two

partners. The first, Exact3, is a Dutch-based software company, which specializes

in enterprise resource planning (ERP), customer relationship management (CRM)

and financial administration software. Exact has over 1900 employees working in

more than 20 countries. Founded in 1984, Exact has over 25 years of experience

in multi-user client/server software and web applications. Since several years, Ex-

act has also been offering a successful multi-tenant Software-as-a-Service solution,

called Exact Online4 (EOL).

The second part of our research was done in collaboration with the Tribler

team [Pouwelse et al., 2008], part of the Parallel and Distributed Systems Group5

at Delft University of Technology. Tribler is a fully decentralized peer-to-peer (P2P)

3http://www.exact.com
4http://www.exactonline.nl
5http://www.pds.ewi.tudelft.nl/

1.3. Research Methodology 5

client which allows users to stream video directly via the BitTorrent protocol. Tri-

bler has been in development since 2006 and has received over 1 million down-

loads since.

1.3 Research Methodology
As explained in the previous section, our research was done in close collaboration

with industrial partners. As a result, we followed the ‘industry-as-a-laboratory’ ap-

proach [Potts, 1993] for our research. In this approach, researchers work closely

together with industry to identify real problems and construct and evaluate solu-

tions.

To answer our research questions, we have performed a number of case stud-

ies in collaboration with our partners. These case studies had the following in

common:

• They were either based on real industrial data, or data generated by a well-

established benchmark

• The results were evaluated by, or together with performance experts from

the team that developed the subject system

We feel it is important for the advancement of research in general to have ac-

cess to prototypes and implementations of methods described in research papers.

Therefore, we have made two of our research prototypes, WEDJAT
6 and SPECTRAP-

ERF
7, available as open source projects. The implementation of our other research

projects could not be made available due to the closed source nature of the ana-

lyzed projects, especially the data.

1.4 Contributions
In this section we will outline the main contributions of this thesis. Two contri-

butions correspond to multi-tenant systems in general and three correspond to

optimizing performance. Our contributions focus on the following aspects:

Multi-Tenant Systems

1. Overview of challenges of developing and maintaining multi-tenant systems.

2. A reengineering pattern for transforming a single-tenant to a multi-tenant

system.

In Chapter 2, we give an overview of the challenges of developing and maintaining

multi-tenant systems, in contrast to the development of single-tenant systems. In

6http://swerl.tudelft.nl/bin/view/Main/MTS
7https://github.com/tribler/gumby

6 Chapter 1. Introduction

addition, we present a case study in which we apply our reengineering pattern

for transforming an existing single-tenant application into a multi-tenant one on a

research prototype.

Performance Optimization

1. An approach for detecting and analyzing performance improvement opportuni-

ties at the hardware level.

In Chapter 3, we present an approach which assists the performance expert during

the process of finding and diagnosing hardware bottlenecks. We evaluate this ap-

proach in two case studies, one of which on real industrial data. We present our

technique for improving the diagnostic capabilities of this approach in Chapter 5.

2. An approach for using heat maps to analyze the performance of a system and

to find performance improvement opportunities.

In Chapter 4, we extend our approach with the possibility to analyze the perfor-

mance of a system using heat maps. This resulted in an open source tool called

WEDJAT, which was evaluated in a field user study with performance experts from

industry.

3. An approach for detecting and analyzing performance improvement opportuni-

ties and performance regressions at the software level.

In Chapter 6, we present an approach which assists the performance expert during

the process of finding and diagnosing performance regressions. In addition, we

show how this approach can be used to find software bottlenecks and guide the

performance optimization process. We evaluate this approach in a case study on

an open source project.

1.5 Thesis Outline

The outline of this thesis is as follows. Chapter 2 covers our research on the differ-

ences between single-tenant and multi-tenant software. In Chapter 3, we present

our approach for detecting and analyzing performance improvement opportuni-

ties. In Chapter 4 we present our approach for performance optimization with the

assistance of heat maps. In this chapter, we also present our open source tool for

performance visualization called WEDJAT. In Chapter 5, we discuss our technique

for improving the diagnostic capabilities of the approach presented in Chapter 3.

In Chapter 6, we discuss our approach for optimizing an application at the soft-

ware level and we present our open source implementation called SPECTRAPERF.

Chapter 7 presents our final conclusions and discusses directions for future work.

1.6. Origin of Chapters 7

1.6 Origin of Chapters
Each of the chapters in this thesis has been published before as, or is based on

a peer-reviewed publication or technical report. Therefore, these chapters are

mostly self-contained and may contain some redundancy. The following list gives

an overview of these publications:

Chapter 2 is based on our papers published in the 26th International Conference

on Software Maintenance (ICSM’10) [Bezemer et al., 2010] and in the Joint

ERCIM Workshop on Software Evolution and International Workshop on Prin-

ciples of Software Evolution (IWPSE’10) [Bezemer and Zaidman, 2010].

Chapter 3 contains our work published in the Journal of Systems and Software [Beze-

mer and Zaidman, 2014].

Chapter 4 contains our work published in the proceedings of the 28th Interna-

tional Conference on Software Maintenance (ICSM’12) [Bezemer et al., 2012].

Chapter 5 contains our work published as technical report TUD-SERG-2013-015 [Beze-

mer and Zaidman, 2013].

Chapter 6 contains our work which is submitted for journal publication [Bezemer

et al., 2013].

2.
Multi-Tenancy

Multi-tenancy is a relatively new software architecture principle in the realm of the

Software-as-a-Service (SaaS) business model. It allows to make full use of the econ-

omy of scale, as multiple customers – “tenants” – share the same application and

database instance. All the while, the tenants enjoy a highly configurable applica-

tion, making it appear that the application is deployed on a dedicated server. The

major benefits of multi-tenancy are increased utilization of hardware resources and

improved ease of maintenance, resulting in lower overall application costs, making

the technology attractive for service providers targeting small and medium enterprises

(SME). Therefore, migrating existing single-tenant to multi-tenant applications can be

interesting for SaaS software companies. However, as this chapter advocates, a wrong

architectural choice might entail that multi-tenancy becomes a maintenance night-

mare. In this chapter we report on our experiences with reengineering an existing

industrial, single-tenant software system into a multi- tenant one using a lightweight

reengineering approach.1

2.1 Multi-Tenancy . 11

2.2 Challenges . 16

2.3 Multi-Tenancy Reengineering Pattern . 17

2.4 Exact Codename . 20

2.5 Case Study: CodenameM T . 22

2.6 Lessons Learned & Discussion . 26

2.7 Conclusion . 29

Software-as-a-Service (SaaS) represents a novel paradigm and business model ex-

pressing the fact that companies do not have to purchase and maintain their own

ICT infrastructure, but instead, acquire the services embodied by software from a

third party. The customers subscribe to the software and underlying ICT infrastruc-

ture (service on-demand) and require only Internet access to use the services. The

1This chapter is based on our papers published in the 26th International Conference on Soft-

ware Maintenance (ICSM’10) [Bezemer et al., 2010] and in the Joint ERCIM Workshop on Software

Evolution and International Workshop on Principles of Software Evolution (IWPSE’10) [Bezemer and

Zaidman, 2010].

9

10 Chapter 2. Multi-Tenancy

service provider offers the software service and maintains the application [Kaplan,

2007]. However, in order for the service provider to make full use of the economy

of scale, the service should be hosted following a multi-tenant model [Kwok et al.,

2008].

Multi-tenancy is an architectural pattern in which a single instance of the soft-

ware is run on the service provider’s infrastructure, and multiple tenants access

the same instance. In contrast to the multi-user model, multi-tenancy requires cus-

tomizing the single instance according to the multi-faceted requirements of many

tenants [Kwok et al., 2008]. The multi-tenant model also contrasts the multi-

instance model, in which each tenant gets his own (virtualized) instance of the

application [Chong et al., 2006].

The benefits of the multi-tenant model are twofold. On the one hand, applica-

tion deployment becomes easier for the service provider, as only one application

instance has to be deployed, instead of hundreds or thousands. On the other hand,

the utilization rate of the hardware can be improved, as multiple tenants share

the same hardware resources. These two factors make it possible to reduce the

overall costs of the application and this makes multi-tenant applications especially

interesting for customers in the small and medium enterprise (SME) segment of

the market, as they often have limited financial resources and do not need the

computational power of a dedicated server.

Because of these benefits, many organizations working with SaaS technology

are currently looking into transforming their single-tenant applications into multi-

tenant ones. Yet, two barriers are perceived in the adoption of multi-tenant soft-

ware systems, namely:

• Companies are wary of the initial start-up costs of reengineering their exist-

ing single-tenant software systems into multi-tenant software systems [Tsai

et al., 2007].

• Software maintainers are worried that multi-tenancy might introduce addi-

tional maintenance problems stemming from the fact that these new systems

should be highly configurable, in the process effectively eliminating the per-

ceived maintenance advantage that multi-tenancy offers through the fact that

updates only have to be deployed and applied once.

This is where this chapter aims to contribute, by providing an overview of chal-

lenges and difficulties that software developers and maintainers are likely to face

when reengineering and maintaining multi-tenant software applications. To come

to this overview, we focus on the following research question presented in Chap-

ter 1:

RQ1: What are the differences between a single-tenant and a multi-tenant

system?

2.1. Multi-Tenancy 11

In addition, we aim to show that migrating from a single-tenant setup to a

multi-tenant one can be done (1) easily, in a cost-effective way, (2) transparently

for the end-user and (3) with little effect for the developer, as the adaptations are

confined to small portions of the system, creating no urgent need to retrain all

developers. More specifically, our chapter contains the following contributions:

1. A clear, non-ambiguous definition of a multi-tenant application.

2. An overview of the challenges of developing and maintaining scalable, multi-

tenant software.

3. A conceptual blueprint of a multi-tenant architecture that isolates the multi-

tenant concern as much as possible from the base code.

4. A case study of applying this approach to an industrial application.

This chapter is further organized as follows. In the next section, we give a defi-

nition of multi-tenancy and discuss its benefits and related work. In Section 2.2, we

discuss the challenges of multi-tenancy. In Section 2.3, we present our conceptual

blueprint of a multi-tenant architecture. In Section 2.4, we describe the industrial

target application which we migrated using this pattern. The actual case study is

dealt with in Section 2.5. We then discuss our findings and their threats to validity

in Section 2.6. Section 2.7 presents our conclusions and ideas for future work.

2.1 Multi-Tenancy
Multi-tenancy is an organizational approach for SaaS applications. Although SaaS

is primarily perceived as a business model, its introduction has lead to numerous

interesting problems and research in software engineering. Despite the growing

body of research in this area, multi-tenancy is still relatively unexplored, despite

the fact the concept of multi-tenancy first came to light around 20052.

While a number of definitions of a multi-tenant application exist [Warfield,

2007; Weissman and Bobrowski, 2009], they remain quite vague. Therefore, we

define a multi-tenant application as the following:

Definition 1. A multi-tenant application lets customers (tenants) share the same

hardware resources, by offering them one shared application and database instance,

while allowing them to configure the application to fit their needs as if it runs on a

dedicated environment.

Definition 2. A tenant is the organizational entity which rents a SaaS application.

Typically, a tenant groups a number of users, which are the stakeholders in the orga-

nization.

2The Wikipedia entry was first created on November 14th, 2005; http://en.wikipedia.
org/wiki/Multitenancy.

12 Chapter 2. Multi-Tenancy

These definitions focus on what we believe to be the key aspects of multi-

tenancy:

1. The ability of the application to share hardware resources [Wang et al., 2008;

Warfield, 2007].

2. The offering of a high degree of configurability of the software [Nitu, 2009;

Jansen et al., 2010; Müller et al., 2009].

3. The architectural approach in which the tenants (or users) make use of a

single application and database instance3 [Kwok et al., 2008].

In the next two sections (2.1.1 and 2.1.2), we will demarcate multi-tenancy

from two other organizational models, namely the multi-user and the multi-instance

model. In Section 2.1.3, we will elaborate on the key aspects of multi-tenancy.

2.1.1 Multi-Tenant versus Multi-User

It is necessary to make an important, but subtle distinction between the concepts

multi-tenant and multi-user. In a multi-user application we assume all users are

using the same application with limited configuration options. In a multi-tenant

application, we assume each tenant has the possibility to heavily configure the ap-

plication. This results in the situation that, although tenants are using the same

building blocks in their configuration, the appearance or workflow of the applica-

tion may be different for two tenants. An additional argument for the distinction is

that the Service Level Agreement (SLA) of each tenant can differ [Lin et al., 2009],

while this is usually not the case for users in a multi-user system.

2.1.2 Multi-Tenant versus Multi-Instance

Another contrasting approach is the multi-instance approach, in which each ten-

ants gets his own instance of the application (and possibly also of the database).

With the gaining in popularity of virtualization technology and cloud computing,

the multi-instance approach is the “easier” way of creating multi-tenant like appli-

cations from a development perspective. Yet, the multi-instance approach is better

suited if the number of tenants is likely to remain low [Guo et al., 2007], in part

because the multi-instance model suffers from an increased maintenance cost. This

increased maintenance cost can be attributed to the effort for deploying updates to

numerous instances of the application.

A special type of multi-instance software is product line software [van Gurp

et al., 2001]. Product line software is created using a set of common shared com-

ponents. In addition to these common components, instance-specific components

3Due to performance and/or legislative reasons, there might be more than one instance, but

the number of instances should remain limited.

2.1. Multi-Tenancy 13

can be created and added to introduce customization. In the case of dynamic

product line software [Hallsteinsen et al., 2008], these instance-specific compo-

nents can be loaded at runtime. Dynamic product line software can be considered

equal to multi-tenant software.

2.1.3 Key Characteristics of Multi-Tenancy

Hardware Resource Sharing

In traditional single-tenant software development, tenants usually have their own

(virtual) server. This set-up is similar to the traditional Application Service Provider

(ASP) model [Mietzner et al., 2009a]. However, in the SME segment, server uti-

lization in such a model is low. By placing several tenants on the same server, the

server utilization can be improved [Wang et al., 2008; Warfield, 2007]. While this

can also be achieved through virtualization, virtualization imposes a much lower

limit on the number of tenants per server due to the high memory requirements for

every virtual server [Li et al., 2008]. Higher utilization of the existing servers will

result in lower overall costs of the application, as the total amount of hardware

required is lower.

The concept of multi-tenancy comes in different flavours, and depending on

which flavour is implemented, the utilization rate of the underlying hardware can

be maximized. The following variants of (semi-)multi-tenancy can be distinguished

[Chong et al., 2006; Kwok et al., 2008]:

1. Shared application, separate database.

2. Shared application, shared database, separate table.

3. Shared application, shared table (pure multi-tenancy).

Throughout this chapter, we will assume the pure multi-tenancy variant is being

used, as this variant allows the highest number of tenants per server [Chong et al.,

2006; Wang et al., 2008].

High Degree of Configurability

In a single-tenant environment, every tenant has his own, (possibly) customized

application instance. In contrast, in a multi-tenant setup, all tenants share the

same application instance, although it must appear to them as if they are using

a dedicated one. Because of this, a key requirement of multi-tenant applications

is the possibility to configure and/or customize the application to a tenant’s need,

just like in single-tenancy [Mietzner et al., 2009a]. In single-tenant software cus-

tomization is often done by creating branches in the development tree. In multi-

tenancy this is no longer possible and configuration options must be integrated in

the product design instead [Nitu, 2009], similar to software product line engineer-

ing [Mietzner et al., 2009a].

14 Chapter 2. Multi-Tenancy

Because of the high degree of configurability of multi-tenant software systems,

it may be necessary to run multiple versions of an application (or parts of an ap-

plication) next to each other. This situation might arise for reasons of backward

compatibility or in situations where the legislation in a particular country changes.

Because it is deemed undesirable to deploy different instances of a multi-tenant

application, version support should be an integral part of a multi-tenant setup.

Shared Application and Database Instance

A single-tenant application may have many running instances and they may all

be different from each other because of customization. In multi-tenancy, these

differences no longer exist as the application is runtime configurable.

This entails that in multi-tenancy the overall number of instances will clearly

be much lower (ideally it will be one, but the application may be replicated for

scalability purposes). As a consequence, deployment is much easier and cheaper,

particularly in the area of deploying the updates, as a the number of instances

which are touched by the deployment action are clearly much lower.

In addition, new data aggregation opportunities are opened because all tenant

data is in the same place. For example, user behaviour traces can be collected

much easier, which can help to improve the user experience.

2.1.4 Benefits

From the previous paragraphs a number of reasons for companies to introduce

multi-tenancy can be deducted:

1. Higher utilization of hardware resources.

2. Easier and cheaper application maintenance.

3. Lower overall costs, allowing to offer a service at a lower price than competi-

tors.

4. New data aggregation opportunities.

2.1.5 Related Work

Even though SaaS is an extensively researched topic, multi-tenancy has not re-

ceived a large deal of attention yet in academic software engineering research. A

number of researchers [Chong et al., 2006; Guo et al., 2007; Kwok et al., 2008]

have described the possible variants of multi-tenancy, as we have described in Sec-

tion 2.1.3. Wang et al. [Wang et al., 2008] have evaluated these variants for differ-

ent numbers of tenants and make recommendations on the best multi-tenant vari-

ant to use, based on the number of tenants, the number of users and the amount

of data per tenant.

2.1. Multi-Tenancy 15

Kwok et al. [Kwok et al., 2008] have described a case study of developing a

multi-tenant application, in which they emphasize the importance of configurabil-

ity. This importance is emphasized by Nitu [Nitu, 2009] and Mietzner et al. [Miet-

zner et al., 2009a] as well.

Guo et al. [Guo et al., 2007] have proposed a framework for multi-tenant appli-

cation development and management. They believe the main challenge of multi-

tenancy is tenant isolation, and therefore their framework contains mainly com-

ponents for tenant isolation, e.g., data, performance and security isolation. We

believe tenant isolation forms a relatively small part of the challenges of multi-

tenancy, which is why our chapter focuses on different aspects.

The native support of current database management systems (DBMSs) for multi-

tenancy was investigated by Jacobs and Aulbach [Jacobs and Aulbach, 2007]. In

their position paper on multi-tenant capable DBMSs, they conclude that existing

DBMSs are not capable of natively dealing with multi-tenancy. Chong et al. [Chong

et al., 2006] have described a number of possible database patterns, which support

the implementation of multi-tenancy, specifically for Microsoft SQL Server.

One problem in multi-tenant data management is tenant placement. Kwok

et al. [Kwok and Mohindra, 2008] have developed a method for selecting the best

database in which a new tenant should be placed, while keeping the remaining

database space as flexible as possible for placing other new tenants.

Finally, Salesforce, an industrial pioneer of multi-tenancy, has given an insight

on how multi-tenancy is being handled in their application framework [Weissman

and Bobrowski, 2009].

Most research in the field of reengineering in the area of “service-oriented soft-

ware systems” has focused on approaches to migrate, port and wrap legacy assets

to web services. Two notable examples in this context are the works of Sneed and

Canfora et al. Sneed reports on an approach to wrap legacy code behind an XML

shell [Sneed, 2006]. Sneed’s approach allows individual legacy functions to be

offered as web services to any external user. The approach has been applied suc-

cessfully to the integration of both COBOL and C++ programs in a service-oriented

system. Canfora et al. presented an approach to migrate form-based software sys-

tems to a service [Canfora et al., 2008a]. The approach provides a wrapper that

encapsulates the original user interface and interacts with the legacy system which

runs within an application server.

We are currently not aware of any research that investigates the reengineering

of the first generation of service-oriented systems, an area that we believe to be an

important one, as many of the first generation service-based systems have carried

over some of the flaws from the systems from which they originate. In particular,

we are not aware of any multi-tenancy reengineering strategies.

16 Chapter 2. Multi-Tenancy

2.2 Challenges

Unfortunately, multi-tenancy also has its challenges and even though some of these

challenges exist for single-tenant software as well, they appear in a different form

and are more complex to solve for multi-tenant applications. In this section, we

will list the challenges and discuss their specificity with regard to multi-tenancy.

2.2.1 Performance

Because multiple tenants share the same resources and hardware utilization is

higher on average, we must make sure that all tenants can consume these re-

sources as required. If one tenant clogs up resources, the performance of all other

tenants may be compromised. This is different from the single-tenant situation,

in which the behaviour of a tenant only affects himself. In a virtualized-instances

situation this problem is solved by assigning an equal amount of resources to each

instance (or tenant) [Li et al., 2008]. This solution may lead to very inefficient

utilization of resources and is therefore undesirable in a pure multi-tenant system.

2.2.2 Scalability

Because all tenants share the same application and datastore, scalability is more

of an issue than in single-tenant applications. We assume a tenant does not re-

quire more than one application and database server, which is usually the case in

the SME segment. In the multi-tenant situation this assumption cannot help us, as

such a limitation does not exist when placing multiple tenants on one server. In

addition, tenants from a wide variety of countries may use an application, which

can have impact on scalability requirements. Each country may have its own leg-

islation on, e.g., data placement or routing. An example is the European Union’s

(EU) legislation on the storage of electronic invoicing, which states that electronic

invoices sent from within the EU must be stored within the EU as well4. Finally,

there may be more constraints such as the requirement to place all data for one

tenant on the same server to speed up regularly used database queries. Such con-

straints strongly influence the way in which an application and its datastore can be

scaled.

2.2.3 Security

Although the level of security should be high in a single-tenant environment, the

risk of, e.g., data stealing is relatively small. In a multi-tenant environment, a

security breach can result in the exposure of data to other, possibly competitive,

tenants. This makes security issues such as data protection [Guo et al., 2007] very

important.

4http://ec.europa.eu/taxation_customs/taxation/vat/traders/invoicing_
rules/article_1733_en.htm (last visited on January 24, 2014)

2.3. Multi-Tenancy Reengineering Pattern 17

2.2.4 Zero-Downtime

Introducing new tenants or adapting to changing business requirements of existing

tenants brings along the need for constant growth and evolution of a multi-tenant

system. However, adaptations should not interfere with the services provided to

the other existing tenants. This induces the strong requirement of zero-downtime

for multi-tenant software, as downtime per hour can go up to $4,500K depending

on the type of business [Ganek and Corbi, 2003].

2.2.5 Maintenance

In the typical evolutionary cycle of software, a challenge is formed by maintenance,

e.g. adapting the software system to changing requirements and its subsequent de-

ployment [Jansen et al., 2005]. While it is clear that the multi-tenant paradigm

can bring serious benefits for deployment by minimizing the number of application

and database instances that need to be updated, the situation for the actual main-

tenance is not so clear. In particular, introducing multi-tenancy into a software

systems will add complexity, which will likely affect the maintenance process. Fur-

ther research is needed to evaluate whether the hardware and deployment benefits

outweigh the increased cost of maintenance.

2.3 Multi-Tenancy Reengineering Pattern
When we started thinking how multi-tenancy affects an application, we came up

with the reengineering pattern depicted by Figure 2.1. Here we see that multi-

tenancy affects almost all layers of a typical application, and as such, there is

high potential for multi-tenancy to become a cross-cutting concern. To keep the

impact on the code (complexity) low, the implementation of multi-tenant compo-

nents should be separated from single-tenant logic as much as possible. If not,

maintenance can become a nightmare because:

• Mixing multi-tenant with single-tenant code must be done in all application

layers, which requires all developers to be reeducated about multi-tenancy.

• Mixing multi-tenant with single-tenant code leads to increased code com-

plexity because it is more difficult to keep track of where multi-tenant code

is introduced.

These two problems can be overcome by carefully integrating multi-tenancy in the

architecture. The primary goals of our reengineering pattern are the following:

1. Migrate a single-tenant to a multi-tenant application with minor adjustments

in the existing business logic.

2. Let application developers be unaware of the fact that the application is

multi-tenant.

18 Chapter 2. Multi-Tenancy

3. Clearly separate multi-tenant components, so that monitoring and load bal-

ancing mechanisms can be integrated in the future.

In order to reach our goals, our reengineering pattern requires the insertion

of three components in the target application. The remainder of this section will

explain the importance and the requirements of each of these components.

Client

Single-tenant business logic

Authentication

Authentication Module
createTicket()

Ticket Server

-tenantToken
SessionTicket

+createTicket()

Tenant
Auth
Data

H
TTP

R

equest

Database Pool

Data DataData

D
at

a

Database

Query adjuster Load balancer
Record initializer

Q
uery

Configuration

Configuration Component

File I/O Component

Layout Component

Tenant
Config
Data

Workflow Component

Figure 2.1: Architectural overview for multi-tenancy

2.3.1 Authentication

Motivation. Because a multi-tenant application has one application and database

instance, all tenants use the same physical environment. In order to be able to

offer customization of this environment and to make sure that tenants can only

access their own data, tenants must be authenticated. While user authentication

is possibly already present in the target application, a separate tenant-specific au-

thentication mechanism might be required, for two reasons: (1) it is usually much

2.3. Multi-Tenancy Reengineering Pattern 19

easier to introduce an additional authentication mechanism, then to change the

existing one, and (2) tenant authentication allows a single user to be part of more

than one logical organization, which extends the idea of user authentication with

“groups”. A typical example of such a situation would be a bookkeeper, who works

for multiple organizations.

Implementation. The authentication component provides the mechanism required

to identify a tenant throughout the application, by generating a session ticket after

a tenant successfully logs in. The correct application configuration is loaded based

on the values in this ticket. Note that this mechanism does not interfere with the

authentication logic of the single-tenant application, which means that any security

measures implemented in this logic are still in order.

2.3.2 Configuration

Motivation. In a single-tenant environment, every tenant has his own, (possibly)

customized application instance. In multi-tenancy, all tenants share the same ap-

plication instance, although it must appear to them as if they are using a dedicated

one. Because of this, a key requirement of multi-tenant applications is the possibil-

ity to configure and/or customize the application to a tenant’s need [Jansen et al.,

2010].

In single-tenant software, customization is often done by creating branches in

the development tree. In multi-tenancy this is no longer possible and customization

must be made possible through configuration [Nitu, 2009].

Implementation. In order to enable multi-tenancy and let the user have a user-

experience as if he were working in a dedicated environment, it is necessary to

allow at least the following types of configuration:

Layout Style

Layout style configuration allows the use of tenant-specific themes and styles.

General Configuration

The general configuration component allows the specification of tenant-specific

configuration, encryption key settings and personal profile details.

File I/O

The file I/O configuration component allows the specification of tenant-specific file

paths, which can be used for, e.g., report generation.

Workflow

The workflow configuration component allows the configuration of tenant-specific

workflows. An example of an application in which workflow configuration is re-

quired is an ERP application, in which the workflow of requests can vary signifi-

cantly for different tenants.

20 Chapter 2. Multi-Tenancy

2.3.3 Database

Motivation. Because all tenants use the same database instance, it is necessary to

make sure that they can only access their own data. In addition, it is necessary to

make sure that metrics such as a usage limit for each tenant can be verified.

Implementation. Current off-the-shelf DBMSs are not capable of dealing with multi-

tenancy themselves [Jacobs and Aulbach, 2007]. An example of missing function-

ality is an administrative panel, which provides access to tenant-specific data such

as the amount of data used. In addition, developers should be aware that the

application is multi-tenant and adjust their database queries accordingly. In our

reengineering pattern, the latter is hidden from the developer and should be done

in a layer between the business logic and the application’s database pool. The main

tasks of this layer are as follows:

Creation of new tenants in the database

If the application stores and/or retrieves data, which can be made tenant-specific,

in/from a database, it is the task of the database layer to create the corresponding

database records when a new tenant has signed up for the application.

Query adaptation

In order to provide adequate data isolation, the database layer must make sure

that all queries are adjusted so that each tenant can only access his own records.

Load balancing

To improve the performance of the multi-tenant application, efficient load balanc-

ing is required for the database pool. Any Service Level Agreements (SLAs) [Li

et al., 2008; Malek et al., 2012] or financial data legislation should be taken into

account.

2.4 Exact Codename
Exact5 is a Dutch-based software company, which specializes in enterprise resource

planning (ERP), customer relationship management (CRM) and financial adminis-

tration software. Exact has over 2200 employees working in more than 40 coun-

tries. Founded in 1984, Exact has over 25 years of experience in multi-user clien-

t/server software and web applications. Since several years, Exact has also been

offering a successful multi-tenant SaaS solution.

Multi-tenancy is an attractive concept for Exact because they target the SME

segment of the market. By having the opportunity to share resources between

customers, services can be offered to the customers at a lower overall price. In

addition, maintenance becomes easier — and thus cheaper — as less different

instances must be maintained. While Exact has experience with multi-tenancy,

5http://www.exact.com

2.4. Exact Codename 21

ListManager EntityManager

Data Access Layer

SQL

Application Server

Web Server

Client

ClientControls

List Entity

DataModel

EIS

Exact Identity Server

User account
serviceList

Proxy

ListControl

Entity
Proxy

EntityControl

Definitions

Figure 2.2: Architecture of Exact Codename

they also have existing single-tenant applications that they want to transform into

multi-tenant ones.

One of these applications is a research prototype, dubbed Exact Codename.

Codename is a proof of concept, single-tenant widget framework that offers the

possibility of creating software solutions using widgets as building blocks. The

Exact research team has been working for 4 years on Codename and it is the inten-

tion to integrate parts of Codename in commercial Exact products in the short to

medium term future.

Codename is being developed in C# and ASP.NET and consists of approximately

165K lines of code. Figure 2.2 depicts the (simplified) architecture of Codename.

2.4.1 Architecture of Codename

Codename is built upon two major concepts, the List and the Entity. A list repre-

sents a list of data, such as a list of documents. An entity represents an object, such

as News (a news item).

An entity and a list are described using a domain specific language and the de-

scriptions are currently stored in definition files. These definitions are stored sepa-

rately from the framework code, which allows them to be edited by non-technical

domain experts. Such a definition file may contain details about how to retrieve

the entity or list from the database, or behaviour. For example, the definition of

News contains details on how a News item can be found in the database, and it

also tells us that News is a type of Document (which is itself an entity). The default

HTML layout of an entity or list is also stored in a (separate) definition file.

Because an entity or list can be created using a definition file only, it is easy for

domain experts to add new or edit existing entities or lists.

On the application server, the ListManager and EntityManager can be used to

instantiate a new list or entity. When a new list or entity is created, these man-

22 Chapter 2. Multi-Tenancy

agers read the corresponding definition file and generate the required object. All

database access is done through the Data Access Layer. To allow the use of multi-

ple data sources, possibly in different formats, logical names are used for database

columns or tables rather than the physical names. In the Data Access Layer, these

logical names are translated to physical names (using the DataModel definitions).

The web server communicates with the application server using Windows Com-

munication Foundation (WCF) services and a proxy. The goal of the web server is

to generate HTML and JavaScript (JS) representations of the lists and entities for

the client. A client can request a list or entity using the ListControl or EntityControl

web services. The client can only retrieve data from or write data to the database

using these two services.

2.4.2 Exact Identity Server

A separate component in Codename’s architecture is the Exact Identity Server

(EIS), which is an implementation of the Microsoft Identity Foundation. In the

EIS a token is generated when a tenant successfully logs in to the system. This

(encrypted) token contains enough information to identify the tenant throughout

the system without contacting the EIS again. This allows single sign-on (SSO) for

multiple Exact applications (relying parties). The protocol used to do this is SAML

1.1. A token contains several claims, such as the Globally Unique Identifier (GUID)

of the user which is logged in. The EIS offers a User Account Service as well, which

allows relying parties to add their own users to the EIS.

2.5 Case Study: CodenameM T

In this section, we present our case study of enabling multi-tenancy in a single-

tenant application using the multi-tenancy reengineering pattern that we discussed

in Section 2.3. Our target application is Codename, of which we gave an overview

in Section 2.4.

2.5.1 Motivation

In addition to the general advantages of multi-tenancy (Section 2.1), being able to

reengineer existing single-tenant applications into multi-tenant ones is interesting

for a number of reasons:

1. Existing business logic can be reused with minor adaptations.

2. As our reengineering pattern is lightweight and requires minor adaptations

only, most developers will not be aware of the fact that the application is

multi-tenant, which means that not all developers need to be trained in multi-

tenancy.

2.5. Case Study: CodenameM T
23

3. Lessons learned from applying a pattern may lead to improvements in the

architecture of existing multi-tenant products.

2.5.2 Applying the Multi-Tenancy Pattern

In our case study, we will apply our multi-tenancy reengineering pattern to Co-

dename, resulting in a multi-tenant application CodenameM T . For transforming

Codename into CodenameM T , we are introducing the components that we have

explained in Section 2.3 into Codename.

Authentication

As identifying to which tenant a user belongs can be done using the tenant’s ID

only, the existing authentication mechanism could easily be extended. We added

CodenameM T to the EIS as a relying party, so that we could add users for this appli-

cation to EIS. After this, we extended the Codename User object with a TenantID
property, which is read from the token after a user successfully logs in. Because the

User object is globally available throughout Codename, the TenantID is available

globally as well. Note that EIS does not keep track of tenant details other than the

TenantID. Currently this is the task of the relying party.

After our adaptations, an EIS token for the CodenameM T application contains

a GUID and a TenantID. The TenantID is used to identify the tenant to which

the owner of the token belongs. The GUID is used to identify the user within

CodenameM T . Note that the user identification process is unchanged compared to

the process in Codename, leaving any values like security levels intact.

Configuration

While applying the pattern to the single-tenant configuration, we limited our case

study to the degree of configuration currently possible in Codename. In contrast to

the pattern, CodenameM T stores all configuration data in the application database,

rather than in a separate database.

Layout Style In Codename, the layout style of the application is managed by the

following:

• ASP.NET master pages

• ASP.NET themes

The .NET framework offers the possibility to dynamically change these by at-

taching an event early in the page lifecycle. We have adapted the global.asax6 file

of the application with the code depicted in Figure 2.3, which loads the tenant-

specific style for each page request.

6In ASP.NET, the (optional) global.asax file is used to access session and application-level events.

24 Chapter 2. Multi-Tenancy

// a t ta ch ev en t

protected void Appl icat ion_PreRequestHandlerExecute (

object s , EventArgs e){

Page p = th i s . Context . Handler as Page ;

p . P r e I n i t += new EventHandler (page_Pre In i t) ;

}

// s e t tenant− s p e c i f i c theme and master page

protected void page_Pre In i t (object s , EventArgs e){

Page p = th i s . Context . Handler as Page ;

p . Theme = TenantContext . GetTenantTheme () ;

p . MasterPageFi le = TenantContext . GetTenantMasterpage () ;

}

Figure 2.3: Dynamically setting the tenant-specific style

General Configuration All general configuration, e.g. profile settings, in Code-

name is stored in the database. This means that making the configuration tables

multi-tenant also makes the general configuration multi-tenant.

File I/O The only file I/O used in Codename is to load the definition files on the

application server. Originally these definition files were loaded from the xmd/list
and xmd/entity directories. We have adapted this code to check if one of the di-

rectories xmd/tenantID/list or xmd/tenantID/entity contain the requested

file. If it exists, the tenant-specific file is loaded, otherwise, a default file is loaded.

We have implemented this mechanism to allow tenants to decide whether they

want to configure their own lists and entities or use the defaults. Codename also

implements a caching system for definition files, which we have adapted to be

aware of the existence of tenant-specific definitions.

Workflow In Codename, the application workflow can currently only be config-

ured by physically changing the .aspx page, which describes the process, so that

it uses the required library. While tenant-specific workflow configuration using

this approach was included in the case study design, the implementation remains

future work.

Codename uses a URL rewriting mechanism to allow application users to re-

quest URLs which contain less machine code (friendly URLs). This leads to better

readable URLs such as docs/person/corpaul instead of ?page=person&id=
{12345-abcde-890}. By altering this rewriting module to load a tenant-specific

.aspx page, workflow configuration can be established.

2.5. Case Study: CodenameM T
25

Table 2.1: Multi-tenant query extensions for TenantID ‘123’

Type of query Query extension

SELECT Add Filter(‘TenantID’, 123)

JOIN Add Filter(‘TenantID’, 123)

UPDATE Add Filter(‘TenantID’, 123)

DELETE Add Filter(‘TenantID’, 123)

INSERT Add Field(‘TenantID’, 123)

Database

All database queries in Codename are generated using the Data Access Layer, so

that metadata stored in the data model definitions can always be used during query

generation. Because all queries are created in one component, automatically ex-

tending them to use the TenantID is straightforward. To prevent unnecessary

duplication of data, we added the property IsMultiTenant to the data model.

Setting this property to false indicates that data in the table is not tenant-specific,

such as country ISO codes or postal shipping rates. This allows us to generate more

efficient queries. We added a TenantID column to the tables that were specified

as multi-tenant.

After this, we adapted the module which generates the query. For each queried

table, the table metadata is retrieved from the data model to see whether the table

contains tenant-specific data. If this is the case, the query is extended using the

extensions depicted in Table 2.1. Note that for all subqueries and each JOIN clause

in a SELECT query, the same occurs. In the Data Access Layer, a Filter adds a

criterion to the WHERE clause of a query and a Field adds a column update to the

SET clause of a query.

Future work regarding the database component includes adding usage of the

TenantID to indexes on tables that contain multi-tenant data.

In this case study, we did not implement automatic creation of new tenants

in the database. We plan on doing this when the signup process is linked with

the EIS User Account Service. In addition, we did not implement load balancing.

This is a very difficult task due to the number and complexity of constraints in

financial software, e.g., because of the legislation of several countries on where

financial data may be stored. An important requirement is that the Data Access

Layer should hide load balancing from the developer. Load balancing in a multi-

tenant application will be addressed in future research.

2.5.3 Evaluation

For testing whether our reengineering pattern that transformed Codename into

CodenameM T did not break any of the major functionalities in Codename, we fol-

26 Chapter 2. Multi-Tenancy

lowed a double approach using code reviews and manual tests. As such, we per-

formed a code review together with the third author of this chapter, one of the lead

architects of the Exact research team. Furthermore, we created a list of the most

important functionality of Codename and manually tested that this functionality

still worked correctly in CodenameM T . While we consider manual testing to be suf-

ficient for this particular case study, amongst others due to the support from Exact,

we do acknowledge that automated testing is a necessity, which is why we aim to

investigate an automated test methodology for multi-tenant applications in future

research.

For the actual testing of CodenameM T we first added two test users with dif-

ferent TenantIDs on the EIS. Then we created tenant-specific themes and master

pages and verified that they were loaded correctly after logging the test users in.

After this, we created a number of tenant-specific definition files and verified that

the correct ones (including default files) were loaded.

To test the database component, we have assigned different documents to each

test user and verified the correct ones were shown in document listings after log-

ging in. In addition, we have verified that queries were extended correctly by

manually inspecting a random subset of queries taken from a SQL Server Profiler

trace, recorded during usage of the application.

Our double approach where we combined code reviews and manual tests to

verify whether CodenameM T did not break any of the major functionality from

Codename yielded no reports of any faults.

2.6 Lessons Learned & Discussion
In this chapter we have applied our reengineering pattern that guides the reengi-

neering of single-tenant applications into multi-tenant ones and we report on our

experiences with the reengineering pattern in an industrial environment. We will

now touch upon some of the key lessons that we have learned when applying our

reengineering pattern.

2.6.1 Lessons learned

Lightweight reengineering approach We have applied our multi-tenancy reengi-

neering pattern by extending the original Codename code with approximately 100

lines of code, thus transforming it into CodenameM T . This shows that our pattern

can assist in carrying out the reengineering process in an efficient way, with rela-

tively little effort. In our case study, the reengineering could be done in five days,

without prior knowledge of the application, but with the help of domain experts

from Exact. The ease by which we were able to reengineer the original Codename

into CodenameM T is of interest to our industrial partner Exact, and other compa-

nies alike, as it shows that even the initial costs of migrating towards multi-tenancy

are relatively low and should thus not be seen as a barrier.

2.6. Lessons Learned & Discussion 27

Importance of architecture While not surprising, another lesson we learned

from the migration was that having a layered architecture is essential, both for

keeping our reengineering approach lightweight and for doing the reengineering

quickly and efficiently [Laine, 2001]. Without a well-layered architecture, applying

our pattern would have taken much more effort.

Automated reengineering proves difficult The ease by which we were able to

reengineer Codename automatically raises the question whether it is possible to

automate the reengineering process. Unfortunately, we think this is very difficult

to achieve, as the reengineering requires a considerable amount of architectural

and domain knowledge of the application, which is difficult and costly to capture

in a reengineering tool. Furthermore, the integration of the components of our

multi-tenancy pattern is strongly dependent on the implementation of the existing

application. A similar observation about the difficulty to automate design pattern

detection and reengineering approaches was made by Guéhéneuc and Albin-Amiot

[2001]. Specifically in our industrial environment, the architectural and domain

knowledge of the lead architect of Codename — the third author of this chapter

—, proved very valuable for the quick and efficient reengineering of the target

application. Capturing this tacit knowledge in an automatic reengineering tool

would prove difficult and expensive.

Fully transparent for the end-user An interesting observation is that no changes

had to be made to the client side of the application, i.e., in terms of JavaScript. This

serves a first indication that the end-user will not be aware of the fact that he is

using a multi-tenant application instead of a single-tenant one. Furthermore, the

(manual) tests have also shown that the other parts of the user interface have not

evolved when going from Codename to CodenameM T .

Little effect for the developer Because we could enable multi-tenancy by mak-

ing small changes only, we expect that most developers can remain relatively un-

educated on the technical details. For example, they do not have to take multi-

tenancy into account while writing new database queries as these are adapted

automatically.

2.6.2 Discussion

In this version of CodenameM T we did not implement workflow configuration. The

reason for this is that we limited our case study to the degree of configuration cur-

rently possible in Codename. A first step towards workflow configuration is to im-

plement the tenant-specific friendly URL mechanism as described in Section 2.5.2.

This approach still requires the tenant (or an Exact developer) to develop a custom

.aspx page. In a future version of CodenameM T , Exact is aiming at making work-

flow configuration possible by enabling and disabling modules and widgets using

28 Chapter 2. Multi-Tenancy

a web-based administration, rather than requiring a tenant to make changes to an

.aspx page.

We have applied our pattern by modifying existing single-tenant code. One may

argue that multi-tenant code additions should be completely isolated, e.g., by in-

tegrating the code using aspect-oriented programming. As typical aspect-oriented

programming (following the AspectJ model) does not offer a fine enough pointcut

mechanism to target all join points that we would need to change, we decided

not to use aspects. Please note however, that using aspect-oriented programming

would become applicable after a thorough refactoring of the source code, but this

was beyond the scope of the lightweight reengineering pattern that we intended

for.

2.6.3 Threats to Validity

We were able to apply our multi-tenancy pattern with relatively little effort. One of

the reasons for this is the well-designed and layered architecture of Codename. In

addition, the existing integration of the authentication using EIS and the possibility

to add a TenantID claim to the token considerably shortened the implementation

time for the authentication component. Finally, the database component could

be adapted relatively easily as well, as all queries are created in one single com-

ponent, i.e., the Data Access Layer, which made searching for query generations

throughout the application superfluous. As such, we acknowledge that Codename

might not be representative for all systems, but we also acknowledge that having

intimate knowledge of the application is equally important for the reengineering

of single-tenant into multi-tenant applications. Another confounding factor is the

complexity of both the source code and the database schema, as both can have a

direct influence on the ease by which an existing single-tenant application can be

reengineered.

We have manually verified the correctness of the implementation of the func-

tionality in CodenameM T . While we are confident that the verification was done

thoroughly and was supported by one of the lead architects of Codename, we do

see the need for automatic testing in this context. As such, we consider investigat-

ing the possibilities of defining a test methodology for multi-tenant applications as

future work.

The case study we have conducted is not complete yet. For example, we have

not implemented workflow configuration and automated tenant creation. As it is

possible that these implementations introduce performance penalties, we did not

formally evaluate the performance overhead of our approach. Although we have

not encountered performance drawbacks yet, we consider a formal evaluation of

the performance as future work.

2.7. Conclusion 29

2.6.4 Multi-Tenancy in the Real World

Although the benefits of multi-tenancy are obvious, there are some challenges

which should be considered before implementing it.

Because all tenants use the same hardware resources, a problem caused by one

tenant affects all the others. Additionally, the data of all tenants is on the same

server. This results in a more urgent requirement for scalability, security and zero-

downtime measures than in single-tenant software.

Finally, because multi-tenancy requires a higher degree of configurability, the

code inherently becomes more complex, which may result in more difficult soft-

ware maintenance if not implemented correctly (Section 2.2).

2.7 Conclusion
Because of the low number of instances, multi-tenancy sounds like a maintenance

dream. Deployment of software updates becomes much easier and cheaper, due

to the fact that a much smaller number of instances has to be updated. However,

the complexity of the code does increase. In single-tenant software, challenges like

configuration and versioning are solved by creating a branch in the development

tree and deploying a separate instance. In multi-tenant software, this is no longer

acceptable, which means that features like these must be integrated in the appli-

cation architecture, which inherently increases the code complexity and therefore

makes maintenance more difficult.

We believe that multi-tenancy can be a maintenance dream, despite the in-

crease in code complexity. However, the quality of the implementation is crucial. In

a non-layered software architecture, the introduction of multi-tenancy can lead to

a maintenance nightmare because of code scattering. On the other hand, in a lay-

ered architecture, it is possible to implement multi-tenancy as a relatively isolated

cross-cutting concern with little effort, while keeping the application maintainable.

This raises the expectation that, for maintenance in a multi-tenant application,

refactoring a non-layered architecture into a layered one can be very beneficial.

Our reengineering pattern is a guiding process that allows to quickly and effi-

ciently transform a single-tenant application into a multi-tenant one, thereby also

providing capabilities for tenant-specific layout styles, configuration and data man-

agement. As multi-tenancy is a relatively new concept, especially in the software

engineering world, very little research has been done on this subject. We have

defined the multi-tenant components in our approach after having researched ex-

isting problems in multi-tenant applications. This research was conducted by an-

alyzing papers, the demand from industrial partners and by reading blog entries

(including the comments, which form a source of valuable information as they

contain information about the current problems in the SaaS industry).

In this chapter, we have applied our lightweight multi-tenancy reengineering

30 Chapter 2. Multi-Tenancy

pattern to Codename, an industrial single-tenant application engineered by Exact.

The result is CodenameM T , a multi-tenant version of Codename, offering the typical

benefits of multi-tenancy, i.e., increased usage of hardware resources and easier

maintenance.

From our case study, we learned that our approach:

1. Is lightweight, as implementation was done in about 100 lines of code, which

took approximately 5 days to implement. This makes the approach attractive

for Exact and other companies, because of the low initial investments. On a

side note, we do observe that having a nicely layered architecture is a benefit

for doing the migration quickly and efficiently.

2. Is transparent to the end-user, as (1) the look-and-feel of the application

does not need to be changed and (2) the end-user does not know that the

application is multi-tenant.

3. Does not require all developers working on the project to be trained in multi-

tenancy, as the changes to the code are minimal and confined to some small

parts.

As important directions for future work, we see the development of a test

methodology and a real-time monitoring mechanism for multi-tenant applications.

The former is essential when tackling larger reengineering efforts in the realm of

multi-tenancy, while the latter will enable to determine the optimal moment for

online software evolution in the face of zero-downtime for customers. In addition,

we will continue to work with Exact on extending the configuration options for

CodenameM T , in particular, the workflow configuration support.

3..
Performance Optimization of

Deployed SaaS Applications

The goal of performance maintenance is to improve the performance of a software

system after delivery. As the performance of a system is often characterized by un-

expected combinations of metric values, manual analysis of performance is hard in

complex systems. In this chapter, we propose an approach that helps performance

experts locate and analyze spots – so called performance improvement opportunities

(PIOs) –, for possible performance improvements. PIOs give performance experts

a starting point for performance improvements, e.g., by pinpointing the bottleneck

component. The technique uses a combination of association rules and performance

counters to generate the rule coverage matrix, a matrix which assists with the bottle-

neck detection.

In this chapter, we evaluate our technique in two case studies. In the first one, we

show that our technique is accurate in detecting the time frame during which a PIO

occurs. In the second one, we show that the starting point given by our approach is in-

deed useful and assists a performance expert in diagnosing the bottleneck component

in a system with high precision.1

3.1 Detecting Performance Improvement Opportunities 33

3.2 Analyzing Performance Improvement Opportunities 39

3.3 Implementation . 43

3.4 Experimental Setup . 45

3.5 Proof-of-Concept: Case Study I for SARATIO Classification Estimation . . . 47

3.6 Case Study II: Evaluation of Exact Online Analysis Results 55

3.7 Discussion . 62

3.8 Threats to Validity . 65

3.9 Related Work . 66

3.10 Conclusion . 69

1This chapter contains our work published in the Journal of Systems and Software [Bezemer

and Zaidman, 2014].

31

32 Chapter 3. Performance Optimization of Deployed SaaS Applications

In the ISO standard for software maintenance2, four categories of maintenance

are defined: corrective, adaptive, perfective and preventive maintenance. Perfec-

tive maintenance is done with the goal of improving and therefore perfecting a

software system after delivery. An interesting application of perfective mainte-

nance is performance maintenance, which is done to enhance the performance of

running software by investigating and optimizing the performance after deploy-

ment [Swanson, 1976]. A reason to do this after deployment is that it may be too

expensive to create a performance testing environment that is equal to the pro-

duction environment, especially for large systems. As an example, many Software-

as-a-Service (SaaS) providers spend a fair portion of their budget each month on

hosting infrastructure as infrastructure forms the most important factor in the total

data center cost [Hamilton, 2010]. Copying the production system to provide an

environment for performance testing will further increase these costs. While we

realize cost should be no decisive factor for neglecting performance testing, from

our experience we know that it often is in industry. Therefore, it is sometimes

necessary to analyze and adapt the deployed system directly.

While a large amount of research has been done on software performance en-

gineering in general [Woodside et al., 2007], only few papers deal with software

performance maintenance. Performance maintenance poses different challenges,

as we are dealing with live environments in which computing resources may be

limited when we are performing maintenance. In addition, experience from in-

dustry shows that performance maintenance engineers mainly use combinations

of simple and rather inadequate tools and techniques rather than integrated ap-

proaches [Thereska et al., 2010], making performance maintenance a tedious task.

Perfecting software performance is typically done by investigating the values

of two types of metrics [Thereska et al., 2010]. On one hand, high-level metrics

such as response time and throughput [Jain, 1991] are important for getting a

general idea of the performance state of a system. On the other hand, information

retrieved from lower-level metrics, e.g., metrics for memory and processor usage

— so called performance counters [Berrendorf and Ziegler, 1998]—, is important

for pinpointing the right place to perform a performance improvement. However,

determining a starting point for analysis of these lower-level metrics is difficult, as

the performance of a system is often characterized by unexpected combinations of

performance counter values, rather than following simple rules of thumb [Cohen

et al., 2004]. This makes manual analysis of performance in large, complex and

possibly distributed systems hard.

In this chapter, we present a technique which provides assistance during semi-

automated performance analysis. This technique automates locating so-called per-

2http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=39064

3.1. Detecting Performance Improvement Opportunities 33

formance improvement opportunities (PIOs), which form a starting point for anal-

ysis of performance counters. Interpreting the results of automated performance

analysis approaches is difficult for human experts [Goldszmidt et al., 2005]. Our

approach aims to assist experts by analyzing these starting points to give a diagno-

sis of bottleneck component(s). In this chapter, we address the following research

question presented in Chapter 1:

RQ2a: How can we detect and analyze hardware bottlenecks?

More specifically, we focus on the following research question:

RQ2a-1:How can we enhance the interpretation of performance counter

values so that they can assist with the identification of the bottleneck

components of a system?

In Chapter 4, we present an evaluation of this technique by performing a user

study on an industrial SaaS application. During this preliminary evaluation, we

demonstrate the feasibility of our approach and its applicability in industry for as-

sisting during semi-automated performance analysis. In this work, we first show

that our technique is accurate in detecting the time frame during which a PIO oc-

curs. In a second case study, we show that the starting point given by our approach

is indeed useful and assists a performance expert in diagnosing the bottleneck com-

ponent in a system with high precision.

This chapter is organized as follows. In Section 3.1, we introduce the con-

cept of PIOs and we present our approach for detecting such PIOs. In Section 3.2,

we explain our approach for automatically analyzing these PIOs. Section 3.3 dis-

cusses the implementation of our approach. Our case studies are presented in

Sections 3.4, 3.5 and 3.6. We discuss the results of these case studies and threats

to the validity of these results in Sections 3.7 and 3.8. We present related work in

Section 3.9 and we conclude our work in Section 3.10.

3.1 Detecting Performance Improvement Opportu-

nities
Performance optimization can be done during the software design phase and after

deployment. Techniques such as profiling [Knuth, 1971] can be used by the de-

veloper to find and fix application bottlenecks during the design phase. However,

these techniques cannot always be used after deployment, as they are usually very

expensive and not capable of dealing with complex systems which are deployed on

multiple servers [Elbaum and Diep, 2005]. Hence, profiling is not often used in

practice [Nistor et al., 2013]. Therefore, it is necessary to use more light-weight

34 Chapter 3. Performance Optimization of Deployed SaaS Applications

techniques after deployment to get an indication of the bottleneck first. When nec-

essary, more expensive techniques, such as profiling, can then be used to optimize

system performance.

In order to start our investigation on how we can improve the performance of

a system that is deployed, we must be able to do the following:

• Requirement 1 Detect the time frames during which the system performed

relatively slow, i.e., find situations in which performance optimization is pos-

sible.

• Requirement 2 Detect the component(s) that is/are the bottleneck compo-

nent(s).

By knowing at least this, we have a starting point for our investigation of opti-

mizing the performance of a deployed system. In the remainder of this chapter, we

present our approach for detecting these requirements automatically from perfor-

mance data. In the next section, we introduce so-called performance improvement

opportunities to assist performance experts in their investigation on performance

optimization. In Section 3.1.2, we will present our approach for detecting these

PIOs (Requirement 1). We will explain our approach for analyzing PIOs (Require-

ment 2) in Section 3.2.

3.1.1 Performance Improvement Opportunities (PIOs)

A performance improvement opportunity (PIO) is a situation during which the per-

formance could possibly be improved. Such a situation can be detected by moni-

toring and analyzing the right performance metrics. A PIO can be represented by

the following collection of data:

• Date and time of start of the PIO

• SARATIO metric (Section 3.1.2)

• INTENSITY transformation (Section 3.1.3)

• Rule coverage matrix (Section 3.2.1)

A PIO description can assist engineers in performing perfective maintenance

by pinpointing the bottleneck component during the PIO. The next step could be

investigation of that component using a profiler (see Section 3.9). When we im-

prove the performance of a system using the information in a PIO description, we

say we exploit the PIO. Throughout this chapter we will use the term PIO and PIO

description interchangeably.

3.1. Detecting Performance Improvement Opportunities 35

3.1.2 SARatio Metric

Application performance can be expressed in many different metrics, such as re-

sponse time, throughput and latency [Jain, 1991]. One of the most important is

average response time [Jain, 1991], as it strongly influences the user-perceived

performance of a system. While a generic performance metric like average re-

sponse time can give an overall impression of system performance, it does not

make a distinction between different actions3 and/or users. Therefore, it may ex-

clude details about the performance state of a system, details that can be important

for detecting a performance improvement opportunity.

An example of this is a bookkeeping system: report generation will take longer

for a company with 1000 employees than for a company with 2 employees. When

using average response time as threshold setting for this action, the threshold will

either be too high for the smaller company or too low for the larger company.

A metric such as average response time works over a longer period only, as it is

relatively heavily influenced by batch actions with high response times (such as re-

port generation) when using short intervals. Therefore, we are looking for a metric

which is (1) resilient to differences between users and actions and (2) independent

of time interval length.

To define a metric which fits into this description, we propose to refine the

classical response time metric so that we take into account the difference between

actions and users. In order to do so, we classify all actions as slow or normal.

To decide whether an action was slow, we calculate the mean µau and standard

deviation σau of the response time of an action a for each user u over a period of

time. Whenever the response time r t i of action a of user u is larger than µau+σau,

it is marked as slow, or:

For every action ai and user u,

ai ∈
�

SLOW if r t i > µau +σau

NORMAL otherwise

Because µau and σau are calculated per action and user, the metric that we

are constructing becomes resilient to differences between actions and users. Note

that by doing this, we assume that the system has been running relatively stable,

by which we mean that no significant long-lasting performance anomalies have

occurred over that period of time. Another assumption we make is that an action

has approximately the same response time when executed by the same user at

different times (see Table 3.8).

From this classification, we construct a metric for performance characteriza-

tion which fits into our description, namely the ratio SARATIOt (Slow-to-All-actions-

3An action is the activation of a feature by the user. A feature is a product function as described

in a user manual or requirement specification [Koschke and Quante, 2005].

36 Chapter 3. Performance Optimization of Deployed SaaS Applications

ratio) of the number of slow actions SLOWt to the total number of actions in time

interval t:

SARATIOt =
|SLOWt |

|SLOWt |+ |NORMALt |

Because it is a ratio, isolated extreme values have a smaller influence on the

metric, which makes it more independent of time interval4.

We distinguish three groups of values for SARATIO:

• HIGH - the 5% highest values, indicating the times at which the system is

relatively the slowest and therefore the most interesting for performance op-

timization

• MED - the 10% medium values

• LOW - the 85% lowest values

As a threshold for the MED and HIGH classes we use the 85th and 95th percentile

of the distribution of SARATIO. We consider performance optimization an iterative

process; hence, after diagnosing and optimizing (when possible) the slowest 5%

situations in the system, we repeat the process and find the ‘new’ slowest 5% situ-

ations. These iterations make the exact percentage that is used for the HIGH class

less important, as situations which are missed in a previous classification will be

detected in a new classification cycle after other situations have been optimized.

Throughout the rest of this chapter, we will refer to the HIGH, M ED and LOW

values for SARATIO as classi f icat ions. All time periods containing HIGH values

for SARATIO constitute possible PIOs and therefore require deeper investigation. In

order to focus on the greatest performance improvements possible, we would like

to investigate longer lasting PIOs first. Figure 3.1 shows an example graph of 1000

minutes of SARATIO values. This graph has several disadvantages:

• It becomes unclear when large (e.g. t > 1000) periods of time are displayed

• It is difficult to distinguish longer lasting PIOs from shorter lasting ones

We transform Figure 3.1 into Figure 3.2 by using the INTENSITY transformation

discussed in the next section. The goal of this transformation is to show a clear

graph in which it is easy to detect longer lasting PIOs.

4Unless the total number of actions is very low, but we assume this is not the case in modern

systems.

3.1. Detecting Performance Improvement Opportunities 37

0 200 400 600 800 1000
LOW

MED

HIGH

t (min)

S
A

R
at

io

Figure 3.1: SARATIO graph before INTENSITY transformation

0 200 400 600 800 1000
0

20

40

60

80

100

120

140

In
te

ns
ity

t (min)

Figure 3.2: SARATIO graph after INTENSITY transformation

38 Chapter 3. Performance Optimization of Deployed SaaS Applications

3.1.3 Intensity Transformation

Intuitively, we expect that we can achieve greater performance improvements by

investigating longer lasting PIOs. The rationale behind this intuition can be ex-

plained by the following example. In a system, a PIO of 60 minutes and a PIO of

10 minutes are detected. As it is likely that more customers will be affected by the

relatively slow performance of the system during the PIO of 60 minutes, we would

like to investigate this PIO first.

Therefore, we would like to emphasize the occurrence of high SARATIO values

which are close to each other in time, i.e., longer lasting PIOs. To make such oc-

currences easier to spot, we perform the transformation described in Algorithm 1

on the SARATIO data. This transformation uses a sliding window approach to em-

phasize longer lasting PIOs.

A window of size n contains the SARATIO classifications of the last n time

frames. We count the occurrences of LOW , M ED and HIGH classifications and

keep a counter intensi t y . Every time the (relative) majority (≥ 33%) of the clas-

sifications in the window are HIGH, i.e., the system is relatively slow, intensi t y is

increased by 2. When the system returns to normal performance, i.e., the majority

of the classifications in the window are M ED or LOW , intensi t y is decreased by 1

and 2 respectively. These steps are depicted by Algorithm 1 (IntensityTransformation).

Figure 3.2 shows the effect of applying this transformation to the data in Figure 3.1.

It is easy to see that there are three major PIOs in Figure 3.2. Note that it is easy

to automate the process of locating PIOs by setting the start of a PIO whenever the

INTENSITY becomes larger than a certain threshold. Throughout this chapter, we

assume the INTENSITY threshold is 0. As a result, we can change n to adjust the

sensitivity of our approach.

Algorithm 1 IntensityTransformation(n, clas f Set, intensi t y)

Require: Window size n, a set of SARATIO classifications clas f Set, the current intensi t y .
Ensure: The intensi t y of the last n classifications is added to the current intensi t y .

1: window = clas f Set.get Last I tems(n)
2: cnt Low = count(window, LOW)
3: cntMed = count(window, M ED)
4: cntHigh= count(window, HIGH)
5: maxCnt = max(cnt Low, cntMed, cntHigh)
6: if maxCnt == cntHigh then
7: intensi t y = intensi t y + 2
8: else if maxCnt == cntMed then
9: intensi t y = max(intensi t y − 1, 0)
10: else
11: intensi t y = max(intensi t y − 2,0)
12: end if
13: return intensi t y

3.2. Analyzing Performance Improvement Opportunities 39

3.2 Analyzing Performance Improvement Opportu-

nities
Now that we have a technique for detecting PIOs, the next step is to analyze them.

In our approach for PIO analysis we use the SARATIO described in the previous sec-

tion as a foundation for training a set of association rules [Agrawal et al., 1993]

which help us analyze the PIO. We use association rules because they make rela-

tionships in data explicit, allowing us to use these relationships in our analysis.

In this section, we will explain how these association rules can assist us in

analyzing PIOs and how we generate them.

3.2.1 PIO Analysis Using Association Rules

The goal of analyzing PIOs is to find out which component forms the bottleneck.

This component can then be replaced or adapted to optimize the performance of

the system. Performance counters [Berrendorf and Ziegler, 1998] (or performance

metrics) offer easy-to-retrieve performance information about a system. These per-

formance counters exhibit details about the state of components such as memory,

CPU and web servers queues and therefore we would like to exploit this infor-

mation to decide which component(s) form the bottleneck. An important obser-

vation is that the performance of a system often is characterized by unexpected

combinations of performance counter values, rather than following simple rules

of thumb [Cohen et al., 2004]. Therefore, we cannot simply detect a bottleneck

component using a threshold for one performance counter. It is our expectation

that throughout a PIO, we can detect clusters of performance counter values which

point us in the direction of the bottleneck component(s).

Performance analysis is usually done on high-dimensional data, i.e., many per-

formance counters, and analysis of this data is not trivial. In addition, understand-

ing the results of automated analysis is often difficult. Therefore, we propose to

use visualization as a foundation for our PIO analysis approach. The requirements

of such a visualization technique are:

• It must allow easy detection of clusters of performance counters

• It must be capable of displaying high-dimensional data

A visualization technique which satisfies these requirements is the heat map

[Wilkinson and Friendly, 2009]. Figure 3.3 depicts an example of a heat map,

which could assist during performance analysis. The heat map displays data for

two performance counters (CPU (CPU utilization) and MEM (memory usage)5)

monitored on five servers (Server1 – Server5). In this heat map, darker squares

5Note that this heat map is an example. It does not necessarily reflect real situations.

40 Chapter 3. Performance Optimization of Deployed SaaS Applications

Figure 3.3: Rule Coverage Heat Map

mean that there is a stronger indication that the component on which this perfor-

mance counter was monitored forms a bottleneck. In Figure 3.3, it is easy to see

that server Server2 and performance counter MEM on server Server5 require deeper

investigation. In addition, a heat map is capable of displaying high-dimensional

data because every performance counter is represented by one row in the heat

map. As the rows do not overlap, the visualization is still clear for high-dimensional

data.

The Rule Coverage Matrix

The heat map in Figure 3.3 is a direct visualization of the rule coverage matrix

depicted by Table 3.1. The rule coverage matrix contains information which helps

us detect clusters of performance counters causing a PIO. In the remainder of this

paragraph we will explain how association rules help us to generate this matrix.

Table 3.1: Rule Coverage Matrix for Figure 3.3

t =0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1PC1 0 1
S1PC2 0 0 1 2 3 2 1 0 1 2 1 0 0 0 0 0 0 0 0 0 0
S2PC1 0 0 1 2 3 4 5 6 7 6 7 8 9 8 7 6 5 6 5 4 3
S2PC2 0 0 1 2 3 4 5 6 7 6 7 8 9 8 7 6 5 6 5 4 3
S3PC1 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 3
S3PC2 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2
S4PC1 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 6 5 4 3 2
S4PC2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 2
S5PC1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
S5PC2 0 0 1 2 3 4 5 6 7 8 9 10 11 10 9 8 7 8 7 8 9

Association Ruleset Generation

During the association ruleset generation (or training) phase, we collect and analyze

logged actions and performance data of a system and build a set of association

rules. In this section, we describe how to build such a set of rules. An example

association rule could be:

Server1_CPU ≥ 80% & Server1_MEM ≥ 50% → HIGH

3.2. Analyzing Performance Improvement Opportunities 41

This rule signals that during the training phase we observed that on Server1 if the

CPU is used at 80% or more and the memory is used for at least 50% there was a

significant slowdown in the system, i.e., the SARATIO was HIGH.

To generate such association rules, we monitor the performance counters and

log all actions during a training period. The set of interesting performance counters

is different for different systems and different applications. Therefore, we advise

to monitor a large set of performance counters initially, and to narrow down the

set to monitor after generating the association rules later. After this, we calculate

the SARATIO for every time frame in the action log and use this together with the

monitored performance counter data as input for the association rule generation

algorithm. The result of this will be association rules that will take performance

counter values as input and output SARATIO classifications. In this way, we bridge

the low level performance counters to a SARATIO classification. This allows us to

monitor the performance counters and then use them for (a) PIO detection and

(b) PIO analysis.

Rule Coverage Matrix Generation

Our approach for rule coverage matrix generation uses a matrix m with one row

for each performance counter and one column for every time t we receive a mea-

surement. This matrix contains the raw values monitored for each counter. Be-

cause performance analysis is difficult to do on raw performance counter values,

we maintain a so-called rule coverage matrix mrcm to assist during performance

analysis. The rows of this matrix contain the performance counters, the columns

depict measurements of performance counters. Every measurement contains all

performance counter values monitored in a certain time interval. The first column,

representing the first measurement is initialized to 0. Each time a new measure-

ment is received, the last column of mrcm is copied and the following algorithm is

applied:

• Increase mi, j
rcm

by 1 if performance counter i is covered by a HIGH rule at

measurement j.

• Leave mi, j
rcm

equal to mi, j−1 for a M ED rule

• Decrease mi, j
rcm

by 1 if performance counter i is covered by a LOW rule at

measurement j, with a minimum of 0

We consider the M ED class a ‘buffer-class’ between the HIGH and LOW class.

A SARATIO classification which falls into the M ED class usually indicates that the

system is moving from a LOW to HIGH state or vice versa. Therefore, we wait

with adjusting the rule coverage matrix until either the LOW or HIGH state is

reached. Hence, we do not change the values in m for a M ED rule.

Note that the original ‘raw’ values of the performance counters in m are left

untouched in this process. We update the value of every mi, j
rcm

only once for every

42 Chapter 3. Performance Optimization of Deployed SaaS Applications

Figure 3.4: Heat map for the rule coverage matrix depicted by Table 3.3

measurement, even though multiple covering rules may contain the same perfor-

mance counter.

The rationale behind building the rule coverage matrix this way is the follow-

ing:

1. The ruleset describes all known cases of when the system was performing

slowly.

2. We expect all measurements made during a PIO to be covered by the same,

or similar rules when they are classified. The reason for this is that we ex-

pect that abnormal values of (combinations of) performance counters will be

exhibited for a longer period of time, i.e., throughout the PIO.

3. When entering this into the rule coverage matrix as described, higher values

in mrcm will appear because these values will be increased for performance

counters which occur in adjacent measurements.

4. Eventually, clusters of higher values in mrcm for performance counters for

specific components will appear.

5. These clusters can be used to do performance maintenance, e.g., by pinpoint-

ing a bottleneck component.

The following example illustrates this. Figure 3.3 shows the resulting mrcm af-

ter applying our approach to the measurements and ruleset of Table 3.2 for a sys-

tem consisting of two servers Server1 and Server2, which are monitored through

three performance counters (Server1_CPU, Server1_MEM and Server2_CPU). The

first column depicts the situation after the measurement done at t = 0. This mea-

surement fires rule 0, which does not include any performance counters, leaving

all values in the rule coverage matrix untouched. The measurement made at t = 1

fires rule 3, hence increasing only the value for Server1_CPU. Continuing this pro-

cess results in the matrix depicted by Figure 3.3.

Figure 3.4 shows the heat map of this matrix. In our simple example we can

see a cluster of dark coloured performance counters at server Server1, indicating

this server may be a bottleneck.

As association rule learning is a form of supervised learning, it is possible that

the generated association ruleset does not cover all PIOs. This is inherent to the

3.3. Implementation 43

Table 3.2: Sample ruleset and performance measurements

Sample association ruleset Sample measurements
1 Server1_CPU>80 & Server2_CPU<60→ HIGH t Server1_CPU Server1_MEM Server2_CPU
2 Server1_CPU>70 & Server1_MEM>70→ HIGH 0 40 60 80
3 Server1_CPU>90→ HIGH 1 95 60 80
4 Server1_MEM<30→ M ED 2 98 80 80
5 else→ LOW 3 98 95 55

4 98 80 80
5 40 45 80

Table 3.3: Coverage matrix for Table 3.2

0 1 2 3 4 5

Server1_CPU 0 1 2 3 4 4
Server1_MEM 0 0 1 2 3 3
Server2_CPU 0 0 0 1 0 0

covered by rules # 5 3 2,3 1,2,3 2,3 5

characteristics of supervised learning, as such learning algorithms generate classi-

fiers which are specialized at detecting cases that have occurred during the training

phase. In future work, we will investigate how to improve the quality of the gen-

erated association rule set.

In the next section we will discuss the implementation of our approach.

3.3 Implementation
Figure 3.5 depicts all the steps required for the implementation of our approach.

In this section, we will explain every step taken.

3.3.1 Training Phase

During the training phase (see Section 3.2.1) the association rules used for PIO

analysis are generated. First, we collect the required data and calculate the SARA-

TIO for every time frame. Then, we generate the association ruleset.

Data Collection

We log all actions in the system, including their response time and the ID of the

user that made them, for a period of time (step 1a in Figure 3.5). In parallel, we

make low-level system measurements at a defined interval t (step 1b). This results

in the following log files:

• A log file ApplicationLog containing the (1) date, (2) action, (3) respon-

seTime and (4) userID (if existent) for every action made to the application

44 Chapter 3. Performance Optimization of Deployed SaaS Applications

Training Phase

Data Collection

1a. ApplicationLog
<date, action,

responsetime, userID>

Association rulesets RULESLO & RULESMH

Data Preparation

3. Calculate
SAratio for all
time intervals

4. Label performance
measurements with
LOW, MED or HIGH

2. Classify
actions as
SLOW or
NORMAL

Learning

5. Generate
association

rules
1b. PerformanceLog

<date, measurement>

Analysis Phase
6. Monitor new
performance
measurement

7. Classify
measurement

Training phase output

8. Update rule coverage matrix Analysis of bottleneck
components

PIO Analysis Result

Figure 3.5: Steps of our approach for analyzing PIOs

• A log file PerformanceLog containing (1) low-level system performance

measurements and the (2) date at which they were made

In the rest of this chapter we will assume the ApplicationLog contains re-

quests made to the application (i.e., the web server log — records will have the

format date, page, responseTime, userID).

Data Preparation

After collecting the data, we classify all actions in the ApplicationLog as slow or

normal (step 2) and calculate the SARATIOt per time interval t as described in Sec-

tion 3.1.2 (step 3). We label all low-level measurements in the PerformanceLog
with their corresponding load classification (step 4).

Learning

The final step of the training phase is to apply the association rule learning algo-

rithm to the labeled data (step 5). Because the LOW class is much larger than the

M ED and HIGH classes, we generate a random subset of the LOW class, which

is approximately equal in size to the number of M ED plus the number of HIGH

elements. This helps us to deal with the problem of overfitting [Witten and Frank,

2005], and improves the classification result as the result will not be biased to-

wards the LOW class anymore.

From experimentation we know that association rule learning algorithms gen-

erate bad performing association rules for this type of data when trying to generate

rules for the LOW , M ED and HIGH classes in one run. Therefore, we run the

3.4. Experimental Setup 45

learning algorithm twice on different parts of the dataset to improve the classifica-

tion.

We combine the M ED and HIGH classes into the temporary OT HER class and

use the random subset of the LOW class. We then run the rule learning algorithm

twice:

• For separating the LOW and OT HER classes→ RU LESLO

• For separating the M ED and HIGH classes→ RU LESMH

The final results of the training phase are the association rulesets RU LESLO and

RU LESMH .

3.3.2 Analysis Phase

During the analysis phase, unlabeled low-level measurements are monitored (step

6) and classified into one of the load classes LOW , M ED and HIGH using the rule-

sets. First, the measurement is classified into the LOW or OT HER class using the

RU LESLO ruleset. When it is classified into the OT HER class, it is classified again

using the RU LESMH ruleset to decide whether it belongs to the M ED or HIGH

class (step 7). After the classification is done, the rule coverage matrix is updated

(step 8). Finally, this matrix can be used to analyze performance improvement

opportunities.

3.4 Experimental Setup
The goal of our evaluation is to show that our approach is capable of fulfilling the

two requirements posed in Section 3.1, namely detecting the time frames during

which the system performed relatively slow and detecting the bottleneck compo-

nents. To do this evaluation, we propose two case studies. In case study I (Sec-

tion 3.5), we will show that the SARATIO is an accurate metric for detecting time

frames during which the system was slow. In addition, in this case study we will

show that our technique is capable of estimating the SARATIO classifications using

performance counter measurements. In case study II (Section 3.6), we will use the

knowledge of a performance expert to manually verify the classification results of

our approach. This verification will show that our approach is capable of detecting

bottleneck components.

Hence, in these case studies we address the following research questions:

RQ2a-Eval1: Is the SARATIO an accurate metric for detecting the time

frames during which the system was slow? (Case study I)

RQ2a-Eval2: Is our technique for the estimation of SARATIO classifica-

tions using performance counter measurements accurate? (Case study I)

46 Chapter 3. Performance Optimization of Deployed SaaS Applications

RQ2a-Eval3: How well do our the results of our PIO analysis approach

correspond with the opinion of an expert? (Case study II)

In this section, the experimental setup of the case studies is presented.

3.4.1 Case Study Systems

We performed two case studies on SaaS systems: (1) on a widely-used benchmark

application running on one server (RUBiS [Cecchet et al., 2002]) and (2) on a real

industrial SaaS application running on multiple servers (Exact Online6).

RUBiS

RUBiS is an open source performance benchmark which exists of an auction site

and a workload generator for this site. The auction site is written in PHP and

uses MySQL as database server. The workload client is written in Java. We have

installed the auction site on one Ubuntu server, which means that the web and

database server are both on the same machine. The workload client was run from

a different computer running Windows 7.

Exact Online

Exact Online is an industrial multi-tenant SaaS application for online bookkeeping

with approximately 18,000 users7. Exact Online is developed by Exact, a Dutch-

based software company specializing in enterprise resource planning (ERP), cus-

tomer relationship management (CRM) and financial administration software. The

application currently runs on several web, application and database servers. It is

written in VB.NET and uses Microsoft SQL Server 2008.

3.4.2 Process

Training Phase The ApplicationLog and PerformanceLog are collected us-

ing the web server and OS-specific tools and are imported into a SQL database; all

steps in the data preparation phase are performed using a sequence of SQL queries.

The web and database servers used an upper bound limit for timeouts to ensure

all requests have a valid response time. The generation of the LOW, MED, HIGH

classes is done by custom implementation in Java. For the implementation of the

rule learning algorithm we have used the JRip class of the WEKA API [Hall et al.,

2009] with its default parameters, which is an implementation of the RIPPERk

algorithm [Cohen, 1995]. We used the JRip algorithm because it is a commonly

used association rule learning algorithm and experimentation showed that this al-

gorithm gives the best results for our datasets with respect to classification error

and speed.

6http://www.exactonline.nl
7In fact, there are about 10,000 users with 18,000 administrations, but for clarity we assume 1

user has 1 administration throughout this chapter.

3.5. Proof-of-Concept: Case Study I for SARatio Classification Estimation 47

Analysis Phase The steps performed during the analysis phase are implemented

in Java, resulting in a tool that can be used on newly monitored data. The rule

coverage matrix is generated with the help of the WEKA API. The visualizations

used for PIO analysis are generated using JFreeChart8 and JHeatChart9.

3.5 Proof-of-Concept: Case Study I for SARatio

Classification Estimation
Our PIO analysis approach relies on the rule coverage matrix. To build this matrix,

we use a combination of association rules and performance counters to estimate

SARATIO classifications. As a proof-of-concept, we have verified that this combina-

tion is indeed a solid foundation for estimating the SARATIO classification in the

following settings:

• On a simulated PIO in RUBiS

• On a real PIO in EOL

In this section, these proof-of-concept studies will be presented.

3.5.1 RUBiS

The goals of the RUBiS proof-of-concept were as follows:

• To show that our approach can closely estimate the SARATIO caused by syn-

thetically generated traffic

• To show that it is capable of dealing with problems on the client side, i.e.,

that it does not recognize client side problems as PIOs

In order to generate several traffic bursts, we have configured 3 RUBiS work-

load clients to run for 30 minutes in total. Figure 3.6 shows the number of hits per

second generated by the clients. The number of hits generated was chosen after

experimentation to reach a level where the computer running the client reached

an overloaded state. This level was reached around t = 800, causing a slowdown

on the clients which resulted in less traffic generated. Due to the implementation

of RUBiS which uses synchronous connections [Hashemian et al., 2012], i.e., the

client waits for a response from the server after sending a request, the response

times went up. Because Apache logs the time to serve the request, i.e., the time be-

tween receipt of the request by the server and receipt of the response by the client,

this overload situation also resulted in higher durations in the ApplicationLog.

8http://www.jfree.org/jfreechart/
9http://www.tc33.org/projects/jheatchart/

48 Chapter 3. Performance Optimization of Deployed SaaS Applications

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

hi
ts

t

Figure 3.6: Traffic generated for the RUBiS case study

However, this increase in response times is not caused by a server problem (i.e.,

noticeable from performance counter values), hence we expect our approach to

convert performance counter measurements at that time to low SARATIO values.

Training Phase

Data Collection Table 3.4 shows the set of performance counters monitored on

the server; we used Dstat10 to log them every second. Together with the Apache

access_log, we could now create the ApplicationLog and PerformanceLog SQL

databases. These databases have the same structure as those in the EOL proof-of-

concept so that the same queries could be used. Table 3.6 contains some statistics

about the collected data.

Data Preparation Because the applications in RUBiS perform equal actions for

all users, we did not calculate the mean and standard deviation per (application,

10http://dag.wieers.com/home-made/dstat/

Table 3.4: Monitored performance counters for RUBiS

CPU stats Memory stats
system, user, idle, wait used, buffers, cache, free
hardware & software interrupt Process stats

Paging stats runnable, uninterruptable, new
page in, page out IO request stats

Interrupt stats read requests, write requests
45, 46, 47 asynchronous IO

System stats Swap stats
interrupts, context switches used, free

File system stats File locks
open files, inodes posix, flock, read, write

IPC stats
message queue, semaphores
shared memory

3.5. Proof-of-Concept: Case Study I for SARatio Classification Estimation 49

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

95%85%

t

di
st
rib
ut
io
n(
S
A
ra
tio
)

Figure 3.7: Distribution of SARATIO for 30 minutes of RUBiS traffic

user)-tuple but per application instead. Table 3.8 shows the number of slow and

normal requests for these applications. Figure 3.7 shows the distribution of SARA-

TIO for the RUBiS case study, together with the 85th and 95th percentile.

Learning Performing the association rule learning algorithm resulted in a rule-

set RU LESLO of 6 rules and a ruleset RU LESMH of 2 rules. Table 3.5 shows the

generated rules.

Table 3.5: Association rules generated in the RUBiS proof-of-concept

RU LESLO

(mem/cach ≤ 2175963136) & (mem/used ≥ 1103503360) → OTHER
(mem/cach ≥ 1910624256) & (mem/buff ≤ 316026880) → OTHER
(mem/buff ≥ 316256256) & (mem/buff ≤ 316358656) & (system/int ≤ 6695)

& (dsk/read ≥ 118784) → OTHER
(mem/buff ≤ 316497920) & (system/int ≥ 7052) & (mem/used ≤ 1080979456) → OTHER
(mem/cach ≤ 2215194624) & (dsk/read ≤ 24576) → OTHER
else → LOW

RU LESMH

(filesystem/files ≤ 2336) → HIGH
else → MED

Analysis Phase

To validate our approach for the RUBiS case study we (1) calculated the INTEN-

SITY directly from the ApplicationLog using the SARATIO and (2) estimated the

INTENSITY using association rules. The rationale behind step 2 is that we need

to estimate the SARATIO classifications using association rules before we can esti-

mate the INTENSITY. If the estimated INTENSITY then matches with the INTENSITY

calculated during step 1, we have a validation that our approach for estimating

the SARATIO using performance counter measurements yields correct results for

50 Chapter 3. Performance Optimization of Deployed SaaS Applications

Figure 3.8: Real INTENSITY versus estimated INTENSITY

the RUBiS case. Because the association rules were generated from a subset of

the PerformanceLog as described in Section 3.3, part of the data to classify was

used as training data. We deliberately did this to include the data generated by

the overloaded client in the classification. Nonetheless, approximately 67% of the

data analyzed during the analysis phase was new. Figure 3.8 shows the graph of

the real and estimated INTENSITY
11.

Evaluation

The graphs for the real and estimated INTENSITY are nearly equal, except for one

peak. As expected, the real INTENSITY shows a peak around t = 800 due to in-

creased response times, caused by the synchronous connections, whereas the es-

timated INTENSITY does not. An interesting result of this is that while the real

INTENSITY will falsely detect a PIO, the estimated INTENSITY ignores this, which is

correct. The peak around t = 200 can be explained by the fact that the workload

client executes certain heavy search queries for the first time. After this the re-

sults are cached, resulting in less load on the server. The INTENSITY estimation was

capable of detecting this.

Revisiting the goals stated in the beginning of this section, the RUBiS proof-of-

concept shows our approach is capable of estimating the SARATIO classifications

well, as demonstrated by Figure 3.8. In fact, our approach is more precise than the

approach that relies on the average response time directly, as our approach did not

classify the overloaded client as a server slowdown.

Another interesting observation is that our approach was capable of detect-

ing several known weaknesses in the RUBiS implementation [Pugh and Spacco,

2004], namely the fact that it uses synchronous connections for the communica-

tion between the client and the server, and the slow caching of the search queries

at the beginning of the benchmark.

11This graph is best viewed in colour.

3.5. Proof-of-Concept: Case Study I for SARatio Classification Estimation 51

3.5.2 Exact Online

The goals of the Exact Online proof-of-concept were as follows:

• To show that our approach can closely estimate the SARATIO caused by real

traffic

• To show that our approach can detect PIOs in a period different than the

period used to train the association rules

• To show that we can estimate the SARATIO during unexpected events

We have analyzed 64 days of data which was monitored during the execution

of Exact Online. During this period, a performance incident was caused by a bug

in a product update. This bug caused log files to be locked longer than necessary,

which resulted in bad performance.

As a proof-of-concept, we:

• Generated the association rulesets using data which was recorded 3 months

before the incident, to show that we do not need to constantly retrain our

rulesets

• Estimated the SARATIO classifications during this incident using performance

counters, to show that our approach is capable of estimating the SARATIO

during unexpected events

Training Phase

Data Collection Exact Online performance data is stored for a period of 64 days

in the form of logged performance counter values. Table 3.7 depicts the subset

of performance counters which are being logged. This list was selected by Exact

performance experts, who had at least 7 years of experience with performance

maintenance, and contains the performance counters most commonly used during

performance analysis. Therefore, we limited our case study to the analysis of these

performance counters recorded during 64 days. Table 3.6 shows some details about

the collected data.

The ApplicationLog was retrieved by selecting the required elements from

the Internet Information Server log. The performance measurements were logged

into a database called PerformanceLog by a service which collects performance

counter values at set intervals on all servers. These intervals were configured by

company-experts, based on their experience with the stability of the counters, and

were in the range from 30 seconds to 10 minutes, depending on the counter. The

configured interval for every counter is depicted by Table 3.7. To consolidate to-

gether the performance counters monitored at varying frequencies, we maintain

an array with the last value for each monitored performance counter. Every time a

52 Chapter 3. Performance Optimization of Deployed SaaS Applications

new value is monitored, we replace the value for that performance counter in the

array. The complete array is read at a fixed interval and used to get the SARATIO

classification. This mechanism is used as well to deal with missing performance

counter values, e.g., due to lost network packets.

Data Preparation To verify that the response times of each application are ap-

proximately normally distributed per user, we have inspected the histogram of 10

Table 3.6: Details about the case studies

Exact Online RUBiS

ApplicationLog
actions 88900022 853769
applications 1067 33
users 17237 N\A
(application, user)-tuples 813734 N\A
monitoring period 64 days 30 minutes

PerformanceLog
measurements 182916 1760
performance counters 70 36
measurement interval 30s 1s

Table 3.7: Monitored performance counters for EOL (measurement interval)

Virtual Domain Controller 1 & 2, Staging Server
Processor\%Processor Time (60s)

Service 1 & 2
Memory\Available Mbytes (300s) Process\%Processor Time (30s)
Processor\%Processor Time (60s) System\Processor Queue Length (60s)

SQL Cluster
LogicalDisk\Avg. Disk Bytes/Read (30s) LogicalDisk\Avg. Disk Read Queue Length (30s)
LogicalDisk\Avg. Disk sec/Read (30s) LogicalDisk\Avg. Disk sec/Write (30s)
LogicalDisk\Avg. Disk Write Queue Length (30s) LogicalDisk\Disk Reads/sec (30s)
LogicalDisk\Disk Writes/sec (30s) LogicalDisk\Split IO/sec (60s)
Memory\Available Mbytes (60s) Memory\Committed Bytes (300s)
Memory\Page Reads/sec (30s) Memory\Pages\sec (30s)
Paging File\%Usage (60s) Processor\%Processor Time (30s)
Buffer Manager\Lazy writes/sec (60s) Buffer Manager\Buffer cache hit ratio (120s)
Buffer Manager\Page life expectancy (60s) Databases\Transactions/sec (60s)
Latches\Average latch wait time (ms) (30s) Latches\Latch Waits/sec (30s)
Locks\Lock Waits/sec (120s) Memory Manager\Memory grants pending (60s)
General Statistics\User Connections (60s) SQL Statistics\Batch requests/sec (120s)
SQL Statistics\SQL compilations/sec (120s) virtual\vfs_avg_read_ms (60s)

Web server 1 & 2
ASP.NET\Requests Current (60s) ASP.NET\Requests Queued (60s)
ASP.NET Apps\Req. Bytes In Total (120s) ASP.NET Apps\Req. Bytes Out Total (120s)
ASP.NET Apps\Req. in App Queue (60s) ASP.NET Apps\Requests Total (60s)
ASP.NET Apps\Req./sec (120s) Memory\Available Mbytes (120s)
Process\%Processor Time (30s) Process\Handle Count (60s)
Process\Thread Count (60s) Processor\%Processor Time (60s)

3.5. Proof-of-Concept: Case Study I for SARatio Classification Estimation 53

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 104

85%95%

SAratio

di
st

rib
ut

io
n(

S
A

ra
tio

)

Figure 3.9: Distribution of SARATIO for 64 days of EOL traffic

(application, user)-tuples which were ranked in the top 30 of tuples with the high-

est number of actions. The tuples were selected in such a way that there was a

variety of users and applications. This inspection showed that the response times

follow the lognormal distribution, which is consistent with the results found for

think times (equivalent to response times) by Fuchs and Jackson [1969]. Table 3.8

displays the percentage of actions in the NORMAL and SLOW classes for each

sample based on the logarithm of the response time. As shown in the table, the

percentage of actions in the classes are close to what one would expect when as-

suming the (log)normal distribution. The deviations are caused by the fact that

these response times were monitored in a real environment, rather than a perfect

environment without external influences [Dekking et al., 2005].

Figure 3.9 shows the distribution of SARATIO in the EOL case study, together

with the 85th and 95th percentile.

Table 3.8: #actions per class for the selected samples

Sample # % NORMAL % SLOW # actions

EOL1 85.82 14.18 2736563
EOL2 89.64 10.36 1450835
EOL3 92.74 7.26 599470
EOL4 89.02 10.98 351494
EOL5 85.29 14.71 270268
EOL6 78.72 21.28 211481
EOL7 82.77 17.23 161594
EOL8 91.33 8.67 144050
EOL9 84.31 15.59 112867
EOL10 91.46 8.54 97793

RUBIS1 85.32 14.68 35651
RUBIS2 84.60 15.40 23262
RUBIS3 85.80 14.20 19842

normal distribution 84.2 15.8

54 Chapter 3. Performance Optimization of Deployed SaaS Applications

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

incident

t

in
te
ns
ity

Figure 3.10: INTENSITY graph of the EOL incident based on estimated SARATIO

classifications

Learning Running the association rule learning algorithm on the EOL dataset

resulted in a ruleset RU LESLO of 27 rules and a ruleset RU LESMH of 29 rules12.

Analysis Phase

We analyzed an incident that happened 3 months after the training data was

recorded, which makes it a strong proof-of-concept as the training data and in-

cident data are not biased towards each other. To validate the rulesets, we have

estimated the SARATIO classifications using performance counter measurements.

Figure 3.10 graphs the INTENSITY calculated after classifying all measurements in

the PerformanceLog of the 3 days surrounding the incident. The bug was intro-

duced around t = 3400 and solved around t = 4900.

Evaluation

Figure 3.10 shows a high peak from approximately t = 4100 to t = 4900, which

indicates our approach is capable of estimating the SARATIO during unexpected

events. Note that the performance anomaly was detected later than it was intro-

duced because at the time of introduction there were very few users using the

application which left the anomaly temporarily unexposed. The other, lower peaks

were caused by heavier system load during administrative tasks such as database

maintenance, which are performed at night for EOL.

As a comparison, Figure 3.11 shows the performance anomaly criterium used

by the EOL team. In this criterium, an anomaly is reported when the average

response time in an hour exceeds 450ms. Figure 3.11 shows that shortly after the

start of the incident an anomaly was reported, however:

12Due to space limitations, we did not include the rules in this chapter, but the complete set

of rules can be viewed at http://www.st.ewi.tudelft.nl/~corpaul/data/assocrules_
eol.txt.

3.6. Case Study II: Evaluation of Exact Online Analysis Results 55

Figure 3.11: Current EOL performance anomaly criterium during incident

• This report was not handled until 4 hours later when working hours started.

• This report was not considered an anomaly because the average response

time dropped to an acceptable value after the report, i.e., the report was con-

sidered an isolated measurement due to long-running administrative tasks.

At t = 36 another anomaly report was sent, which was investigated and lead to

a solution around t = 40. However, this was also an isolated measurement which

lead to confusion for the performance engineers.

Using our approach, the performance engineers would have had a stronger

indication that a performance anomaly was occurring as it shows a continuous

performance problem during the incident. In addition, our approach would have

reported the anomaly between t = 34 and t = 35, which is 1-2 hours earlier than

the criterium used by the EOL team.

Revisiting the goals presented earlier in this section, the EOL case study shows

that the SARATIO can be estimated closely by the approach as we were able to

identify ‘normal’ peaks and an incidental peak in the INTENSITY graph easily, even

for data which was monitored 3 months after the data with which the rulesets were

trained.

3.6 Case Study II: Evaluation of Exact Online Anal-

ysis Results
In this section, we present our case study in which we did an evaluation of PIO

analysis results of our approach on industrial data. We address the following re-

search question:

• How well do the results of our PIO analysis approach correspond with the

opinion of an expert?

56 Chapter 3. Performance Optimization of Deployed SaaS Applications

3.6.1 Case Study Description

Evaluating the precision of our PIO analysis approach is not trivial. Due to the

nature of our approach, which is to assist experts in their manual analysis, the

analysis results must be evaluated manually as well.

We have analyzed 66 days of data monitored during normal execution of Ex-

act Online. During this period, 271 performance counters were monitored every

minute on a total of 18 servers. These performance counters were collected and

stored in a centralized performance logging database. Note that the dataset was

different from the one used in Section 3.5.2. Because the server setup for EOL

changed and became more complex since the case study described in that section,

we decided to analyze the data for the new setup as we expected this to yield more

interesting results.

Over the period of 66 days, 236 PIOs were located in total using our approach.

Because manual analysis with the help of an expert is time-consuming and expen-

sive, we verified only a random sample of this total set. In addition, a false negative

analysis (i.e., missed PIOs) is difficult as we do not have a complete list of true PIOs

for real data. Therefore, we extended our list of detected PIOs with overload regis-

trations made using the overload detection rule currently used by engineers of EOL

(see Section 3.5.2). This rule will register any hour during which the average re-

sponse time was larger than 450ms as a system overload (which is a form of a PIO).

We manually verified a random sample of these overload registrations as well, with

the goal of getting an indication of the number of false negatives of our approach.

Table 3.9 depicts the number of detected PIOs and overload registrations and the

size of the random sample.

Table 3.9: Random sample description

Our approach

Total # PIOs 236
random sample 12 (5.1%)

Average duration per hour

Total # registrations 182
random sample 5 (2.8%)

3.6.2 Training Phase

The training phase for this case study was equal to the process described in Sec-

tion 3.5.2, with a different data set for the training period. For this case study, the

training data was monitored one week before the analyzed data. The result of the

training phase are rulesets RU LESLO and RU LESMH depicted by Table 3.10.

3.6. Case Study II: Evaluation of Exact Online Analysis Results 57

Table 3.10: Association rules generated during the random sample verification case

study

RU LESLO

(DBclus1/Processor/% Processor Time/_Total ≥ 13.02883)
& (DBclus1/SQLServer:Latches/Latch Waits/sec/null ≥ 598.898376) → OTHER

(DBclus1/Processor/% Processor Time/_Total ≥ 13.378229)
& (DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 1859) → OTHER

(ws2/Processor/% Processor Time/_Total ≥ 11.026497)
& (ws2/.NET CLR Exceptions/# of Exceps Thrown / sec/_Global_ ≥ 8.948925)
& (ws6/Process/Handle Count/_Total ≤ 21258) → OTHER

(DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 4357)
& (DBclus2/Memory/Available MBytes/null ≤ 5177)
& (ws5/Processor/% Processor Time/_Total ≥ 2.104228) → OTHER

(DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 4088)
& (DBclus1/SQLServer:Latches/Average Latch Wait Time (ms)/null ≥ 1.02296)
& (DBclus2/LogicalDisk/Avg. Disk sec/Write/T: ≥ 0.000543) → OTHER

(DBclus1/LogicalDisk/Disk Reads/sec/W: ≥ 20.217216)
& (IDws1/Paging File/% Usage/_Total ≥ 1.238918)
& (ws3/ASP.NET Apps v4.0.30319/Requests Timed Out/__Total__ ≥ 1) → OTHER

(ws6/ASP.NET Apps v4.0.30319/Requests Timed Out/__Total__ ≤ 0)
& (ws4/Processor/% Processor Time/_Total ≥ 13.349845)
& (ws1/.NET CLR Exceptions/# of Exceps Thrown / sec/_Global_ ≤ 2.83327)
& (DBclus1/LogicalDisk/Avg. Disk sec/Write/E: ≥ 0.000446) → OTHER

else → LOW

RU LESMH

(ws3/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__ ≤ 86408)
& (DBclus2/LogicalDisk/Avg. Disk sec/Read/W: ≥ 0.000932)
& (IDws1/LogicalDisk/Avg. Disk sec/Write/_Total ≥ 0.001162) → HIGH

(ws3/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__ ≤ 70541)
& (DBclus2/LogicalDisk/Avg. Disk sec/Write/W: ≥ 0.0005)
& (DBclus2/Memory/Page Reads/sec/null ≥ 0.046007) → HIGH

(ws4/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__ ≤ 81291)
& (DBclus1/LogicalDisk/Disk Reads/sec/J: ≥ 0.076917)
& (DBclus1/SQLServer:Buffer Manager/Page life expectancy/null ≤ 131)
& (contr1/Server/Bytes Total/sec/null ≤ 204.351318) → HIGH

(ws1/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__ ≤ 18344)
& (ws2/ASP.NET Applications/Request Bytes In Total/__Total__ ≤ 7161)
& (ws1/Server/Bytes Total/sec/null ≤ 2113.22168) → HIGH

(ws6/ASP.NET Apps v4.0.30319/Request Bytes Out Total/__Total__ ≤ 629862)
& (IDws2/Memory/Pool Paged Bytes/null ≥ 140587008)
& (IDws2/Memory/% Committed Bytes In Use/null ≤ 19.593651) → HIGH

else → MED

58 Chapter 3. Performance Optimization of Deployed SaaS Applications

3.6.3 Analysis Phase

During the analysis phase, 236 PIOs were detected using our approach. For every

PIO, the rule coverage matrix was saved into the database so that the covered rules

could be manually verified later. In addition, 182 hours were marked as overload

hours using the overload detection rule as described earlier in this section. To

generate the random sample, we randomly selected 12 starting points for PIOs

from the set of PIOs detected using our approach and 5 hours from the set of

overload hours from the database.

3.6.4 Evaluation

The analysis results were evaluated by a performance expert from Exact who has

10 years of experience in performance analysis and deep knowledge of the EOL

infrastructure. In this evaluation the expert focused on evaluating (a) whether the

detected PIO was actually a real PIO and (b) whether the rule coverage matrix

points to the bottleneck component. To verify whether the rule coverage matrix

points to the bottleneck component, the expert used a number of performance re-

ports generated by EOL. These reports contained traditional performance metrics.

These reports exhibited the following information for all servers in the system:

• Configuration details for all performance counters (interval, min./max. mea-

surements per hour)

• Details about background services (page views, total duration, query dura-

tion, average duration)

• Details about the number of performance counter values monitored versus

the number of expected values based on the configuration of the counters

• Details about which servers have the service calls and queries that take the

longest to execute

• Details about the running processes (overlap and duration)

• Details per application (duration, query duration)

• Histograms for all performance counters of the average value per hour

• Page views per hour

• Average duration per hour

• Overview of running processes and applications at a certain time

All these reports can be tailored to show only data for a certain period. To

decide whether a detected PIO was a real PIO, the expert inspected the reports

3.6. Case Study II: Evaluation of Exact Online Analysis Results 59

for variations in these traditional metrics. This process is the usual process for

performance analysis at Exact. During the evaluation, the expert:

• Analyzed the performance data monitored around the time of the detected

PIO

• Made a manual diagnosis of the system at that time

• Decided whether the detected PIO was actually a PIO

• Compared his diagnosis with the diagnosis made by our approach

• Graded the diagnosis made by our approach with:

– 0 - (almost) completely wrong

– 0.5 - partly points in the right direction and/or incomplete

– 1 - (almost) completely correct

Table 3.11 and 3.12 show two examples of this process.

Table 3.11: Example PIO evaluation 1

PIO ID: 1 Date: 2012-02-26 01:47:56 Criterium used: Rule Coverage

Automated diagnosis:
DBclus2/LogicalDisk/Avg. Disk sec/Write/W:
DBclus2/Memory/Page Reads/sec/null
ws6/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__

Manual diagnosis:
Page reads/sec high on DBclus2. Cause: server restarted→ cache empty so needs to be filled up.

Verification:
Is real PIO: Yes Diagnosis correctness: 0.5
The automated diagnosis is correct but it should point to web servers ws1-ws6 as these are all
affected by the restart. Therefore, the diagnosis is incomplete.

This process was executed for all 17 (12 from our approach and 5 from the

average response time rule) detected PIOs in the random sample. Table 3.13 shows

the manual diagnosis, criterium used (rule coverage (RC) or average response time

(AVG)) and diagnosis correctness for the complete sample. Note that we did not

evaluate the diagnosis quality for ‘PIOs’ detected with the AVG rule as this rule does

not give us a diagnosis. In this case, the ‘Detected PIO?’ column contains whether

our approach detected a PIO during this hour.

During the evaluation we noticed that large portions of the detected PIOs were

caused by the same events. The most significant event was running the scheduled

background jobs during the night. When these background jobs were originally de-

signed, they finished fast due to the smaller database size. Now that the database

60 Chapter 3. Performance Optimization of Deployed SaaS Applications

Table 3.12: Example PIO evaluation 2

PIO ID: 2 Date: 2012-02-26 02:02:57 Criterium used: Rule Coverage

Automated diagnosis:
DBclus2/LogicalDisk/Avg. Disk sec/Read/W:
IDws2/LogicalDisk/Avg. Disk sec/Write/_Total
IDws2/Memory/% Committed Bytes in Use/null
IDws2/Memory/Pool Paged Bytes/null
ws6/ASP.NET Apps v4.0.30319/Request Bytes Out Total/__Total__
ws6/ASP.NET Apps v4.0.30319/Request Bytes In Total/__Total__

Manual diagnosis:
Several heavy background jobs which were originally scheduled apart from each other are taking
much longer now because of database growth, causing them to run at the same time.

Verification:
Is real PIO: Yes Diagnosis correctness: 1
The diagnosis is correct as these background jobs are started from web server ws6 and require the
identification web server IDws2 and database cluster DBclus2 to run.

Table 3.13: Random sample evaluation

ID Criterium Manual diagnosis Is PIO? Diagnose
quality

Detected
PIO?

1 RC Page reads/sec high on DBclus2. Cause: server
restarted→ cache empty so needs to be filled up.

Yes 0.5 -

2 RC Several heavy background jobs which were origi-
nally scheduled apart from each other are taking
much longer now because of database growth, caus-
ing them to run at the same time.

Yes 1 -

3 AVG No PIO. No - No
4 RC Heavy background job. Yes 1 -
5 AVG Yes, a short hiccup due to a load balancer restart

causing traffic to be unbalanced.
Yes - Yes

6 RC Heavy background job Yes 1 -
7 AVG No PIO. No - No
8 AVG Combination of 2 and 6. Yes Yes
9 RC Same as 8, but detected by PIO analysis instead of

average duration. Diagnosis helps to point correctly
to the background jobs but misses a problem on web
server ws5 caused by the background jobs.

Yes 0.5 -

10 RC Same as 9 Yes 0.5 -
11 AVG Same as 3 No - No
12 RC Same as 9 Yes 0.5 -
13 RC Same as 9 Yes 0.5 -
14 RC Same as 9 Yes 0.5 -
15 RC No PIO. No 0 -
16 RC Problem with a background job which could not con-

nect to an external service, causing it to timeout.
Yes 1 -

17 RC No PIO. No 0 -

3.6. Case Study II: Evaluation of Exact Online Analysis Results 61

has grown, these tasks take longer to finish and sometimes their execution over-

laps. This causes a slowdown in the system.

Table 3.14 shows a summary of the results of this case study. The first con-

clusion we can draw from this table is that our approach has high precision for

detecting PIOs (83%). The number of false positives detected by our approach

is low, and in fact, it is lower than the number of false positives detected by the

average response time rule. In addition, our approach gives a more detailed time

frame for the PIO. An example of this is PIO 5 in Table 3.13 which lasted for ap-

proximately 10 minutes. Because the average response time rule notifies per hour,

the indication of the time frame is less precise than ours because we notify per

minute. However, it is important to realize that simply using the average response

time per minute does not work, because this will lead to a high number of false

positives. This is because the long duration of some applications (e.g., report gen-

eration) will be emphasized when one minute is used as a time frame, resulting in

the detection of a PIO.

In most cases the automated diagnosis using the rule coverage matrix was at

least partly correct. In most of these cases, the diagnosis was incomplete. An

example of this is PIO 9. In this case, the diagnosis did assist in selecting the

background jobs. However, it failed to point out that the CPU usage on web server

ws5 was at 100% for approximately 15 minutes, causing some of the background

jobs to slow down. This was noticed by graphing the raw values for the CPU usage

on the web servers around the time of the PIO.

After the evaluation, the expert indicated that our PIO analysis approach was

effective in assisting during the performance analysis process. Although the expert

had access to much information without our approach using the reports, the main

problem was that he did not know where to start with the investigation. Our

approach helped in providing this starting point.

Table 3.14: Summary results case study

PIO analysis approach
PIOs analyzed: 12

Real PIOs (precision): 10 (83%)
Diagnosis quality: 1: 4/12, 0.5: 6/12, 0: 2/12

Average response time rule
Overload hours analyzed: 5
Real overload (precision): 2 (40%)

Correct classification by PIO analysis approach: 5 (100%)

62 Chapter 3. Performance Optimization of Deployed SaaS Applications

3.7 Discussion

3.7.1 The Requirements Revisited

Requirement 1: Detect the time frames during which the system performed rela-

tively slow.

In our evaluation in Section 3.6 we have shown that our approach is capable of

detecting PIOs with a high precision. Initially, we aimed at detecting the start and

end time of a PIO. In practice however, together with the expert we found that the

end time of a PIO is difficult to determine. The reason for this becomes clear from

Figure 3.2, in which there are 4 peaks around t = 400. The question is whether

these 4 peaks represent 1 or 4 PIOs. In addition, during the case study we noticed

that the expert intuitively combined PIOs that lie closely together in his investi-

gation, rendering this question unimportant. Therefore, we decided to use only

the PIO starting time. We will investigate whether it is possible to automatically

combine PIOs in future work.

Requirement 2: Detect the component(s) that is/are the bottleneck component(s).

In our evaluation in Section 3.6 we have shown that our approach is successful

in diagnosing a bottleneck in many cases. It was especially successful in detecting

problems with recurring tasks, due to the fact that it is easy to find patterns in PIO

times in this case. Especially in combination with information from the application

log (e.g., running applications and/or tasks during the PIO), the expert was capable

of completing his investigation for performance optimization.

However, it appears difficult to diagnose several bottlenecks at the same time.

The main cause for this is the quality of the association rules. These rules should

exhibit as much information about performance counters as possible. Because the

rule generation is automated, it is possible that rulesets for some training periods

are not as detailed as desired. Therefore, a possibility for improving the quality of

the rulesets is to use several training periods and combine the resulting rulesets.

This possibility will be addressed in detail in future work.

3.7.2 Automatability

All steps in our approach are automated. An interesting problem is when to update

the association rules. In the EOL proof-of-concept we have shown that 3 months

after training, our rulesets were still able to estimate the SARATIO, which leads to

the expectation that the rules do not need regeneration often. An example of a

situation in which the rules need to be regenerated is after removing or adding a

new server to the system. Our current solution is to retrain all the rules with the

new set of performance counters.

In our current case studies the length of the period during which training data

was monitored was based on the availability of the data. In future work we will

address the challenge of finding the ideal training period.

3.7. Discussion 63

3.7.3 Scalability

Our approach is lightweight and transparent; it requires no modification of appli-

cation code as measurements are done at the operating system level. In addition,

we designed our approach to not require knowledge about the structure of the

system. In the future, we will do more research on different systems to verify this.

The PerformanceLog and ApplicationLog analyzed during the case study

in Section 3.6 contained respectively 28 million and 135 million records. Prepar-

ing the data and training the association rules took approximately 10 minutes on

a standard desktop computer. Classification of a new measurement took less than

one second, which makes the approach scalable as the data preparation and train-

ing phase are executed rarely. For the RUBiS case study, the data preparation and

training phase took two minutes.

The data collection was done by default by the EOL application. Therefore,

we cannot say anything about the exact overhead it causes. We do know that the

amount of overhead is dependent on the frequency with which the performance

counters are read and stored.

The case study was done on a system of 18 servers. Due to the low processing

times of the different phases of our approach, we expect it to scale well to large

environments. However, this should be evaluated in future work.

3.7.4 Limitations

A limitation of our approach is that all performance data must be collected in a

centralized location in order to process it, such as a database that is reachable

by all components. In ‘classical’ n-tier systems, such a database is usually easy to

implement as it already exists or can be created in the database tier. This may be

more challenging for systems without such a centralized location, such as cloud-

based systems or service chains. However, our approach should be able to fit such

systems, as long as enough data can be gathered.

Because our approach is based on supervised learning, it is more suitable for

detecting recurring problems than performance anomalies. In a production system

which exhibits anomalies during the training period, we will train a classifier which

is specialized in detecting situations which look like the anomalies seen during the

training period that caused the greatest slowdown. These anomalies may never (or

hardly) happen again (otherwise, they would not be anomalies). In a production

system which does not exhibit (dominant) anomalies during the training period,

we can get a better view on what needs structural change in order to optimize

the system. Therefore, a limitation of our approach is that we assume our system

has few (preferably none) performance problems/anomalies during the training

period. We do realize that this is hard to verify and that the classifier may require

retraining in case of anomalies during the training period. However, anomalies are

usually known by performance experts and/or system administrators after they

64 Chapter 3. Performance Optimization of Deployed SaaS Applications

took place. Therefore, while this assumption may be hard to ensure upfront, it is

easy to validate and fix when necessary by retraining the classifier.

3.7.5 Different Applications

An application which lies closely to our purpose of finding the moments when the

system performs relatively slow is anomaly detection. The difference between a

performance anomaly and a PIO is that the occurrence of an anomaly is inciden-

tal, while the occurrence of a PIO is structural. While our approach is capable

of detecting performance anomalies, it is important to realize that it is based on

supervised learning. Supervised learning has inherent limitations for anomaly de-

tection, since a classifier trained with supervision can only detect anomalies which

have been seen before or are similar to earlier events. The problem with anomalies

is that they often have not occurred before, making it difficult to detect using super-

vised training. Therefore, our approach is suitable for detecting some performance

anomalies but we expect a high number of false negatives.

Another interesting application of our approach is that it can be used, after

some extension, in regression testing to validate a baseline performance after up-

dates. Because our approach is trained with the assumption that approximately

5% of the system is running relatively slow, we can use this assumption to roughly

validate the performance of the system after an update. If our approach detects

PIOs for more than 5% of the time, we know that the performance of the system

has gotten worse and we need to analyze exactly what part of the update causes

this.

3.7.6 Comparison With Other Techniques

We have shown in our evaluation that our approach is more precise than using an

average response time threshold. In addition, it gives a more detailed indication of

the starting time of a PIO. Likewise, we expect that our approach outperforms the

use of thresholds for other traditional metrics, because these do not take user and

application characteristics into account as described in Section 3.1.2.

Another important advantage of our approach over other techniques is that it

contains temporal information. The advantage of having access to temporal infor-

mation is that in the diagnosis we can emphasize performance counters which oc-

curred throughout the PIO. These counters are more likely to give an accurate bot-

tleneck diagnosis. The rule coverage matrix allows experts to give priority to cer-

tain performance counters in their analysis depending on their value in the matrix.

For example, in Figure 3.3, Server2_CPU, Server2_MEM and Server5_MEM would

more likely be interesting for investigation than Server1_CPU and Server5_CPU.

We acknowledge that we did not compare our technique to similar state-of-the-

art techniques. The main reason for this is the lack of available implementations

of those techniques. In addition, it is expensive to perform an industrial case study

similar to the one described in this chapter.

3.8. Threats to Validity 65

3.7.7 Lessons Learned

Initially, we expected that the expert would be most interesting in longer lasting

PIOs, as these are more likely to yield greater improvements when exploited. How-

ever, during the evaluation we found out that he was especially interested in the

shorter lasting PIOs. The main reason was that these shorter PIOs must usually be

exploited by subtle performance improvements, making them more difficult to spot

with the naked eye. In addition, it is usually easier to diagnose longer lasting PIOs,

because their is more information available. The lack of information makes shorter

lasting PIOs more challenging to analyze. Finally, shorter PIOs may represent ac-

tions which are executed often, making them interesting targets for optimization.

In addition, we found during the evaluation that the INTENSITY transformation

does not work well in practice. The main reasons for this are:

• Because the transformation uses a sliding window, the PIO possibly has al-

ready been running for some time. The expert wanted immediate notification

when a PIO started.

• The downward part of the INTENSITY graph is confusing as the PIO is actually

already over at that time. This was the reason to use only the starting time

of a PIO as mentioned in Section 3.7.1.

These limitations must be taken into account when using the INTENSITY trans-

formation.

3.8 Threats to Validity

3.8.1 External Validity

We acknowledge that both case studies were performed on SaaS applications, and

we believe especially the EOL case is representative of a large group of (multi-

tenant) SaaS applications. While the RUBiS case is not representative for modern

applications anymore [Hashemian et al., 2012], it is a widely-used benchmark in

performance studies and a useful second validation of our approach.

Only one expert was used for the evaluation during the case study. Because our

approach yields a result which is open to different interpretations, this evaluation

is subjective. Therefore, the evaluation of our approach by the expert is subjective.

However, in our opinion the evaluation is valid as this expert has many years of

experience with performance maintenance and the case study system.

In our case study we have evaluated only a sample of the automated analysis

results. Because this sample was selected randomly we expect it is representative

of the complete result set.

66 Chapter 3. Performance Optimization of Deployed SaaS Applications

3.8.2 Internal Validity

We have performed 10-fold cross-validation on the EOL dataset to ensure the JRip

algorithm used to generate the association rules generates stable rulesets on this

type of data.

In our experimental setup we have used both industrial and synthetic work-

loads in our case studies. While we acknowledge that the synthetic workload may

not provide a realistic load on the system, its main purpose was as a proof-of-

concept of our SARATIO estimation approach. In addition, the industrial workload

was mostly I/O-intensive. As we monitor both CPU and I/O-related metrics, and

do not give preference to any of these, we expect our approach to be agnostic to the

type of workload. However, in future work, we will analyze the results of running

our approach on an application with a CPU-intensive workload.

A possible threat to validity is the fact that the overhead introduced by mon-

itoring the performance counters influences our training set and therefore our

classification scheme. However, as accessing performance counters is relatively

cheap [Malone et al., 2011], we assume that reading the value of n performance

counters will have O(n) overhead for every time period we make a measurement.

Because this results in constant overhead for all measurements, we assume that the

overhead introduced in the training set will also exist for the measurements made

during the classification phase and will therefore be negligible.

A threat to validity is that we treat the association rule generation algorithm

in our approach as a black-box component. In our evaluation we have used the

JRip association rule generation algorithm from WEKA, because the rules gener-

ated using this algorithm gave the best crossfold validation results on our dataset,

as explained in Section 3.4.2. In future work, we will do a thorough comparison of

association rule generation algorithms and their parameters to investigate whether

we can select an algorithm that works best for all datasets. In addition, we will in-

vestigate if other techniques which generate descriptive classifiers, such as decision

trees, can be used.

3.9 Related Work
In this section we discuss methods for assisting performance experts in finding

performance improvement opportunities.

Performance Anomaly Analysis. Important tools for performance experts are

anomaly detection mechanisms. Often, these mechanisms detect anomalies that

can be prevented in the future by improving the performance of the system.

Breitgand et al. [2005] propose an approach for automated performance main-

tenance by automatically changing thresholds for performance metrics for compo-

nents, such as response time. In their approach, they set a threshold for the true

positive and negative rate of the violation of a binary SLO. Based on this setting,

3.9. Related Work 67

their model tries to predict and adapt the thresholds for components such that

the true positive and negative rate converge to their threshold, hence improving

the performance of the system. In contrast to our work, they use single thresh-

old values for performance metrics, while we use association rules which lead to

combinations of thresholds.

Cherkasova et al. [2008] present an approach for deciding whether a change in

performance was caused by a performance anomaly or a workload change. They

create a regression-based model to predict CPU utilization based on monitored

client transactions. Zhang et al. [2007] do anomaly detection by forecasting a

value for CPU utilization and comparing it to the actual utilization. In case the

difference is significant, an anomaly is detected. Zhang disregards administrative

tasks but our approach takes these into account. While Cherkasova et al. and

Zhang et al. focus on CPU utilization, our approach takes more metrics into ac-

count.

Correa and Cerqueira [2010] use statistical approaches to predict and diag-

nose performance problems in component-based distributed systems. For their

technique, they compare decision tree, Bayesian network and support vector ma-

chine approaches for classifying. In contrast to our own work, their work focuses

on distributed systems, making network traffic an important part of the equation.

In Oceano, Appleby et al. [2001] correlate metrics such as response time and

output bandwidth with SLO violations. Oceano extracts rules from SLOs in order to

create simple thresholds for metrics. In contrast, our approach uses more detailed

performance metrics and more complex thresholds.

Munawar et al. [2008] search for invariants for the relationship between met-

rics to specify normal behaviour of a multi-tier application. Deviations from this

relationship help system administrators to pinpoint the faulty component. In their

work they use linear regression to detect relationships between metrics, which lim-

its their research to linear relationships. Our approach does not explicitly look

for direct relationships between metrics, but focuses on combinations of values

instead.

Cohen et al. [2004]; Zhang et al. [2005] present an approach to correlate low-

level measurements with SLO violations. They use tree-augmented naive Bayesian

networks as a basis for performance diagnosis. Their work is different from ours in

the way we detect the possible performance improvement. As we combine several

rules, our approach is capable of giving a more detailed analysis of the location of

the improvement.

Syer et al. [2011] use covariance matrices to detect deviations in thread pools

that indicate possible performance problems. The focus of their approach is on

thread pools while ours is not limited to a particular architectural pattern.

Malik et al. [2010] have presented an approach for narrowing down the set

of performance counters that have to be monitored to automatically compare load

68 Chapter 3. Performance Optimization of Deployed SaaS Applications

tests by using statistics. Their technique also ranks the performance counters based

on their importance for load tests. Their work focuses on selecting metrics (i.e., the

dimension reduction problem), while our work focuses on analyzing those metrics

instead.

Profiling. Profilers are tools which collect run-time details about software [Knuth,

1971], such as the amount of memory used or the number of instructions executed.

More advanced profilers analyze the ‘run-time bloat’, e.g., unnecessary new object

creations [Yan et al., 2012]. Profilers assist system administrators in the way that

they help identify the block or method which uses the most resources and hence

may form a bottleneck.

Agrawal et al. [1998] use dynamic analysis to count the number of times basic

blocks are executed. They define the blocks that are executed most as possible

bottlenecks and hence try to optimize those blocks.

Bergel et al. [2012] extend profiling with the possibility to detect opportuni-

ties for code optimization. Using visualizations, they advise developers on how to

refactor code so that it will run faster. Their advice is based on principles such as

making often called functions faster.

In general, while there are methods for decreasing the amount of data and

instrumentation [Elbaum and Diep, 2005; Jovic et al., 2011], execution profiling

introduces considerable overhead due to the large amount of data that needs to be

monitored. In addition, because profilers usually analyze hot code (e.g., the code

that uses the most CPU cycles), they are not always directly suitable for detecting

all possible performance improvements [Jovic et al., 2011]. Finally, it is possible

that many sites must be monitored in a distributed environment. Therefore, while

execution profiling plays an important role in performance maintenance, its use

should be minimally. Our approach can assist in reducing the execution profiling

overhead by pinpointing the hardware on which profiling should be done.

LagHunter [Jovic et al., 2011] tries to decrease the overhead by only profiling

landmark functions, methods of which the human-perceptible latency can become

too high. LagHunter implements a method for automatically selecting which func-

tions are landmark functions. These landmark functions are considered possible

performance issues as they heavily influence the human-perceptible latency and

therefore can become an annoyance for users.

Using Heat Maps for Performance Maintenance. Heat maps have been used

for performance analysis before [Fürlinger et al., 2007; Gregg, 2010], but we have

evaluated our approach in an industrial setting and on multi-server data. In addi-

tion, in previous work heat maps were used to plot the raw values of performance

counters, without the addition of extra information to assist the performance ex-

pert. Our approach for heat maps does include this extra information. Heat maps

have also been used in other areas, e.g., repository mining [Wu et al., 2004].

3.10. Conclusion 69

3.10 Conclusion
In this chapter we have proposed a technique for detecting and analyzing perfor-

mance improvement opportunities (PIOs) using association rules and performance

counter measurements. We have proposed the SARATIO metric, which allows us

to specify the starting point of a PIO more precisely than traditional metrics. We

have shown that this metric can be estimated using performance counter values in

a proof-of-concept case study on a synthetic benchmark and an industrial applica-

tion.

In addition, the results of our PIO analysis approach were manually verified in

an industrial case study by a performance expert. The results of this case study

show that our approach has high precision when detecting PIOs and can assist

performance experts in their investigation of possible performance optimizations.

In short, our chapter makes the following contributions:

• An approach for detecting and analyzing PIOs using association rules, per-

formance counters and the SARATIO metric.

• A proof-of-concept case study in which we show that the SARATIO can be

estimated using association rules and performance counters.

• An evaluation of our approach for PIO analysis done by a performance expert.

Revisiting our research question:

RQ2a-1 How can we enhance the interpretation of performance counter values

so that they can assist with the identification of the bottleneck component(s) of a

system? We have presented our approach for PIO detection, which is based on

performance counter values and provides assistance during the performance opti-

mization process. We have shown in two case studies that this approach is accurate

and improves the speed with which performance experts can do their investigation

for performance optimization. In addition, we have presented an approach for PIO

analysis using the rule coverage matrix. We have shown in an industrial case study

that the results of this approach are accurate and assist the performance expert in

detecting the bottleneck component(s).

3.10.1 Future Work

In future work we will focus on selecting the most suitable training period or a

combination of training periods in order to increase the quality of the association

rules.

4.
Visualizing Performance: Wedjat

The goal of performance maintenance is to improve the performance of a software

system after delivery. As the performance of a system is often characterized by un-

expected combinations of metric values, manual analysis of performance is hard in

complex systems. In this chapter, we extend our previous work on performance

anomaly detection with a technique that helps performance experts locate spots — so-

called performance improvement opportunities (PIOs) —, for possible performance

improvements. PIOs give performance experts a starting point for performance im-

provements, e.g., by pinpointing the bottleneck component. The technique uses a

combination of association rules and several visualizations, such as heat maps, which

were implemented in an open source tool called WEDJAT.

In this chapter, we evaluate our technique and WEDJAT in a field user study with

three performance experts from industry using data from a large-scale industrial ap-

plication. From our field study we conclude that our technique is useful for speeding

up the performance maintenance process and that heat maps are a valuable way of

visualizing performance data.1

4.1 Background . 73

4.2 Approach . 74

4.3 Tool Implementation: Wedjat . 77

4.4 Design of the Field User Study . 80

4.5 Results of the Field User Study . 86

4.6 Discussion . 89

4.7 Related Work . 91

4.8 Conclusion . 92

In the ISO standard for software maintenance2, four categories of maintenance

are defined: corrective, adaptive, perfective and preventive maintenance. Perfec-

tive maintenance is done with the goal of improving and therefore perfecting a

1This chapter contains our work published in the proceedings of the 28th International Confer-

ence on Software Maintenance (ICSM’12) [Bezemer et al., 2012].
2http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=39064

71

72 Chapter 4. Visualizing Performance: Wedjat

software system after delivery. An interesting application of perfective mainte-

nance is performance maintenance, as many software performance issues become

obvious after deployment only. While a large amount of research has been done

on software performance engineering in general [Woodside et al., 2007], only

few papers deal with software performance maintenance. In addition, experi-

ence from industry shows that performance engineers mainly use combinations

of simple and rather inadequate tools and techniques rather than integrated ap-

proaches [Thereska et al., 2010], making performance maintenance a tedious task.

Perfecting software performance is typically done by investigating the values

of two types of metrics [Thereska et al., 2010]. On one hand, high-level metrics

such as response time and throughput [Jain, 1991] are important for getting a

general idea of the performance state of a system. On the other hand, information

retrieved from lower-level metrics, e.g., metrics for memory and processor usage

— so called performance counters [Berrendorf and Ziegler, 1998]—, is important

for pinpointing the right place to perform a performance improvement. However,

determining a starting point for analysis of these lower-level metrics is difficult, as

the performance of a system is often characterized by unexpected combinations of

performance counter values, rather than following simple rules of thumb [Cohen

et al., 2004]. This makes manual analysis of performance in large, complex and

possibly distributed systems hard.

In Chapter 3, we have presented an approach for detecting and analyzing per-

formance anomalies using performance counter measurements. This approach al-

lows us to detect performance anomalies by identifying system states at which the

system is performing relatively slow based on performance counter values. We

have also shown that our approach allows faster detection of problems than a ‘tra-

ditional’ threshold setting for the average response time. In this chapter, we extend

this approach with a technique that helps performance experts locate spots for

possible performance improvements. Our technique describes such spots as perfor-

mance improvement opportunities (PIOs). PIOs give performance experts a starting

point for performance improvements, e.g., by pinpointing the bottleneck compo-

nent. The technique uses a number of visualization methods, amongst which heat

maps [Wilkinson and Friendly, 2009], to provide a compact overview of the per-

formance history of a system. Hence, in this chapter, we address the following

research question presented in Chapter 1:

RQ2b: How can we report and visualize the diagnosis of the bottleneck

component(s)?

We have implemented our technique in an open source tool called WEDJAT,

which we present and evaluate by conducting a field study with performance ex-

perts from industry in this chapter. Our technique is a high-level approach: it

works complementary to lower level approaches such as profiling [Knuth, 1971],

as it helps narrow down the server or hardware which requires more investigation.

4.1. Background 73

This chapter is organized as follows. In Section 4.1 we discuss relevant back-

ground information. In Section 4.2 we present our idea of using heat maps for

performance analysis. The implementation of this idea is presented in Section 4.3.

We evaluate our approach using a field user study (Section 4.4) and present the

results in Section 4.5. Results are discussed in Section 4.6. We present related

work in Section 4.7 and we conclude our work in Section 4.8.

4.1 Background
In Chapter 3, we presented an approach that allows to identify performance anoma-

lies, e.g., sudden slowdowns, in a software system using low-level performance

measurements only. That work contrasts earlier studies that used the response

time as the main indicator of performance anomalies. We have shown that by

using low-level performance measurements, we were able to efficiently identify

performance anomalies that originate at the server. Furthermore, our technique

worked very precisely in that it keeps track of performance profiles per user, so

that a user with many database records versus a user with a relatively low number

of database records gets treated differently. While we could very precisely identify

when a performance anomaly occurred, we had no means of identifying its cause

and that is what this chapter adds.

In the next two subsections we briefly describe our approach from Chapter 3. As

our approach is a learning-based approach, we first describe the training phase in

Section 4.1.1, before we go over to the actual classification phase in Section 4.1.2.

4.1.1 Training Phase
Central to our approach are the SARATIO and the INTENSITY metrics. The SARATIO

(or Slow-to-All-actions-ratio) for a time interval t is defined as:

SAratiot =
|SLOWt |

|SLOWt |+ |NORMALt |

We define an action as slow when it belongs to the 15% slowest actions in terms

of response time for a particular user of a particular application (or feature) for a

time interval t. We now calculate the SARATIO for all time intervals of the training

period using a sliding window approach. As we now have a SARATIO-value for all

monitored time intervals, we can identify intervals during which the system was

running relatively slow.

The next step is to define thresholds for the SARATIO, such that we can classify

system load for each interval as:

• high: system load is typically too high, which makes it perform slow (highest

5% of values for SARATIO)

74 Chapter 4. Visualizing Performance: Wedjat

• med: system load may become or may just have been problematic (medium

10% of values for SARATIO)

• low: system load is non-problematic (low 85% of values for SARATIO)

After classifying all intervals as exhibiting high, med, or low load based on the

SARATIO, we assign the performance counter data to the time interval during which

it was monitored. Next, we use association rule mining to classify the state of the

system using performance counters only (e.g., memory≥80, CPU>70 → high).

In particular, we want to use the low level performance counter measurements

rather than the SARATIO directly as they can give a more precise description of the

performance, which can assist in giving a diagnosis.

4.1.2 Classification Phase

During the classification phase we classify new performance counter measure-

ments. However, because we are not interested in isolated spikes in the perfor-

mance of a system, but rather in situations in which the system is relatively slow

for longer periods of time, we use a sliding-window approach to filter out these

isolated spikes.

For a sliding window of size n, we determine which association rules match

for the measured performance counter values. Next, we count how many of those

roles are classified as low, med and high load (see Section 4.1.1). Finally, we

determine the INTENSITY metric as follows:

If >30% of the classifications in the window

high → intensity+2

med → intensity-1

low → intensity-2

This results in a series of values for the INTENSITY of the load on a system dur-

ing the classification phase, in which new performance counter measurements are

classified. Ideally, this metric is zero; whenever it is larger, we have an indication

that the system is running relatively slow.

Both the association rules used to calculate the INTENSITY metric and the INTEN-

SITY metric itself will form the basis for the approach presented in this chapter.

4.2 Approach
In this section, we present our approach for locating performance improvement op-

portunities (PIOs), which is an extension of our approach for performance anomaly

detection explained in Section 4.1. A PIO is a snapshot of the system during a pe-

riod of time at which the performance of the system could possibly be improved.

This snapshot is described by the following for that period of time:

• Date and time of start of the PIO

4.2. Approach 75

• Date and time of end of the PIO

• INTENSITY graph (Section 4.1.2 and Figure 4.2)

• Raw metric value matrix (Section 4.2.1)

• Rule coverage matrix (Section 4.2.1)

• Missing value matrix (Section 4.3.5)

A PIO description can assist engineers in performing perfective maintenance

by pinpointing the bottleneck component during the PIO. The next step could be

investigation of that component using a profiler (see Section 4.7).

Our PIO detection approach exploits the association rules used during the clas-

sification process of the anomaly detection to detect starting points for exploring

possible performance improvement opportunities. The goal of our approach is to

analyze the information in the rules matched by a measurement and detect clusters

of performance counter metrics that help us to decide on which server or hardware

we must start looking for possible performance improvements.

Table 4.1 shows a sample set of association rules used to characterize the load

on a system into the classes low, med and high. The system consists of server S1

with performance counters PC1 and PC2 and server S2 with performance counter

PC1. Table 4.1 contains a set of sample measurements for these performance

counters as well. As defined in Chapter 3, a high load often represents a perfor-

mance anomaly, which indicates a possible PIO. We exploit this property to get an

indication of the bottleneck component.

Table 4.1: Sample rule set and performance measurements

Sample association rule set Sample measurements
1 S1PC1>80 & S2PC1<60→ high t S1PC1 S1PC2 S2PC1
2 S1PC1>70 & S1PC2>70→ high 0 40 60 80
3 S1PC1>90→ high 1 95 60 80
4 S1PC2<30→ med 2 98 80 80
5 else→ low 3 98 95 55

4 98 80 80
5 40 25 80

4.2.1 The Rule Coverage Matrix

Our approach uses a matrix m with one row for each performance counter and one

column for every time t we receive a measurement. This matrix contains the raw

values monitored for each counter.

In addition, we maintain a so-called coverage matrix m′. The rows of this

matrix contain the performance counters, the columns depict measurements. The

first column, representing the first measurement is initialized to 0. Each time a

76 Chapter 4. Visualizing Performance: Wedjat

new measurement is received, the last column of m′ is copied and the following

algorithm is applied:

• Increase m′
i, j

if performance counter i is covered by a high rule at measure-

ment j.

• Leave m′
i, j

equal to m′
i, j−1

for a med rule

• Decrease m′
i, j

if performance counter i is covered by a low rule at measure-

ment j, with a minimum of 0

Note that the original ‘raw’ values of the performance counters in m are left

untouched in this process. We update the value of every m′
i, j

only once for every

measurement, even though multiple covering rules may contain the same perfor-

mance counter.

The rationale behind building the rule coverage matrix this way is the follow-

ing:

1. The ruleset describes all known cases of when the system was performing

slowly.

2. We expect all measurements made during a PIO to be covered by the same,

or similar rules when they are classified. The reason for this is that per-

formance counter values are in general relatively stable, which means that

abnormal values of (combinations of) performance counters will be exhibited

for a longer period of time, i.e., throughout the PIO.

3. When entering this into the rule coverage matrix this way, higher values in m′

will appear because these values will be increased for performance counters

which occur in adjacent measurements.

4. Eventually, clusters of higher values in m′ for performance counters on spe-

cific hardware will appear.

5. These clusters can be used to do performance maintenance, e.g., by pinpoint-

ing a bottleneck component.

The following example illustrates this. Table 4.2 shows the resulting m′ after

applying our approach to the measurements and ruleset of Table 4.1. Figure 4.1

shows a visual representation of this matrix in the form of a heat map [Wilkinson

and Friendly, 2009]. In such a map darker colours represent higher values. In

our simple example we can see a cluster of dark coloured performance counters

at server S1, indicating this server may be a bottleneck. Note that the order of

the performance counters within the matrix influences the ease with which such

4.3. Tool Implementation: Wedjat 77

Table 4.2: Rule coverage matrix for Table 4.1

0 1 2 3 4 5

S1PC1 0 1 2 3 4 4
S1PC2 0 0 1 2 3 3
S2PC1 0 0 0 1 0 0

covered by rules # 5 3 2,3 1,2,3 2,3 5

Figure 4.1: Rule Coverage Heat Map

clusters can be detected. In the remainder of this chapter, we assume that the

performance counters are grouped per server within the matrix.

In the next section we present WEDJAT, a tool which implements the rule cover-

age matrix and heatmap. In addition, in WEDJAT we combine a number of methods

for visualizing performance counter data.

4.3 Tool Implementation: Wedjat
In our approach, the starting point for all investigations is the INTENSITY metric

discussed in Section 4.1. Whenever the INTENSITY is larger than 0, the performance

data requires more detailed inspection. Our tool WEDJAT
3 gives an overview of

performance data deviating from its normal behaviour, helping to quickly identify

possible bottlenecks.

In WEDJAT, we combine our ideas of using a rule coverage matrix and heat maps

to visualize performance data. WEDJAT offers several views, which can be used on

their own or complementary to each other. In the remainder of this section, WEDJAT

and its views are presented.

4.3.1 Time Slider

One of the main components in WEDJAT is the time slider, which enables a time

interval for the heat maps to be selected. This allows a user to zoom (out) on

events.

4.3.2 Intensity Graph View

Goal The INTENSITY graph is intended to be displayed in a performance monitor

or dashboard and its purpose is to serve as a trigger for starting investigation with

3The Wedjat is an ancient Egyptian symbol of protection and good health.

78 Chapter 4. Visualizing Performance: Wedjat

Figure 4.2: Example INTENSITY and line chart

WEDJAT. We have included the INTENSITY graph in WEDJAT itself as well; the time

slider allows to zoom in or out on this graph.

Interpretation Whenever this graph shows a peak (value greater than zero), a

possible PIO exists and the performance data requires deeper investigation.

Example Figure 4.2 shows the INTENSITY graph generated during a large and a

small performance incident in a system.

4.3.3 Rule Coverage Heat Map View

Goal The rule coverage heat map is the visualization of the rule coverage matrix

as described in Section 4.2. The goal of this heat map is to give an indication of

where to start the investigation for possible performance improvements.

Interpretation In this heat map, adjacent dark squares indicate that this counter

occurred in matched association rules for a longer period of time.

Example Figure 4.3 depicts a rule coverage heat map in which the rule:

(sv4/Memory/Available MBytes/null ≥ 691) and

(ws4/Processor/% Processor Time/_Total ≤ 53.519428)

was matched repeatedly4.

Figure 4.3: Rule coverage heat map (rule matched repeatedly:

(sv4/Memory/Available MBytes/null ≥ 691) and (ws4/Processor/%
Processor Time/_Total ≤ 53.519428)

4In this chapter, we use the format ServerName/CounterCategory/PerformanceCounter/Instance

to describe a performance counter.

4.3. Tool Implementation: Wedjat 79

4.3.4 Deviation-from-mean Heat Map View

Goal The goal of this heat map is to easily identify groups of abnormal values for

performance counters.

Interpretation In the deviation-from-mean heat map, the intensity of the colour

of its squares is calculated based upon the number of standard deviations from

the mean value of the performance counter represented by that row. In this heat

map, adjacent dark squares indicate that this counter exhibited an unusually low

or high value for a longer period of time. WEDJAT offers two possibilities of filtering

deviation-from-mean heat maps: show only the counters in the rule coverage heat

map and show all counters for a specific server. It is possible to display the heat

map for two servers at the same time, for example, to compare them to verify a

load balancer is behaving properly.

Example The deviation-from-mean heat map for server ws4 is partly displayed in

Figure 4.4. In this heat map it is clear to see that there was a period of approxi-

mately 20 minutes during which the monitored processor time counter exhibited

abnormal behaviour (see first line between approximately 10:20 and 10:40).

Figure 4.4: Deviation-from-mean heat map for the server ws4

4.3.5 Missing Values Heat Map View

Goal During the classification phase, we classify a set of performance counter val-

ues. In some cases, this set is not complete, i.e., it does not contain values for

all performance counters expected based on the configuration of the monitor. The

reason for this may be a configuration error or a problem with hardware or a

server. The goal of the missing values heat map is to detect such configuration and

hardware issues.

Interpretation A value MissingIntervals is maintained for every performance counter,

which is initialized to 0 and increased when we do not receive a value for this per-

formance counter in a measurement interval. After a value is received MissingIn-

tervals is reset to 0. In the missing values heat map, the intensity of the colour of

a square is based on the value of MissingIntervals. As such, adjacent dark squares

indicate that this counter did not exhibit a value for a longer period of time, which

indicates either a configuration or hardware issue.

Example Figure 4.5 shows the missing values heat map when there was a problem

with the sv2 server and a configuration error on the SQL cluster.

80 Chapter 4. Visualizing Performance: Wedjat

Figure 4.5: Missing values heat map

4.3.6 Line Chart View

Goal After clicking on a square in the deviation-from-mean heat map, a line chart

is plotted displaying the values of the performance counter in the selected time

interval. In addition, the mean calculated during the training phase is shown.

The goal of displaying the line chart is to allow users of the tool to combine the

information in the heat maps with views they are more accustomed to.

Interpretation This chart can be used to see trends, e.g., whether the counter is

increasing or decreasing rapidly.

Example Fig. 4.2 shows a line chart for counter dbclus1/LogicalDisk/Avg. Disk

sec/Read/W:.

4.3.7 Histogram View

Goal After clicking on a square in the deviation-from-mean heat map, two his-

tograms are plotted as well. The goal of the histograms is to give the user a quick

overview of normal values for the selected performance counter.

Interpretation The first histogram shows the values of the performance counter

observed during the training phase. This histogram shows the user a quick overview

of regular values for this performance counter. The second one shows the his-

togram of the values observed during the selected time interval. This histogram al-

lows the user to compare the distribution of the values of this performance counter

with those observed during the training period.

Example Figure 4.6 depicts these two histograms for the dbclus/LogicalDisk/Avg.

Disk sec/Read/U: performance counter. The dark line in the histograms depicts the

value of the selected square. From these histograms becomes clear5 that during

the trainingsperiod values between 0.025 and 0.005 rarely occured, while these

occured frequently during the selected period. This could indicate that the counter

is exhibiting abnormal behaviour during the selected period.

4.4 Design of the Field User Study
In this section, we evaluate WEDJAT and our idea of using heat maps for software

performance maintenance in a field user study. In our study, we are looking for an

answer to the following research questions:

5Note that the scale of the axes of the histograms is different.

4.4. Design of the Field User Study 81

Figure 4.6: Histograms for the dbclus/LogicalDisk/Avg. Disk
sec/Read/U: performance counter

RQ2b-Eval1: Does the rule coverage matrix provide a good starting point

for performance maintenance?

RQ2b-Eval2: Are heat maps an appropriate way of visualizing perfor-

mance data?

The outline of this section is as follows. First, we will describe the field setting

of the user study. After this, we will discuss the setup of the study and the profile

of the participants. In the next sections, we will present and discuss the findings of

the field user study.

4.4.1 Field Setting

In order to find out how useful the rule coverage matrix and heat maps are for

indicating starting points for improving performance bottlenecks, we set up a field

user study with three performance experts from Exact6. Exact is a Dutch-based soft-

ware company, which specializes in enterprise resource planning (ERP), customer

relationship management (CRM) and financial administration software. Exact has

over 1900 employees working in more than 20 countries. Founded in 1984, Exact

has over 25 years of experience in multi-user client/server software and web appli-

cations. Since several years, Exact has also been offering a successful multi-tenant

(see Chapter 2) Software-as-a-Service solution, called Exact Online7 (EOL), which

is the target of our field study. Exact Online uses ASP.NET and SQL Server.

4.4.2 Participant profile

The participants are the performance experts in the EOL team. The first part of the

questionnaire consisted of a set of general questions about their experience, knowl-

edge and the current process at EOL. Their experience is summarized in Table 4.3.

Participant I and II have 16+ years of experience with software engineering and 10

years of experience with performance analysis. Participant III does not have direct

experience as a software engineer, but does have 10 years of performance analysis

experience from a product management point of view. All participants indicate

6http://www.exact.com
7http://www.exactonline.nl

82 Chapter 4. Visualizing Performance: Wedjat

their knowledge of the EOL infrastructure and of performance analysis in general

as excellent.

Table 4.3: Years Experience of the Participants

Participant Role Soft. Eng. Perf. Analysis EOL

PI Senior Research Engineer 16 10 7
PII Principal Research Engineer 18 10 3
PIII Product Manager 0 10 7

In the current situation at EOL, performance problems are noticed from log re-

ports or follow from customer complaints about application speed and availability.

Analysis of these problems and other possible opportunities to improve perfor-

mance is done using a set of standard non-integrated tools such as Microsoft’s Perf-

Mon and SQL Profiler. All participants spend 5–48 hours per week improving the

performance of Exact Online, depending upon the number of problems reported.

4.4.3 Field User Study Setup

In a short preliminary study an initial evaluation of the usability of WEDJAT and its

enclosed heat maps was done. In two sessions, three participants were requested

to investigate the performance issue discussed in Section 3.5.2 using WEDJAT only.

A large amount of feedback and improvements to the usability of the heat maps

and WEDJAT were gathered from the participants. These improvements were imple-

mented and evaluated during the field study. In the field study, three participants

were requested to investigate a performance issue different from the one inves-

tigated during the preliminary study. Two of the participants to the field study

took part in the preliminary study, while the third had never worked with WEDJAT

before.

The performance data used during the field study was monitored during a pe-

riod of one month on part of the Exact Online infrastructure. The association rule

set used by WEDJAT was trained on the data monitored during the first week of that

period. The monitored part of the infrastructure consists of 6 webservers, 3 service

machines, 2 SQL clusters and 2 virtual domain controllers, exhibiting a total of 140

performance counter values every minute8.

The process followed during the field study is discussed in the remainder of this

section.

Step 1: Demo of Wedjat

All sessions were started with a short demo of WEDJAT, demonstrating all its fea-

tures.

8For a complete list see http://www.st.ewi.tudelft.nl/~corpaul/eol_list.txt

4.4. Design of the Field User Study 83

Step 2: Assigned Task

The participants were asked to investigate a real performance issue in WEDJAT for

around 1.5 hours. We gave assistance during the investigation and asked them to

fill in a questionnaire at the end of the session about the usability.

The task the experts are asked to solve is the following:

1. Load the data set for April 27 2012.

2. List the times of PIOs found on that date.

3. Investigate the PIO found between 10 AM and 11 AM.

4. Indicate the bottleneck component(s) found in that PIO.

5. Elaborate on how you selected the bottleneck(s).

The bottleneck component in the PIO between 10 AM and 11 AM was formed

by the processor of a web server. This was expressed in WEDJAT by the following:

1. The Processor/% Processor Time performance counter of ws4 (web server

4) showed a cluster of dark squares in the rule coverage heat map (see Fig-

ure 4.3).

2. The Processor/% Processor Time performance counter of ws4 showed a clus-

ter of dark squares in the deviation-from-mean heat map (see Figure 4.4).

Step 3: Questionnaire

After the investigation, the participants were asked to fill in a questionnaire con-

sisting of 5 open questions and 56 questions that could be answered on a 5-point

Likert-scale, ranging from 1 for ‘strongly agree’ to 5 for ‘strongly disagree’. Dur-

ing the questionnaire, all participants regularly switched back to WEDJAT to answer

the questions as accurately as possible. The questionnaire and the participants’

answers are listed in Table 4.4.

Step 4: Contextual Interview

A large amount of information and feedback was elicited from the participants

through the use of a contextual interview [Holtzblatt and Jones, 1995]. During

such an interview, the participants are requested to solve an assigned task while

they are being questioned constantly when working with the application for sug-

gestions and feedback based on their actions. This allows them to articulate their

normal or preferred work practices [Holtzblatt and Jones, 1995] and to get in-

volved in the design of the application. During the session with two participants,

we encouraged them to cooperate and discuss their ideas out loud to elicit more

detailed feedback. The contextual interview was actually not a separate step in

the experiment but was held throughout step 2 and 3, based on the actions and

84 Chapter 4. Visualizing Performance: Wedjat

questions of the participants. When interesting opportunities arose after an action

or question, the participants were asked to explain why they performed that ac-

tion or asked that question. From the discussions that followed, a large amount of

feedback could be extracted.

After filling out the questionnaire, the answers of the participants in that session

were compared and discussed, especially when they were different from each other.

Table 4.4: Questionnaire results

P
I

P
II

P
II

I

General (1 = strongly disagree, 5 = strongly agree)

Q1 The tool was easy to use. 4 3 2

Q2 A tool like Wedjat will save me time. 5 3 5

Q3 There is added value in using heatmaps for performance anal-

ysis.

5 4 5

Q4 A tool like Wedjat will help me understand and diagnose per-

formance problems better.

4 4 5

Q5 Switching between different datasets in Wedjat was easy. 4 3 4

Rule coverage heat map

Q6 The meaning of this heatmap was clear to me. 4 3 3

Q7 The heatmap was intuitive. 4 3 3

Q8 The heatmap provides new information. 4 3 4

Q9 The heatmap improves the speed with which problems can be

analyzed.

4 3 4

Q10 Adding the rules heatmap view to a performance dashboard

for EOL will save me time.

4 1 5

Deviation-from-mean heat map

Q11 The meaning of this heatmap was clear to me. 4 3 3

Q12 The heatmap was intuitive. 5 3 3

Q13 The heatmap provides new information. 4 3 4

Q14 The heatmap improves the speed with which problems can be

analyzed.

4 3 4

Q15 I clicked in the heatmap to get more details about a value. 4 4 5

Q16 The extra information revealed after clicking was useful. 5 4 5

Q17 Adding the raw values heatmap view to a performance dash-

board for EOL will save me time.

2 1 4

Deviation-from-mean heat map per server

Q18 The meaning of this heatmap was clear to me. 4 3 3

4.4. Design of the Field User Study 85

Q19 The heatmap was intuitive. 4 3 3

Q20 The heatmap provides new information. 3 3 4

Q21 The heatmap improves the speed with which problems can be

analyzed.

3 3 4

Q22 I clicked in the heatmap to get more details about a value. 4 3 5

Q23 The extra information revealed after clicking was useful. 4 3 5

Q24 Adding the raw values per server heatmap view to a perfor-

mance dashboard for EOL will save me time.

3 1 4

Missing values heat map

Q25 The missing values tab was intuitive. 2 4 3

Q26 The missing values tab was useful. 2 4 2

Line chart

Q27 The meaning of this chart was clear to me. 5 4 5

Q28 The chart was intuitive. 5 4 5

Q29 The chart provides new information. 4 4 3

Q30 The chart improves the speed with which problems can be an-

alyzed.

4 4 5

Q31 Adding the line chart to a performance dashboard for EOL will

save me time.

3 1 4

Histogram

Q32 I used the extra information provided in the histogram tab. 4 3 5

Q33 Adding the histogram tab to a performance dashboard for EOL

will save me time.

2 1 3

Intensity

Q34 I used the extra information provided in the intensity tab. 4 3 5

Q35 Adding the intensity tab to a performance dashboard for EOL

will save me time.

4 5 4

Applicability: bottleneck detection

(1 = WEDJAT is very unuseful for this, 5 = WEDJAT is very useful for this)

Q36 Detecting the server that forms the bottleneck. 5 5 5

Q37 Detecting the load balancer that forms the bottleneck. 3 1 1

Q38 Detecting the instance that forms the bottleneck. 5 4 5

Q39 Detecting the ASPX that forms the bottleneck. 1 1 1

Q40 Detecting the network connection that forms the bottleneck. 1 1 1

Q41 Detecting the hardware that forms the bottleneck. 5 4 3

Q42 Detecting the CPU that forms the bottleneck. 5 4 5

Q43 Detecting the HDD that forms the bottleneck. 5 4 5

Q44 Detecting the memory that forms the bottleneck. 5 4 5

86 Chapter 4. Visualizing Performance: Wedjat

Q45 Detecting other hardware that forms the bottleneck. 5 1 3

Q46 Detecting a thread pool that forms the bottleneck. 1 3 1

Applicability: failure detection

Q47 Detecting a server failure. 4 3 5

Q48 Detecting a load balancer failure. 3 1 1

Q49 Detecting an instance failure. 4 3 5

Q50 Detecting an ASPX failure. 1 1 1

Q51 Detecting a network failure. 3 1 4

Q52 Detecting hardware failure. 4 3 5

Q53 Detecting a CPU failure. 4 3 5

Q54 Detecting a HDD failure. 4 3 5

Q55 Detecting a memory failure. 4 3 5

Q56 Detecting other hardware failures. 3 1 4

Q57 Favorite features in WEDJAT:

PI Deviation-from mean heat map, intensity graph

PII Rule coverage heat map, intensity graph

PIII Rule coverage heat map, deviation-from mean heat map

4.5 Results of the Field User Study
As discussed in the previous section, we asked the participants (P I, P II and P III)

to solve a task and to answer the questions listed in Table 4.4. In a subsequent

step, we compared the responses of the participants and tried to bridge differing

opinions. In all cases where we identified differing opinions, this was due to a

different interpretation of the question. In this section, we discuss the most in-

teresting highlights from the task, questionnaire and anecdotes elicited during the

interview.

4.5.1 The Assigned Task

All participants could easily solve the assigned task. An interesting result from the

process was that participant I and II found additional bottlenecks during the inves-

tigation, which were not directly obvious from the rule coverage heat map. From

our heat map, it was only obvious that the processor of web server 3 was over-

loaded. However, because the participants have experience with the EOL infras-

tructure, they decided to start an investigation for the other web servers as well.

The reason for this is that the load of the application is balanced over the web

servers and therefore, they wanted to see whether the processor of the other web

servers was overloaded as well. As an investigation they compared the deviation-

from-mean heat maps of the different web servers to find out if any of them exhib-

4.5. Results of the Field User Study 87

ited abnormal behaviour. They found out that all web server processors had the

same problem due to a software error. We found out that our approach did not de-

tect a problem on all these servers because it is trained using supervised learning.

This means that for a problem to be detected and analyzed correctly, a similar case

should be in the training set, which is difficult for anomalies. This shows that our

association rule set either requires better training or a different generation process.

We consider this future work.

4.5.2 Questionnaire Highlights

General

The participants’ general opinion about WEDJAT was that it is useful and would help

them to analyze and diagnose performance problems better and quicker (Q1, Q2,

Q4, see Table 4.4), even though the usability of the tool has to improve (Q1). An

example of a usability issue WEDJAT currently has is the following. When the heat

maps for a large period of time are being displayed, they are horizontally scrollable.

Because the names of the performance counters are on the left side of the heat

map, these disappear from the screen as the heat map is being scrolled. While

this does not make WEDJAT unusable, it would be more comfortable to have the

performance counter names in sight at all times. Improving the usability of WEDJAT

by fixing such issues is future work. A promising result is that all participants felt

very optimistic about the use of heat maps for performance analysis (Q3).

For all views, we asked whether they should be included in a performance dash-

board for Exact Online. The answers to these questions were different because the

participants had different opinions about what the purpose of a performance dash-

board should be. Participant III, the product manager, felt that such a dashboard

should contain performance analysis tools while the research engineers believed it

should contain a trigger to start performance analysis only (Q10, Q17, Q24, Q31,

Q33, Q35). A reason for this could be that it is easier for the research engineers

to access additional performance data when necessary, while this may be more dif-

ficult for the product manager. All participants agreed that the INTENSITY graph

is the most important starting point for performance maintenance, as it gives the

initial indication that the system is performing relatively slow (Q35).

In an open question (Q57) we asked the participants what their two favourite

WEDJAT features were. It is promising to see that all participants liked the new

views on the data (rule coverage heat map, deviation-from-mean heat map and

the INTENSITY graph) in WEDJAT best. This indicates WEDJAT offers new and useful

information.

Heat Maps

All participants agreed that the heat map views offer new information which helps

them analyze performance problems faster (Q8, Q9, Q13, Q14, Q20, Q21). During

the discussion we found out that the participants thought the heat maps were also

88 Chapter 4. Visualizing Performance: Wedjat

useful for communicating and explaining performance problems to the manage-

ment and system administrators. An interesting result was that participant I found

the heat maps very intuitive, while the other participants were slightly less positive

about this (Q7, Q12, Q19). From the contextual interview we found out that par-

ticipant I had a background in statistics, which made him more comfortable with

less traditional visualization techniques. An exception to this is the missing values

heat map (Q25, Q26). Only participant II found this heat map intuitive and use-

ful. The main reason for this is that participant II was the actual participant who

requested this feature after the preliminary study. The other participants found

this heat map difficult to grasp without extra information, e.g., they would like to

receive a ‘trigger’ when a particular value has been missing, rather than inspect the

heat map themselves.

All participants agreed that using the ‘traditional’ line chart (Section 4.3.6) and

histogram (Section 4.3.7) in combination with the heat maps improves the usabil-

ity of WEDJAT (Q30, Q32). In addition, they all considered the deviation-from-mean

heat maps to be the most useful ones (Q11-Q16, Q18-Q23). This is interesting, as

our expectation was that the experts would prefer the rule coverage heat map

as it gives a direct indication of the bottleneck component. However, during the

experiment we found out that the experts preferred to directly view the deviation-

from-mean heat maps of servers on which they have seen performance problems

occur before, and inspect those for abnormal behaviour (e.g, dark spots in the heat

map). If there was no abnormal behaviour on these servers, they referred to the

rule coverage heat map to see if it would give another indication of where to look.

Applicability

All participants agreed mostly on what they believe WEDJAT is and is not useful

for. According to them, WEDJAT is most useful for detecting which server (Q36),

instance (Q38) or hardware (Q41-Q45) forms a bottleneck, using the rule coverage

and deviation-from-mean heat maps. While they believed that WEDJAT currently is

not capable of detecting which load balancer (Q37) or network connection (Q40)

forms a bottleneck, the participants agreed the cause for this was that we cur-

rently did not monitor performance counters for that hardware. The participants

expected WEDJAT to be capable of detecting such bottlenecks after the set of mon-

itored performance counters would be extended. We have also asked whether the

participants believed WEDJAT could detect which ASP.NET file forms a bottleneck

(Q39). They agreed WEDJAT was not suitable for this without extra information.

We consider detecting application bottlenecks with WEDJAT as future work.

The participants believed the missing values heat map was most useful for de-

tecting hardware failures (Q47-Q56). However, the same limitations as with the

bottleneck detection apply: load balancer (Q48) and network connection (Q51)

failures are difficult to detect currently, as no performance counters are monitored

for them.

4.6. Discussion 89

4.5.3 Additional Insights Obtained From The Interview

In this section we will briefly discuss some of the additional insights that we gained

during the contextual interview with the participants. The first insight we obtained

was that the participants did not like to cope with graphs that exhibit more than

one metric at the same time. For example, the deviation-from-mean heat map

used more than one colour in the initial version of WEDJAT (green for increasing

and red for decreasing values). All participants agreed that this heat map was

overly complex and confusing because of the large amount of data. Therefore, we

changed the heat map to use one colour instead to represent the absolute deviation

from the mean, which was preferred by the participants.

The second insight we obtained was that the participants would like a better

integration with existing performance tools such as their own dashboard. In addi-

tion, they would like to see error log files such as those from the SQL server and

web server integrated with WEDJAT, to display more information for a selected time

interval.

Finally, there was some concern with the generation of the association rules and

the strength of their diagnosis. It is likely that the generated rules do not cover all

performance counters and therefore may give incomplete diagnosis of a problem.

A possible solution is to offer an additional heat map which gives an overview

of performance counters that exhibited abnormal values for a longer period of

time. Such a heat map would solve at least part of the problem of supervised

learning (see Section 4.6). Another solution would be to use a continuous training

scheme in which the training set is constantly improved through user feedback.

The implementation and evaluation of this heat map and a continuous training

scheme will be addressed in future work.

4.6 Discussion

4.6.1 The Evaluation Research Questions Revisited

RQ2b-Eval1: Does the rule coverage matrix provide a good starting point for

performance maintenance?

In our field user study we have seen that the participants appreciated the rule cov-

erage matrix as a starting point for investigating PIOs. The rule coverage heat map

was considered useful especially in combination with the deviation-from-mean

heat map, which provided some extra information on top of the rule coverage heat

map. A possibility to improve the rule coverage matrix is to improve the coverage

of the association rule set as discussed in Section 4.5.1. A final result from the field

user study is that users prefer the INTENSITY metric as the initial trigger for starting

a PIO investigation, while the rule coverage matrix provides the starting point for

pinpointing the bottleneck component.

90 Chapter 4. Visualizing Performance: Wedjat

RQ2b-Eval2: Are heat maps an appropriate way of visualizing performance data?

The results of our field study show that the participants were very enthusiastic

about using heat maps for performance maintenance. They all believed using heat

maps for performance maintenance will speed up the process. In addition, they

were optimistic about using heat maps to explain performance problems to non

experts such as hosting companies and product management.

4.6.2 Threats to Validity

In this section we discuss the threats to validity of our field user study and our

approach for detecting PIOs. For a discussion of the threats to validity of the IN-

TENSITY metric, we refer to Section 3.8.

External validity. We have performed our field study on one industrial multi-

server SaaS application. Due to its outright scale and set-up, this application is

likely to be representative of other large-scale SaaS applications.

Only three participants participated in our field user study, however, all three

are performance experts and have many years of experience with performance

maintenance.

Internal validity. We use supervised learning to train our association rule set.

While this may form a threat to the validity of anomaly detection, we believe this

is actually an advantage for the detection of PIOs. Supervised learning implies we

will investigate PIOs which occur more often only, making them more interesting

for actual maintenance.

The complexity of the assigned task might have been too easy. While the task

assigned is indeed relatively easy to solve, the main focus of the study was to

see whether performance experts appreciated the new view on the performance

data. Future work will consist of evaluating WEDJAT using more complex tasks in

a controlled experiment setting [Cornelissen et al., 2011]. We acknowledge that

the low number of participants should be considered a serious threat. However, for

the current application, we involved all available performance experts. As such, as

future work we consider to extend our study to other systems as well.

A possible threat to validity is the fact that the overhead introduced by monitor-

ing the performance counters influences our training set and therefore our classifi-

cation scheme. However, as accessing performance counters is relatively cheap, we

assume that reading the value of n performance counters will have O(n) overhead

for every time period we make a measurement. Because this results in constant

overhead for all measurements, we assume that the overhead introduced in the

training set will also exist for the measurements made during the classification

phase and will therefore be negligible.

Reliability validity. WEDJAT and our implementation for calculating the INTENSITY

metric are available for download at http://swerl.tudelft.nl/bin/view/
Main/MTS.

4.7. Related Work 91

4.6.3 Lessons Learned

We have learned several lessons from our research:

Performance maintenance is usually done using simple tools while more integrated

approaches are desired by the experts (introduction of this chapter). Experts prefer

approaches that can be integrated with their existing tools and like to use the same

environment as much as possible.

Combining traditional with novel methods for performance data visualization can

help experts to understand the novel visualizations quicker (Section 4.5.2).

Experts do not like to cope with graphs that exhibit more than one metric at the same

time (Section 4.5.3). In our effort to combine several metrics in one heat map,

we found out that the experts did not appreciate this as they found the learning

curve for such maps too steep. Instead, they preferred several maps displaying one

metric.

It is important not to rely on the rule coverage matrix only when investigating a PIO

(Section 4.5.1) in order to prevent being too dependent on the assocation rule set.

It is possible that this rule set is not complete. Instead, it is better to combine the

results with those from the deviation-from-mean heat maps to get a broader result.

4.7 Related Work
This section discusses methods for assisting performance experts in finding perfor-

mance improvement opportunities.

Performance Anomaly Analysis. Important tools for performance experts are

anomaly detection mechanisms. Often, these mechanisms detect anomalies that

can be prevented in the future by improving the performance of the system.

Munawar et al. [2008] search for invariants for the relationship between met-

rics to specify normal behaviour of a multi-tier application. Deviations from this

relationship help system administrators to pinpoint the faulty component. In their

work they use linear regression to detect relationships between metrics, which lim-

its their research to linear relationships. Our approach does not explicitly look

for direct relationships between metrics, but focuses on combinations of values

instead.

Cohen et al. [2004]; Zhang et al. [2005] present an approach to correlate low-

level measurements with SLO violations. They use tree-augmented naive Bayesian

networks as a basis for performance diagnosis. Their work is different from ours in

the way we detect the possible performance improvement. As we combine several

rules, our approach is capable of giving a more detailed analysis of the location of

the improvement.

Syer et al. [2011] use covariance matrices to detect deviations in thread pools

that indicate possible performance problems. The focus of their approach is on

thread pools while ours is not limited to a particular architectural pattern.

92 Chapter 4. Visualizing Performance: Wedjat

Malik et al. [2010] have presented an approach for narrowing down the set

of performance counters that have to be monitored to automatically compare load

tests by using statistics. Their technique also ranks the performance counters based

on their importance for load tests. Their work focuses on selecting metrics (i.e., the

dimension reduction problem), while our work focuses on analyzing those metrics

instead.

Jiang et al. [2009] analyze log files to see if the results of a new load test deviate

from previous ones. This allows developers to analyze the impact of their changes.

Nguyen et al. [2012] address a similar problem, namely the problem of finding

performance regressions. The focus of these approaches is on analyzing whether

a change had the desired effect on performance, while our approach focuses on

finding what to change.

Profiling. Profilers are tools which collect run-time details about software [Knuth,

1971], such as the amount of memory used or the number of instructions executed.

More advanced profilers analyze the ‘run-time bloat’, e.g., unnecessary new object

creations [Yan et al., 2012]. Profilers assist system administrators in the way that

they help identify the block or method which uses the most resources and hence

may form a bottleneck.

Bergel et al. [2012] extend profiling with the possibility to detect opportuni-

ties for code optimization. Using visualizations, they advise developers on how to

refactor code so that it will run faster. Their advice is based on principles such as

making often called functions faster.

In general, while there are methods for decreasing the amount of data and

instrumentation [Elbaum and Diep, 2005; Jovic et al., 2011], execution profiling

introduces considerable overhead due to the large amount of data that needs to be

monitored. In addition, because profilers usually analyze hot code (e.g., the code

that uses the most CPU cycles), they are not always directly suitable for detecting

all possible performance improvements [Jovic et al., 2011]. Finally, it is possible

that many sites must be monitored in a distributed environment. Therefore, while

execution profiling plays an important role in performance maintenance, its use

should be minimally. Our approach can assist in reducing the execution profiling

overhead by pinpointing the hardware on which profiling should be done.

Using Heat Maps for Performance Maintenance. Heat maps have been used

for performance analysis before [Fürlinger et al., 2007; Gregg, 2010], but we have

evaluated our approach in an industrial setting and on multi-server data.

4.8 Conclusion
In this chapter we have proposed a technique for detecting performance improve-

ment opportunities (PIOs) using association rules and performance counter mea-

surements. We have implemented this technique, together with several novel tech-

niques for the visualization of performance data, in an open source tool called WED-

4.8. Conclusion 93

JAT. We have evaluated WEDJAT, the novel visualization methods and our approach

in a field user study with three performance experts from industry for a large-scale

industrial SaaS application. The results of the user study show that WEDJAT helps

them to perform performance maintenance easier and faster. In short, this chapter

makes the following contributions:

• An approach for using heat maps to analyze the performance of a system and

exploit performance improvement opportunities

• The open source tool WEDJAT, which assists during the performance mainte-

nance process

• A field user study in which WEDJAT and the idea of using heat maps for per-

formance analysis are evaluated by three performance experts from industry

In future work we will focus on improving the usability of WEDJAT and the

coverage of the used rule set. In addition, we will keep on extending WEDJAT

with several new visualization methods. Finally, we will perform a more extended

evaluation of our approach in which we will (a) do a true/false positive/negative

analysis of our results and (b) assign more complex tasks to solve to the experts.

5..
Improving the Diagnostic

Capabilities of a Performance

Optimization Approach

Understanding the performance of a system is difficult because it is affected by ev-

ery aspect of the design, code and execution environment. Performance maintenance

tools can assist in getting a better understanding of the system by monitoring and an-

alyzing performance data. In previous work, we have presented an approach which

assists the performance expert in obtaining insight into and subsequently optimizing

the performance of a deployed application. This approach is based on the classifi-

cation results made by a single classifier. Following results from literature, we have

extended this approach with the possibility of using a set (ensemble) of classifiers, in

order to improve the classification results. While this ensemble is maintained with

the goal of optimizing its accuracy, the completeness (or coverage) is neglected.

In this chapter, we present a method for improving both the coverage and ac-

curacy of an ensemble. By doing so, we improve the diagnostic capabilities of our

existing approach, i.e., the range of possible causes it is able to identify as the bot-

tleneck of a performance issue. We present several metrics for measuring coverage

and comparing two classifiers. We evaluate our approach on real performance data

from a large industrial application. From our evaluation we get a strong indication

that our approach is capable of improving the diagnostic capabilities of an ensemble,

while maintaining at least the same degree of accuracy.1

5.1 Problem Statement . 97

5.2 Background . 98

5.3 Our Approach . 101

5.4 Experimental Setup . 108

5.5 Evaluation Results . 109

5.6 Discussion . 115

5.7 Related Work . 117

5.8 Conclusion . 118

1This chapter contains our work published as technical report TUD-SERG-2013-015 [Bezemer

and Zaidman, 2013].

95

96 Chapter 5. Improving the Diagnostic Capabilities

Understanding the performance of a system is difficult because it is affected

by every aspect of the design, code and execution environment [Woodside et al.,

2007]. Therefore, tools are being developed which assist experts in understanding

the performance of a system. A subset of these tools [Rao and Xu, 2008; Cohen

et al., 2004; Zhang et al., 2005], rely on machine learning techniques to correlate

low-level system measurements with high-level service objectives (SLOs). A part of

these techniques, the so-called supervised learning techniques [Witten and Frank,

2005], use part of the monitored data as input for training the classifier used in

the performance maintenance system. This classifier can then analyze newly mon-

itored input and reason about, or predict the performance of the system. The

quality of the analysis is dependent on the classifier. On the one hand, it is impor-

tant that the classification made by the classifier is accurate. On the other hand,

the range of possible diagnoses the classifier can make, its coverage, defines the

applicability of the approach on real world problems.

Zhang et al. [2005] and Tan et al. [2010] showed that the quality of a clas-

sification can be improved by using an ensemble of classifiers. In an ensemble,

classifiers work together to take a better decision than they would on their own.

For example, Zhang et al. select the most suitable classifier for classifying a set

of measurements, which works well for analyzing performance anomalies. While

Zhang et al. and Tan et al. propose methods for increasing the accuracy of the

classifier ensemble, these methods do not take the diagnostic capabilities of the

ensemble into account. In this chapter, we present an approach which aims at im-

proving both the coverage and accuracy of a classifier ensemble. By improving the

coverage of the ensemble, we improve its diagnostic capabilities and we also im-

prove the level of understanding an expert can get from the performance analysis

results. In this chapter, we focus on the following research question presented in

Chapter 1:

RQ2c: How can we improve the quality of the diagnosis?

In short, we make the following contributions:

1. A set of metrics for defining and calculating the coverage of a classifier or

ensemble

2. An ensemble maintenance approach for improving both accuracy and cover-

age of a classifier ensemble

3. An industrial case study in which we evaluate our approach and show that

it is capable of improving the diagnostic capabilities of an ensemble, while

5.1. Problem Statement 97

maintaining approximately the same degree of accuracy for detecting perfor-

mance bottlenecks in the system

We do so by extending our approach for performance optimization of deployed

applications (Chapter 3). Because we focus on finding performance optimizations

instead of anomalies, we let classifiers work together in an ensemble by letting

them vote and subsequently select the classification which has received the most

votes. As a result, the ensemble is more likely to find structural bottlenecks.

In the rest of this chapter, we first present our problem statement in Section 5.1.

In Section 5.2, we give a brief overview of the approach we extended to come to

our contributions. We discuss our approach which aims at improving both coverage

and accuracy of a classifier ensemble in Section 5.3. We present and discuss the

evaluation results of our industrial case study in Section 5.4, 5.5 and 5.6. We

present related work in Section 5.7 and conclude our work in Section 5.8.

5.1 Problem Statement
Many performance maintenance approaches are based on supervised learning tech-

niques, i.e., they must be trained using labeled data to be able to reason about the

performance of a system. During the training, a (trained) classifier is generated

which is able to classify new performance data into certain classes. An advantage

of using supervised learning instead of unsupervised learning, is that you have

more control over what should be considered abnormal cases in the training data.

This is interesting for performance optimization approaches, as it allows you to find

structural performance issues, which are possibly missed by unsupervised learning.

A classifier can be trained using any training set specified by a performance

expert, but the quality of the classification results can be very different. As the

reasoning (or diagnosing) part of the approach often relies on this classification,

the quality of the diagnosis depends on the quality of the classification as well. The

quality of a diagnosis is defined by:

1. The accuracy, i.e., whether the diagnosed issue is indeed an issue.

2. The completeness, i.e., whether the diagnosis provides a complete descrip-

tion of the cause of the issue, giving the expert enough details to start an

investigation.

Existing methods for increasing the accuracy of a diagnosis by using an en-

semble of classifiers instead of a single classifier [Zhang et al., 2005; Tan et al.,

2010] do not consider the completeness of the diagnosis. In this chapter, we pro-

pose a method which is based on Zhang et al.’s method for maintaining a classifier

ensemble. However, our method aims at improving both the completeness and ac-

curacy of the diagnosis. A metric in which the completeness of a diagnosis can be

expressed is coverage.

98 Chapter 5. Improving the Diagnostic Capabilities

The coverage of a classifier or ensemble is the set of features it uses to take a

decision. In a performance monitoring system, this set may, for example, consist

of a subset of the monitored performance metrics. The coverage of a classifier

tells us something about its diagnostic capabilities: the more features a classifier or

ensemble covers, the wider the range of possible diagnoses it can make, hence, the

more complete the diagnosis can be. We focus on the following research question:

RQ2c-1: How can we improve the coverage of a classifier ensemble, while

maintaining at least the same degree of accuracy?

In Chapter 3, we have presented an approach for performance optimization of

deployed Software-as-a-Service (SaaS) applications. In this chapter, we extend this

approach with support for a classifier ensemble maintained using our approach for

accuracy and coverage improvement. In the next section, we first give background

information about our performance optimization approach.

5.2 Background
In Chapter 3, we presented an approach that allows to identify and analyze possi-

ble performance improvement opportunities (PIOs) in a software system using per-

formance metrics 2 only. To do this, our approach uses a system-specific classifier,

generated from data collected during the training phase. The performance of a

system is often characterized by unexpected combinations of performance metric

values, rather than following simple rules of thumb [Cohen et al., 2004]. There-

fore, we generate association rules [Cohen, 1995] from the monitored data3, as

these are capable of representing such complex combinations.

Table 5.1 depicts a rule set and a set of new measurements for a sample (fictitu-

ous) system. The sample system consists of server S1 with two monitored perfor-

mance metrics C PU (% CPU Utilization) and M EM (% Memory Usage), and server

S2 with one monitored performance metric C PU . In Chapter 3, we devised an ap-

proach which generates such association rules based on the response time. Central

to our approach is the SARATIO metric. The SARATIO (or Slow-to-All-actions-ratio)

for a time interval t is defined as:

SAratiot =
|SLOWt |

|SLOWt |+ |NORMALt |

We define an action4 as slow (i.e., a member of SLOWt) when it belongs to the

15% slowest actions in terms of response time for a particular user of a particular

2See http://www.st.ewi.tudelft.nl/~corpaul/eollist.txt for the list used in our

case study.
3See Chapter 3 for a thorough discussion of the approach.
4An action is the activation of a feature by the user. A feature is a product function as described

in a user manual or requirement specification [Koschke and Quante, 2005].

5.2. Background 99

application (or feature) for a time interval t. We consider the other 85% of the ac-

tions as a member of the NORMALt class. We calculate the response time per user

and per application to make sure that actions that have greater resource demands

are not automatically considered slow. An example of this is a bookkeeping sys-

tem: report generation will take longer for a company with 1000 employees than

for a company with 2 employees. When using average response time as threshold

setting for this action, the threshold will either be too high for the smaller company

or too low for the larger company.

We calculate the SARATIO for all time intervals of the training period using a

sliding window approach, in which the window contains all actions made during

time interval t. As we now have a SARATIO-value for all monitored time intervals,

we can identify when the system was running relatively slow. We define the fol-

lowing thresholds for the SARATIO, such that we can classify system load for each

interval:

• high: system load is typically too high, which makes it perform slow (top 5%

SARATIO values)

• med: system load may become or may just have been problematic (medium

10% SARATIO values)

• low: system load is non-problematic (low 85% SARATIO values)

From this definition, classifications which fall into the high class form the most

interesting situations, the PIOs, with respect to performance optimization. Using

the SARATIO class and the performance metric values monitored during a time

interval, we use the JRip algorithm from the WEKA toolkit [Hall et al., 2009] to

mine association rules which classify performance measurements into one of the

three SARATIO classes.

Our PIO analysis approach exploits the association rules used during the clas-

sification process of the PIO detection to find starting points for exploring possible

performance improvement opportunities. The goal of our approach is to analyze

the information in the rules matched by a measurement and detect clusters of

performance metrics that help decide on which server, hardware or software com-

ponents we must start looking for performance improvements.

Our approach uses a so-called rule coverage matrix m. The rows of this ma-

trix contain the performance metrics, the columns depict measurements. The first

column, representing the first measurement is initialized to 0. Each time a new

measurement is received, the last column of m is copied and the following algo-

rithm is applied:

• Increase mi, j if performance metric i is covered by a high rule at measure-

ment j.

100 Chapter 5. Improving the Diagnostic Capabilities

Table 5.1: Sample rule set and performance measurements

Sample association rule set Sample measurements
1 S1_CPU>80 & S2_CPU>60→ high t S1_CPU S1_MEM S2_CPU
2 S1_CPU>70 & S1_MEM>70→ high 0 40 60 50
3 S1_CPU>90→ high 1 95 60 50
4 S1_MEM<30→ med 2 98 80 50
5 else→ low 3 98 95 80

4 98 80 50
5 40 25 50

• Leave mi, j equal to mi, j−1 for a med rule

• Decrease mi, j if performance metric i is covered by a low rule at measure-

ment j, with a minimum of 0

We update the value of every mi, j only once for every measurement, even

though multiple covering rules may contain the same performance metric. The

rationale behind building the rule coverage matrix this way is the following:

1. The rule set describes all known cases of when the system was performing

slowly.

2. We expect all measurements made during a PIO to be covered by the same, or

similar rules when they are classified. The reason for this is that performance

metric values are in general relatively stable, which means that abnormal val-

ues of (combinations of) performance metrics will be exhibited for a longer

period of time, i.e., throughout the PIO.

3. When entering this into the rule coverage matrix this way, higher values in m

will appear because these values will be increased for performance metrics

which occur in adjacent measurements.

4. Eventually, clusters of higher values in m for performance metrics on specific

hardware will appear.

5. These clusters can be used to do performance reengineering, e.g., pinpointing

a bottleneck component.

The following example illustrates this. Table 5.2 shows the resulting m after

applying our approach to Table 5.1. We can see a cluster of higher values at server

S1 at t = 4 and t = 5, indicating this server may be a bottleneck.

Our approach for PIO analysis relies on the contents of the rule set used by the

classifier. If this rule set contains rules that cover two servers, we can identify one

of those two servers as a bottleneck only. Therefore, a higher rule set coverage can

lead to a better bottleneck diagnosis.

5.3. Our Approach 101

Table 5.2: Rule coverage matrix for Table 5.1

❍
❍
❍
❍

metric
t

0 1 2 3 4 5

S1_CPU 0 1 2 3 4 4
S1_MEM 0 0 1 2 3 3
S2_CPU 0 0 0 1 0 0

covered by rules # 5 3 2,3 1,2,3 2,3 4

5.3 Our Approach
In this section, we present our approach for improving both accuracy and coverage

of a classifier ensemble. First, we will discuss the metrics used to calculate the

accuracy, and coverage of a classifier and ensemble. In addition, we will present

metrics for the contribution of a classifier. The contribution is a metric for describ-

ing how much a classifier would improve the coverage of an ensemble, if it were

a member of the ensemble. After this, we will present our approach for accuracy

and coverage improvement of a classifier ensemble, which uses these metrics.

5.3.1 Accuracy

The accuracy of a measurement system is the degree of closeness of measurements

of a quantity to that quantity’s actual (true) value [BIPM et al., 2008]. We make

a distinction between accuracy and balanced accuracy. Accuracy is the number of

times the classifier or ensemble classified a measurement correctly. For systems in

which the occurence of certain classes is rare, this metric can give a false judgement

of the system. For example, in our approach, the low class represents approximately

85% of all classifications, as we expect the load on a system to be non-problematic

in most cases (Chapter 3). A classifier which would always classify a measurement

as low, would have an accuracy of 85%, but it would still be unusable in a produc-

tion system. Hence, we use the balanced accuracy [Brodersen et al., 2010], which

is capable of dealing with such imbalances in the data set by taking the true and

false positives (TP and FP) and true and false negatives (TN and FN) into account.

The balanced accuracy BA can be calculated as follows:

BA=
0.5 ∗ T P

T P + FN
+

0.5 ∗ T N

T N + F P

The classifier mentioned which has an accuracy of 85%, would have a BA of ap-

proximately 0.5.

5.3.2 Coverage

In order to improve the coverage of a classifier ensemble, we must be able to

compare the coverage of two classifiers, so that we can decide whether adding

102 Chapter 5. Improving the Diagnostic Capabilities

(or removing) a classifier to the ensemble will increase (or decrease) its coverage.

In this section, we introduce metrics for defining the coverage of a classifier or

ensemble (Section 5.3.2) and for the contribution of a classifier (Section 5.3.2).

Throughout this section, we will use the association rule sets in Table 5.3 as

an example to illustrate the metrics. These rule sets were synthetically crafted

for demonstration purposes. Note that we use the terms association rule set and

classifier interchangeably throughout this chapter.

Table 5.3: Sample rule sets

Complete set of monitored performance metrics (MALL):
S1_CPU, S1_MEM, S2_CPU, S3_CPU
Complete set of monitored servers (SALL):
S1, S2, S3

Rule set/Classifier A Rule set/Classifier B
1 S1_CPU>80 & S2_CPU>60→ high 1 S1_CPU>80 & S2_CPU>60→ high
4 S1_MEM<30→ med 1 S3_CPU>90→ high
5 else→ low else→ low

Classifier Coverage Metrics

An important property of a classifier is the set of performance metrics or hardware

components it covers. As explained in Section 5.2, the contents of the rule set are

used to perform bottleneck analysis on the system. As a result, the larger the set

a classifier covers, the more precise the bottleneck diagnosis can be. We propose

to exploit this to improve coverage of an ensemble. For example, two classifiers

which cover a disjoint set of servers could be complementary.

Metrics Coverage Percentage (MCP) The MCP is the percentage of performance

metrics of the complete set of monitored metrics MALL that a rule set R covers. To

calculate this percentage, we compose set MR containing all performance metrics

used in rule set R. After this, we calculate which percentage of the complete set

MR covers:

MCP=
|MR|
|MALL |

∗ 100

For our example rule sets, this gives:

MA = {S1_C PU , S1_M EM , S2_C PU}

MCP for rule set A=
3

4
∗ 100= 75%

MB = {S1_C PU , S2_C PU , S3_C PU}

MCP for rule set B=
3

4
∗ 100= 75%

5.3. Our Approach 103

Server Coverage Percentage (SCP) The SCP is the percentage of servers of the

set of monitored servers SALL a rule set R covers. SCP is defined similarly to MCP:

SCP=
|SR|
|SALL |

∗ 100

For our example rule sets, this gives:

SA = {S1, S2}
SCP for rule set A =

2

3
∗ 100= 66, 7%

SB = {S1, S2, S3}
SCP for rule set B =

3

3
∗ 100= 100%

The MCP and SCP are an indication of the completeness of a rule set. Note

that they are not a metric for describing how accurate the rule set can classify new

performance measurements. However, they can help with improving the coverage

of an ensemble, as the ideal ensemble can cover up to 100% of MALL and SALL.

Therefore, we define MCPensemble as the percentage of metrics of the complete set of

all monitored metrics that all classifiers in the ensemble cover together. Likewise,

we define SCPensemble as the percentage of servers the ensemble covers. To calculate

MCPensemble, we take the union of MR of every classifier R in the ensemble. We can

calculate SCPensemble by taking the union of SR of every classifier R in the ensemble.

The MCPensemble and SCPensemble can be used to decide whether the coverage of the

ensemble increases after adding a classifier. Throughout the rest of this chapter,

we will address the monitored performance metrics and servers as features.

Classifier Coverage Vector (CCV) To be able to compare classifiers with each

other, we propose to use a vector representation of their contents. The classifier

coverage vector (CCV) is such a representation. For a classifier A, we create a vector

Vc with |MALL| elements with value zero, and set value Vmi
to t rue (1) if MALL i

is in

MA. In addition, we create a vector Vs with |SALL| elements with value zero, and set

value Vsi
to 1 if SALL i

is in SA. We then concatenate Vc and Vs to create CCVA. For

our example set A this gives:

Vc = [1;1; 1;0]

Vs = [1;1; 0]

CCVA = [Vc; Vs] = [1;1; 1;0; 1;1; 0]

104 Chapter 5. Improving the Diagnostic Capabilities

Ensemble Coverage Frequency Vector (ECFV) To maintain a classifier ensem-

ble, we must know what the current ensemble coverage is. To keep track of this,

we maintain the ECFV, which contains the number of classifiers in the ensemble

that cover a feature. We start with an empty ECFV, i.e., all elements are set to

zero. Everytime a classifier is added to the ensemble, we add its CCV to the ECFV.

Likewise, when we remove a classifier from the ensemble, we subtract its CCV from

the ECFV. For our example rule sets, this gives:

ECFV = [0;0; 0;0; 0;0; 0]

CCVA = [1;1; 1;0; 1;1; 0]

ECFV+ CCVA = [1;1; 1;0; 1;1; 0]

CCVB = [1;0; 1;1; 1;1; 1]

ECFV+ CCVA+ CCVB = [2;1; 2;1; 2;2; 1]

Note that in contrast to the CCV where the elements represent booleans, the

elements in ECFV represent the number of classifiers in the ensemble that cover a

certain feature. By maintaining the ECFV, we can easily keep an administration of

the coverage of the ensemble.

Classifier Contribution

When selecting the best out of two candidate classifiers for addition to the ensem-

ble, we want to select the classifier which makes the greatest contribution to the

coverage of the ensemble. When one of the classifiers adds more new features to

the ensemble than the other, i.e., causes the largest increase in MC Pensemble and

SC Pensemble, the decision is clear. Note that this number is the difference in the

number of zeros before and after adding CCV to ECFV for a new candidate, and

after subtracting CCV from ECFV for a removal candidate.

However, when both classifiers cause an equal increase in the coverage of the

ensemble, we must find out which classifier provides the most valuable contribu-

tion. This is the classifier which covers the features with the lowest frequency in

the ECFV, because adding this classifier would allow us more flexibility when re-

moving a classifier later without affecting MC Pensemble and SC Pensemble. Imagine the

following CCVC and CCVD:

ECFV = [2; 1;2; 1;2;2; 1]

CCVC = [1; 0;0; 0;0;0; 0]

CCVD = [0; 1;0; 0;0;0; 0]

Adding classifier C to the ensemble would increase the coverage of S1_C PU

(the first element of ECFV), which is already covered by two classifiers. Adding

5.3. Our Approach 105

classifier D to the ensemble would increase the coverage of S1_M EM (the second

element of ECFV), which is covered by one classifier in the ensemble only. There-

fore, classifier D would make the greatest contribution to the ensemble.

We use the cosine similarity [Baeza-Yates and Ribeiro-Neto, 1999] for finding

the classifier with the greatest contribution. The cosine similarity measures the

cosine between two vectors to describe their similarity; it is 1 for vectors that are

exactly the same (cos 0) and -1 for vectors that are exactly the opposite (cos 180).

We chose to use the cosine similarity over other similarity measures for its easy

interpretation. By calculating the cosine similarity of the ECFV and the CCV of the

candidate classifiers, we can calculate which CCV is the least similar to the ECFV.

Because this vector covers features which are covered less in the ECFV than the

other would, its contribution is greater. The (cosine) similari t y for two vectors V1

and V2 is defined as follows:

similari t yV1,V2
= cosθ =

V1 · V2
�

�

�

�V1

�

�

�

�

�

�

�

�V2

�

�

�

�

with V1 · V2 being the Euclidean dot product formula and
�

�

�

�V1

�

�

�

� the norm for

vector V1:

V1 · V2 =
n
∑

i=1

V1i
V2i

�

�

�

�V1

�

�

�

�=

r

n
∑

i=1

(V1i
)2

For classifiers C and D, similari t yECFV,CCVC
and similari t yECFV,CCVD

are calcu-

lated as follows:

ECFV · CCVC = 2 ||ECFV||=p19

ECFV · CCVD = 1
�

�

�

�CCVC

�

�

�

�=
p

1
�

�

�

�CCVD

�

�

�

�=
p

1

similari t yECFV,CCVC
= 2p

19
similari t yECFV,CCVD

= 1p
19

This shows that CCVD is indeed less similar to ECFV than CCVC , making D the

classifier to select for addition as it makes the greatest contribution to ECFV.

5.3.3 Ensemble Maintenance

Whenever we monitor new performance data, this data may be used to generate a

new classifier. Upon generation of such a new classifier, we must decide whether

we should add it to the ensemble or not. Algorithm MaintainEnsemble depicts

the steps necessary for maintenance of the ensemble. A data buffer is being kept

which contains all the newly monitored data. Whenever the data buffer is full,

i.e. it has reached the configured size (for example one day or one week), a new

106 Chapter 5. Improving the Diagnostic Capabilities

Algorithm 2 MaintainEnsemble(e, d, n)

Require: Ensemble e, DataBuffer d, maximum ensemble size n (0 = unlimited)

Ensure: Trains a new classifier c whenever d is full, and adds it to e when c can increase the

coverage of e.

1: while !d.isFul l() do

2: d.waitForNewData()

3: end while

4: c = d.t rainNewClassi f ier()

5: AddClassifier(c, e, n)

6: d.resetBu f f er

Algorithm 3 CalcNewFeatures(c, e)

Require: Classifier c, Ensemble e

Ensure: Returns the number of new features c contributes to e

1: if c ∈ e then

2: ec f vOld = e.ec f v − c.ccv

3: return cntZeros(ec f vOld)− cntZeros(e.ec f v)

4: else

5: ec f vNew = e.ec f v + c.ccv

6: return cntZeros(e.ec f v)− cntZeros(ec f vNew)

7: end if

classifier c is trained using the data in the buffer as training set. This classifier

is then evaluated on a set of test data and its balanced accuracy BA is calculated.

This BA is compared with the BA of the classifiers in the ensemble. If the BA of

the new candidate is higher than that of any of the classifiers in the ensemble, it

replaces that classifier. If the selection of the classifier to remove or add (i.e., the

BA is equal to that of one in the ensemble) is ambiguous, we select the classifier

which would give the greatest contribution in coverage if it were in the ensemble.

We then select this classifier as the winning candidate and make it a member of the

ensemble. Algorithm AddClassifier depicts this process.

An important aspect is the amount of space available for the ensemble: this

may be either unlimited or limited, e.g., in an embedded system. Note that the

ensemble may consist of only one classifier. We will now discuss the maintenance

algorithm in the case of unlimited and limited space.

Maintenance of an Ensemble with Unlimited Space

In the case of unlimited space (or when there is still space left in the ensemble),

the algorithm for ensemble maintenance is depicted by lines 1 to 5 of Algorithm

AddClassifier. In this case we add the classifier if and only if its BA is at least as

high as the BA of one of the classifiers in the ensemble.

5.3. Our Approach 107

Algorithm 4 AddClassifier(c, e, n)

Require: Candidate classifier c, ensemble e, maximum ensemble size n (0 = unlimited)

Ensure: If there is enough space in the ensemble, and c has high enough BA, c is added. If there

is not enough space, and the BA of c is at least as high as another classifier in the ensemble, a

tiebreak is started to decide which classifier should be in the ensemble.

1: if c.getBA()< e.getMinBA() then

2: return

3: end if

4: if e.size()< n or n== 0 then

5: e.addClassi f ier(c)

6: else

7: for all cl ∈ e.getMinBAClassi f iers() do

8: f eats[] = (cl, CalcNewFeatures(cl, e))

9: end for

10: remCandidate = f indMinCont r(f eats)

11: if c.getBA()> remCandidate.getBA() then

12: e.replaceClassi f ier(remCandidate, c)

13: else if c.getBA() == remCandidate.getBA() then

14: if CalcNewFeatures(c, e)> remCandidate.cont r then

15: e.replaceClassi f ier(remCandidate, c)

16: else if CalcNewFeatures(c, e) == remCandidate.cont r then

17: if cosSim(c, e)< cosSim(remCandidate, e) then

18: e.replaceClassi f ier(remCandidate, c)

19: end if

20: end if

21: end if

22: end if

Maintenance of an Ensemble with Limited Space

Lines 6-22 of AddClassifier depict the case where the ensemble is full. We must

then select a candidate for removal from the set of classifiers with the lowest BA
in the ensemble (e.getMinBAClassifiers()). To do this, we must first calculate the

number of new features each classifier in the set of removal candidates contributes

to the ensemble using CalcNewFeatures. The number of new features is calcu-

lated as described in Section 5.3.2 by counting the number of zeros in the ECFV
before and after adding the CCV of the classifier. If the BA of these classifiers is

lower than the BA of the classifier c we are trying to add to the ensemble, we can

simply replace the classifier with the lowest contribution with c. Otherwise, we

calculate the number of new features the candidate classifier c would contribute.

If this contribution is greater than that of the removal candidate, we replace that

classifier with the new candidate c. If the removal candidate contributes as much

new features as c, we must perform a ‘tiebreak’ to find out which classifier must

be in the ensemble. Therefore, we add c only if its cosine similarity with the ECFV
is smaller (Sect. 5.3.2). This principle is also used to find the removal candidate

which contributes the least in line 10 (only we select the classifier with the largest

cosine similarity with ECFV as this classifier contributes the least).

108 Chapter 5. Improving the Diagnostic Capabilities

5.4 Experimental Setup
Subject System We performed a case study on data monitored in Exact Online5

(EOL), an industrial multi-tenant SaaS application for online bookkeeping with

approximately 18,000 users. The application currently runs on several web, appli-

cation and database servers. It is written in VB.NET and uses Microsoft SQL Server

2008.

Process For a period of 65 days, we collected the data of in total 255 perfor-

mance metrics6 on 15 servers, every minute in the same database using a .NET

background task. In addition, all requests, including the user who made them and

the application that was targeted by the request, were logged. We selected 51 days

as training data for the classifier ensemble, and reserved 7 days as new test data

to calculate the accuracy of every classifier. The final 7 days were used to calculate

the accuracy of the ensemble. The labels for the test set were estimated using the

SARATIO (see also Section 5.2).

The classifier ensemble maintenance approach was implemented as an exten-

sion to the performance optimization approach presented in Chapter 3. This ap-

proach and the extension are implemented in Java and use the WEKA API [Hall

et al., 2009] (in particular the JRip algorithm [Cohen, 1995]) to perform the

classification. The voting mechanism was implemented as follows. We let each

classifier in the ensemble classify the data of every minute that we want to ana-

lyze. Each classification made by a classifier for a specific minute counts as a vote.

Then, for each minute, we calculate the number of votes for each SARATIO class

and we select the class with the most votes as the voted classification. The voted

classification is the classification made by letting the classifiers in the ensemble

work together. In the case of an equal number of votes, we give a preference to

the lowest classification. For example, if there are 20 votes, and the med and high

class both have received 10 votes, we select med.

Balanced Accuracy In our evaluation we focus on the (mis)classifications of

the high class, as this class triggers an action in our approach (Section 5.2). There-

fore, we consider measurements wrongly classified as high to be false positives,

and measurements which should have been high but were classified differently

false negatives. Summarizing, we use the following definitions throughout our

evaluation:

• TP: correctly classified as H

• FP: wrongly classified as H

• TN: correctly classified as not H

• FN: wrongly classified as not H

5http://www.exactonline.nl
6See http://www.st.ewi.tudelft.nl/~corpaul/eol_list.txt for a complete list

5.5. Evaluation Results 109

We use these definitions to calculate the balanced accuracy (Section 5.3.1).

5.5 Evaluation Results
To evaluate our MaintainEnsemble algorithm, we generated ensembles for each

maximum size n ranging from n = 1 to n = 51. We used 51 classifiers trained on

one day of training data to populate the ensemble. We calculated the accuracy and

BA for the classifiers by classifying 7 days of test data.

We evaluated our algorithm in 8 situations. Each situation represents a combi-

nation of the following parameters:

• The ensemble maintenance approach: using only accuracy or using a combi-

nation of accuracy and coverage (our approach). In the case of using only

accuracy, the oldest classifier was removed from the classifier in case of mul-

tiple removal candidates. This parameter is used to investigate whether our

algorithm indeed improves the coverage of an ensemble, while keeping the

accuracy similar.

• Precision of classifier accuracy: 1 or 2 digits after the decimal point. With

lower precision, classifiers are more likely to have equal accuracy. As a result,

the tiebreak in our algorithm is used more often.

• The type of accuracy used in our algorithm: accuracy or BA. As explained

in Section 5.3, BA is more appropriate for our approach. However, as we

designed our algorithm to be generic, it should perform with the accuracy

metric as well.

In this section, we discuss the coverage and accuracy of the ensembles gener-

ated using the described parameters.

5.5.1 Coverage Evaluation

In each situation, we calculated SC Pensemble and MC Pensemble at the end of every

ensemble generation. The results are plotted in Figure 5.1 to 5.4 and summarized

in Table 5.4. The average difference is calculated for those cases in which the

values for SC Pensemble and MC Pensemble are not equal.

In Figure 5.1 and Figure 5.3, we can see that for 2 digits precision, SC Pensemble

and MC Pensemble do not change much. The reason for this is that the high preci-

sion results in few conflicts when adding a classifier to the ensemble. Hence, the

coverage optimization part of the algorithm is rarely used and the ensembles are

generated based on (balanced) accuracy only. In Table 5.4, the average decrease

in SC Pensemble looks larger than the increase of MC Pensemble for the case of 2 digits

precision accuracy. However, this is due to the different number of servers and

110 Chapter 5. Improving the Diagnostic Capabilities

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Maximum size of ensemble

M
C

P
 o

r
S

C
P

MCP (Only accuracy)

MCP (Accuracy and coverage)

SCP (Only accuracy)

SCP (Accuracy and coverage)

Figure 5.1: MCP / SCP (accuracy with 2 digits precision used in algorithm)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Maximum size of ensemble

M
C

P
 o

r
S

C
P

MCP (Only accuracy)

MCP (Accuracy and coverage)

SCP (Only accuracy)

SCP (Accuracy and coverage)

Figure 5.2: MCP / SCP (accuracy with 1 digit precision used in algorithm)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Maximum size of ensemble

M
C

P
 o

r
S

C
P

MCP (Only accuracy)

MCP (Accuracy and coverage)

SCP (Only accuracy)

SCP (Accuracy and coverage)

Figure 5.3: MCP / SCP (BA with 2 digits precision used in algorithm)

5.5. Evaluation Results 111

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Maximum size of ensemble

M
C

P
 o

r
S

C
P

MCP (Only accuracy)

MCP (Accuracy and coverage)

SCP (Only accuracy)

SCP (Accuracy and coverage)

Figure 5.4: MCP / SCP (BA with 1 digit precision used in algorithm)

Table 5.4: Differences of MC P and SC P between approaches

Situation acc. & cov. acc. & cov. equal avg.
wins loses diff.

1 digit precision acc. SCP 3 1 47 6.6625
MCP 12 0 39 0.8292

2 digits precision acc. SCP 0 1 50 -6.6700
MCP 2 0 49 0.5500

1 digit precision BA SCP 6 0 45 11.1100
MCP 15 1 35 0.9913

2 digits precision BA SCP 0 0 51 0.0000
MCP 0 0 51 0.0000

metrics analyzed. As a result, a difference of 6.67% for SC Pensemble means a differ-

ence of 1 feature, while a difference of 0.55 for MC Pensemble means approximately

1.4 feature. Because our algorithm tries to optimize the total number of covered

features, it may give preference to a classifier which covers more metrics but less

servers than the classifiers currently in the ensemble.

For the situations with 1 digit precision, the coverage improvement is done

more often. In Figure 5.2 and 5.4, we see an improvement of SC Pensemble and

MC Pensemble in the ensembles maintained using our approach. For 1 digit pre-

cision accuracy, in 4 cases the ensembles generated using our approach covered

approximately 1 server more than the ensembles generated using accuracy only.

In addition, the ensembles generated using our approach covered an average of

approximately 2 metrics more in 12 cases. For 1 digit precision BA, in 6 cases the

ensembles generated using our approach covered approximately 1.7 servers more

than the ensembles generated using accuracy only. In addition, the ensembles gen-

erated using our approach covered an average of approximately 2.5 metrics more

in 16 cases. An explanation for the difference in coverage between the ensem-

bles maintained using accuracy and using BA could be that classifiers with high BA

112 Chapter 5. Improving the Diagnostic Capabilities

0 10 20 30 40 50 60
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Maximum size of ensemble

%

Balanced Accuracy of Voted Classification (Only accuracy)

Balanced Accuracy of Voted Classification (Accuracy and coverage)

Accuracy of Voted Classification (Only accuracy)

Accuracy of Voted Classification (Accuracy and coverage)

Figure 5.5: Accuracy / BA of the voted classification (accuracy with 2 digits preci-

sion used in algorithm)

0 10 20 30 40 50 60
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Maximum size of ensemble

%

Balanced Accuracy of Voted Classification (Only accuracy)

Balanced Accuracy of Voted Classification (Accuracy and coverage)

Accuracy of Voted Classification (Only accuracy)

Accuracy of Voted Classification (Accuracy and coverage)

Figure 5.6: Accuracy / BA of the voted classification (accuracy with 1 digit precision

used in algorithm)

have higher coverage than classifiers with high accuracy. In future work, we will

investigate whether these metrics are related.

5.5.2 Approach Effectiveness Evaluation

To evaluate the effectiveness of our approach, we let each ensemble classify the 7

days of test data using the voting process explained in Section 5.4. We calculate the

accuracy and BA of the classification chosen after the voting process was executed

by the ensemble. Figure 5.5 to 5.8 depict the results of these calculations. The

results are summarized in Table 5.5.

The first observation we make is that for the situations with 2 digits precision,

5.5. Evaluation Results 113

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum size of ensemble

%

Balanced Accuracy of Voted Classification (Only accuracy)

Balanced Accuracy of Voted Classification (Accuracy and coverage)

Accuracy of Voted Classification (Only accuracy)

Accuracy of Voted Classification (Accuracy and coverage)

Figure 5.7: Accuracy / BA of the voted classification (BA with 2 digits precision

used in algorithm)

0 10 20 30 40 50 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Maximum size of ensemble

%

Balanced Accuracy of Voted Classification (Only accuracy)

Balanced Accuracy of Voted Classification (Accuracy and coverage)

Accuracy of Voted Classification (Only accuracy)

Accuracy of Voted Classification (Accuracy and coverage)

Figure 5.8: Accuracy / BA of the voted classification (BA with 1 digit precision used

in algorithm)

114 Chapter 5. Improving the Diagnostic Capabilities

Table 5.5: Differences for accuracy and BA of voted classification between ap-

proaches

Situation acc. & cov. acc. & cov. equal avg.
wins loses diff.

1 digit precision acc. Acc. 6 10 35 -0.0091
BA 12 3 36 0.0023

2 digits precision acc. Acc. 0 2 49 -0.0017
BA 1 1 49 0.0000

1 digit precision BA Acc. 7 8 36 0.0059
BA 9 7 35 0.0157

2 digits precision BA Acc. 0 0 51 -0.0054
BA 0 0 51 -0.0061

there are few differences between the approach which uses accuracy only and our

approach. As explained in Section 5.5.1, this is due to the low number of conflicts

when adding classifiers. For the cases with 1 digit precision, Table 5.5, Figure 5.5

and 5.7 show that there are more differences. However, the average difference for

the ensemble sizes with unequal accuracy and BA is small (at most 1.6%).

Another observation we make, is that the graphs for accuracy and BA are not

continuously increasing or decreasing. The reason for this is that we measure

the accuracy and BA of the voted classification. Even though we try to increase

the average accuracy or BA of the ensemble when adding a classifier, there is no

guarantee that a classifier with high accuracy or BA will increase the accuracy or

BA of the voted classification. The reason for this is that despite the high accuracy

of a classifier, it may accurately classify a different subset of classifications than the

classifiers in the ensemble. Hence, it will not always vote for the same classification

as the other classifiers in the ensemble during the voting process. As a result, a

classifier with high accuracy or BA will not necessarily increase the accuracy or BA
of the voted classification, unless the accuracy or BA of the classifier is 100% (which

is difficult to achieve). To optimize this, we would have to calculate the accuracy or

BA of the voted classification for all possible combinations of classifiers, every time

we have trained a new classifier. This would be impractical due to the number of

combinations and therefore, we settle for suboptimal results using our approach.

The third observation we make, is the difference between the accuracy and BA
of the voted classification. As explained in Section 5.3.1, this is because we have an

imbalanced data set, in which a classifier that classifies all measurements as low

would have high accuracy but low BA. As a result, when maintaining the ensemble

using accuracy, classifiers with high accuracy but low BA will be added first and

vice versa when using the BA during ensemble maintenance.

5.5.3 Conclusion

From our evaluation, we get a strong indication that our approach is capable of

improving the coverage of an ensemble, while maintaining a similar degree of ac-

5.6. Discussion 115

curacy and BA for the voted classification. Table 5.4 shows the coverage clearly in-

creases, compared to the approach which neglects coverage, while Table 5.5 shows

that the difference of the accuracy and BA on average is very small.

5.6 Discussion

5.6.1 The Research Question Revisited

RQ2c-1: ‘How can we improve the coverage of a classifier ensemble, while main-

taining at least the same degree of accuracy?’

In this chapter, we have presented an approach which aims at improving both

accuracy and coverage of an ensemble. In an evaluation on an industrial data

set, we have shown that ensembles generated using our algorithm, always cover

at least the same number of features, compared to an approach which only tries

to improve classifier accuracy. In the cases in which MC Pensemble and SC Pensemble

improved, the improvement was on average larger than 1 feature.

In addition, we showed in our evaluation that the average accuracy and BA did

not change significantly because of our coverage improvement algorithm. Hence,

we can conclude, that for this data set, our approach is able of improving the

coverage of a classifier ensemble, while maintaining at least the same degree of

accuracy.

5.6.2 Scalability

Our approach is lightweight and transparent; it requires no modification of appli-

cation code as measurements are done at the operating system level. The only

knowledge our approach needs about the system is the set of features which are

being monitored to calculate SC P and MC P.

The data set used was 17 GB in size, containing 163 million records. Running

the experiment in which 7 days of data were classified by 51 classifiers and 7 days

of data were classifed by the various ensembles took approximately 8 hours. The

experiment was ran from code which was not optimized for bulk processing, but

is used in production for single classifications. Parallelization offers interesting

speed-up opportunities for our approach, as the task performed by the classifiers is

completely independent. We did not monitor resource usage statistics during the

experiment.

5.6.3 Limitations

A limitation of our approach is the fact that we treat features equally when cal-

culating the number of new features contributed by a classifier. While we did not

have preference for any type of feature in this experiment, it is possible to assign

weights to the types of features.

116 Chapter 5. Improving the Diagnostic Capabilities

The fact that we consider all classifiers equal is another limitation of our ap-

proach. Our evaluation results could possibly be improved by treating classifiers

generated on days during the week and during the weekend differently. Future

work must provide more insight into this.

In our work, we used a simple voting algorithm, which selects the classification

with the most votes. The same voting algorithm was used throughout the whole

experiment. We did not compare other voting algorithms as this is not the core

concern of this chapter.

5.6.4 Different Applications

We assume the classifiers use association rule sets, but any type of classifier (e.g.,

a decision tree) which explicitly states its decision variables can be used. It is not

necessary that classifiers within the ensemble are of the same type.

We have implemented our ensemble maintenance approach in a performance

optimization system, but we expect it is applicable for any type of classifier ensem-

ble in which the complete set of monitored features is known.

5.6.5 Threats to Validity

We have performed our evaluation on data monitored in an industrial multi-server

SaaS application. Due to its outright scale and set-up, this application is likely to be

representative of other large-scale SaaS applications, making the monitored data

set representative as well. Even so, in future work we will evaluate our approach

on other data sets.

Concerning the internal validity of our approach, we acknowledge that we fo-

cused on (mis)classifications of the high class during the evaluation. The reason

for this is that the high class triggers an action in our approach (Chapter 3), mak-

ing false positives and false negatives expensive. Therefore, we focused on these

properties by evaluating the BA of the ensembles resulting from our approach.

In our evaluation we did not investigate whether our test set contained any

anomalies. While this may influence the accuracy of the classifiers or the ensem-

bles, maintaining a representative test set is difficult in real-world systems due to

the manual labour involved [Ryu et al., 2012]. Therefore, we decided to select a

week of data and estimate the load classifications using the SARATIO. As all classi-

fiers and ensembles were using the same test set, we expect that any anomalies in

the set will be filtered out by the voting process.

In addition, we did not evaluate whether the diagnosis itself actually improves

due to the improved coverage. This should be done in a user study, similar to the

one in Chapter 3, making it costly in time. Hence, we will address this in future

research.

While we are aware of the existence of different metrics such as support and

confidence [Dudek, 2010] for comparing rules within rule sets, we did not use

5.7. Related Work 117

these as we were interested in the coverage of our ensemble. In future work, we

will investigate if these metrics can contribute to our approach.

5.7 Related Work

To the best of our knowledge, there is no other work related to performance main-

tenance in which a classifier ensemble was maintained based on both coverage and

accuracy. In this section we discuss some of the research related most to ours.

Zhang et al. [2005] present a technique for detecting violations of service level

objectives using an ensemble of models. Cohen et al. [2005] use this approach to

automatically extract a signature from a running system. The ensemble mainte-

nance method used by Zhang et al. and Cohen et al. focuses on classifier accuracy.

After training a new classifier, they evaluate it on a synthetic test set, to see if it

is more accurate than the classifiers in the ensemble. If the accuracy of the new

classifier is higher than all classifiers in the ensemble, it is added to the ensemble.

When a classification has to be made, they select the best fitting classifier from the

ensemble to make the classification. In this approach, the authors assume unlim-

ited space in the ensemble. As we use a voting process to make a decision, we do

not make this assumption, as the number of classifiers in an ensemble influences

the voting process. In contrast, using our approach, we are able to find structural

bottlenecks, rather than anomalies. In addition, our approach improves the cover-

age of the ensemble, which is something Zhang et al. and Cohen et al. neglect.

Ryu et al. [2012] propose a technique for building classifiers from new data

based on changes in the distribution of the monitored data. Their method is based

on the assumption that monitored data which belongs to the current distribution

of training data can be classified by the ensemble correctly. In future work we will

investigate whether this approach is complementary to ours.

ALERT [Tan et al., 2010] uses an ensemble of classifiers to predict and diagnose

performance anomalies. In contrast to ALERT, our system focuses on detecting

structural performance improvement opportunities. In addition, ALERT does not

improve the coverage of the ensemble.

On the issue of rule set quality improvement, much research has been done in

the field of association rule mining [Shankar and Purusothaman, 2009]. Several

metrics for comparing association rule sets were defined by Dudek [2010]. How-

ever, these metrics are tailored towards association rule sets with binary features.

In addition, the metrics are meant for evaluating the quality of association rule set

mining algorithms, instead of comparing the quality of the actual mined rule set. In

future work, we will investigate if the metrics presented by Dudek can contribute

to our approach.

118 Chapter 5. Improving the Diagnostic Capabilities

5.8 Conclusion
In this chapter we have proposed a technique for improving both coverage and

accuracy of a classifier ensemble. The goal of this is to improve the diagnostic ca-

pabilities of the ensemble, by broadening the set of possible diagnoses it can make,

while keeping at least the same degree of accuracy. Concretely, this means that the

set of association rules, which helps an expert understand the performance of a

system, gets extended. As a result, the extended rule set can provide a better un-

derstanding of the performance as the possibility of giving a more precise diagnosis

is likely to increase.

In an evaluation on a large industrial data set we showed that our approach

is capable of improving the coverage of an ensemble. Additionally, our approach

does this without affecting the ensemble accuracy. We make these contributions:

1. A set of metrics for defining and calculating the coverage of a classifier or

ensemble

2. An ensemble maintenance approach for improving both accuracy and cover-

age of a classifier ensemble

3. An industrial case study in which we evaluate our approach and show that

it is capable of improving the diagnostic capabilities of an ensemble, while

maintaining approximately the same degree of accuracy for detecting perfor-

mance bottlenecks in the system

In future work we will investigate whether the improved diagnostic capabilities

indeed result in an improved diagnosis, by performing an expert user study.

6..
Detecting and Analyzing

Performance Regressions Using a

Spectrum-Based Approach

Regression testing can be done by re-executing a test suite on different software ver-

sions and comparing the outcome. For functional testing, this is straightforward,

as the outcome of such tests is either pass (correct behaviour) or fail (incorrect be-

haviour). For non-functional testing, such as performance testing, this is more chal-

lenging as correct and incorrect are not clearly defined concepts for these types of

testing.

In this chapter, we present an approach for detecting performance regressions

using a spectrum-based technique. Our method is supplemental to existing profilers

and its goal is to analyze the effect of source code changes on the performance of a

system. The open source implementation of our approach, SPECTRAPERF, is available

for download.

We evaluate our approach in a field user study on Tribler, an open source peer-to-

peer client. In this evaluation, we show that our approach can guide the performance

optimization process, as it helps developers to find performance bottlenecks on the

one hand, and on the other allows them to validate the effect of performance opti-

mizations.1

6.1 Motivational Examples . 121

6.2 Problem Statement . 122

6.3 Spectrum-Based Fault Localization (SFL) . 123

6.4 Approach . 124

6.5 Implementation . 128

6.6 Design of the Field User Study . 130

6.7 Evaluation . 133

6.8 Discussion . 138

6.9 Related Work . 140

6.10 Conclusion . 141

1This chapter contains our work submitted for journal publication [Bezemer et al., 2013].

119

120 Chapter 6. Detecting and Analyzing Performance Regressions

Regression testing is performed on a modified program to instill confidence

that changes are correct and have not adversely affected unchanged portions of

the program [Rothermel and Harrold, 1996]. It can be done by re-executing a

test suite on different software versions and comparing the test suite outcome. For

functional testing, this is straightforward, as the functionality of a program is either

correct or incorrect. Hence, the outcome of such tests is either pass or fail. For non-

functional testing, this is more challenging, as correct and incorrect are not clearly

defined concepts for these types of testing [Chung et al., 2000].

An example of non-functional testing is performance testing. Two possible rea-

sons for performance testing are:

1. To ensure the software behaves within the limits specified in a service-level

agreement (SLA)

2. To find bottlenecks or validate performance optimizations

SLA limits are often specified as hard thresholds for execution/response time, i.e.,

the maximum number of milliseconds a certain task may take. The main rea-

son for this is that execution time influences the user-perceived performance the

most [Jain, 1991]. For performance optimizations, such a limit is not precisely

defined, but follows from comparison with the previous software version instead,

as the goal is to make a task perform as fast or efficient as possible. Hence, we are

interested in finding out whether a specific version of an application runs faster or

more efficiently than its predecessor.

As a result, including performance tests in the regression testing process may

provide opportunities for performance optimization. In fact, in this chapter we will

show that the outcome of these tests can guide the optimization process. Note that

we do not distinguish between unexpected (i.e., a bug) and expected performance

regressions (e.g., by adding a new feature) in this chapter.

Performance optimization can be done on various metrics. Execution time,

which is the most well-known, can be analyzed using traditional profilers. Other

examples of metrics which can be optimized are the amount of I/O, memory us-

age and CPU usage. These metrics are difficult to analyze for software written in

higher-level languages, such as Python, due to the lack of tools. Hence, the un-

derstanding of how software written in such languages behaves regarding these

metrics is often low [Reiss, 2009]. In addition, understanding the performance of

a system in general is difficult because it is affected by every aspect of the design,

code and execution environment [Woodside et al., 2007].

In this chapter, we propose a method which helps performance experts under-

stand how the performance, including the metrics mentioned above, changes over

6.1. Motivational Examples 121

the different versions of their software. We address the following research question

presented in Chapter 1:

RQ3: How can we assist developers with the optimization of the perfor-

mance of a multi-tenant system with regard to its software?

Our method is supplemental to existing profilers and its goal is to analyze the

effect of source code changes on the performance of a system. We achieve this by

monitoring the execution of a specific test by two versions of an application and

comparing the results using an approach based on spectrum-based analysis [Abreu

et al., 2007]. The result of our approach is a report which helps a performance

expert to:

1. Understand the impact on performance of the changes made to the software

on a function-level granularity

2. Identify potential performance optimization opportunities by finding regres-

sions or validate fixes

We evaluate our approach in a field user study on a decentralized peer-to-peer

(P2P) BitTorrent client, Tribler [Pouwelse et al., 2008]. In the first part of our

study, we analyze the performance history of a component in Tribler by analyzing

its unit test suite. In the second part, we analyze the effect of nondeterminism on

our approach, by analyzing a 10 minute run of Tribler in the wild.

The outline of this chapter is as follows. In the next section, we first give two

motivational examples for our approach. In Section 6.2, we present our problem

statement. In Section 6.3, we explain spectrum-based fault localization, a tech-

nique which forms the basis for our approach. In Section 6.4, we present our

approach for spectrum-based performance analysis. We present the implementa-

tion of our approach, called SPECTRAPERF, in Section 6.5. In Section 6.6 and 6.7,

we present the setup and results of our user study. We discuss these results and the

limitations of our approach in Section 6.8. In Section 6.9, we discuss related work.

We conclude our work in Section 6.10.

6.1 Motivational Examples
In this section, we give two real-world motivational examples for the approach

presented in this chapter.

Monitoring I/O: In a database system, some queries require the creation of a

temporary table2. The creation of such a file is often done silently by the database

system itself, but is intensive in terms of I/O usage. Finding out which function

2For example, for SQLite: http://www.sqlite.org/tempfiles.html

122 Chapter 6. Detecting and Analyzing Performance Regressions

causes the temporary table creation can help reduce the I/O footprint of an appli-

cation. Because I/O takes time, we can detect this behaviour using a traditional

profiler, which is based on execution time. However, there is no information avail-

able about whether the function resulted in the creation of a temporary table, or

that the high execution time was caused by something else. This makes the issue

hard to diagnose and optimize. In addition, if a developer has found the cause of

the temporary table generation, a fix is difficult to validate due to the same reasons.

Using an approach which can automate this process, we can see if a function has

started generating temporary tables since the previous version. Then, after fixing

it, we can validate if our optimization had the desired effect.

Memory Usage: In many applications, custom caching mechanisms are used.

Understanding the impact of these mechanisms on memory and disk I/O is of-

ten difficult. By being able to compare versions of software with implementations

of different caching mechanisms, we can improve our understanding of their be-

haviour better. Through this better understanding, we can select, evaluate and

optimize the most suitable caching mechanism for an application.

6.2 Problem Statement
By including performance testing in the regression testing process, developers can

get feedback about the way their changes to the code impact the performance of

the application. This feedback can be used to (1) be warned of undesired negative

effects or (2) validate the positive effect of a performance bug fix. To give this

feedback, we must do the following:

1. Define which metrics we want to analyze and combine this set of metrics

into a performance profile, which describes the performance behaviour of a

revision

2. Generate such a performance profile for every source code revision

3. Compare the most recent profile with the profile(s) of the preceding revi-

sion(s)

4. Analyze which source code change(s) caused the change(s) in performance

In this chapter, we focus on the following research question:

RQ3-1: How can we guide the performance optimization process by doing

performance regression tests?

To answer this research question, we divide it into the subquestions discussed in

the remainder of this section.

6.3. Spectrum-Based Fault Localization (SFL) 123

RQ3-1a: How can we monitor performance data and generate a compa-

rable profile out of this data?

Depending on which metric we want to analyze, we must find a suitable moni-

tor (or profiler) to monitor performance data. Ideally, we want to be able to mon-

itor without needing to change the source code of the application. An additional

challenge is that an application may use libraries written in different programming

languages, making it more difficult to get fine-grained information about, for ex-

ample, I/O.

A challenge is formed by the fact that monitoring the same test twice may

result in slightly different performance profiles, due to variations in, for example,

data contents and current memory usage [Larres et al., 2013]. As such, we must

devise a method for comparing these profiles:

RQ3-1b: How can we compare the generated performance profiles?

Finally, we must be able to analyze the differences between profiles and report

on the functions most likely to cause the change in performance:

RQ3-1c: How can we analyze and report on the differences between pro-

files?

In this chapter, we investigate an approach based on spectrum-based fault lo-

calization (see Section 6.4). In this study, we focus on detecting and analyzing

performance regression caused by write I/O. We expect that our approach can eas-

ily be adapted to work for other performance metrics, which we will verify in future

work.

6.3 Spectrum-Based Fault Localization (SFL)
Spectrum-based fault localization (SFL) is a technique that automatically infers a

diagnosis from symptoms [Chen et al., 2012]. The diagnosis is a ranking of faulty

components (block, source code line, etc.) in a system, with the most likely faulty

one ranked on top. To make this ranking, observations are made during test execu-

tion. These observations express the involvement of components during that spe-

cific test case in block-hit spectra (hence the name of the technique). These spectra

contain a binary value for each component, which represents whether it was exe-

cuted during that test case. Together with the outcome of a test case (pass/fail),

these observations form so-called symptoms. The outcome of all test cases (0 =

pass, 1 = fail) is represented by the output vector.

All observations combined with the output vector form the activity matrix,

which gives an overview of how component involvement is spread over the ex-

ecution of a test suite. For every row in the activity matrix, the similarity coefficient

124 Chapter 6. Detecting and Analyzing Performance Regressions

Table 6.1: Illustration of SFL [Chen et al., 2012]

Component Character counter t1 t2 t3 t4 t5 t6 SC

def count(string) [Activity Matrix]
C0 let = dig = other = 0 1 1 1 1 1 1 0.82
C1 string.each_char { |c| 1 1 1 1 1 1 0.82
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.89
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.89
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.89
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.58
C9 other += 1 } 1 0 1 0 0 1 0.58
C10 return let, dig, other 1 1 1 1 1 1 0.82

end

Output vector (verdicts) 1 1 1 1 0 0

of that row and the output vector is calculated. The idea behind this is that the

row with the highest similarity coefficient indicates the component most likely to

be faulty, as this component was executed during most of the failed test cases.

As the similarity coefficient, any similarity coefficient can be used, but Ochiai

was proven to give the best results [Abreu et al., 2006], hence we will use it

throughout this study. This technique mimics how a human would diagnose an

error by looking which parts of the system were active during the failed tests. The

Ochiai similarity coefficient (SC) for two binary vectors v1 and v2 is defined as:

SC =

Ç

a

a+ b
∗ a

a+ c
(6.1)

with a the number of items in both vectors, b the number of items in v1 that are

not in v2 and c the number of items that are in v2 but not in v1. Table 6.1 illustrates

the use of SFL for a function which counts the characters in a string, which is tested

by test cases t1 to t6. The SC column shows the similarity coefficient, calculated

against the output vector, for each line of code. In this example, line C3 is the line

most likely to be faulty as it has the highest SC . In this case, it is clear to see that

this is correct as let should be increased by 1 instead of 2. In the remainder of this

chapter, we present our approach for using spectrum-based analysis for detecting

performance regressions.

6.4 Approach
The goal of our approach is to analyze the effect of source code changes on the

performance of a system. Ideally, we would like to be able to generate a report

explaining per function how much a performance metric changed, compared to

the previous source code revision. In this section, we explain our approach for

6.4. Approach 125

generating such a report. The idea of our approach is that we summarize the

behaviour of an application during the execution of a certain test execution in a

profile. After an update, we compare the behaviour of our application during the

execution of the same test using that profile.

6.4.1 Profile Generation

To be able to report on a function-level granularity, we must also monitor data on

this granularity. Therefore, we first automatically instrument (see Section 6.5) all

functions in our application that perform I/O writes. The instrumentation code

writes an entry to the log for every write action, containing the number of bytes

written, the name of the function and the location of the file being written to.

Second, we let the instrumented code execute a test, which generates a log

of all write actions made during that execution. This test can be any existing,

repeatable test (suite), for example, a unit test or integration test suite. The write

actions made to the log are filtered out from this process.

To lessen the effect of variation within the program execution [Larres et al.,

2013], for example, due to data content and current memory usage, we execute the

test several times for each revision and combine the logged data into a performance

profile. The number of times the test must be executed to get an accurate profile

is defined by a tradeoff between accuracy and test execution time. Ideally, we

would like to run the test many times to get a more precise profile, but this may be

impractical, depending on the execution time. A profile is generated by:

• For every function:

– Calculate the average number of bytes a function writes per call during

a test execution (hence: divide the total number of bytes written by that

function during the test execution by the total number of calls to that

function during the test execution)

– For every test execution, this will result in a number. Define the highest

and lowest values for this number as the accepted range for that revision

Table 6.2 demonstrates this idea. The profile can be read as: ‘During revision 1,

flushToDatabase()wrote an average of 900 to 1500 bytes per call. The function

generateReport() wrote an average of 1200 to 1604 bytes per call.’

6.4.2 Profile Analysis

In order to assess the changes in performance of a revision, we compare its profile

with the profile of the previous revision. While this can be done manually, this

is a tedious process and prone to mistakes. As explained in Section 6.3, SFL is

a technique which closely resembles the human diagnosis process. Therefore, we

propose to automate the comparison using a spectrum-based technique. Another

126 Chapter 6. Detecting and Analyzing Performance Regressions

Table 6.2: Illustration of the profile generation idea

Revision: 1 Avg. # bytes written per call Profile

Function t0 t1 t2 t3 t4

flushToDatabase() 900 1000 1200 1100 1500 [900-1500]
generateReport() 1200 1500 1359 1604 1300 [1200-1604]

Table 6.3: Illustration of profile comparison

Revision: 2 Average # bytes written Matrix SC

Function t0 t1 t2 (t0) (t1) (t2)

flushToDatabase() 1000 1200 1100 1 1 1 1
generateReport() 2200 2000 1600 0 0 1 0.58
writeCache() 10000 12000 8000 0 0 0 0

Output vector 1 1 1

advantage of automating this comparison, is that we can use the technique in au-

tomated testing environments, such as continuous integration environments. To

the best of our knowledge, we are the first to apply spectrum-based analysis to

performance.

For every test execution t i, we record the I/O write data as described in Sec-

tion 6.4.1. After this, we verify for every function whether the recorded average

number of bytes written falls in (1) or outside (0) the accepted range of the profile

of the previous revision. As a result, we get a binary vector in which every row

represents a function. If we place those vectors next to each other, we get a matrix

looking similar to the activity matrix described in Section 6.4.1. Table 6.3 shows

sample data and the resulting matrix for three test executions t i, after comparing

them with the profile of Table 6.2. We use three executions here for brevity, but

this may be any number.

The analysis step now works as follows. When performance did not change

after the source code update, all monitored values for all functions should fall into

the accepted ranges of the profile of the previous revision. For three test executions,

this is represented by the row [1 1 1] for every function. Any deviations from this

mean that the average number of bytes written for that function was higher or

lower than the accepted range. By calculating the SC for each row and the ‘ideal’

vector [1 1 1], we can see whether the average number of bytes written for that

function has changed (SC close to 0) or that it is similar to the previous profile

(SC close to 1). Using the SC , we can make a ranking of the functions most

likely to have been affected by the update. When all SC ’s are close or equal to

1, the average number of bytes written did not change for any function after the

update. 3 The functions with SC closer to 0 are likely to have been affected by the

3Note that this terminology is different from that in Section 6.3, in which a SC close to 1 means

6.4. Approach 127

update. In Table 6.3, from the SC column we can conclude that the performance of

the generateReport() and writeCache() functions were likely to have been

affected by the changes made for revision 2.

While the SC allows us to find which functions were affected by the update, it

does not tell us how they were affected. For example, we cannot see if writeCache()
started doing I/O in this version, or that the amount of I/O increased or decreased.

Therefore, we append the report with the average number of bytes the monitored

values were outside the accepted range (Impact). We also display the average

number of calls and the TotalImpact, which is calculated by the average num-

ber of calls to that function multiplied with Impact. This allows us to see if the

performance decreased or increased and by how much. In addition, we display the

difference of the highest and lowest value in the range (RangeDiff). The goal

of this is to help the performance expert understand the ranking better. For ex-

ample, when a monitored value is 100 bytes outside the accepted range, there is

a difference whether the range difference is small (e.g., 50 bytes) or larger (e.g.,

50 kilobytes). Additionally, we display the number of test executions out of the

total number of test executions for this revision during which this function wrote

bytes. This is important to know, as a function does not necessarily perform I/O in

all executions, for example, an error log function may be triggered in only a few

of the test executions. A final extension we make to our report is that we collect

data for a complete stack trace instead of a single function. The main reasons for

this are that (1) the behaviour of a function may be defined by the origin from

which it was called (e.g., a database commit() function) and (2) this makes the

optimization process easier, as we have a more precise description of the function

behaviour.

Summarizing, the final report of our analysis contains a ranking of stack traces.

In this ranking, the highest ranks are assigned to the traces of which the write

behaviour most likely has changed due to the source code changes in this revision.

The ranking is made based on the SC (low to high) and the TotalImpact (high to

low). In this way, the stack traces which were impacted the most, and were outside

the accepted range in most test executions, are ranked on top. These stack traces

are the most likely to represent performance regressions.

Table 6.4 shows the extended report. Throughout this chapter, we will refer to

this type of report as the similarity report for a revision. From the similarity report,

we can see that the average number of bytes written by generateReport() has

increased relatively a lot compared to revision 1: the value for Impact is larger

than the difference of the range in the profile. However, as SC and TotalImpact
indicate, this was not the case for all test executions and the average total impact

was low. Additionally, we can immediately see from this report that writeCache()

the component is likely to be faulty. We do not use the terminology ‘faulty’, as the effect of an

update may be positive or negative. Hence, in this case we feel the more intuitive explanation of a

high SC is the high similarity compared to the previous version.

128 Chapter 6. Detecting and Analyzing Performance Regressions

Table 6.4: Similarity report for Table 6.3

Revision: 2

Function SC # calls Impact TotalImpact RangeDifference Runs

flushToDatabase() 1 50 0 0 600 3/3
generateReport() 0.58 50 496 B 24.8 KB 404 3/3
writeCache() 0 500 10 KB 5 MB N/A 3/3

was either added to the code, or started doing I/O compared to the previous ver-

sion, as there was no accepted range defined for that function. In this case, Impact
represents the average number of bytes written by that function. We can also see

that the TotalImpact of the additional write traffic is 5MB, which may be high or

low, depending on the test suite and the type of application.

6.5 Implementation
In this section, we present the implementation of our approach called SPECTRAPERF.

SPECTRAPERF is part of the open-source experiment runner framework GUMBY
4, and

is available for download from the GUMBY repository. Our implementation consists

of two parts, the data collection and the data processing part.

6.5.1 Data Collection

To collect data on a function-level granularity, we must use a profiler or code in-

strumentation. In our implementation, we use Systemtap [Prasad et al., 2005], a

tool to simplify the gathering of information about a running Linux system. The

difference between Systemtap and traditional profilers is that Systemtap allows

dynamic instrumentation of both operating system (system calls) and application-

level functions. Because of the ability of monitoring system calls, we can monitor

applications which use libraries written in different languages. In addition, by

instrumenting system calls, we can monitor data which is normally hidden from

higher-level languages such as the number of bytes written or allocated.

These advantages are illustrated by the following example. We want to mon-

itor the number of bytes written by application-level functions of an application

that uses libraries written in C and in Python, so that we can find the functions

that write the most during the execution of a test. Libraries written in C use dif-

ferent application-level functions for writing files than libraries written in Python.

If we were to instrument these libraries at the application level, we would have to

instrument all those functions. In addition, we would have to identify all writing

functions in all libraries. However, after compilation or interpretation, all these

functions use the same system call to actually write the file. Hence, if we could

4http://www.github.com/tribler/gumby

6.5. Implementation 129

instrument that system call and find out from which application-level function it

was called, we can obtain the application-level information with much less effort.

By combining application-level and operating system-level data with System-

tap, we can get a detailed profile of the writing behaviour of our application and

any libraries it uses. Systemtap allows dynamic instrumentation [Prasad et al.,

2005] by writing probes which can automatically instrument the entry or return

of functions. Listing 6.1 shows the workflow through (a subset of) the available

probe points in a Python function which writes to a file. Note that, if we want to

monitor other metrics such as memory usage, we must probe other system calls5.

The subject system of our user study (see Section 6.6), Tribler, is written in

Python. Therefore, we implemented a set of probes to monitor the number of

bytes written per Python function. Listing 6.2 shows the description of this set of

probes 6. By running these probes together with any Python application, we can

monitor write I/O usage on a function-level granularity.

1 (begin)
2 => python . func t ion . ent ry
3 => s y s c a l l . open . ent ry
4 <= s y s c a l l . open . return
5 => s y s c a l l . wr i te . ent ry
6 <= s y s c a l l . wr i te . return
7 <= python . func t ion . return
8 (end)

Listing 6.1: Set of available probe points in a writing Python function.

1 probe begin {
2 /∗ P r i n t the CSV header s ∗/
3 }
4
5 probe python . func t ion . ent ry {
6 /∗ Add f u n c t i o n name to the s t a c k t r a c e ∗/
7 }
8
9 probe s y s c a l l . open . return {

10 /∗ S to r e the f i l e h a n d l e r and f i l ename o f the opened f i l e ∗/
11 }
12
13 probe s y s c a l l . wr i te . return {
14 /∗ Add the number o f b y t e s w r i t t e n ∗/
15 }
16
17 probe python . func t ion . return {
18 /∗ P r i n t the python s t a c k t r a c e and the number o f b y t e s w r i t t e n ∗/
19 }

Listing 6.2: Description of probes for monitoring Python I/O write usage.

While Systemtap natively supports C and C++, it does not include native sup-

port for probing Python programs. Therefore, we use a patched version of Python,

5See http://asm.sourceforge.net/syscall.html for a (partial) list of system calls in

Linux
6See the GUMBY source code for the exact implementation.

130 Chapter 6. Detecting and Analyzing Performance Regressions

which allows Systemtap to probe functions. This version of Python can be auto-

matically installed using GUMBY.

To monitor write actions, we count the number of bytes written per stack trace.

To maintain a stack trace, for every Python function we enter (python.function.entry),

we add the function name to an array for that thread. Then, for all the writes done

during the execution of that function, we sum the total number of bytes written

per file (syscall.open.entry and syscall.write.entry). After returning from the Python

function (python.function.return), we output the number of bytes written per file

for the function and the stack trace to that function in CSV format. As a result, we

have a CSV file with the size and stack traces of all write actions during the test

execution.

6.5.2 Data Processing

After collecting the data, we import it into a SQLite7 database using R8 and Python.

From this database, we generate a report for each test execution (the test execution

report) which shows:

1. The stack traces with the largest total number of bytes written.

2. The stack traces with the largest number of bytes written per call.

3. The filenames of the files to which the largest total number of bytes were

written.

The test execution report helps with locating the write-intensive stack traces for this

execution. In addition, when we have monitored all test executions for a revision,

we generate a profile as described in the previous section. We use this profile as a

basis to analyze test executions for the next revision.

6.6 Design of the Field User Study
We evaluate our approach in a field user study. The goal of our study is to de-

termine whether performance bottlenecks can be found and optimizations can be

verified using our approach. In particular, we focus on these research questions:

RQ3-Eval1: Does our approach provide enough information to detect

performance regressions?

RQ3-Eval2: Does our approach provide enough information to guide the

performance optimization process?

7http://www.sqlite.org/
8http://www.r-project.org/

6.6. Design of the Field User Study 131

RQ3-Eval3: Does our approach provide enough information to verify the

effect of made performance optimizations?

RQ3-Eval4: How does our approach work for test executions which are

influenced by external factors?

In this section, we present the experimental setup of our field user study.

Field Setting: The subject of our study is Tribler [Pouwelse et al., 2008], a fully

decentralized open source BitTorrent client. Since its launch in 2006, Tribler was

downloaded over a million times. Tribler is an academic prototype, developed by

multiple generations of students, with approximately 100 KLOC. Tribler uses Dis-

persy [Zeilemaker et al., 2013] as a fully decentralized solution for synchronizing

messages over the network. Tribler has been under development for 9 years. As a

result, all ‘low-hanging fruit’ performance optimizations have been found with the

help of traditional performance analysis tools. One of the goals for the next version

is to make it run better on older computers. Therefore, we must optimize the re-

source usage of Tribler. In the first part of our study, we analyze the unit test suite

of Dispersy. In the second part, we analyze a 10 minute idle run of Tribler, in which

Tribler is started without performing any actions in the GUI. However, because of

the peer-to-peer nature of Tribler, actions will be performed in the background as

the client becomes a peer in the network after starting it.

Participant Profile: The questionnaire was filled in by two participants. Partic-

ipant I is a PhD student with 4 years of experience with Tribler. Participant II is

a scientific programmer with 5 years of experience with Tribler, in particular with

the Dispersy component. Both participants describe their knowledge of Tribler and

Dispersy as very good to excellent.

Experimental Setup: Tribler and Dispersy are being maintained through GitHub 9.

We implemented a script in GUMBY which does the following for each of the the last

n commits:

1. Execute the required test 5 times10, together with the Systemtap probes

2. Load the monitored data into a SQLite database

3. Generate a test execution report for each test execution as explained in Sec-

tion 6.5.2

4. Compare the output of each run with the previous revision and add this result

to the activity matrix m

5. Calculate SC for every row in m

9http://www.github.com/tribler
10Note that these numbers were chosen based on the execution time of the tests. We have no

statistical evidence that this is indeed an optimal value.

132 Chapter 6. Detecting and Analyzing Performance Regressions

6. Generate a similarity report from the activity matrix as displayed in Table 6.4

7. Generate a profile to compare with the next revision

After all commits have been analyzed, the data is summarized in an overview

report. The overview report shows a graph (e.g., Figure 6.1) of the average number

of total bytes written for the test executions of a revision/commit and allows the

user to drill down to the reports generated in step 3 and 6, i.e., each data point

in the graph acts as a link to the similarity report for that commit. Each similarity

report contains links to the test execution reports for that commit. In addition, we

added a link to the GitHub diff log for each commit, so that the participants could

easily inspect the code changes made in that commit.

In the Dispersy case study, we will analyze the unit test suite of Dispersy for

the last 200 revisions10. In the Tribler case study, we will analyze a 10 minute idle

run of Tribler for the last 100 revisions10. Tribler needs some time to shutdown. If

for some reason, Tribler does not shutdown by itself, the instance is killed after 15

minutes using a process guard.

Questionnaire: To evaluate our approach, we asked two developers from the

Tribler team to rate the quality and usefulness of the reports. We presented them

with the reports for the Dispersy and Tribler case study and asked them to do the

following:

1. To select the 3 most interesting areas (5-10 data points) on the graphs and

rate them 1 (first to investigate) to 3 (third to investigate)

2. To mark with 1-3 the order of the points they would investigate for each area

Then, for each area/phenomenon and each selected data point, we asked them

to answer the following:

1. Which position shows the stack trace you would investigate first/second/third,

based on the report?

2. Does this lead to an explanation of the phenomenon, and if so, which one?

3. If not, please drill down to the separate test execution reports. Do these

reports help to explain the phenomenon?

Finally, we asked them general questions about the reports concerning the us-

ability and whether they expect to find new information about Tribler and Dispersy

using this approach. In the next section, we present the results of our study.

6.7. Evaluation 133

Figure 6.1: Average number of bytes written during an execution of the Dispersy

unit test suite for each commit

Table 6.5: Overview of Dispersy evaluation results

Phenomenon Participant # Ranking Helpful?

A I 1 Yes

B II 84 No

test execution reports No

C II 1 Partly

18 Yes

D I (area 1) 1 Yes

I (area 2) 1 Yes

II 1 Yes

6.7 Evaluation

6.7.1 Case Study I: Dispersy Unit Test Suite

Figure 6.1 contains the graph generated during the Dispersy study. In the graph,

we highlighted the areas marked by the participants (including their rankings for

the most interesting ones). Both participants selected phenomenon D as the most

interesting to investigate, due to the increased writes of over 400 MB. Participant I

considered the peaks as separate phenomena, while participant II considered them

as one event. Furthermore, participant II expected that the cause of phenomenon

A was the addition of test cases which resulted in more I/O, hence he selected dif-

ferent phenomena to investigate. Next, we discuss each phenomenon and the way

the participants investigated them. Table 6.5 gives an overview of which ranked

position the participants analyzed and whether the information provided was use-

ful.

134 Chapter 6. Detecting and Analyzing Performance Regressions

Phenomenon A

The increase was caused by a bugfix. Before this bugfix, data was not committed

to the database. Participant’s Analysis: Participant I indicated that our ranking

correctly showed that the database commit function started doing I/O or was called

since the previous commit.

Phenomenon B

The drop in writes is due to the order in which the git commits were traversed.

Git allows branching of code. In this case, the branch was created just before

phenomenon A and merged back into the main branch in phenomenon B. In git,

a pull request can contain multiple subcommits. When requesting the git log, git

returns a list of all commits (including subcommits) in topological order. This

means that every merge request is preceded directly by its subcommits in the log.

Hence, these commits were traversed by us first. Figure 6.2 shows an example

for the traversal order of a number of commits. This pitfall when mining a git

repository is explained in more detail by Bird et al. [2009].

Figure 6.2: Order of traversal of commits in git log (C1 to C5)

Likewise, the drop during phenomenon B was caused by testing ‘old’ code,

which lead to a confusing report. This can be avoided by testing only merge re-

quests on the main branch, without subcommits. However, this would also make

the analysis of the cause more difficult as the number of changes to the code is

larger when subcommits are combined.

Participant’s Analysis: Participant II was not able to explain this effect from the

report. However, after explaining this effect, the phenomenon was clear to him.

Phenomenon C

In the updated code, a different test class was used which logged more info.

Participant’s Analysis: Participant II indicated that he inspected the similarity re-

ports for the highest and the lowest point of the phenomenon. From the report for

the highest point, he suspected the #1 ranked stack trace caused the phenomenon.

However, as he was not convinced yet, he used the report for the lowest point to

verify his suspicions, in which this stack trace was ranked #18. From the combi-

nation of the reports, he concluded the number of calls changed from 270 to 400,

causing the phenomenon. After inspecting the code changes using the GitHub diff

page, he concluded that the different test class was the cause for the increase in

the number of calls.

6.7. Evaluation 135

Because the participant was not convinced by the #1 ranked stack trace by

itself, we marked this stack trace as ‘partly useful’ in Table 6.5. Following the

advice from Participant II, the reports were extended with the CallsDiff metric

after the user study. This metric shows the difference in the number of calls to each

stack trace, compared to the previous revision.

Phenomenon D

A new test case creates 10k messages and does a single commit for every one of

these messages, introducing an additional 435 MB of writes.

Participant’s Analysis: Participant I marked this phenomenon as two separate

events, for the same reason as explained for phenomenon B. Both participants

were able to explain and fix the issue based on the highest ranked stack trace in

the report. This was the trace in which a message is committed to the database,

had a SC of 0 and a TotalImpact of 435MB. As the number of calls was 10k, the

issue was easy to fix for the participants. The fix was verified using our approach.

From the graph, we could see that the total writes decreased from 635MB to ap-

proximately 200MB. From the similarity report, we could see that the number of

calls to the stack trace decreased from 10k to 8.

6.7.2 Case Study II: Tribler Idle Run

Figure 6.3 contains the graph generated during the Tribler case study. We have

marked the areas selected by the participants. It is obvious that this graph is less

stable than the Dispersy graph. The reason for this is that the behaviour during

the idle run (i.e., just starting the application) is influenced by external factors

in Tribler. Due to its decentralized nature, an idle client may still be facilitating

searches or synchronizations in the background. As a result, the resource usage

is influenced by factors such as the number of peers in the network. Despite this,

the participants both selected phenomena C and D as interesting. Participant II ex-

plained later that the difference in the choice for A and B was because he preferred

investigating more recent phenomena, as their cause is more likely to still exist in

the current code. In the remainder of this section, we discuss the phenomena and

the participants’ evaluations. Table 6.6 summarizes these results for the Tribler

case study.

Phenomenon A

During 2 out of 5 test executions, Tribler crashed for this commit. Hence, less

messages were received, resulting in a lower average of bytes sent. The actual

explanation for this crash cannot be retrieved from these reports, but should be

retrieved from the application error logs.

Participant’s Analysis: From the reports, participant I was able to detect that

less messages were received, but he was not able to detect the actual cause for

this. Therefore, he granted the behaviour to noise due to external factors.

136 Chapter 6. Detecting and Analyzing Performance Regressions

Figure 6.3: Average number of bytes written during an execution of the Tribler idle

run of 10 minutes for each commit

Table 6.6: Overview of Tribler evaluation results

Phenomenon Participant # Ranking Helpful?

A I 45 Yes

B II - No

C I 1 No

I 65 Yes

II - No

D I 1 Yes

II 24, 26, 27 No

II 17, 31, 2 Yes

Phenomenon B

No significant changes were found, the variation was due to external factors.

Participant’s Analysis: Participant II correctly diagnosed this as noise due to

external factors.

Phenomenon C

There was no clear explanation for the drop in resource usage. It was probably due

to less active users in the network during the test execution.

Participant’s Analysis: Both participants concluded that less messages were re-

ceived and that the phenomenon did not require further investigation.

Phenomenon D

The reason for the large increase in writes is that the committed code made part

of Tribler crash. As a result, the idle run had to be killed after 15 minutes by the

process guard. This allowed the part of Tribler that still was running to collect data

longer than during the other runs, with the high peak in the graph as the result.

Participant’s Analysis: Both participants correctly indicated that more messages

6.7. Evaluation 137

were received and they could both identify the function which caused the large

number of writes. They did not directly indicate the partial crash as the cause.

Both participants advised to include (1) the actual duration of the execution and

(2) a link to the application logs in the report, in order to be able to diagnose such

cases better in the future.

In addition, the participants agreed that the function causing the large number

of writes used too much resources. This resulted in a performance optimization,

which was validated using our approach. From the reports of the validation we

could see that the total number of written bytes decreased by 340MB after the fix

and from the similarity reports, we could see that the the stack trace disappeared

from the report. This means that the function stopped doing write I/O.

6.7.3 Evaluation Results

From our evaluation, we get an indication that our approach is useful for finding

performance optimizations. Especially in the case of a test which is repeatable,

such as the Dispersy test suite, our approach leads to detection of performance re-

gressions which can be optimized. For test suites which are influenced by external

factors, such as the Tribler idle run, our analysis results require deeper investiga-

tion and may show more phenomena which are either difficult to explain using our

reports, or simply do not lead to performance optimizations.

Even so, the participants were able to correctly analyze and diagnose 3 out

of 4 phenomena in the Dispersy report and 2 out of 4 phenomena in the Tribler

report. The participants indicated, that with little more information, they would

have been able to correctly diagnose all phenomena. These results are summarized

in Table 6.7. Together with the participants, we concluded that the reports miss

the following information:

1. The CallsDiff metric, which displays the difference in the number of calls

to a function via the path showed in the stack trace between two commits

2. A link to the application log, so that the user of the report can check for the

exit code and whether any exceptions occurred during the test execution

3. The total duration of the test execution

4. An explanation of (or solution to) the ‘git log order’ effect, explained in Sec-

tion 6.7.1

After the user study, two phenomena out of two that could be optimized, were

optimized after the case study based on our reports. In addition, both of these

optimizations could be validated using our approach after they were made. Dur-

ing the case study, a phenomenon was also correctly explained to be a validation

of a performance bugfix. Finally, according to the participants, four out of the

138 Chapter 6. Detecting and Analyzing Performance Regressions

Table 6.7: Summary of field user study results

Dispersy Participant Correct? Tribler Participant Correct?

A I Yes A I Partly

II - II -

B I - B I -

II No II Yes

C I - C I Yes

II Yes II Yes

D I Yes D I Partly

II Yes II Partly

five phenomena which did not represent a performance regression, were easy to

diagnose.

In Table 6.5 and 6.6, we see that in the Dispersy study the problem was in-

dicated by the top ranked stack trace in most cases. In the Tribler study, this is

not the case, but the lower ranked stack traces were selected because of their high

negative impact. If we would rank the traces by the SC and absolute value of

TotalImpact (instead of exact value), the traces would have had a top 3 rank as

well. Hence, we can conclude that the ranking given by our approach is useful after

a small adjustment. An observation we made was that the participants all used the

TotalImpact as a guideline for indicating whether the change in behaviour of a

stack trace was significant enough to investigate further. After this, they checked

the SC to see in how many test executions the behaviour was different. This indi-

cates that the ranking should indeed be made based upon a combination of these

two metrics, and not by the SC or TotalImpact alone.

6.8 Discussion

6.8.1 The Evaluation Research Questions Revisited

RQ3-Eval1: Does our approach provide enough information to detect performance

regressions?

From our evaluation, we conclude that our reports provide, after adding the infor-

mation explained in Section 6.7.3, enough information for detecting performance

regressions. In our study, two out of two detected regressions were diagnosed

correctly by the participants.

RQ3-Eval2: Does our approach provide enough information to guide the perfor-

mance optimization process?

Our evaluation showed that our approach provides enough information for guid-

ing the performance optimization process as this user study alone resulted in two

6.8. Discussion 139

optimizations (Dispersy phenomenon D and Tribler phenomenon D) that have im-

mediately been carried through in the respective projects.

RQ3-Eval3: Does our approach provide enough information to verify the effect of

made performance optimizations?

Our approach provides enough information to validate the two optimizations made

after the user study. In addition, the participants were able to validate a perfor-

mance fix made in the history of Dispersy. The participants indicated the optimiza-

tions would have been easier to validate if the difference in number of calls for

each stack trace was shown in the reports, hence, we will add this in future work.

RQ3-Eval4: How does our approach work for test executions which are influenced

by external factors?

From our Tribler case study, we get an indication that our approach can deal with

influence from external factors, as the participants were able to completely explain

2 out of 4 performance phenomena and partly explain the remaining 2. However,

the results should be treated with more care than for a test which is not influenced

by external factors, as they are more likely to represent noise due to those factors.

In future work, we will do research on how we can minimize the effect of external

factors.

6.8.2 Scalability & Limitations

For the moment, the overhead of our approach is considerable, mostly due to the

monitoring by Systemtap. However, to the best of our knowledge, Systemtap is the

only available option for monitoring Python code with such granularity. In addi-

tion, our approach is meant to run in testing environments and as we do not take

execution time into account in our analysis, we do not see overhead as a limita-

tion. In future work, we will investigate other monitoring tools, including existing

profilers such as cProfile11. However, these tools are limited in the metrics they can

monitor, i.e., they cannot monitor I/O traffic with the granularity Systemtap can.

In this chapter, we focused on write I/O. We set up our tooling infrastructure

such that the monitoring component can easily be exchanged for another compo-

nent that is able to monitor different metrics. Hence, by changing the monitoring

component, our approach can analyze other performance metrics. In addition, we

will investigate how we can rank stack traces on a combination of these metrics,

rather than on one metric only. This would help in making a trade-off between the

various performance metrics while optimizing.

Another limitation is that we compare a version with its predecessor only. In

future work, we will investigate if comparing with more versions can lead to new

insights, such as the detection of performance degradation over longer periods.

11http://docs.python.org/2/library/profile.html

140 Chapter 6. Detecting and Analyzing Performance Regressions

In our approach we do not deal with errors that occurred during the test ex-

ecutions. When no profile could be generated for a revision, we simply compare

with the last revision that has a profile. In future work, we will investigate how we

can inform the user about errors better, for example by using information from the

application logs in our reports.

6.8.3 Threats to Validity

We have performed our field study on an application which has been under de-

velopment for 9 years and is downloaded over a million times. This application is

well-developed and ‘low-hanging fruit’ optimizations are already done, because of

the importance of performance for Tribler due to its peer-to-peer nature. The user

study was carried out with developers who have considerable experience with the

application.

Concerning the internal validity of our approach, we acknowledge that using

the range of monitored values in the profiles is not a statistically sound method.

However, due to the low number of test executions, we feel that using a value such

as the standard deviation does not add to the reliability of the profiles. In addition,

our evaluation shows that we can achieve good results with this approach.

A threat to the validity of our evaluation is that we tested all commits instead

of just the merge commits. As a result, we encountered crashing code more often,

as these commits do not necessarily provide working code. In addition, it added

some phenomena which are difficult to explain without knowing this effect (see

Section 6.7). However, after making the participants aware of this effect, they

both agreed it would be easy to detect in future investigations.

6.9 Related Work
Spectrum-based analysis has been successfully used before for fault localization [Abreu

et al., 2007; Chen et al., 2012]. To the best of our knowledge, we are the first to

apply spectrum-based analysis to performance.

Comparison of execution profiles and the detection of performance regressions

have received surprisingly little attention in research. Savari and Young [2000]

has proposed a method which works for frequency-based profiling methods. Our

approach works for any type of metric on a function-level granularity.

Bergel et al. [2012] have proposed a profiler for Pharo which compares profiles

using visualization. In their visualization, the size of an element describes the

execution time and number of calls. Alcocer [2012] extends Bergel’s approach

by proposing a method for reducing the generated callgraph. These visualizations

require human interpretation, which is difficult when the compared profiles are

very different [Bergel et al., 2012]. Our approach provides a textual ranking, which

we expect to be easier to interpret. However, we believe that the work of Bergel

6.10. Conclusion 141

et al., Alcocer and our approach can be supplemental to each other, and we will

investigate this in future work.

Foo et al. [2010] present an approach for detecting performance regressions

by mining performance repositories. Their approach to detect performance regres-

sions is similar to the approach for PIO analysis presented by us in Chapter 3.

Both approaches extract association rules from a historical data set. However, their

approach then calculates the difference in confidence of the rules between the his-

torical data set and the new data set to detect changes in the performance metrics.

Our approach uses the historical data set directly to try and find situations in which

the system was performing relatively slow. As indicated in Section 5.6, we will in-

vestigate how using rule confidence can improve our approach in the future.

Jiang et al. [2009] analyze readily available execution log files to see if the

results of a new load test deviate from previous ones. The advantage of this ap-

proach is that it does not introduce extra monitoring overhead. However, this also

limits the granularity with which regression analysis can be performed. This is

also demonstrated by the granularity of their case studies: in three conducted case

studies, they analyze system and application-wide tasks such as finding the optimal

DBMS configuration. Our approach does not have such a limitation. However, this

comes at the cost of increased overhead.

Nguyen et al. [2012] propose an approach for detecting performance regres-

sions using statistical process control techniques. Nguyen et al. use control charts

to decide whether a monitored value is outside an accepted range. The violation

ratio defines the relative number of times a value is outside this range. Control

charts and the violation ratio are similar to our profile approach. The approach of

Nguyen is more statistically sound than our approach, however, we expect that this

is not necessarily an improvement when using a small number of test executions.

The main difference in the approach used by Nguyen and our approach is the gran-

ularity. Their approach identifies performance regressions in system-level metrics,

while our approach identifies regressions on the function-level, making analysis of

the regression easier. In future work, we will investigate how our approach and

Nguyen’s approach can complement each other.

Horky et al. [2013] and Heger et al. [2013] propose approaches for integrating

performance tests into the unit test suite. Their approaches require the generation

of new unit tests, while our approach can be attached to existing test suites.

6.10 Conclusion
In this chapter, we proposed a technique for detecting and analyzing performance

regressions using a spectrum-based approach. By comparing execution profiles

of two software versions, we report on the functions of which the performance

profile changed the most. This report can be used to find regressions or to validate

performance optimizations. In this chapter, we focused on optimizing write I/O,

142 Chapter 6. Detecting and Analyzing Performance Regressions

but our approach can easily be extended to other metrics such as read I/O, memory

and CPU usage by changing the monitoring component.

In a field user study, we showed that our approach provides adequate informa-

tion to detect performance regressions and guides the performance optimization

process. In fact, our field user study resulted in two optimizations made to our

subject system. To summarize, we make the following contributions:

1. An approach for the detection and analysis of performance regressions

2. An open-source implementation of this approach, called SPECTRAPERF

3. A field user study in which we show that our approach guides the perfor-

mance optimization process

Revisiting our research questions:

RQ3-1a: How can we monitor performance data and generate a comparable pro-

file out of this data? We have proposed an approach using Systemtap to monitor

data and we have showed how to generate a comparable profile from this data.

RQ3-1b: How can we compare the generated performance profiles? We have

presented our approach for using a spectrum-based technique to compare perfor-

mance profiles, and provide a ranking of the stack traces which were most likely

to have changed behaviour. This ranking is made based on the similarity coefficient

compared to the previous performance profile, and the total impact of a source

code change on performance. In our user study, we showed the ranking was useful

in 6 out of 8 cases and helped the participants find two optimizations.

RQ3-1c: How can we analyze and report on the differences between profiles? We

have showed how we report on the data and we have evaluated this reporting

technique in a field user study. During this study, we analyzed the performance

history of the open-source peer-to-peer client Tribler and one of its components,

Dispersy. The field user study resulted in two optimizations, which were also val-

idated using our approach. During the user study, we found that our approach

works well for repeatable tests, such as a unit test suite, as the participants were

able to explain 3 out of 4 performance phenomena encountered during such a test

using our approach. We also received indication that it works well for a test which

was influenced by external factors, as the participants were able to explain 2 out

of 4 performance phenomena completely and could partly explain the remaining 2

for such a test.

RQ3-1: How can we guide the performance optimization process by doing per-

formance regression tests? We have showed that our approach for spectrum-based

performance analysis can guide the performance optimization process by detecting

performance regressions. The results of our field user study alone, resulted in two

optimizations to Tribler and Dispersy.

6.10. Conclusion 143

In future work, we will focus on extending our approach to monitor different

performance metrics such as memory and CPU usage. Additionally, we will inves-

tigate how we can report on trade-offs between these metrics.

7...
Conclusion

In this thesis, we have focused on performance optimization of multi-tenant ap-

plications. Our research was done in three parts. In the first, we investigated

the differences between multi-tenant and single-tenant software, to find the con-

sequences of multi-tenancy for software performance. From this investigation, we

found that a multi-tenant application must be optimized at two levels:

1. At the hardware level, due to the increased number of customers (or tenants)

sharing the same hardware

2. At the software level, due to the increased number of customers (or tenants)

sharing the same software

In the second and third part of our research, we focused on investigating meth-

ods that assist the performance expert with finding and analyzing performance

bottlenecks at the hardware and software level. Multi-tenancy comes in various

variants, some of which closely resemble the multi-instance approach. Therefore,

performance analysis and optimization approaches for multi-tenant applications

should support these variants. As a result, the approaches presented by us are ap-

plicable to a wide range of applications, including multi-tenant and multi-instance

applications. We evaluated our approaches in several industrial case studies, for

which we worked closely together with performance experts from industry.

7.1 Summary of Contributions
The main contributions of this thesis are:

• A clear, non-ambiguous definition of a multi-tenant application. (Chapter 2)

• An overview of the challenges of developing and maintaining scalable, multi-

tenant software. (Chapter 2)

• A conceptual blueprint of a multi-tenant architecture that isolates the multi-

tenant concern as much as possible from the base code. (Chapter 2)

145

146 Chapter 7. Conclusion

• A case study of applying this approach to an industrial application. (Chap-

ter 2)

• An approach for detecting and analyzing performance improvement opportu-

nities (PIOs) using association rules, performance counters and the SARATIO

metric. (Chapter 3)

• A proof-of-concept case study in which we show that the SARATIO can be

estimated using association rules and performance counters. (Chapter 3)

• An evaluation of our approach for PIO analysis done by a performance expert.

(Chapter 3)

• An approach for using heat maps to analyze the performance of a system and

exploit performance improvement opportunities. (Chapter 4)

• The open source tool WEDJAT, which assists during the performance mainte-

nance process. (Chapter 4)

• A field user study in which WEDJAT and the idea of using heat maps for per-

formance analysis are evaluated by three performance experts from industry.

(Chapter 4)

• A set of metrics for defining and calculating the coverage of a classifier or

ensemble. (Chapter 5)

• An approach for improving both accuracy and coverage of a classifier ensem-

ble. (Chapter 5)

• An industrial case study in which we evaluate our approach and show that

it is capable of improving the diagnostic capabilities of an ensemble while

maintaining approximately the same degree of accuracy. (Chapter 5)

• An approach for the detection and analysis of performance regressions. (Chap-

ter 6)

• An open-source implementation of this approach, called SPECTRAPERF. (Chap-

ter 6)

• A field user study in which we show that our approach guides the perfor-

mance optimization process. (Chapter 6)

7.2. The Research Questions Revisited 147

7.2 The Research Questions Revisited

7.2.1 RQ1: What are the differences between a single-tenant

and a multi-tenant system?

In Chapter 2, we have presented the key characteristics of multi-tenancy: hard-

ware resource sharing, high degree of configurability and shared application and

database instance. From these characteristics, we have deducted the main benefits

of multi-tenancy:

• Higher utilization of hardware resources.

• Easier and cheaper application maintenance.

• Lower overall costs, allowing to offer a service at a lower price than competi-

tors.

• New data aggregation opportunities.

Unfortunately, multi-tenancy also has its challenges and even though some of

these challenges exist for single-tenant software as well, they appear in a different

form and are more complex to solve for multi-tenant applications. These challenges

are:

• Performance

• Scalability

• Security

• Zero-downtime

• Maintenance

Keeping these challenges in mind, we have come up with a reengineering pat-

tern for transforming a single-tenant to a multi-tenant application. In a case study

on an industrial research prototype, we showed that our pattern forms a guiding

process for quickly and efficiently transforming a single-tenant into a multi-tenant

application.

7.2.2 RQ2: How can we assist developers with the optimization

of the performance of a multi-tenant system with regard to

its hardware?

Because tenants share hardware resources in a multi-tenant application, it is im-

portant to optimize the application at the hardware level. We have divided RQ2

into three subquestions, which will be revisited in this section.

148 Chapter 7. Conclusion

RQ2a: How can we detect and analyze hardware bottlenecks?

In Chapter 3, we have presented our approach for detecting performance improve-

ment opportunities (PIOs), situations during which the performance of an applica-

tion could possibly be improved. In this approach, we focused on detecting which

hardware components form the bottleneck of a system. We do this by analyzing

system-wide performance metrics at the times at which an application is running

relatively slow. To perform this analysis, we monitor such metrics for a period of

time and use an association rule mining algorithm to generate a set of associa-

tion rules. These association rules then assist us to classify the performance of the

system and to find hardware bottlenecks.

We have evaluated our approach in a case study on Exact Online, in which

we analyzed 271 performance metrics, monitored on 18 servers during 66 days of

normal execution. Together with a performance expert from Exact, we investigated

a random sample of the detected PIOs. In this random sample of 12 detected

PIOs, we confirmed 10 cases as real PIOs, which comes down to a precision of

83%. In addition, we showed that in 4 out of 12 cases, the diagnosis given by our

approach was completely correct and in 6 out of 12 cases it was partly correct.

We compared this to the overload detection mechanism currently implemented by

Exact, which uses a threshold for the average response time. We manually analyzed

5 situations classified as overload by this mechanism. Two of these situations were

actual overload situations, which means that this mechanism had a precision of

40% in our case study. In contrast, our PIO analysis approach correctly classified

all 5 of these situations.

RQ2b: How can we report and visualize the diagnosis of the bottleneck compo-

nent(s)?

In Chapter 4, we present a visualization method for this approach which uses heat

maps. By using heat maps, performance experts can quickly get an indication of

(1) the problematic component(s) and (2) for how long these components have

been problematic. We have implemented this visualization method in an open

source tool, called WEDJAT.

In a field user study, we have evaluated WEDJAT by letting three performance

experts from industry investigate a performance problem in a real system using

WEDJAT only. First, we let them investigate the issue for 1.5 hours using WEDJAT.

During this investigation, we constantly questioned them for suggestions and feed-

back based on their actions (a so-called contextual interview). In addition, we asked

the participants to cooperate and discuss their ideas out loud to elicit more detailed

feedback. After this, we asked them to fill in a questionnaire. After filling out the

questionnaire, the answers of the participants were compared and discussed with

them, especially when they were different from each other.

All participants were able to solve the assigned task. From the results of the

questionnaire followed that there is added value in using heat maps and WEDJAT

7.2. The Research Questions Revisited 149

for performance analysis, especially in combination with traditional visualization

techniques such as line charts and histograms. An additional result was that the

participants selected the new views on performance data as their favourite feature

of WEDJAT. All participants expected WEDJAT would help them investigate perfor-

mance issues easier in the future.

Two of the participants found additional bottlenecks during the investigation.

However, these were more difficult to detect using WEDJAT only. From our evalua-

tion, we concluded that this was due to the quality of the association rule set used

to detect and analyze PIOs, which leads to the research done to address research

question RQ2c.

RQ2c: How can we improve the quality of the diagnosis?

The approaches presented in Chapter 3 and 4 rely on the use of association rules to

detect the bottleneck component(s). In Chapter 5, we present a method to improve

the diagnostic capabilities of these association rules. We do this by extending the

association rule set so that it covers more metrics and servers. With this broadened

set of metrics covered, the association rule set is more likely to give a more detailed

diagnosis of the bottleneck.

First, we extended our PIO analysis approach with the capability of using mul-

tiple classifiers, which work together in an ensemble. Existing methods for main-

taining such an ensemble focus on improving the accuracy of the ensemble, while

neglecting the range of possible diagnoses it may make. Therefore, in Chapter 5,

we presented an approach which aims at both improving the coverage and accu-

racy of a classifier ensemble. We have introduced metrics for defining the coverage

of a classifier or ensemble and for the contribution of a classifier. Using these met-

rics, we can compare classifiers and select the classifier which would contribute the

most if it were added to the ensemble.

We have evaluated our approach in a case study on an industrial data set, in

which we compared ensembles which were maintained using accuracy only and

which were maintained using both coverage and accuracy. We have compared the

algorithms in 8 situations in which the algorithm parameters for the classifier ac-

curacy precision, ensemble maintenance approach and the type of accuracy used

varied. From this evaluation followed that ensembles generated using our algo-

rithm, which is based on the combination of accuracy and coverage, always cover

at least the same number of features, compared to an approach which only tries to

improve classifier accuracy.

In addition, we showed that the accuracy of the ensembles generated using

our approach did not differ significantly from the ensembled generated using the

accuracy-only approach. Therefore, we get strong indication that our approach is

capable of increasing the coverage and hence, the diagnostic capabilities of our PIO

analysis approach.

150 Chapter 7. Conclusion

7.2.3 RQ3: How can we assist developers with the optimization

of the performance of a multi-tenant system with regard to

its software?

On the one hand, multi-tenant applications must be optimized at the hardware

level. On the other hand, it is important to optimize multi-tenant applications at

the software level, as many tenants share the same application instance. In Chap-

ter 6, we present our approach for detecting performance regressions. By detect-

ing performance regressions, we can (1) make sure performance does not decrease

after a software update and (2) validate the effect of a performance fix. Our ap-

proach uses spectrum-based analysis to find functions of which the performance

profile has changed since the previous version. These findings are summarized

in a report, which can be used by the developer to analyze and fix performance

regressions.

In a user study on a peer-to-peer BitTorrent client, Tribler, we show that our

approach assists developers with the detection of software bottlenecks. In this user

study, we analyzed (1) the performance history of the unit test suite of Dispersy, a

module in Tribler, and (2) the performance history of a 1-hour idle run in Tribler.

To evaluate our approach, we asked two developers from the Tribler team to rate

the quality and usefulness of the reports generated by our approach, using a ques-

tionnaire. In this questionnaire, the participants were asked to select and analyze

the most interesting phenomena in the reports.

The participants were able to correctly analyze and diagnose 3 out of 4 phe-

nomena in the Dispersy report and 2 out of 4 phenomena in the Tribler report.

The participants indicated, that with little more information, such as the difference

in the number of calls and information from the application log, they would have

been able to correctly diagnose all phenomena.

After the user study, two out of two phenomena that could be optimized, were

optimized based on our reports. This lead to two actual optimizations to the pro-

duction code of Tribler. These optimizations were validated using our approach

after inspecting the reports generated for those code changes.

To summarize, in our field user study we have showed that our approach guides

the performance optimization process, as with our approach, the developers were

able to (1) find opportunities for performance optimization and (2) validate the

optimizations made.

7.3 Recommendations for Future Work

A multitude of interesting open issues are worth investigating. In the following

we suggest what we believe to be the most important recommendations for future

work.

7.3. Recommendations for Future Work 151

7.3.1 Multi-Tenancy

In the field of multi-tenancy, we recommend the following future work:

1. Automated Test Methodology

In Chapter 2, we transformed a single-tenant application into a multi-

tenant one. We manually tested the resulting application to verify

that the multi-tenant requirements were fulfilled and correctly imple-

mented. A (semi-) automated approach should be developed, which

assists developers with the testing of a multi-tenant application. This

approach should also be capable of testing more complex properties

of a multi-tenant application, such as tenant placement and workflow

configuration.

Tsai et al. [2010, 2013] have published promising results on parts of

such a testing framework. However, their work should be evaluated in

an industrial setting.

Search-based approaches for stress test generation form a promising

starting point for automated performance testing of multi-tenant ap-

plications [Garousi et al., 2008; Briand et al., 2005; Di Penta et al.,

2007].

2. Zero-Downtime

As software evolves, it is necessary to perform software updates. A

common approach to deploy these updates is by using planned down-

time [Momm and Krebs, 2011]: take the system offline and perform

the necessary updates. This downtime takes place at moments during

which the least customers are in the system, e.g., in weekends. In a

multi-tenant application, customers may come from different places in

the world, making it difficult to find a time during which system uti-

lization is low. Therefore, it is necessary to come up with approaches,

which do not require planned downtime, for online evolution of multi-

tenant applications. Self-adaptive systems and dynamic SOA bind-

ing [Canfora et al., 2008b] form promising starting points for tackling

the zero-downtime challenge.

3. Workflow Configuration

In Chapter 2, we posed workflow configuration as a key challenge of

multi-tenancy. While work has been done to address this challenge,

e.g., [Pathirage et al., 2011; Mietzner et al., 2009b], existing research

lacks an evaluation of the proposed techniques in a large-scale indus-

trial setting. Such evaluations should be done in order to reassess this

challenge.

152 Chapter 7. Conclusion

7.3.2 Bottleneck Detection and Analysis

In Chapter 3, we presented an approach for detecting and analyzing performance

improvement opportunities (PIOs). To improve this approach, we recommend fu-

ture work in the following areas:

1. Case Studies on Different Systems

We have focused on one industrial multi-tenant application (Exact On-

line) in our evaluation. While we expect our case study subject to

be representative of other multi-tenant applications, more case studies

should be done on different applications, in order to generalize our re-

sults. Additionally, our approach should be evaluated using other types

of workloads, such as scientific workloads.

2. Application Bottlenecks

In our PIO detection approach, we have focused on detecting hard-

ware bottlenecks. An interesting opportunity could be formed by using

our approach to detect software bottlenecks. This could be done by

monitoring and analyzing software performance metrics. Such metrics

could, for example, be calculated using application heartbeats [Hoff-

mann et al., 2010]. Future research should give more insight on whether

our approach can detect software bottlenecks.

7.3.3 Diagnosis Visualization

In Chapter 4, we have presented our visualization technique for PIOs, which uses

heat maps. This technique is implemented in the open source tool WEDJAT, for

which we recommmend the following:

1. Improving Wedjat

As pointed out in the discussion of the results of the field user study

in Chapter 4, the usability of WEDJAT should be improved. This should

be done together with a user experience expert, in order to make the

PIO analysis as clear and fast as possible. Additionally, the visualization

should be extended with support for diagnoses made by ensembles, as

suggested in Chapter 5.

7.3.4 Diagnosis Quality

The quality of the diagnosis of the approach for PIO analysis presented in Chap-

ter 3, on which Chapter 4 and 5 are based, strongly depends on the quality of the

trained classifier used. In Chapter 5, we have proposed an algorithm for improving

this quality, however, we expect there is still a lot to gain.

7.3. Recommendations for Future Work 153

1. Training Data Selection

An important part of the equation is formed by the data used to train

the classifier. While we now simply use new data as it is being moni-

tored, we should use more clever ways to train classifiers. This can be

done, for example, by preprocessing the data to filter any anomalous

events. Another possibility is to selectively use new data as it becomes

available, as suggested by Ryu et al. [2012]. More research should be

done on how the training data used by our approach can be selected in

a more educated manner.

An interesting opportunity may be formed by using user feedback to

improve the quality of the diagnosis. By using user feedback, it be-

comes possible to include or exclude specific periods from the training

data. In addition, classification results can be included or excluded

from the result set based on this user feedback. By combining this with

machine learning, it may be possible to train better classifiers. More re-

search should be done on the inclusion of user feedback in the training

data selection process.

2. Type of Classifier Used

Another part which influences the quality of the diagnosis is the type

of classifier used. In this thesis, we used association rules generated

using the JRip algorithm from the WEKA tool kit, as experimentation

showed that this algorithm yields good results for our data sets. While

we designed our approach to be flexible towards the type of classifier

used, a more thorough evaluation should be done to find how different

data sets work with different types of classifiers or association rule sets

generated by algorithms other than JRip.

3. (Semi-)Automated Diagnosis Validation

More research should be done on how diagnosis quality can be vali-

dated in a (semi-)automated manner. Currently, the only method for

validating the quality of a diagnosis is by an expert, which is costly

and time-consuming. While this applies to performance in general, it

is especially the case in an industrial setting.

4. Heterogeneity of Classifiers

In our ensemble maintenance approach, we have treated all classifiers

as equal. This means that classifiers trained using data (partly) moni-

tored on different types of days such as weekdays, days in the weekend

and holidays, are treated equally. More research should be done on

how these classifiers perform and whether treating them unequally can

improve the diagnosis made by a classifier ensemble.

154 Chapter 7. Conclusion

7.3.5 Spectrum-Based Performance Analysis

In Chapter 6, we have presented our approach for the detection of performance

regressions used a spectrum-based technique. For this approach, we recommend

the following future research:

1. Comparison with Multiple Versions

In our approach, we compared each revision with its direct predeces-

sor only. This makes it difficult to detect performance degradation of

longer periods. Future research should show whether comparing a re-

vision with more versions can lead to new insights.

2. Report Extension

From the field user study described in Chapter 6, we concluded that

the reports generated by our approach could be improved by extend-

ing them with metrics such as the difference in the number of calls and

the inclusion of data from the application log. In addition, more perfor-

mance metrics, such as CPU and memory usage, should be monitored

and analyzed. When more performance metrics are included in the re-

port, developers must make the tradeoff between these metrics when

optimizing their software. Future work should lead to an approach

which helps developers make this tradeoff.

3. Minimize Effect of External Factors

In the case study on Tribler, the test suite was heavily influenced by

noise due to external factors. While this is primarily caused by the de-

sign of the test suite and the nature of the application, future research

should investigate how the influence of external factors can be mini-

mized in the generated reports.

Bibliography

Abreu, R., Zoeteweij, P., and van Gemund, A. (2006). An evaluation of similarity

coefficients for software fault localization. In Pacific Rim International Sympo-

sium on Dependable Computing (PRDC), pages 39–46.

Abreu, R., Zoeteweij, P., and Van Gemund, A. J. (2007). On the accuracy of

spectrum-based fault localization. In Testing: Academic and Industrial Confer-

ence Practice and Research Techniques-MUTATION (TAICPART-MUTATION), pages

89–98. IEEE.

Agrawal, H., Alberi, J., Horgan, J., Li, J., London, S., Wong, W., Ghosh, S., and

Wilde, N. (1998). Mining system tests to aid software maintenance. Computer,

31(7):64 –73.

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules be-

tween sets of items in large databases. In Proceedings of the SIGMOD interna-

tional conference on Management of data (SIGMOD), pages 207–216. ACM.

Alcocer, J. P. S. (2012). Tracking down software changes responsible for perfor-

mance loss. In Proceedings of the International Workshop on Smalltalk Technolo-

gies (IWST), pages 3:1–3:7. ACM.

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S.,

Pazel, D., Pershing, J., and Rochwerger, B. (2001). Oceano-SLA based manage-

ment of a computing utility. In International Symposium on Integrated Network

Management (IM), pages 855–868. IEEE.

Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Bergel, A., Bañados, F., Robbes, R., and Binder, W. (2012). Execution profiling

blueprints. Software: Practice and Experience, 42(9):1165–1192.

155

156 BIBLIOGRAPHY

Berrendorf, R. and Ziegler, H. (1998). PCL – the performance counter library: A

common interface to access hardware performance counters on microprocessors.

Technical Report FZJ-ZAM-IB-9816, Central Institute for Applied Mathematics –

Research Centre Juelich GmbH.

Bezemer, C.-P., Milon, E., Zaidman, A., and Pouwelse, J. (2013). Detecting and

analyzing performance regressions using a spectrum-based approach. Technical

Report TUD-SERG-2013-020, Delft Univ. of Technology.

Bezemer, C.-P. and Zaidman, A. (2010). Multi-tenant SaaS applications: main-

tenance dream or nightmare? In Proceedings of the Joint ERCIM Workshop on

Software Evolution (EVOL) and International Workshop on Principles of Software

Evolution (IWPSE), pages 88–92. ACM.

Bezemer, C.-P. and Zaidman, A. (2013). Improving the diagnostic capabilities of

a performance optimization approach. Technical Report TUD-SERG-2013-015,

Delft Univ. of Technology.

Bezemer, C.-P. and Zaidman, A. (2014). Performance optimization of deployed

software-as-a-service applications. Journal of Systems and Software, 87(0):87 –

103.

Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans, T., and ’t Hart, A. (2010).

Enabling multi-tenancy: An industrial experience report. In Proceedings of the

26th International Conference on Software Maintenance (ICSM), pages 1–8. IEEE

C.S.

Bezemer, C.-P., Zaidman, A., van der Hoeven, A., van de Graaf, A., Wiertz, M., and

Weijers, R. (2012). Locating performance improvement opportunities in an in-

dustrial software-as-a-service application. In Proceedings of the 28th International

Conference on Software Maintenance (ICSM), pages 1–10. IEEE C.S.

BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, and OIML (2008). International vocab-

ulary of metrology - basic and general concepts and associated terms (VIM), 3rd

edn. JCGM 200: 2008.

Bird, C., Rigby, P., Barr, E., Hamilton, D., German, D., and Devanbu, P. (2009). The

promises and perils of mining git. In Mining Software Repositories, 2009. MSR

’09. 6th IEEE International Working Conference on, pages 1–10.

Breitgand, D., Henis, E., and Shehory, O. (2005). Automated and adaptive thresh-

old setting: Enabling technology for autonomy and self-management. In Pro-

ceedings of the International Conference on Autonomic Computing (ICAC), pages

204 –215. IEEE.

BIBLIOGRAPHY 157

Briand, L. C., Labiche, Y., and Shousha, M. (2005). Stress testing real-time systems

with genetic algorithms. In Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation, GECCO ’05, pages 1021–1028. ACM.

Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010). The

balanced accuracy and its posterior distribution. In International Conference on

Pattern Recognition (ICPR), pages 3121–3124. IEEE.

Canfora, G., Fasolino, A. R., Frattolillo, G., and Tramontana, P. (2008a). A wrap-

ping approach for migrating legacy system interactive functionalities to service

oriented architectures. Journal of Systems and Software, 81(4):463–480.

Canfora, G., Penta, M. D., Esposito, R., and Villani, M. L. (2008b). A framework for

QoS-aware binding and re-binding of composite web services. Journal of Systems

and Software, 81(10):1754 – 1769.

Cecchet, E., Marguerite, J., and Zwaenepoel, W. (2002). Performance and scala-

bility of EJB applications. In Proceedings of the 17th SIGPLAN Conference on OO-

programming, systems, languages, and applications (OOPSLA), pages 246–261.

ACM.

Chen, C., Gross, H.-G., and Zaidman, A. (2012). Spectrum-based fault diagnosis for

service-oriented software systems. In International Conference Service-Oriented

Computing and Applications (SOCA), pages 1–8. IEEE.

Cherkasova, L., Ozonat, K., Mi, N., Symons, J., and Smirni, E. (2008). Anomaly?

application change? or workload change? towards automated detection of ap-

plication performance anomaly and change. In Proceedings of the International

Conference on Dependable Systems and Networks (DSN), pages 452 –461. IEEE.

Chong, F., Carraro, G., and Wolter, R. (2006). Multi-tenant data architecture.

http://msdn.microsoft.com/en-us/library/aa479086.aspx.

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J. (2000). Non-functional Require-

ments in Software Engineering. Kluwer Academic Publishers.

Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., and Chase, J. S. (2004). Correlating

instrumentation data to system states: a building block for automated diagnosis

and control. In Proceedings of the Symposium on Operating Systems Design &

Implementation, pages 231–244. USENIX Association.

Cohen, I., Zhang, S., Goldszmidt, M., Symons, J., Kelly, T., and Fox, A. (2005).

Capturing, indexing, clustering, and retrieving system history. In ACM SIGOPS

Operating Systems Review, volume 39, pages 105–118. ACM.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth In-

ternational Conference on Machine Learning, pages 115–123. Morgan Kaufmann.

158 BIBLIOGRAPHY

Cornelissen, B., Zaidman, A., and van Deursen, A. (2011). A controlled experiment

for program comprehension through trace visualization. IEEE Transactions on

Software Engineering, 37(3):341–355.

Correa, S. and Cerqueira, R. (2010). Statistical approaches to predicting and di-

agnosing performance problems in component-based distributed systems: An

experimental evaluation. In Proceedings of the International Conference on Self-

Adaptive and Self-Organizing Systems (SASO), pages 21–30. IEEE.

Dekking, F., Kraaikamp, C., Lopuhaa, H., and Meester, L. (2005). A Modern Intro-

duction to Probability and Statistics: Understanding why and how. Springer.

Di Penta, M., Canfora, G., Esposito, G., Mazza, V., and Bruno, M. (2007). Search-

based testing of service level agreements. In Proceedings of the 9th Annual Con-

ference on Genetic and Evolutionary Computation, GECCO ’07, pages 1090–1097.

ACM.

Dubey, A. and Wagle, D. (2007). Delivering software as a service. The McKinsey

Quarterly, 6:1–12.

Dudek, D. (2010). Measures for comparing association rule sets. In Artificial Intel-

ligence and Soft Computing, volume 6113 of LNCS, pages 315–322. Springer.

Elbaum, S. and Diep, M. (2005). Profiling deployed software: assessing strategies

and testing opportunities. IEEE Transactions on Software Engineering, 31(4):312–

327.

Foo, K. C., Jiang, Z. M., Adams, B., Hassan, A. E., Zou, Y., and Flora, P. (2010).

Mining performance regression testing repositories for automated performance

analysis. In International Conference on Quality Software (QSIC), pages 32–41.

IEEE.

Fuchs, E. and Jackson, P. E. (1969). Estimates of distributions of random variables

for certain computer communications traffic models. In Proceedings of the first

symposium on Problems in the optimization of data communications systems, pages

205–230. ACM.

Fürlinger, K., Gerndt, M., and Dongarra, J. (2007). On using incremental profiling

for the performance analysis of shared memory parallel applications. In Pro-

ceedings of the International Euro-Par Conference, volume 4641 of LNCS, pages

62–71. Springer.

Ganek, A. G. and Corbi, T. A. (2003). The dawning of the autonomic computing

era. IBM Systems Journal, 42(1):5–18.

BIBLIOGRAPHY 159

Garousi, V., Briand, L. C., and Labiche, Y. (2008). Traffic-aware stress testing of

distributed real-time systems based on {UML} models using genetic algorithms.

Journal of Systems and Software, 81(2):161 – 185.

Goldszmidt, M., Cohen, I., Fox, A., and Zhang, S. (2005). Three research chal-

lenges at the intersection of machine learning, statistical induction, and systems.

In Proceedings of the 10th conference on Hot Topics in Operating Systems - Volume

10, HOTOS’05, pages 10–10, Berkeley, CA, USA. USENIX Association.

Gregg, B. (2010). Visualizing system latency. ACM Communications, 53(7):48–54.

Guéhéneuc, Y.-G. and Albin-Amiot, H. (2001). Using design patterns and con-

straints to automate the detection and correction of inter-class design defects.

In Proceedings of the International Conference on Technology of Object-Oriented

Languages (TOOLS), pages 296–306. IEEE C.S.

Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B. (2007). A framework for

native multi-tenancy application development and management. In Proceedings

of the 9th International Conference on E-Commerce Technology (CEC) and the 4th

International Conference on Enterprise Computing, E-Commerce, and E-Services

(EEE), pages 551–558. IEEE CS.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.

(2009). The WEKA data mining software: an update. SIGKDD Exploration

Newsletter, 11:10–18.

Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K. (2008). Dynamic software

product lines. Computer, 41(4):93–95.

Hamilton, J. (2010). Overall data center costs. http://perspectives.
mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx (last visited

on May 20th, 2010).

Hashemian, R., Krishnamurthy, D., and Arlitt, M. (2012). Web workload genera-

tion challenges - an empirical investigation. Software: Practice and Experience,

42(5):629–647.

Heger, C., Happe, J., and Farahbod, R. (2013). Automated root cause isolation

of performance regressions during software development. In Proceedings of the

ACM/SPEC International Conference on Performance Engineering (ICPE), pages

27–38.

Hoffmann, H., Eastep, J., Santambrogio, M. D., Miller, J. E., and Agarwal, A.

(2010). Application heartbeats: a generic interface for specifying program per-

formance and goals in autonomous computing environments. In Proceedings of

the 7th international conference on Autonomic computing, ICAC, pages 79–88.

ACM.

160 BIBLIOGRAPHY

Holtzblatt, K. and Jones, S. (1995). Human-computer interaction. chapter Con-

ducting and analyzing a contextual interview (excerpt), pages 241–253. Morgan

Kaufmann.

Horky, V., Haas, F., Kotrc, J., Lacina, M., and Tuma, P. (2013). Performance regres-

sion unit testing: A case study. In Computer Performance Engineering, volume

8168 of LNCS, pages 149–163. Springer.

Jacobs, D. and Aulbach, S. (2007). Ruminations on multi-tenant databases. In

Datenbanksysteme in Business, Technologie und Web (BTW), 12. Fachtagung des

GI-Fachbereichs Datenbanken und Informationssysteme (DBIS), Proceedings 7.-9.

März, volume 103 of LNI, pages 514–521. GI.

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques

for Experimental Design, Measurement, Simulation, and Modeling. John Wiley &

Sons.

Jansen, S., Brinkkemper, S., Ballintijn, G., and van Nieuwland, A. (2005). Inte-

grated development and maintenance of software products to support efficient

updating of customer configurations: A case study in mass market ERP software.

In Proceedings of the International Conference Soft. Maintenance (ICSM), pages

253–262. IEEE.

Jansen, S., Houben, G.-J., and Brinkkemper, S. (2010). Customization realization

in multi-tenant web applications: Case studies from the library sector. In Web

Engineering, volume 6189 of Lecture Notes in Computer Science, pages 445–459.

Springer Berlin Heidelberg.

Jiang, Z. M., Hassan, A., Hamann, G., and Flora, P. (2009). Automated performance

analysis of load tests. In Proceedings of the International Conference on Software

Maintenance (ICSM), pages 125–134. IEEE.

Jovic, M., Adamoli, A., and Hauswirth, M. (2011). Catch me if you can: perfor-

mance bug detection in the wild. In Proceedings of the International Conference

on Object oriented programming systems languages and applications (OOPSLA),

pages 155–170. ACM.

Kaplan, J. M. (2007). SaaS: Friend or foe? In Business Communications Review,

pages 48–53. http://www.webtorials.com/abstracts/BCR125.htm.

Knuth, D. E. (1971). An empirical study of FORTRAN programs. Software: Practice

and Experience, 1(2):105–133.

Koschke, R. and Quante, J. (2005). On dynamic feature location. In Proceedings

of the International Conference on Automated Software Engineering (ASE), pages

86–95. ACM.

BIBLIOGRAPHY 161

Kwok, T. and Mohindra, A. (2008). Resource calculations with constraints, and

placement of tenants and instances for multi-tenant SaaS applications. In Pro-

ceedings of the International Conference on Service-Oriented Computing (ICSOC),

volume 5364 of LNCS, pages 633–648.

Kwok, T., Nguyen, T., and Lam, L. (2008). A software as a service with multi-

tenancy support for an electronic contract management application. In Proceed-

ings of the International Conference on Services Computing (SCC), pages 179–186.

IEEE C.S.

Laine, P. (2001). The role of SW architecture in solving fundamental problems in

object-oriented development of large embedded SW systems. In Proceedings of

the IEEE/IFIP Working Conference on Software Architecture (WICSA), pages 14–

23. IEEE C.S.

Larres, J., Potanin, A., and Hirose, Y. (2013). A study of performance variations in

the mozilla firefox web browser. In Proceedings of the Thirty-Sixth Australasian

Computer Science Conference - Volume 135, ACSC, pages 3–12. Australian Com-

puter Society, Inc.

Li, X. H., Liu, T., Li, Y., and Chen, Y. (2008). Spin: Service performance isolation

infrastructure in multi-tenancy environment. In Proceedings of the 6th Interna-

tional Conference on Service-Oriented Computing (ICSOC), volume 5364 of LNCS,

pages 649–663. Springer.

Lin, H., Sun, K., Zhao, S., and Han, Y. (2009). Feedback-control-based performance

regulation for multi-tenant applications. In Proceedings of the International Con-

ference on Parallel and Distributed Systems (ICPADS), pages 134–141. IEEE.

Malek, S., Medvidovic, N., and Mikic-Rakic, M. (2012). An extensible framework

for improving a distributed software system’s deployment architecture. Software

Engineering, IEEE Transactions on, 38(1):73–100.

Malik, H., Jiang, Z. M., Adams, B., Hassan, A., Flora, P., and Hamann, G. (2010).

Automatic comparison of load tests to support the performance analysis of large

enterprise systems. In Proceedings of the Conference on Software Maintenance and

Reengineering (CSMR), pages 222–231. IEEE.

Malone, C., Zahran, M., and Karri, R. (2011). Are hardware performance counters

a cost effective way for integrity checking of programs. In Proceedings of the sixth

ACM workshop on Scalable trusted computing (STC), pages 71–76. ACM.

Mertz, S., Eschinger, C., Eid, T., Swinehart, H., Pang, C., Wurster, L., Dharmasthira,

Y., and Pring, B. (2010). Forecast analysis: Software as a service, worldwide,

2009-2014. Gartner, G00201597.

162 BIBLIOGRAPHY

Mietzner, R., Metzger, A., Leymann, F., and Pohl, K. (2009a). Variability modeling

to support customization and deployment of multi-tenant-aware software as a

service applications. In Proceedings of the ICSE Workshop on Principles of Engi-

neering Service Oriented Systems (PESOS), pages 18–25. IEEE.

Mietzner, R., Metzger, A., Leymann, F., and Pohl, K. (2009b). Variability modeling

to support customization and deployment of multi-tenant-aware software as a

service applications. In Proceedings of the ICSE Workshop on Principles of Engi-

neering Service Oriented Systems, PESOS, pages 18–25. IEEE Computer Society.

Momm, C. and Krebs, R. (2011). A qualitative discussion of different approaches

for implementing multi-tenant SaaS offerings. In Software Engineering (Work-

shops), volume 184 of LNI, pages 139–150. GI.

Müller, J., Krüger, J., Enderlein, S., Helmich, M., and Zeier, A. (2009). Customizing

enterprise software as a service applications: Back-end extension in a multi-

tenancy environment. In Proceedings of the 11th International Conference on

Enterprise Information Systems (ICEIS), volume 24 of Lecture Notes in Business

Information Processing, pages 66–77. Springer.

Munawar, M. A., Jiang, M., and Ward, P. A. S. (2008). Monitoring multi-tier clus-

tered systems with invariant metric relationships. In Proceedings of the Interna-

tional Workshop on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), pages 73–80. ACM.

Nguyen, T. H., Adams, B., Jiang, Z. M., Hassan, A. E., Nasser, M., and Flora, P.

(2012). Automated detection of performance regressions using statistical pro-

cess control techniques. In Proceedings of the joint WOSP/SIPEW International

Conference on Performance Engineering (ICPE), pages 299–310. ACM.

Nistor, A., Jiang, T., and Tan, L. (2013). Discovering, reporting, and fixing per-

formance bugs. In Proceedings of the Tenth International Workshop on Mining

Software Repositories (MSR), pages 237–246. IEEE Press.

Nitu (2009). Configurability in SaaS (software as a service) applications. In Pro-

ceedings of the 2nd annual India Software Engineering Conference (ISEC), pages

19–26. ACM.

Pathirage, M., Perera, S., Kumara, I., and Weerawarana, S. (2011). A multi-tenant

architecture for business process executions. In International Conference on Web

Services (ICWS), pages 121–128. IEEE.

Potts, C. (1993). Software-engineering research revisited. IEEE Software,

10(5):19–28.

BIBLIOGRAPHY 163

Pouwelse, J. A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema,

D. H., Reinders, M., Van Steen, M. R., and Sips, H. J. (2008). Tribler: a social-

based peer-to-peer system. Concurrency and Computation: Practice and Experi-

ence, 20(2):127–138.

Prasad, V., Cohen, W., Eigler, F., Hunt, M., Keniston, J., and Chen, B. (2005). Lo-

cating system problems using dynamic instrumentation. In Proceedings Ottawa

Linux Symposium, pages 49–64.

Pugh, B. and Spacco, J. (2004). RUBiS revisited: why J2EE benchmarking is hard.

In Companion to the 19th annual SIGPLAN Conference on OO-programming sys-

tems, languages, and applications (OOPSLA), pages 204–205. ACM.

Rao, J. and Xu, C.-Z. (2008). Online measurement of the capacity of multi-tier

websites using hardware performance counters. In International Conference on

Distributed Computing Systems (ICDCS), pages 705–712.

Reiss, S. P. (2009). Visualizing the Java heap to detect memory problems. In

International Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT), pages 73–80. IEEE.

Rothermel, G. and Harrold, M. J. (1996). Analyzing regression test selection tech-

niques. IEEE Transactions on Software Engineering, 22(8):529–551.

Ryu, J. W., Kantardzic, M. M., and Kim, M.-W. (2012). Efficiently maintaining the

performance of an ensemble classifier in streaming data. In Convergence and

Hybrid Information Technology, pages 533–540. Springer.

Savari, S. A. and Young, C. (2000). Comparing and combining profiles. Journal of

Instruction-Level Parallelism, 2.

Shankar, S. and Purusothaman, T. (2009). Utility sentient frequent itemset mining

and association rule mining: A literature survey and comparative study. Interna-

tional Journal of Soft Computing Applications, 4:81–95.

Sneed, H. M. (2006). Integrating legacy software into a service oriented architec-

ture. In Proceedings of the Conference on Software Maintenance and Reengineering

(CSMR), pages 3–14. IEEE C.S.

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2nd

international conference on Software engineering (ICSE), pages 492–497. IEEE

Computer Society Press.

Syer, M., Adams, B., and Hassan, A. (2011). Identifying performance deviations in

thread pools. In Proceedings of the International Conference on Software Mainte-

nance (ICSM), pages 83–92. IEEE.

164 BIBLIOGRAPHY

Tan, Y., Gu, X., and Wang, H. (2010). Adaptive system anomaly prediction for

large-scale hosting infrastructures. In Proceedings of the Symposium on Principles

of Distributed Computing (PODC), pages 173–182. ACM.

Thereska, E., Doebel, B., Zheng, A. X., and Nobel, P. (2010). Practical performance

models for complex, popular applications. In Proceedings of the International

Conference on Measurement and modeling of computer systems (SIGMETRICS),

pages 1–12. ACM.

Tsai, C.-H., Ruan, Y., Sahu, S., Shaikh, A., and Shin, K. G. (2007). Virtualization-

based techniques for enabling multi-tenant management tools. In 18th IFIP/IEEE

International Workshop on Distributed Systems: Operations and Management

(DSOM), volume 4785 of LNCS, pages 171–182. Springer.

Tsai, W., Li, Q., Colbourn, C., and Bai, X. (2013). Adaptive fault detection for

testing tenant applications in multi-tenancy SaaS systems. In Cloud Engineering

(IC2E), 2013 IEEE International Conference on, pages 183–192.

Tsai, W.-T., Shao, Q., Huang, Y., and Bai, X. (2010). Towards a scalable and ro-

bust multi-tenancy SaaS. In Proceedings of the Second Asia-Pacific Symposium on

Internetware, Internetware ’10, pages 8:1–8:15. ACM.

van Gurp, J., Bosch, J., and Svahnberg, M. (2001). On the notion of variability

in software product lines. In Software Architecture, 2001. Proceedings. Working

IEEE/IFIP Conference on, pages 45–54.

Wang, Z. H., Guo, C. J., Gao, B., Sun, W., Zhang, Z., and An, W. H. (2008). A

study and performance evaluation of the multi-tenant data tier design patterns

for service oriented computing. In Proceedings of the International Conference on

e-Business Engineering (ICEBE), pages 94–101. IEEE C.S.

Warfield, B. (2007). Multitenancy can have a 16:1 cost advantage over

single-tenant. http://smoothspan.wordpress.com/2007/10/28/
multitenancy-can-have-a-161-cost-advantage-over-single-
tenant/ (last visited on May 20th, 2010).

Weissman, C. D. and Bobrowski, S. (2009). The design of the force.com multi-

tenant internet application development platform. In Proceedings of the 35th

SIGMOD International Conference on Management of data (SIGMOD), pages 889–

896. ACM.

Wilkinson, L. and Friendly, M. (2009). The history of the cluster heat map. The

American Statistician, 63(2):179–184.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools

and Techniques, Second Edition. Morgan Kaufmann.

BIBLIOGRAPHY 165

Woodside, M., Franks, G., and Petriu, D. (2007). The future of software perfor-

mance engineering. In Future of Softw. Engineering (FOSE), pages 171–187.

IEEE.

Wu, J., Holt, R., and Hassan, A. (2004). Exploring software evolution using spec-

trographs. In Proceedings of the Working Conference Reverse Engineering (WCRE),

pages 80–89. IEEE.

Yan, D., Xu, G., and Rountev, A. (2012). Uncovering performance problems in Java

applications with reference propagation profiling. In Proceedings of the Interna-

tional Conference Software Engineering (ICSE), pages 134–144. IEEE CS.

Zeilemaker, N., Schoon, B., and Pouwelse, J. (2013). Dispersy bundle synchroniza-

tion. Technical Report PDS-2013-002, TU Delft.

Zhang, Q., Cherkasova, L., Mathews, G., Greene, W., and Smirni, E. (2007). R-

capriccio: a capacity planning and anomaly detection tool for enterprise services

with live workloads. In International Conference on Middleware, pages 244–265.

Springer.

Zhang, S., Cohen, I., Goldszmidt, M., Symons, J., and Fox, A. (2005). Ensembles of

models for automated diagnosis of system performance problems. In Proceedings

of the International Conference on Dependable Systems and Networks (DSN), pages

644 – 653. IEEE.

Summary

Performance Optimization of Multi-Tenant Software Systems

– Cor-Paul Bezemer –

Multi-tenant software systems are Software-as-a-Service systems in which cus-

tomers (or tenants) share the same resources. The key characteristics of multi-

tenancy are hardware resource sharing, a high degree of configurability and a

shared application and database instance. We can deduct from these character-

istics that they lead to challenges compared to traditional software schemes. To

better understand these challenges, we have come up with a reengineering pattern

for transforming an existing single-tenant application into a multi-tenant one. We

have done a case study in which we transform a single-tenant research prototype

into a multi-tenant version. This case study showed that in a layered application,

this transformation could be done in less than 100 lines of code.

With a better understanding of the challenges inflicted by multi-tenancy, we

have focused on one of these challenges in this thesis, namely performance. Be-

cause tenants share resources in multi-tenant applications, it is necessary to op-

timize these applications on two levels: (1) at the hardware level and (2) at the

software level.

Hardware-level Optimization

To optimize an application at the hardware level, we must be able to detect bot-

tlenecks. We have proposed a method for detecting hardware bottlenecks which is

based on the average response time per user per action. Hence, our method can

deal with applications that have large and small customers, which may have dif-

ferent requirements. Our approach assists performance experts by detecting and

analyzing performance improvement opportunities (PIOs), situations during which

the performance could possibly be improved. Our approach uses supervised learn-

ing to generate association rules, which are used by a classifier to classify moni-

167

168 Summary

tored performance measurements into one of the load classes low, med or high.

The high class indicates the system is running relatively slow and hence, could be

optimized. We have evaluated our approach in an industrial case study on Exact

Online, a multi-tenant solution for online bookkeeping by Exact. In this case study,

we analyzed and verified a subset of detected PIOs together with a performance ex-

pert from Exact. From the evaluation results, we found that the diagnosis given by

our approach is accurate, but could benefit from extending the association rule set

to improve its completeness. Therefore, we extended our approach with the possi-

bility of using a set (ensemble) of classifiers, in which the classifiers work together

to make a classification. We proposed an algorithm which aims at improving both

accuracy and coverage of the ensemble when adding new classifiers. As a result,

we can generate classifier ensembles which have improved diagnostic capabilities,

as they are able to give a broader range of diagnoses.

In addition, we have proposed a visualization technique for our approach,

which uses heat maps. In a field user study with performance experts from Exact,

we showed that these visualizations assisted the experts in finding performance

bottlenecks quicker and easier. The visualization techniques are implemented in

an open source tool called WEDJAT.

Software-level Optimization

In addition to optimization at the hardware level, software-level optimization is

important to ensure that the application runs as efficiently as possible. An impor-

tant part of this process is verifying that software updates do not (unexpectedly)

decrease the performance of an application. We have presented an approach for

detecting and analyzing performance regressions. Our approach attaches to ex-

isting test suites and uses spectrum-based analysis to analyze whether the perfor-

mance behaviour of these test suites has changed since the previous version of the

application. In a case study on a peer-to-peer BitTorrent client, called Tribler, we

show that our approach is capable of guiding the optimization process. On the one

hand, bottlenecks can be found, and on the other hand, performance fixes can be

validated using our approach. Feedback from two developers who have years of

experience with Tribler showed that our approach is accurate and useful, as the

case study resulted in two optimizations to Tribler. Our approach is implemented

in the open source tool SPECTRAPERF.

Samenvatting

Performance Optimization of Multi-Tenant Software Systems

– Cor-Paul Bezemer –

Multi-tenant software systemen zijn Software-as-a-Service systemen waarin bron-

nen gedeeld worden door klanten (of tenants). De belangrijkste eigenschappen

van multi-tenancy zijn het delen van hardware bronnen, een hoge graad van con-

figureerbaarheid en het delen van één applicatie en database instantie. Vergeleken

met traditionele software, leiden deze eigenschappen tot een aantal uitdagingen.

Om deze uitdagingen beter te begrijpen, hebben we een sjabloon bedacht om een

bestaande single-tenant applicatie om te bouwen naar een multi-tenant applicatie.

We hebben een case study gedaan waarin we een single-tenant onderzoeksproto-

type ombouwen naar een applicatie met ondersteuning voor multi-tenancy. Uit

deze case study bleek dat deze transformatie in dit gelaagde prototype in minder

dan 100 regels code gedaan kon worden.

Met een beter begrip van de uitdagingen die bij multi-tenancy komen kijken,

hebben we ons onderzoek in deze thesis op één van deze uitdagingen gericht,

namelijk op performance. Omdat klanten bronnen delen binnen een multi-tenant

applicatie, is het noodzakelijk om deze applicaties op twee niveaus te optimalis-

eren: (1) op het hardware niveau en (2) op het software niveau.

Optimalisatie op het Hardware Niveau

Om een applicatie op het hardware niveau te optimaliseren, moeten we knelpun-

ten kunnen herkennen. We hebben een methode voorgesteld om knelpunten te

vinden in hardware. Deze methode is gebaseerd op de gemiddelde responstijd

per gebruiker per actie. Hierdoor kan onze methode omgaan met applicaties die

zowel grote als kleine klanten heeft, aangezien deze verschillende eisen kunnen

stellen aan de performance. Onze methode assisteert performance experts met

het vinden en analyseren van zogenaamde performance improvement opportunities

169

170 Samenvatting

(PIOs), oftewel situaties waarin de performance mogelijk verbeterd zou kunnen

worden. Onze aanpak gebruikt begeleid leren om associatie regels te genereren,

die dan weer gebruikt worden door een classifier om gemeten data te classificeren

in een van de drie klassen low, med of high. De high klasse geeft aan dat het

system relatief traag draait en dus waarschijnlijk kan worden geoptimaliseerd. We

hebben onze aanpak geevalueerd in een industriële case study op Exact Online,

een multi-tenant oplossing voor online boekhouden van Exact. In deze case study,

hebben we een subset van gevonden PIOs geanalyseerd en gecontroleerd met een

performance expert van Exact. Uit de resultaten van deze evaluatie bleek dat de

diagnose gegeven door onze aanpak accuraat is, maar verbeterd kan worden door

de gebruikte set van associatie regels uit te breiden. Daarom hebben we onze aan-

pak uitgebreid met de mogelijkheid een set (ensemble) van classifiers te gebruiken,

waarin de classifiers samen werken om een classificatie te maken. We hebben een

algoritme voorgesteld dat zich richt op zowel het verbeteren van de precisie als

op de compleetheid van de diagnose tijdens het onderhouden van het ensemble.

Dit heeft als resultaat dat we classifier ensembles kunnen genereren die verbeterde

mogelijkheden voor het stellen van een diagnose hebben, aangezien ze een bredere

variatie aan diagnoses kunnen stellen.

Daarnaast hebben we een visualisatietechniek gepresenteerd voor onze aan-

pak, die gebruik maakt van zogenaamde heat maps. In een gebruikersstudie met

performance experts van Exact, hebben we laten zien dat deze visualisaties de

experts hielpen met het sneller en eenvoudiger vinden van knelpunten. De visu-

alisatietechnieken zijn geïmplementeerd in een open source applicatie genaamd

WEDJAT.

Optimalisatie op het Software Niveau

Naast optimalisatie op het hardware niveau, is optimalisatie op het software niveau

noodzakelijk om er zeker van te zijn dat de applicatie zo efficient mogelijk draait.

Een belangrijk deel van dit proces is het controleren dat software updates niet

(onverwachts) de performance van een applicatie verslechteren. We hebben een

aanpak voor het detecteren en analyseren van performance regressies gepresen-

teerd. Onze aanpak kan aan bestaande test suites gekoppeld worden en gebruikt

spectrum-gebaseerde analyse om te analyseren of de performance van deze test

suites veranderd is sinds de vorige versie van de software. In een case study op een

peer-to-peer BitTorrent client, Tribler, laten we zien dat onze aanpak het optimal-

isatie proces kan leiden. Aan de ene kant kunnen er knelpunten gevonden worden

met onze aanpak, en aan de andere kant kunnen oplossingen voor deze knelpunten

gecontroleerd worden met onze aanpak. Uit commentaar van twee ontwikkelaars

uit het Tribler team kunnen we afleiden dat onze aanpak accuraat en bruikbaar is,

aangezien de case study in twee optimalisaties in Tribler resulteerde. Onze aanpak

is geïmplementeerd in de open source applicatie SPECTRAPERF.

Curriculum Vitae

Education

2009 – 2013: Ph.D., Computer Science

Delft University of Technology, Delft, The Netherlands. Under the supervision

of dr. A.E. Zaidman.

2007 – 2009: M.Sc., Computer Science

Delft University of Technology, Delft, The Netherlands.

Master’s thesis title: Automated Security Testing of AJAX Web Widget Interac-

tions (in collaboration with Exact)

2002 – 2007: B.Sc., Computer Science

Delft University of Technology, Delft, The Netherlands.

Work Experience

October 2013 – present: Postdoctoral Researcher

Parallel and Distributed Systems Department, Delft University of Technology.

Mekelweg 4, 2628CD Delft, The Netherlands.

1998 – present: Software developer

Collect4all / Howell Holding BV. Zuiderparklaan 133, 2574 HD The Hague,

The Netherlands.

July 2009 – October 2013: Assistant in Opleiding (AIO). Research Trainee

Software Technology Department, Delft University of Technology. Mekelweg

4, 2628 CD Delft, The Netherlands.

2007 – 2009: Web developer

Maxcode. Parkstraat 83, 2514 JG, The Hague

171

Titles in the IPA Dissertation Series since 2008

W. Pieters. La Volonté Machi-

nale: Understanding the Electronic Vot-

ing Controversy. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-01

A.L. de Groot. Practical Automa-

ton Proofs in PVS. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-02

M. Bruntink. Renovation of Idiomatic

Crosscutting Concerns in Embedded Sys-

tems. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2008-03

A.M. Marin. An Integrated System to

Manage Crosscutting Concerns in Source

Code. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2008-04

N.C.W.M. Braspenning. Model-

based Integration and Testing of

High-tech Multi-disciplinary Systems.

Faculty of Mechanical Engineering,

TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-

tax: Syntax Definition, Parsing, and As-

similation of Language Conglomerates.

Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-

ness Alive: Design and Formal Verifi-

cation of Optimistic Fair Exchange Pro-

tocols. Faculty of Sciences, Division

of Mathematics and Computer Science,

VUA. 2008-07

I.S.M. de Jong. Integration and Test

Strategies for Complex Manufacturing

Machines. Faculty of Mechanical Engi-

neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with

Coalgebras. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:

Two Taxonomies and a Toolkit. Faculty

of Mathematics and Computer Science,

TU/e. 2008-10

I.S. Zapreev. Model Checking Markov

Chains: Techniques and Tools. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-

imental Study of Geometric Networks.

Faculty of Mathematics and Computer

Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-

ifications Using Context-Sensitive Wild-

cards. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2008-13

F.D. Garcia. Formal and Computa-

tional Cryptography: Protocols, Hashes

and Commitments. Faculty of Science,

Mathematics and Computer Science,

RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-

cation for Robust Composition of As-

pects. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-

port of SMC Design. Faculty of Mechan-

ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Perfor-

mance Analysis of Data-Independent

Stream Processing Systems. Faculty of

Mathematics and Computer Science,

TU/e. 2008-17

M. van der Horst. Scalable Block

Processing Algorithms. Faculty of

Mathematics and Computer Science,

TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:

Decompositions and Applications. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems

with Data - Enumerative Methods and

Constraint Solving. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2008-20

E. Mumford. Drawing Graphs for

Cartographic Applications. Faculty of

Mathematics and Computer Science,

TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured

Data, Theoretical and Experimental As-

pects of Pattern Evaluation. Faculty

of Mathematics and Natural Sciences,

UL. 2008-22

R. Brijder. Models of Natural Compu-

tation: Gene Assembly and Membrane

Systems. Faculty of Mathematics and

Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-

ing and Its Certification. Faculty of

Mathematics and Computer Science,

TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid

Systems: Comparison and Development.

Faculty of Mathematics and Computer

Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time

in Process Algebras for Performance

Evaluation. Faculty of Mathematics

and Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software

Specification and Verification. Faculty of

Electrical Engineering, Mathematics &

Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys

from Noisy Data Theory and Applica-

tions. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor

Networks in Motion: Clustering Algo-

rithms for Service Discovery and Provi-

sioning. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-

dating Distributed Embedded Real-Time

Control Systems. Faculty of Science,

Mathematics and Computer Science,

RU. 2009-01

M. de Mol. Reasoning about Functional

Programs: Sparkle, a proof assistant for

Clean. Faculty of Science, Mathematics

and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements

Evolution. Faculty of Electrical Engi-

neering, Mathematics, and Computer

Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-

based Testing of Hybrid Systems. Faculty

of Mathematics and Computer Science,

TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant

Software Systems. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2009-05

M.J. van Weerdenburg. Efficient

Rewriting Techniques. Faculty of

Mathematics and Computer Science,

TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:

Applications in Automata Theory and

Modal Logic. Faculty of Sciences, Divi-

sion of Mathematics and Computer Sci-

ence, VUA. 2009-07

A. Mesbah. Analysis and Testing

of Ajax-based Single-page Web Applica-

tions. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2009-08

A.L. Rodriguez Yakushev. Towards

Getting Generic Programming Ready

for Prime Time. Faculty of Science,

UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-

text Sensitive Program Transformation.

Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning

about Java programs in PVS using JML.

Faculty of Science, Mathematics and

Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-

vices. Integration in Energy-Constrained

Mobile Systems. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-

namic Analysis Techniques for Program

Comprehension. Faculty of Electrical

Engineering, Mathematics, and Com-

puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-

based Network Intrusion Detection Sys-

tems. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2009-14

H.L. Jonker. Security Matters: Pri-

vacy in Voting and Fairness in Digital

Exchange. Faculty of Mathematics and

Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust

Management. Faculty of Electrical En-

gineering, Mathematics & Computer

Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-

cesses. Faculty of Sciences, Division

of Mathematics and Computer Science,

VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-

ity: Building Computer Algebra on top

of Proof Assistants and making Proof As-

sistants available over the Web. Faculty

of Science, Mathematics and Computer

Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &

Completeness: Formalizing Logic and

Analysis in Type Theory. Faculty of Sci-

ence, Mathematics and Computer Sci-

ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-

ods for Concurrent Systems. Faculty

of Mathematics and Computer Science,

TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-

ysis of Probabilistic Models. Faculty of

Electrical Engineering, Mathematics &

Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-

gies for Parameter Optimization and

Their Applications to Medical Image

Analysis. Faculty of Mathematics and

Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational

Complexity of Probabilistic Networks.

Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-

Oriented Law Enforcement. Faculty

of Mathematics and Natural Sciences,

UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-

ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-

trol for Dynamic Collaborative Environ-

ments. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2009-26

J.F.J. Laros. Metrics and Visualisation

for Crime Analysis and Genomics. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code

Inspections. Faculty of Electrical Engi-

neering, Mathematics, and Computer

Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking

Nondeterministic and Randomly Timed

Systems. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2010-02

J. Endrullis. Termination and Produc-

tivity. Faculty of Sciences, Division

of Mathematics and Computer Science,

VUA. 2010-03

T. Staijen. Graph-Based Specifica-

tion and Verification for Aspect-Oriented

Languages. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-

tocol Dynamics. Faculty of Science,

UvA. 2010-05

J.K. Berendsen. Abstraction, Prices

and Probability in Model Checking

Timed Automata. Faculty of Science,

Mathematics and Computer Science,

RU. 2010-06

A. Nugroho. The Effects of UML Model-

ing on the Quality of Software. Faculty

of Mathematics and Natural Sciences,

UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty

of Science, Mathematics and Computer

Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-

ery of Knowledge - Foundations, Imple-

mentations and Applications. Faculty

of Mathematics and Natural Sciences,

UL. 2010-09

D. Costa. Formal Models for Compo-

nent Connectors. Faculty of Sciences,

Division of Mathematics and Computer

Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-

vice: Schedulability Analysis of Real-

Time and Distributed Services. Faculty

of Mathematics and Natural Sciences,

UL. 2010-11

R. Bakhshi. Gossiping Models: Formal

Analysis of Epidemic Protocols. Faculty

of Sciences, Department of Computer

Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of

the Template Enigma: Software Code

Generation with Templates. Faculty of

Mathematics and Computer Science,

TU/e. 2011-02

E. Zambon. Towards Optimal IT

Availability Planning: Methods and

Tools. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2011-03

L. Astefanoaei. An Executable Theory

of Multi-Agent Systems Refinement. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2011-04

J. Proença. Synchronous coordina-

tion of distributed components. Faculty

of Mathematics and Natural Sciences,

UL. 2011-05

A. Moralı. IT Architecture-Based Con-

fidentiality Risk Assessment in Networks

of Organizations. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2011-06

M. van der Bijl. On changing models in

Model-Based Testing. Faculty of Electri-

cal Engineering, Mathematics & Com-

puter Science, UT. 2011-07

C. Krause. Reconfigurable Component

Connectors. Faculty of Mathematics

and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis

of Information Leakage in Probabilistic

and Nondeterministic Systems. Faculty

of Science, Mathematics and Computer

Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-

cation of Distributed Failure Detectors.

Faculty of Mathematics and Computer

Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-

ity to Executability – A process-theoretic

view on automata theory. Faculty of

Mathematics and Computer Science,

TU/e. 2011-11

Z. Protic. Configuration management

for models: Generic methods for model

comparison and model co-evolution.

Faculty of Mathematics and Computer

Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-

ing in Concurrent Processes. Faculty

of Mathematics and Computer Science,

TU/e. 2011-13

S. Malakuti. Event Composition Model:

Achieving Naturalness in Runtime En-

forcement. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-

ification. Faculty of Mathematics and

Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and

Visibility on Triangulated Terrains. Fac-

ulty of Mathematics and Computer Sci-

ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-

ity of Service of Component Connectors.

Faculty of Mathematics and Natural

Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-

ing Abstract Views of States in OO Ver-

ification. Faculty of Mathematics and

Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-

proving the Quality of Model Transfor-

mations. Faculty of Mathematics and

Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-

grams in Practice. Faculty of Science,

Mathematics and Computer Science,

RU. 2011-20

H.J.S. Basten. Ambiguity Detection

for Programming Language Grammars.

Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of Compo-

nent Connectors. Faculty of Mathemat-

ics and Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-

guage Workbenches. Faculty of Elec-

trical Engineering, Mathematics, and

Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of

Real-Time Coordination Patterns. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2011-24

J. Wang. Spiking Neural P Systems.

Faculty of Mathematics and Natural

Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data

Structures. Faculty of Mathematics and

Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Pro-

gram Properties with Attribute Gram-

mars, Revisited. Faculty of Science,

UU. 2012-02

Z. Hemel. Methods and Techniques

for the Design and Implementation of

Domain-Specific Languages. Faculty of

Electrical Engineering, Mathematics,

and Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-

tional Security Policies: Theory and

Practice. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-

ficiently Searchable Encryption. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on

Verification of Wireless Sensor Net-

works and Abstraction Learning for Sys-

tem Inference. Faculty of Science,

Mathematics and Computer Science,

RU. 2012-06

K. Verbeek. Algorithms for Car-

tographic Visualization. Faculty of

Mathematics and Computer Science,

TU/e. 2012-07

D.E. Nadales Agut. A Composi-

tional Interchange Format for Hybrid

Systems: Design and Implementation.

Faculty of Mechanical Engineering,

TU/e. 2012-08

H. Rahmani. Analysis of Protein-

Protein Interaction Networks by Means

of Annotated Graph Mining Algorithms.

Faculty of Mathematics and Natural

Sciences, UL. 2012-09

S.D. Vermolen. Software Language

Evolution. Faculty of Electrical Engi-

neering, Mathematics, and Computer

Science, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches

to Reliable Software. Faculty of

Mathematics and Computer Science,

TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-

els – An Engineering Perspective. Faculty

of Mathematics and Computer Science,

TU/e. 2012-12

W. Heijstek. Software Architecture

Design in Global and Model-Centric

Software Development. Faculty of

Mathematics and Natural Sciences,

UL. 2012-13

C. Kop. Higher Order Termination. Fac-

ulty of Sciences, Department of Com-

puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of

Control Software in the Medical Systems

Domain. Faculty of Mathematics and

Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of

Safety Controllers. Faculty of Electrical

Engineering, Mathematics & Computer

Science, UT. 2012-16

H. Beohar. Refinement of Communica-

tion and States in Models of Embedded

Systems. Faculty of Mathematics and

Computer Science, TU/e. 2013-01

G. Igna. Performance Analysis of

Real-Time Task Systems using Timed

Automata. Faculty of Science,

Mathematics and Computer Science,

RU. 2013-02

E. Zambon. Abstract Graph Transfor-

mation – Theory and Practice. Faculty

of Electrical Engineering, Mathematics

& Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-

Oriented Programming for Incident Re-

sponse Applications. Faculty of Science,

Mathematics and Computer Science,

RU. 2013-04

G.T. de Koning Gans. Outsmart-

ing Smart Cards. Faculty of Science,

Mathematics and Computer Science,

RU. 2013-05

M.S. Greiler. Test Suite Comprehen-

sion for Modular and Dynamic Sys-

tems. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2013-06

L.E. Mamane. Interactive mathemati-

cal documents: creation and presenta-

tion. Faculty of Science, Mathematics

and Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-

sition and synchronization of real-time

components upon one processor. Faculty

of Mathematics and Computer Science,

TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse

Framework and its Third-party Plug-ins.

Faculty of Mathematics and Computer

Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-

tecture for Distributed Software Deploy-

ment. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2013-10

J.J.A. Keiren. Advanced Reduction

Techniques for Model Checking. Faculty

of Mathematics and Computer Science,

TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:

Computing push plans for disk-shaped

robots, and dynamic labelings for mov-

ing points. Faculty of Mathematics and

Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-

eration and Analysis of Markov Au-

tomata. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-

tures in the Black-Box Model. Faculty

of Mathematics and Computer Science,

TU/e. 2013-14

L. Lensink. Applying Formal Meth-

ods in Software Development. Faculty

of Science, Mathematics and Computer

Science, RU. 2013-15

C. Tankink. Documentation and Formal

Mathematics — Web Technology meets

Proof Assistants. Faculty of Science,

Mathematics and Computer Science,

RU. 2013-16

C. de Gouw. Combining Monitoring

with Run-time Assertion Checking. Fac-

ulty of Mathematics and Natural Sci-

ences, UL. 2013-17

J. van den Bos. Gathering Evidence:

Model-Driven Software Engineering in

Automated Digital Forensics. Faculty of

Science, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-

ters: Cyber Security in Industrial Con-

trol Systems. Faculty of Electrical Engi-

neering, Mathematics & Computer Sci-

ence, UT. 2014-02

A.J.P. Jeckmans. Cryptographically-

Enhanced Privacy for Recommender Sys-

tems. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2014-03

C.-P. Bezemer. Performance Opti-

mization of Multi-Tenant Software Sys-

tems. Faculty of Electrical Engineering,

Mathematics, and Computer Science,

TUD. 2014-04

