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Abstract-We consider the problem of minimizing the cycle 
time of a given pipelined circuit. Existing approaches are sub- 
optimal since they do not consider the possibility of simulta- 
neously resynthesizing the combinational logic and moving the 
latches using retiming. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1101 the idea of simultaneous retim- 
ing and resynthesis was introduced. We use the concepts pre- 
sented there to optimize a pipelined circuit to meet a given cycle 
time. An instance of the pipelined cycle optimization problem 
is specified by the circuit, a set of input arrival times relative 
to the clock, a set of output required times relative to the clock, 
and a given cycle time that it must meet. Given the instance of 
the pipelined performance optimization problem we construct 
an instance of a combinational speedup problem. This is spec- 
ified by a combinational logic circuit, a set of arrival times on 
the inputs, and a set of required times for the outputs which 
must be met. We then give a constructive proof that the pipe- 
lined problem has a solution if and only if the combinational 
problem has a solution. This result is significant since it shows 
it is enough to consider only the combinational speedup prob- 
lem and all known techniques for that (e.g., [12], [13]) can be 
directly applied to generate a solution for the pipelined prob- 
lem. 

I. INTRODUCTION 
ORDER to be completely accepted by IC designers, I" behavioral and logic synthesis tools must satisfactorily 

address the issue of meeting performance constraints. This 
area has been largely ignored in the past; the emphasis 
thus far has been on area optimization. Design failures 
that result from ignoring performance requirements dur- 
ing synthesis can be counterproductive to the very use of 
synthesis since timing problems take a long time to fix. 
We feel that the modeling and consideration of perform- 
ance issues must be taken into account explicitly during 
each stage of the design synthesis. 

Previous work in this area can be classified into two 
categories. In the first, only resynthesis of individual 
blocks of combinational logic is considered. These in- 
clude critical-path resynthesis (e.g., [3], [12]), gate de- 
composition (e.g., [l l]), technology mapping (e.g., [5 ,  
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13]), and buffer optimization (e.g., [2]). Since these do 
not consider modifying the position of latches or flip-flops, 
an initial bad placement of the latches restricts the possi- 
ble improvements. The second category includes tech- 
niques that reposition the latches so as to get a shorter 
cycle time. The technique of retiming, developed by Leis- 
erson et aE. [6]-[8], provides a polynomial time procedure 
to determine the optimum position of latches in a single- 
phase, edge-triggered sequential circuit. However, no ef- 
fort is made here to modify any of the combinational logic. 

The crucial element in combining the techniques of re- 
timing and resynthesis is the decision as to when, where, 
and in what order to apply these operations. Some prelim- 
inary work in combining them has been done in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, but 
the approach there is heuristic driven with no optimality 
guarantees. In [4] retiming was combined with a re- 
stricted class of combinational optimization techniques 
with limited success. In this paper we provide a rigorous 
solution to this problem for a special yet important class 
of circuits, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAviz pipelined circuits.' Here we transform the 
problem of speeding up a pipeline circuit into one of re- 
synthesizing a combinational logic circuit with appropri- 
ate timing constraints. This is achieved by peripheral re- 
timing [lo] which moves the latches to the inputs and 
outputs of a circuit. The resulting maximal combinational 
sub-circuit can be subject to any delay-reducing transfor- 
mation in an effort to meet the timing constraints specified 
for it. The timing constraints are based on the cycle time 
that the user desires. We show that if the timing con- 
straints on the maximal combinational sub-network are 
met, then it is always possible to retime the resynthesized 
circuit to meet the desired cycle time. We also show that 
any circuit that meets the cycle-time constraint can be ob- 
tained by peripheral retiming, appropriate resynthesis, and 
then retiming. These two facts are used to show that the 
proposed method is the best way to resynthesize a pipeline 
circuit to meet its performance (cycle time) target. 

This paper is organized as follows. Section I1 reviews 
the results in retiming and peripheral retiming upon which 
the work presented in this paper is based. Section I11 in- 
troduces the topology of pipelined circuits as the class of 
circuits that can be peripherally retimed. Next, in Section 

'We consider a single-phase, edge-triggered design methodology that is 
used in a large number of ASIC applications and leads itself to polynomial 
time analysis and retiming algorithms. 
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IV, the application of these ideas to the performance op- 
timization of pipelined circuits is presented. Section V 
presents experimental results of applying these ideas to 
example circuits. Finally, in Section VI, a summary of 
the contributions of this paper and directions for future 
work are presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. RETIMING AND PERIPHERAL RETIMING: A REVIEW 

This section reviews the basic ideas in retiming and pe- 
ripheral retiming. This material is based on the work pre- 
sented in 171, [lo], [9]. The proofs for all the theorems in 
this section have been omitted; they can be found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 101. 

2.1. Abstraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Acyclic Circuits 
The discussion in this section is focused on circuits 

whose underlying topology is acyclic. (These are also re- 
ferred to as feed-fomtard circuits.) These circuits are 
modeled by a directed acyclic graph called a communi- 
cation graph2 where each vertex v represents either 

a) an input/output pin or 
b) a combinational logic block. 

The input/output pins correspond to the primary inputs 
and primary outputs of the circuit. The granularity of the 
combinational logic block may vary: it may be a single 
gate or a larger module such as an adder. The vertices in 
the graph are connected by directed edges. A restriction 
is placed so that each input pin has no incoming edges 
and exactly one outgoing edge (a single-output source), 
and that an output pin has no outgoing edges and exactly 
one incoming edge (a single-input sink). If a primary in- 
put is used in more than one place in the circuit, then this 
is captured by introducing a dummy vertex in the graph 
that handles the multiple out-edges. (The out-edges are 
also referred to as fan-out.) An internal edge connects 
vertex U to vertex v if both U and v represent combina- 
tional logic blocks, and the logic represented by v explic- 
itly depends on the value computed at U. A peripheral 
edge connects either an input pin to the logic block that 
uses that input or connects a logic block that computes the 
value of an output to the corresponding output pin. Each 
edge e has a corresponding weight w (e)  representing the 
number of latches between the two vertices it connects. 
An example of a sequential circuit and its communication 
graph is shown in Fig. 1. Note that the multiple fan-out 
of primary input a is handled through the internal vertex 
a' in the graph. For simplicity in the figure, if the edge 
weight is 0, then the edge label is omitted. A sequential 
circuit is alternatively referred to as a sequential network. 
The terms circuit, network, and graph are used 
interchangeably whenever there is no ambiguity. 

Apath between two vertices vI and v2 in the graph is 
a sequence of consecutive edges from vI to v2. The weight 
of a path is the sum of the weights of all the edges along 

*This is related to the definition of a communication graph presented in 
t71. 

Fig. 1 .  Examples: (a) Sequential circuits. (b) Communication graph. 

the path. In Fig. 1, the path from input b to output f has 
weight 0, while the path from b to e has weight 1. 

2.2. Retiming 
The cycle time of a synchronous sequential circuit is 

determined by the length of the longest path between any 
two latches in the circuit. The concept of retiming ex- 
ploits the ability to move the latches in the circuit in order 
to decrease the length of the longest path in the circuit 
while preserving its functional behavior. Retiming algo- 
rithms were first proposed by Leiserson et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], [6]. To 
illustrate this with a small example, consider Fig. 2. The 
circuit on the left is functionally equivalent to the circuit 
on the right since delaying the output of gate g by a cycle 
is equivalent to delaying each of its inputs by a cycle. The 
movement of latches during retiming is quantified by an 
integer L(v) (called the lag of v )  for each vertex v ,  which 
represents the number of latches that are to be moved in 
the circuit from each out-edge of vertex v to each of its 
in-edges. Thus, in Fig. 2 the circuit on the right is ob- 
tained from the circuit on the left by retiming g by + 1. 
Similarly, in obtaining the EirE-3 On the left from that on 
the right g has been retimed by - 1. For input and output 
pins the lag is 0. Consider an edge e(u, U )  in the circuit. 
Let w(e)  be the weight of the edge in the graph before 
retiming and w,(e) be the weight after retiming. w, is de- 
termined from w and the lags by the following equation: 

w,(e) = w(e) + L(v) - L(u). 

The following definition is from [7]. 
Dejnition 2.1: A legal retiming is the assignment of 

an integer L(v) to each vertex in the communication graph 
such that for each edge e ,  w,(e) 1 0.  

For a legal retiming, the edge weights of the retimed 
graph must be non-negative; indicating a non-negative 

- 
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Fig. 2. Retiming. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
number of latches on each edge. Thus, there exists a real 
physical circuit corresponding to this graph. This is not 
possible with negative edge weights in the retimed circuit 
since there is no physical circuit component correspond- 
ing to a negative latch. A legal retiming has been shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[7] to generate a circuit that is functionally equivalent to 

Fig. 3. Legal retiming. 

cp+7 ;we a 

b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO2 the original circuit. Fig. 3 shows a legal retiming on the 
communciation graph of Fig. 1. Here, the lag of g l  is + 1 

-._. . ..._ .-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(b) 
and the lag for all other vertices is 0. 

(a) 

2.3. Extensions to Retiming 
The use of retiming can be extended by introducing the 

concept of a “negative” latch, i.e., an edge weight in the 
graph that is negative. Negative edge weights are permit- 
ted on peripheral edges only. Allowing a negative edge 
weight n on a peripheral edge is equivalent to “borrow- 
ing” n latches from the environment. The latches may be 
“returned” by a subsequent retiming step, whereby n 
latches are forced to each edge with weight -n. The ob- 
servation that the peripheral edge weights can temporarily 
take on negative values allows retiming operations and 
subsequent optimizations that would otherwise not be 
possible. This is illustrated with the circuit in Fig. 4(a). 
Consider the latch on the connection between g2 and 83. 
In order to move this latch from its present position either 
g3 is retimed by - 1 (for forward motion) or g2 retimed 
by + 1 (backward motion). If g3 is retimed by - 1, this 
will result in an edge weight of -1 at input d .  If g2 is 
retimed by + 1, this will result in an edge weight of - 1 
at output f. Thus, neither of these retimings is legal. How- 
ever, if this “illegal” retiming is permitted temporarily, 
then it is possible to gain additional advantage over what 
is permitted by just legal retimings. Fig. 4(b) shows the 
circuit after g3 has been retimed by - 1 .  The edge weight 
of - 1 on input d is represented by the latch in dotted lines 
and with the label - 1 on it. At this point, all the gates in 
the circuit are part of a single combinational logic block. 
For this logic block, it can be shown that the functionality 
remains unchanged if the connection from a to gl is de- 
leted; i.e., this connection is redundant or in testing par- 
lance, untestable for a stuck-at-1 fault in the context of 
this combinational logic block. Thus, this connection may 
be deleted and gl replaced by a wire. This simplified cir- 
cuit is shown in Fig. 4(c). Note that this connection (from 
a to 81) is not redundant in the context of the original 
combinational block (consisting of gl and 82) defined by 
the original position of latches. Only after we could view 
all the gates as part of a single combinational logic block 

‘ - - T i  f 

d 

(C) (d) 
Fig. 4. Use of a negative Latch. (a) Original circuit. (b) Circuit after g3 is 
retimed by - 1 .  (c) Simplified circuit after redundant connection is deleted. 
(d) Circuit after g3 is retimed by + 1, annihilating the negative latch at 
input d .  

was this redundancy exposed. Of course, this circuit is 
still not realizable since there is a negative latch at input 
d .  This situation can easily be rectified by retiming g3 by 
+ 1 .  This annihilates the negative latch at input d resulting 
in the circuit in Fig. 4(d). This example illustrates the 
advantage gained by permitting illegal retimings tempo- 
rarily. Later in this section it is shown why this is a le- 
gitimate operation. 

Let us now go back and see what enabled us to elimi- 
nate gl  in the previous example. Once we were able to 
consider all three gates in the circuit as part of a larger 
combinational block, we could use the combinational op- 
timization technique of redundancy removal to detect and 
delete the redundant connection. This is precisely what 
we were looking for, i.e., a way to consider and exploit 
logical relationships between gates that extend beyond 
latch boundaries. Ideally, we would like to push out all 
the latches in the circuit to the peripheral edges. This re- 
sults in no latches on any of the internal edges and thus 
all the gates are part of the same combinational logic 
block. This permits the use of any combinational logic 
optimization technique on this larger combinational block. 
The notation of a peripheral retiming does precisely this. 

Dejinition 2.2: A peripheral retiming is a retiming such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor each internal edge e ,  w,(e) = 0.  

This is graphically shown in Fig. 5 .  After peripheral 
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aab zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
Fig. 5. Peripheral retiming. 

retiming, there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai latches at input pin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, latches at 
output pin j, and no latches on any internal edge. 

The circuit in Fig. 4(b) is a peripheral retiming of the 
one in Fig. 4(a). The same peripheral retiming is shown 
in terms of the communication graph in Fig. 6. 

The condition that w,(e) is 0 for all internal edges forces 
all latches to the peripheral edges. Note that the definition 
permits negative weights on the peripheral edges, which 
corresponds to the negative latch concept presented ear- 
lier. Permitting negative latches temporarily on peripheral 
edges is a legitimate operation as shown by the following 
theorem. Functional equivalence here refers to the equiv- 
alence of the finite automata corresponding to the initial 
and final circuits. 

Theorem 2. I: A circuit that undergoes a peripheral re- 
timing, combinational optimization, and a subsequent le- 
gal retiming is functionally equivalent to the original cir- 
cuit. 

2.4.  Conditions for Peripheral Retiming 
Not all circuit topologies permit a peripheral retiming. 

Two such topologies are now considered. 
Consider the circuit in Fig. 7 and its corresponding 

communication graph. All attempts to move the latch 
(either backward or forward) to the periphery result in a 
negative weight on the edge between b’ and 82. In fact, 
as will be shown later in this section, this circuit cannot 
be peripherally retimed. Examining the circuit gives us 
some insight into why this is so. The output c depends on 
the value of input b at two different times. Let us assume 
that a peripheral retiming were possible. Then in the pe- 
ripherally retimed circuit c would depend only on one time 
value of b since all paths from b to c would have the same 
number of latches, viz CY, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p,. This would not capture 
the correct behavior and is the reason why no peripheral 
retiming exists. 

Now consider the circuit and communication graph in 
Fig. 8. Again, it is not possible to move the latches to the 
periphery without introducing a negative weight on the 
internal edges ( U ’ ,  82) and (b’ ,  g l ) .  The intuition as to 
why a peripheral retiming does not exist here is more 
complicated than in the previous case. For output c, in- 
puts a and b are delayed by 1 and 0 cycles, respectively. 
For output d ,  these inputs are delayed by 0 and 1 cycles, 
respectively. Let us assume a peripheral retiming were 
possible. Then c would see a and b delayed by CY, + 0, 
and ( Y b  + p,, respectively. Similarly, d would see them 

Peripheral 
Retimlng - 

Fig. 6. Peripheral retiming. 

P 

Fig. 7 .  Circuit with no peripheral retiming: Example 1 .  

Fig. 8 .  Circuit with no peripheral retiming: Example 2. 

delayed by CY, + /3d and ( Y b  + p d ,  respectively. The only 
difference in delays for the inputs that d sees with respect 
to c is due to the different number of latches on the pe- 
ripheral edges at c and d ,  i.e., pd - p,. Thus, the input 
delays are the same for all the outputs except for a con- 
stant offset that depends on the output, and this offset is 
added to each of the input delays. Clearly this is not pos- 
sible for this e ~ a m p l e . ~  

While these two examples give some insight into when 
a peripheral retiming may not exist, by themselves they 
do not provide a characterization of circuits that permit a 
peripheral retiming. In order to obtain such a character- 
ization, the path weight matrix of a network is defined. 

Dejinition 2.3: A path weight matrix, W, of a sequen- 
tial network is an m x n matrix, where 

1 )  m is the number of inputs, 
2) n is the number of outputs, 
3) W j  = * if no path exists between input i and output 

j 9  

3Even though the circuits in Figs. 7 and 8 cannot be peripherally retimed, 
sub-circuits of these circuits can. 

I 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 .  Path weight matrix. 

4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWu = - if two paths between input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and output j 

5 )  W, = Cpathii+o, w(e)  if all paths between input i and 

Fig. 9 shows a communication graph and the correspond- 
ing path weight matrix. 

In addition, the satisfiability condition on the path 
weight matrix is defined, which is directly related to the 
existence of a peripheral retiming. 

have different weights, 

output j have the same weight. 

Dejinition 2.4: A matrix W is satisjiable if 

circuits. In order to understand them better we would like 
to characterize them in terms of their general topology. 

Fig. 10(a) shows the general topology of circuits that 
permit a peripheral retiming. A peripherally retimed cir- 
cuit is shown in Fig. 10(b). This has been obtained by 
moving the latches forward through the circuit, borrowing 
latches at the inputs when required. Circuits satisfying this 
topology are called balanced or pipelined circuits. Note 
that inputs and outputs are permitted to and from each 
stage of the pipeline. This is more general than simple 
pipelines, where data enters the first stage and the result 
leaves the last stage. Of course any of the input or output 
vectors Zi or Oj may be empty. 

It is now shown that this is exactly the topology cor- 
resonding to circuits that can be peripherally retimed. Let 
C be a circuit that can be peripherally retimed and C, be 
the peripherally retimed circuit. We need to show the fol- 
lowing. 

1) In C,, ai is non-positive for all i and Pjis non-neg- 

2) There is no path from input i to output j such that 
ative for each j. 

a; + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi < 0. 
a) W, # -, Vi,  j, 
b) 3ai, 3Pj, 1 I i I m, 1 I j c: n, air Pi E I such Let ai latches be an input i and Pi latches be at outputj in 

C,. This can be modified to obtain another solution as fol- that for each Wii # *, Wij = ai + pi. 

These two conditions have been motivated by the two 
examples considered above. Cyclic circuits (assuming 
there is at least one latch on each path containing a cycle) 
will have W, = - for each path containing a cycle. Thus, 
only acyclic communication graphs can have a satisfiable 
path weight matrix. 

The path weight matrix helps us derive the necessary 
and sufficient conditions on a circuit for it to have a pe- 
ripheral retiming. 

Theorem 2.2: A sequential network has a peripheral 
retiming if and only if its path weight matrix is satisfi- 
able. 

Note the significance of this result: it gives a complete 
characterization of the class of sequential circuits for 
which all the latches can be pushed to the periphery; i.e., 
it specifies the necessary as well as the sufficient condi- 
tions on the circuit topology. 

A peripheral retiming involves finding a set of a’s and 
@’s that satisfy the path weight matrix. These a’s and p’s 
specify the peripheral retiming. In the retimed circuit there 
are ai latches at the ith input pin and pi latches at the jth 
output pin. A matrix that is satisfiable has no - entries, 
and has at least one set of a i ’ s  and pj’s such that ai + pi 
= wj. 

111. PERIPHERALLY RETIMABLE CIRCUITS: GENERAL 
TOPOLOGY 

Theorem 2.2 states the necessary and sufficient condi- 
tions under which a circuit has a peripheral retiming. 
However, it gives no feel for the general topology of these 

lows: Let amax be the value of the largest al. Subtract a,,, 
from each a, and add it to each 0,. The resulting values 
of a’s and p’s also satisfy the path weight matrix. As in 
Fig. 10(b), C, has non-positive a’s and non-negative 0’s. 
To see that the p’s must be non-negative, assume that this 
were not true, i.e., some @, were negative. Let i be an 
input from which there is a path to outputj. Then the path 
weight in C, from i t o j  must be negative since ai is non- 
positive. This cannot happen since in the initial graph, 
and hence the retimed graph, there is no path with nega- 
tive weight. Thus, all p’s are nonnegative. Another con- 
sequence of the fact that there is no path in the initial 
graph of negative weight is that there cannot be a path 
from input i to output j such that a, + P, < 0 in the re- 
timed circuit. Thus, C, satisfies both the conditions listed 
above and its topology is precisely that of Fig. 10(b). 
Therefore, C must have the topology of Fig. 10(a). 

The circuit in Fig. 10(a) naturally suggests that the 
latches are pipelined latches and that there is an underly- 
ing combinational logic block. Peripheral retiming ex- 
poses this by moving the latches to the periphery. It may 
seem that the combinational logic can be exposed by just 
ignoring the latches (replacing them by wires). This cer- 
tainly is true. However, once this circuit has been resyn- 
thesized, the latches need to be placed back in the circuit. 
This needs to be done while guaranteeing that each input 
and output is in the correct stage of the pipeline. Periph- 
eral retiming handles this elegantly. The latches at the 
periphery are place holders for this information. When the 
circuit is retimed after resynthesis, retiming ensures that 
each input and output lies in the correct stage in the pipe- 
line. The significance of negative latches is reiterated; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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(a) (b) 
Fig. 10. Pipelined circuits and their retiming. (a) Pipelined circuit. (b) Pe- 

ripherally retimed circuit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
without them it would not be possible to handle inputs and 
outputs from each stage. 

IV. PERFORMANCE OPTIMIZATION 

The three-step procedure of peripheral retiming, com- 
binational resynthesis, and a final legal retiming to exploit 
combinational optimization techniques beyond latch 
boundaries was described in Section 11. In the example 
presented there, combinational optimization was being 
used for area reduction. However, the retiming and re- 
synthesis framework does not specify the nature of the 
resynthesis permitted; any combinational resynthesis is 
valid. This section examines the use of performance-di- 
rected resynthesis in this framework. 

4.1. Two Problems in Performance Optimization 

4.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. Pipelined Pe rformance Optimization 
Pipelined circuits were introduced in Section 111. Recall 

that a pipelined circuit of n stages consists of n combi- 
national circuits (C , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e , C,,) with stage i communicat- 
ing with stage i + 1 through some signals that are latched. 
(See Fig. 10(a).) Each Ci may have inputs Zi and outputs 
Oi besides the latched inputs and outputs used to com- 
municate with adjacent pipeline stages. This description 
of a pipeline is general since it does not restrict all inputs 
to come in at the first stage and outputs to leave the last 
stage. Allowing inputs to any stage (rather than just the 
first stage) in the pipeline provides the following addi- 
tional flexibility: 

1) The pipeline can operate on multiple streams of data 
which may arrive separated from each other by an arbi- 
trary number of clock cycles. 

2) The pipeline can consider control signals that arrive 
in cycles subsequent to the initial data and perform the 
remaining computation based on these. 

Similarly, allowing outputs from any stage permits the 
following: 

1) Multiple computations may be performed with the 
different results being available during different clock pe- 
riods. 

2) Error conditions or any status signals can be pro- 
vided as outputs in the cycle they are computed. 

This description of pipelined circuits is general and in- 
cludes most circuits that are considered to be pipelined by 
digital circuit designers. 

The performance optimization problem of pipelined 
circuits is to maximize the clocking rate or equivalently 
minimize the cycle time of the circuit. This determines 
the throughput of the circuit. Sometimes the cycle time, 
c, that needs to be attained is specified as a constraint, 
based on the requirements of the system of which this cir- 
cuit is a part. In that case, the optimization problem is to 
meet the specified cycle time constraint. In general, not 
all inputs are available at the clock edge; for example, 
they may arrive later because of communication delays. 
Similarly some of the outputs may be required well before 
the clock edge, say, in order to satisfy setup time require- 
ments. Thus, with each input signal an arrival time, a, is 
associated which is the time after the clock edge that the 
signal is available, and with each output signal a required 
time, r,  is associated which is the time before the clock 
edge that this signal must be ready. Let A and R be the 
sets of arrival times and required times for the inputs and 
outputs, respectively. These capture the timing con- 
straints due to the environment of this circuit. Thus, an 
instance of the pipelined performance optimization prob- 
lem 6,, is specified as 6, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{e,  c ,  A, R} , where e is 
the circuit and c the desired cycle time constraint. Note 
that this problem statement assumes that c is provided as 
part of the problem. If the problem is to minimize c, this 
can be done by solving a number of problem instances 
6,, each with a known c, by performing a binary search 
for the least feasible c. 

4.1.2. Combinational Speedup 
The combinational speedup problem has been well 

studied in recent years. Here, a given combinational cir- 
cuit, e,  is to be resynthesized so that it meets its timing 
constraints. The timing constraints are specified as re- 
quired times, r ,  on the outputs of the combinational cir- 
cuit. In this case these times'are absolute and not with 
reference to any clock edge. As before, the inputs may be 
arbitrarily delayed and an absolute arrival time a is asso- 
ciated with each input. Thus, an instance of this problem, 
PC, is specified as Pc = {e, A ,  R }  . 

4. I .  3. Problem Transformation 
Given an instance of the pipelined performance optim- 

ization problem, 6,, it is first transformed to an instance 
of the combinational speedup problem 6=. Subsequently 

. __ 
I 
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it is demonstrated how a solution of PCmay be retimed 
to obtain a solution of Pf. 

As described in Section I11 we obtain a peripheral re- 
timing for the pipelined circuit by retiming block Ci by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- ( i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1). (See Fig. 10(b).) This is not unique; several 
possible peripheral retimings exist. In terms of the circuit 
this implies that we sweep all the latches forward through 
the circuit, borrowing latches at the inputs as needed. This 
results in the peripherally retimed circuits shown in Fig. 
10(b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs before, peripheral retiming has exposed a larger 
combinational circuit, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, which is the cascade of C , ,  C2, 
. . .  , C,,. This is the combinational circuit that we will 
use for the transformed problem, PC. In order to complete 
the definition of Pc we need to specify A and R. We de- 
termine them by using c, A, and R from P p  as follows. 
For an input to stage i of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC? with arrival time a in PP,  the 
arrival time in PCis  a + ( i  - 1)c. For an output of stage 
i in C? with required time r in 6,, the required time in 6, 
is ic - r. Note that it is easy to determine which stage an 
input or an output belongs to by looking at the number of 
latches in the peripherally retimed circuit at that input or 
output. The intuition behind this choice of modifications 
of arrival and required times is that it captures the fact 
that the input arrives only after i - 1 cycles and the output 
is required only before the ith cycle. In the next section 
we will see how this choice of A and R results in an in- 
teresting relationship between problems and @=. 

4.2. Main Results 

We would like to obtain a solution of Pf from a solu- 
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPC. It is not immediately obvious that this is pos- 
sible; in fact, it seems almost unlikely to happen as the 
analysis below shows. However, we need a few simple 
definitions first. 

Definition 4.1: Apath in a circuit is an alternating se- 
quence of consecutive connections (possibly latched) and 
gates. 

As in [6 ] ,  [7] a propagation delay, dg, is associated with 
each gate in the circuit. 

Dejinition 4.2: A segment of a path is a path from an 
input or a latch to an output or a latch. 

Dejinition 4.3: The delay of a segment, s, is the sum 
of the gate delays along the segment and is denoted by 

Dejnition 4.4: The lumped delay of a segment s, de- 
noted by A,, is the sum of the combinational logic delays 
associated with the gates and the times associated with 
late arrival of an input or early requirement of an output. 
Thus, hs = a + D, + r. 

Of course, a or r are equal to 0 if the segment has no 
input or output, respectively. 

Dejinition 4.5: A latch is said to be forward-blocked if 
it cannot be legally moved forward across its output gate, 
g ,  without violating a cycle time constraint. 

DS * 

This may happen for two reasons. 

1) There exists a path from an input to g which does 
not have any latch on it. Thus, it is never possible 

input 

(a) 

Fig. 1 1 .  Blocked latch motion. (a) Forward-blocked latch: There exists a 
path from an input to g with no latch. (b) Forward-blocked latch: There 
exists a path from a critical latch to g. (c) Backward-blocked latch: There 
exists a path from g to an output without a latch. 

to have a latch at each input of g which is needed 
for the legal forward motion of the latch. (See Fig. 

2) There exists a path from a critical latch to g.  Infor- 
mally a latch is critical if it cannot be moved for- 
ward without violating the cycle time constraint. 
(The formal definition of a critical latch is deferred 
till later in this section.) Thus, it is not possible to 
move a latch from each input of g to its output. (See 
Fig. ll(b).) 

Definition 4.6: A latch is said to be backward-blocked 
if it cannot be legally moved backward through a gate g.  

For this to happen, there must be a path from g to an 
output which does not have a latch on it. Thus, it is never 
possible to have a latch at each output of g ,  which is 
needed to move this latch backward. (See Fig. ll(c).) 

Consider a path, p ,  from an input of stage i to an output 
of stage i + j in PC. Assume that the solution of @,-just 
meets the delay constraints for this path; i.e., the path is 
critical for PC.  Therefore, the combinational logic delay, 
delay(p), along this critical path is given by 

delay(p) = ( ( i  + j ) c  - r) - (a + ( i  + 1)c) - E 

where E is an arbitrary small positive number. Simplifying 
this results in 

l l (a).> 

delay@) = ( j  + 1)c - r - a - E .  (1) 

Now suppose that we do find a final retiming that meets 
the cycle time constraint c along this path. Since retiming 
does not change the number of latches between any input 
and output, there will be j latches between the input-out- 
put pair in consideration. Thus, in the retimed circuit this 
path h a s j  + 1 segments. Then for each segment, hk < 
c. Summing over k for this path, we see that 

j c hk < 0' + 1)c 
k = O  

which gives 

or equivalently, 
i 
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But Ci=,  Dk is deZuy(p) and we know from (1) that this 
is equal to ( j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1)c - r - a - E. Thus, we cannot add 
any delay to any segment without violating the cycle con- 
straint. Therefore, each path segment along this path is 
critical inasmuch as moving any latch would violate the 
cycle constraint. It is possible that the solution to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPc may 
actually result in the constraints along all paths in e, to 
be just met. In that case, for each path there is only one 
available position of latches that will meet the cycle time 
constraint. Since different paths overlap, it is possible that 
the positions of latches dictated by each path may be in 
conflict. 

To make matters worse, latches cannot be arbitrarily 
placed along a path as assumed by the above analysis. The 
latch motion may be blocked in either the forward or 
backward direction. This makes it even less probable that 
the latches can be positioned so that for all the paths they 
lie at the single position that meets the cycle time con- 
straint and simultaneously avoid being blocked by the po- 
sitions of inputs and outputs. 

Since there are only discrete positions along the length 
of the path where a latch may be placed, viz before and 
after gates, the granularity of control that we have over 
the latch positions is only the largest possible gate delay 
6. To handle this, the following relaxed problem is de- 
fined: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi = {e, c + 6, A, R }  derived from Pp. A solu- 
tion to 6'; exceeds the cycle time constraint for P p  by no 
more than 6. 

To show that any solution of 6, can be retimed to get 
a solution of 6'; a few more concepts must be consid- 
ered. 

Definition 4.7: A segment is said to be critical if it just 
meets the performance constraints for the segment; i.e. 
the latch at the end of the segment cannot be moved for- 
ward across a gate g without violating the constraints for 

critical segment. 
Definition 4.8: A segment is said to be violating if it 

does not meet the timing requirements for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS i .  Thus, Xk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 c + 6 for a violating segment. 

Definition 4.9: A path is said to be critical if all its 
segments are critical. 

Definition 4.10: A latch is said to be critical if it ter- 
minates a critical segment. 

Definition 4.11: A path is said to be violating if the 
last segment is violating and all the other segments are 
critical. 

We label each input of the circuit based on the number 
of latches at that input in the peripherally retimed circuit 
in Fig. lo@). If an input has -(i) latches, then its label 
is i .  Each latch in a pipelined circuit can be labeled by a 
unique integer that specifies its level in the circuit. This 
labeling obeys the following two rules. 

1) If there is a purely combinational path (with no 
latches) from an input with label i to this latch, then 
the label on the latch must be i .  

2) If there is a path with no latches from a latch with 
label i - 1 to this latch, then its label must be i .  

P;. Thus, C I < C + 6 and X k  + dg 1 C + 6 for a 

For a pipelined circuit, a unique labeling exists for the 
latches which satisfies both rules. 

The following basic lemma is critical to prove the 
equivalence of 6; and Pc. 

Lemma 4.1: Let k be any integer not exceeding the 
largest label on any latch in e. Then, it is possible legally 
to retime e to e,, such that in C,: 

1) There exists a violating path from an input to an 
output that passes through latches labeled only 
<k, OR 

(a) No segment starting at a latch or input labeled 

(b) Each latch labeled 5 k is either critical or for- 

(c) Each critical latch terminates a critical path from 

2) The following three conditions are satisfied: 

< k is violating. 

ward-blocked. 

some input to that latch. 

Pro08 The proof is by induction on k. 
Induction Hypothesis: Assume the statement in the 

lemma is true for all i < k. 
Induction Basis: The statement in the lemma is proven 

for i  = 0. 
Let us try and place all latches (using retiming) with 

label 0 so that the input segments do not violate the cycle 
time constraint c + 6.  

Case 1: It is not possible to do so. Then one of the 
following must be true. 

1) There exists a path from an input to an output for 
which a + D + r 1 c + 6. This path is a violating 
path from an input to an output and thus the first 
condition in the lemma is satisfied. 

2) There exists a path from an input, i ,  to a latch, 1 ,  
for which a + D L c + 6. This latch must be back- 
ward-blocked or else we would have moved it back- 
wards to get rid of this violation. If it is backward 
blocked, then the input gate of this latch must have 
a path to an output, 0, with no latch on it. Thus, for 
the path from i to 0, the following must be true: a 
+ D + r 1 c + 6 .  This follows from the fact that 
r is non-negative and you need to go through at least 
the same, and possibly additional logic while going 
from i to o instead of going from i to 1. This input 
to output path is violating and the first condition in 
the lemma is satisfied. 

Case 2: It is possible to do so. Then we can move each 
latch with label 0 forward till it is either critical or for- 
ward-blocked. If a latch is critical, then it must be so be- 
cause it terminates a critical path from some input. Now 
all three parts in the second condition of the lemma state- 
ment are satisfied. 

Induction Step: It is now proven for i = k. As in the 
basis step we can either place all latches with label k with- 
out violating the cycle time constraint c + 6 ,  or we can- 
not. Consider each of these separately. 

Case 1: We cannot. Then by an argument similar to 
that used in Case 1 of the base case, there is a segment 
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from either a latch or an input or an output that is violat- 
ing. In fact, this violating segment must be from an input 
or a critical latch. To see why this must be so, suppose 
that the violating segment is from a non-critical latch to 
the output. Since the non-critical latch was blocked by 
either a critical latch or an input, the segment from this 
critical latch or input to the output is violating. If it is 
from an input, then the path from this input to the output 
is violating, satisfying the first condition of the lemma. If 
it is from a critical latch, by the induction hypothesis the 
critical latch terminates a critical path from an input. This 
path along with the violating segment starting from this 
latch forms a violating path from an input to an output, 
satisfying the first condition in the lemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Case 2: We can. Then each latch with label k can be 
moved forward until it is either forward-blocked or criti- 
cal while ensuring that no segment is violating. For each 
critical latch with label k there must be a critical segment 
from an input or a critical latch. The reasoning as to why 
all critical segments to a latch cannot be from non-critical 
latches is the same as that used in Case 1 above. If the 
critical segment is from an input, then the critical latch 
does terminate a critical path from an input. If it is from 
a critical latch, then by the induction hypothesis this crit- 
ical latch terminates a critical path starting at an input. 
The concatenation of this critical path with this critical 
segment gives the required critical path from an input for 
the critical latch with label k which satisfies the second 
condition in the lemma. U 
With this we can now prove the following. 

Lemma 4.2: If the solution to 6, cannot be retimed to 
meet cycle time constraint c + 6, then there must exist a 
violating path from an input to an output. 

Proof: Let k be the maximum label on a latch in any 
retimed circuit. Using Lemma 4.1 with this k, we see that 
either there is a violating path from an input to an output, 
in which case we are done, or all critical latches with label 
k terminate a critical path starting at an input. Note that 
since the cycle time constraint was not met, there must be 
a violating segment starting at a latch or input with label 
k. Actually this violating segment must be from a critical 
latch or input with label k by the same argument used in 
Case 2 of the induction step in the proof for Lemma 4.1. 
If this is from an input, then this segment forms a violat- 
ing path from an input to an output. If it is from a critical 
latch, then this segment appended to the critical path from 
an input terminating at that latch forms a violating path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
Finally, it is shown that the existence of a violating 

path implies that the constraint for that path in Pc  was not 
satisfied. 

Lemma 4.3: If there exists a violating path from an in- 
put to an output in any retimed circuit equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, 
then the constraint for the corresponding path was not sat- 
isfied for PC. 

Prouf: By summing up the delay constraints along 
the violating path it is seen how the delay constraint for 
the corresponding path cannot be met in PC.  Recall that 

from an input to an output. 

a path is violating if the last segment is violating and all 
other segments are critical. Let the violating path have j  
+ 1 segments. I f j  = 0, then a + D + r L c + 6. The 
constraint on this path in Pc  is that (kc - r) - (a + ( k  
- 1)c) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD or equivalently, a + r + D < c (k is the 
label on the input). Thus, this constraint is violated. I f j  
> 0, then the following inequalities are obtained from the 
fact that the path is violating. 

a + D , 1  c 

D ; 1 c ,  l < i < j  

r + Di 2 c + 6. 

From these we see that 

i 
a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC oi + r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( j  + I)C. 

k = O  

The constraint on the same path in PCis 

i 
( ( j  + k)c - r) - (a + (k  - I)C) > C D~ 

k = O  

This can be rewritten as 

i 
( j +  l ) c > a +  C ~ ; + r  

k = O  

which is not met as we can see from (2) above. 

Proof: Follows from Lemmas 4.2 and 4.3. 

U 
Theorem 4.1: If Pc has a solution, then this can be 

0 
From Theorem 4.1 we see that solving CPc is sufficient 

in order to obtain a solution to P p  to within a gate delay. 
Now it is shown that any solution to P p  must be a retim- 
ing of a solution of 6 c .  

Theorem 4.2: If there exists a solution to PP, then this 
can always be obtained by retiming some solution of PC. 

Proof: For any path from an input to an output in 
the retimed circuit the following inequality must be sat- 
isfied for each segment: hk > c. Summing over all seg- 
ments: 

retimed to give a solution of 6;. 

i 
a + C oi + r < ( j  + I)C. 

k = O  

The constraint on this path in Pc  is exactly this and is 
therefore satisfied. Since this is true for all paths, e, for 
the solution of P p  is a solution of PC.  The solution of P p  
is then obtained by moving in the peripheral latches by 

Thus, for the pipelined problem to have a solution 
(within a gate delay) it is necessary and sufficient that the 
combinational problem has a solution. This is significant 
since it tells us that the problems are equivalent and, 
therefore, we need concentrate only on the relatively sim- 
pler combinational speedup problem. 

retiming. 0 
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TABLE I 

EXPERMENTAL RESULTS: PERFORMANCE OPrIMIZATION OF PtPELtNED CtRCUtTS 

Rysn-Ret Ret-Rsyn PR-Rsyn-Ret 

Name Area Latches Cycle Area Latches Cycle Area Latches Cycle 
~ 

ex 1 804 27 14.4 518 28 15.4 758 25 14.4 

ex3 292 9 12.6 265 14 14.0 37 1 22 12.4 
ex2 500 25 16.6 542 22 15.4 57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 42 11.0 

V. EXPERIMENTAL RESULTS: PERFORMANCE 
OPTIMIZATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. I .  Example Circuits and Experimental Procedure 
Since there is no set of benchmark examples of pipe- 

lined circuits, we constructed a few simple examples for 
our experiments. The following three arithmetic circuits 
were designed for this purpose. Each of these is a two- 
stage pipelined circuit. 

ex1 A two-stage adder that adds four 8-bit numbers 
(A, B, C ,  and 0). The first stage computes the 
partial sums A + B and C + D and the second 
stage computes the final sum. Each adder is a 
ripple-carry adder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ex2 A two-stage adder that adds two 16-bit numbers. 
The first stage computes the sum of the 8 least- 
significant bits and the second stage computes 
the final sum. Each adder is a ripple-carry ad- 
der. 

ex3 This circuit computes the parity of the sum of two 
8-bit numbers (A and B). During the first stage 
the sum is generated using a ripple-carry ad- 
der. In the next stage the parity of the sum is 
computed using a balanced parity tree. 

Three design scenarios are evaluated, and the cycle time 
achieved by each is reported in Table I. The three scen- 
arios explore different methods to obtain a faster version 
of the initial pipelined circuit and are as follows. 

1) resynthesis followed by retiming (Rsyn-Ret), 
2) retiming followed by resynthesis (Ret-Rsyn), 
3) the approach proposed in Section IV, i.e., periph- 

eral retiming followed by resynthesis followed by 
retiming (PR-Rysn-Ret). 

For purposes of this experiment only one delay optimi- 
zation routine is applied, the critical-path restructuring on 
a technology-independent network [ 121, as part of the re- 
synthesis procedure. The delay through the circuit is 
measured using a two-input NAND gate representation of 
the circuit. Each gate contributes one unit of delay, and 
each fan-out contributes an additional delay (0.2 units in 
this experiment). The area of the combinational part is 
measured as the number of literals (gate input connec- 
tions) in the same two-input NAND representation. 

From the results in Table I we make the following ob- 
servations : 

1) The order of retiming and resynthesis operations im- 

pacts the value of cycle time that can be achieved. Neither 
order can be counted on to be the best for all circuits. 

2) The cycle time obtained by the proposed method 
matches or is better than the best result that can be ob- 
tained by any combination of a single retiming and a sin- 
gle resynthesis step. This is what is expected theoreti- 
cally, and it is gratifying that this is achieved in practice 
as well. It is clear from circuit ex2 that the additional flex- 
ibility gained from looking at the maximal combinational 
logic sub-network obtained by peripheral retiming pro- 
vides the optimization techniques greater freedom in re- 
stucturing the circuit to reduce the cycle time. 

In the current experiments there is an increase in the num- 
ber of latches, over the initial number of latches, when 
the proposed method is used. This is due to the fact that 
no attempt is made to minimize the latches during retim- 
ing and also due to the particular resynthesis technique 
used. The critical path restructuring increases the width 
of the circuit, and hence more latches are used. 

VI. SUMMARY AND FUTURE WORK 
The paper presents a technique to resynthesize a pipe- 

line circuit optimally to meet performance specifications. 
The proposed approach exploits combinational resyn- 
thesis as well as retiming techniques in a unified frame- 
work that guarantees the best possible circuit structure 
(under the constraint that the best combinational resyn- 
thesis techniques are used). The equivalence of the two 
problems, pipelined circuit optimization and combina- 
tional speedup, has been proved. This allows researchers/ 
designers to focus only on the relatively easier combina- 
tional speedup problem, Preliminary results demonstrate 
the practical impact of the proposed method in increasing 
the performance of pipelined circuits. 

In the future we would like to extend the method be- 
yond pipelined circuits to general sequential circuits. In 
addition, several things need to be done to increase the 
practicality of this approach. We need to develop retiming 
procedures that consider fan-out loads. Stronger combi- 
national resynthesis techniques need to be developed since 
they are key to improvement here. 
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