
568 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12, NO. 5 , MAY 1993

Performance Optimization of Pipelined Logic Circuits
Using Peripheral Retiming and Resynthesis

Sharad Malik, Kanwar Jit Singh, Robert K. Brayton, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFellow, IEEE,
and Albert0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASangiovanni-Vincentelli, Fellow, IEEE

Abstract-We consider the problem of minimizing the cycle
time of a given pipelined circuit. Existing approaches are sub-
optimal since they do not consider the possibility of simulta-
neously resynthesizing the combinational logic and moving the
latches using retiming. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1101 the idea of simultaneous retim-
ing and resynthesis was introduced. We use the concepts pre-
sented there to optimize a pipelined circuit to meet a given cycle
time. An instance of the pipelined cycle optimization problem
is specified by the circuit, a set of input arrival times relative
to the clock, a set of output required times relative to the clock,
and a given cycle time that it must meet. Given the instance of
the pipelined performance optimization problem we construct
an instance of a combinational speedup problem. This is spec-
ified by a combinational logic circuit, a set of arrival times on
the inputs, and a set of required times for the outputs which
must be met. We then give a constructive proof that the pipe-
lined problem has a solution if and only if the combinational
problem has a solution. This result is significant since it shows
it is enough to consider only the combinational speedup prob-
lem and all known techniques for that (e.g., [12], [13]) can be
directly applied to generate a solution for the pipelined prob-
lem.

I. INTRODUCTION
ORDER to be completely accepted by IC designers, I" behavioral and logic synthesis tools must satisfactorily

address the issue of meeting performance constraints. This
area has been largely ignored in the past; the emphasis
thus far has been on area optimization. Design failures
that result from ignoring performance requirements dur-
ing synthesis can be counterproductive to the very use of
synthesis since timing problems take a long time to fix.
We feel that the modeling and consideration of perform-
ance issues must be taken into account explicitly during
each stage of the design synthesis.

Previous work in this area can be classified into two
categories. In the first, only resynthesis of individual
blocks of combinational logic is considered. These in-
clude critical-path resynthesis (e.g., [3], [12]), gate de-
composition (e.g., [l l]), technology mapping (e.g., [5 ,

Manuscript received August 20, 1991; revised April 29, 1992. This pa-
per was recommended by Associate Editor K. Keutzer.

S. Malik was with the Department of Electrical Engineering and Com-
puter Science, University of California, Berkeley, CA. He is now with the
Department of Electrical Engineering, Princeton University, Princeton, NJ

K. J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli are with the
Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720.

08544-5263.

IEEE Log Number 9205882.

13]), and buffer optimization (e.g., [2]). Since these do
not consider modifying the position of latches or flip-flops,
an initial bad placement of the latches restricts the possi-
ble improvements. The second category includes tech-
niques that reposition the latches so as to get a shorter
cycle time. The technique of retiming, developed by Leis-
erson et aE. [6]-[8], provides a polynomial time procedure
to determine the optimum position of latches in a single-
phase, edge-triggered sequential circuit. However, no ef-
fort is made here to modify any of the combinational logic.

The crucial element in combining the techniques of re-
timing and resynthesis is the decision as to when, where,
and in what order to apply these operations. Some prelim-
inary work in combining them has been done in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[11, but
the approach there is heuristic driven with no optimality
guarantees. In [4] retiming was combined with a re-
stricted class of combinational optimization techniques
with limited success. In this paper we provide a rigorous
solution to this problem for a special yet important class
of circuits, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAviz pipelined circuits.' Here we transform the
problem of speeding up a pipeline circuit into one of re-
synthesizing a combinational logic circuit with appropri-
ate timing constraints. This is achieved by peripheral re-
timing [lo] which moves the latches to the inputs and
outputs of a circuit. The resulting maximal combinational
sub-circuit can be subject to any delay-reducing transfor-
mation in an effort to meet the timing constraints specified
for it. The timing constraints are based on the cycle time
that the user desires. We show that if the timing con-
straints on the maximal combinational sub-network are
met, then it is always possible to retime the resynthesized
circuit to meet the desired cycle time. We also show that
any circuit that meets the cycle-time constraint can be ob-
tained by peripheral retiming, appropriate resynthesis, and
then retiming. These two facts are used to show that the
proposed method is the best way to resynthesize a pipeline
circuit to meet its performance (cycle time) target.

This paper is organized as follows. Section I1 reviews
the results in retiming and peripheral retiming upon which
the work presented in this paper is based. Section I11 in-
troduces the topology of pipelined circuits as the class of
circuits that can be peripherally retimed. Next, in Section

'We consider a single-phase, edge-triggered design methodology that is
used in a large number of ASIC applications and leads itself to polynomial
time analysis and retiming algorithms.

1

0278-0070/93$03.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1993 IEEE

- - T

MALIK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: PERFORMANCE OPTIMIZATION OF PIPELINED CIRCUITS 569 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IV, the application of these ideas to the performance op-
timization of pipelined circuits is presented. Section V
presents experimental results of applying these ideas to
example circuits. Finally, in Section VI, a summary of
the contributions of this paper and directions for future
work are presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. RETIMING AND PERIPHERAL RETIMING: A REVIEW

This section reviews the basic ideas in retiming and pe-
ripheral retiming. This material is based on the work pre-
sented in 171, [lo], [9]. The proofs for all the theorems in
this section have been omitted; they can be found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[101.

2.1. Abstraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Acyclic Circuits
The discussion in this section is focused on circuits

whose underlying topology is acyclic. (These are also re-
ferred to as feed-fomtard circuits.) These circuits are
modeled by a directed acyclic graph called a communi-
cation graph2 where each vertex v represents either

a) an input/output pin or
b) a combinational logic block.

The input/output pins correspond to the primary inputs
and primary outputs of the circuit. The granularity of the
combinational logic block may vary: it may be a single
gate or a larger module such as an adder. The vertices in
the graph are connected by directed edges. A restriction
is placed so that each input pin has no incoming edges
and exactly one outgoing edge (a single-output source),
and that an output pin has no outgoing edges and exactly
one incoming edge (a single-input sink). If a primary in-
put is used in more than one place in the circuit, then this
is captured by introducing a dummy vertex in the graph
that handles the multiple out-edges. (The out-edges are
also referred to as fan-out.) An internal edge connects
vertex U to vertex v if both U and v represent combina-
tional logic blocks, and the logic represented by v explic-
itly depends on the value computed at U. A peripheral
edge connects either an input pin to the logic block that
uses that input or connects a logic block that computes the
value of an output to the corresponding output pin. Each
edge e has a corresponding weight w (e) representing the
number of latches between the two vertices it connects.
An example of a sequential circuit and its communication
graph is shown in Fig. 1. Note that the multiple fan-out
of primary input a is handled through the internal vertex
a' in the graph. For simplicity in the figure, if the edge
weight is 0, then the edge label is omitted. A sequential
circuit is alternatively referred to as a sequential network.
The terms circuit, network, and graph are used
interchangeably whenever there is no ambiguity.

Apath between two vertices vI and v2 in the graph is
a sequence of consecutive edges from vI to v2. The weight
of a path is the sum of the weights of all the edges along

*This is related to the definition of a communication graph presented in
t71.

Fig. 1 . Examples: (a) Sequential circuits. (b) Communication graph.

the path. In Fig. 1, the path from input b to output f has
weight 0, while the path from b to e has weight 1.

2.2. Retiming
The cycle time of a synchronous sequential circuit is

determined by the length of the longest path between any
two latches in the circuit. The concept of retiming ex-
ploits the ability to move the latches in the circuit in order
to decrease the length of the longest path in the circuit
while preserving its functional behavior. Retiming algo-
rithms were first proposed by Leiserson et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7], [6]. To
illustrate this with a small example, consider Fig. 2. The
circuit on the left is functionally equivalent to the circuit
on the right since delaying the output of gate g by a cycle
is equivalent to delaying each of its inputs by a cycle. The
movement of latches during retiming is quantified by an
integer L(v) (called the lag of v) for each vertex v , which
represents the number of latches that are to be moved in
the circuit from each out-edge of vertex v to each of its
in-edges. Thus, in Fig. 2 the circuit on the right is ob-
tained from the circuit on the left by retiming g by + 1.
Similarly, in obtaining the EirE-3 On the left from that on
the right g has been retimed by - 1. For input and output
pins the lag is 0. Consider an edge e(u, U) in the circuit.
Let w(e) be the weight of the edge in the graph before
retiming and w,(e) be the weight after retiming. w, is de-
termined from w and the lags by the following equation:

w,(e) = w(e) + L(v) - L(u).

The following definition is from [7].
Dejnition 2.1: A legal retiming is the assignment of

an integer L(v) to each vertex in the communication graph
such that for each edge e , w,(e) 1 0.

For a legal retiming, the edge weights of the retimed
graph must be non-negative; indicating a non-negative

-
I

570 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 5, MAY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+

retimgby-1

Fig. 2. Retiming. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
number of latches on each edge. Thus, there exists a real
physical circuit corresponding to this graph. This is not
possible with negative edge weights in the retimed circuit
since there is no physical circuit component correspond-
ing to a negative latch. A legal retiming has been shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[7] to generate a circuit that is functionally equivalent to

Fig. 3. Legal retiming.

cp+7 ;we a

b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO2 the original circuit. Fig. 3 shows a legal retiming on the
communciation graph of Fig. 1. Here, the lag of g l is + 1

-._._ .-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-7‘ f

(b)
and the lag for all other vertices is 0.

(a)

2.3. Extensions to Retiming
The use of retiming can be extended by introducing the

concept of a “negative” latch, i.e., an edge weight in the
graph that is negative. Negative edge weights are permit-
ted on peripheral edges only. Allowing a negative edge
weight n on a peripheral edge is equivalent to “borrow-
ing” n latches from the environment. The latches may be
“returned” by a subsequent retiming step, whereby n
latches are forced to each edge with weight -n. The ob-
servation that the peripheral edge weights can temporarily
take on negative values allows retiming operations and
subsequent optimizations that would otherwise not be
possible. This is illustrated with the circuit in Fig. 4(a).
Consider the latch on the connection between g2 and 83.
In order to move this latch from its present position either
g3 is retimed by - 1 (for forward motion) or g2 retimed
by + 1 (backward motion). If g3 is retimed by - 1, this
will result in an edge weight of -1 at input d . If g2 is
retimed by + 1, this will result in an edge weight of - 1
at output f. Thus, neither of these retimings is legal. How-
ever, if this “illegal” retiming is permitted temporarily,
then it is possible to gain additional advantage over what
is permitted by just legal retimings. Fig. 4(b) shows the
circuit after g3 has been retimed by - 1 . The edge weight
of - 1 on input d is represented by the latch in dotted lines
and with the label - 1 on it. At this point, all the gates in
the circuit are part of a single combinational logic block.
For this logic block, it can be shown that the functionality
remains unchanged if the connection from a to gl is de-
leted; i.e., this connection is redundant or in testing par-
lance, untestable for a stuck-at-1 fault in the context of
this combinational logic block. Thus, this connection may
be deleted and gl replaced by a wire. This simplified cir-
cuit is shown in Fig. 4(c). Note that this connection (from
a to 81) is not redundant in the context of the original
combinational block (consisting of gl and 82) defined by
the original position of latches. Only after we could view
all the gates as part of a single combinational logic block

‘ - - T i f

d

(C) (d)
Fig. 4. Use of a negative Latch. (a) Original circuit. (b) Circuit after g3 is
retimed by - 1 . (c) Simplified circuit after redundant connection is deleted.
(d) Circuit after g3 is retimed by + 1, annihilating the negative latch at
input d .

was this redundancy exposed. Of course, this circuit is
still not realizable since there is a negative latch at input
d . This situation can easily be rectified by retiming g3 by
+ 1 . This annihilates the negative latch at input d resulting
in the circuit in Fig. 4(d). This example illustrates the
advantage gained by permitting illegal retimings tempo-
rarily. Later in this section it is shown why this is a le-
gitimate operation.

Let us now go back and see what enabled us to elimi-
nate gl in the previous example. Once we were able to
consider all three gates in the circuit as part of a larger
combinational block, we could use the combinational op-
timization technique of redundancy removal to detect and
delete the redundant connection. This is precisely what
we were looking for, i.e., a way to consider and exploit
logical relationships between gates that extend beyond
latch boundaries. Ideally, we would like to push out all
the latches in the circuit to the peripheral edges. This re-
sults in no latches on any of the internal edges and thus
all the gates are part of the same combinational logic
block. This permits the use of any combinational logic
optimization technique on this larger combinational block.
The notation of a peripheral retiming does precisely this.

Dejinition 2.2: A peripheral retiming is a retiming such
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor each internal edge e , w,(e) = 0.

This is graphically shown in Fig. 5 . After peripheral

MALIK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: PERFORMANCE OPTIMIZATION OF PIPELINED CIRCUITS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA571 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n

aab zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0
Fig. 5. Peripheral retiming.

retiming, there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai latches at input pin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, latches at
output pin j, and no latches on any internal edge.

The circuit in Fig. 4(b) is a peripheral retiming of the
one in Fig. 4(a). The same peripheral retiming is shown
in terms of the communication graph in Fig. 6.

The condition that w,(e) is 0 for all internal edges forces
all latches to the peripheral edges. Note that the definition
permits negative weights on the peripheral edges, which
corresponds to the negative latch concept presented ear-
lier. Permitting negative latches temporarily on peripheral
edges is a legitimate operation as shown by the following
theorem. Functional equivalence here refers to the equiv-
alence of the finite automata corresponding to the initial
and final circuits.

Theorem 2. I: A circuit that undergoes a peripheral re-
timing, combinational optimization, and a subsequent le-
gal retiming is functionally equivalent to the original cir-
cuit.

2.4. Conditions for Peripheral Retiming
Not all circuit topologies permit a peripheral retiming.

Two such topologies are now considered.
Consider the circuit in Fig. 7 and its corresponding

communication graph. All attempts to move the latch
(either backward or forward) to the periphery result in a
negative weight on the edge between b’ and 82. In fact,
as will be shown later in this section, this circuit cannot
be peripherally retimed. Examining the circuit gives us
some insight into why this is so. The output c depends on
the value of input b at two different times. Let us assume
that a peripheral retiming were possible. Then in the pe-
ripherally retimed circuit c would depend only on one time
value of b since all paths from b to c would have the same
number of latches, viz CY, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ p,. This would not capture
the correct behavior and is the reason why no peripheral
retiming exists.

Now consider the circuit and communication graph in
Fig. 8. Again, it is not possible to move the latches to the
periphery without introducing a negative weight on the
internal edges (U ’ , 82) and (b’ , g l) . The intuition as to
why a peripheral retiming does not exist here is more
complicated than in the previous case. For output c, in-
puts a and b are delayed by 1 and 0 cycles, respectively.
For output d , these inputs are delayed by 0 and 1 cycles,
respectively. Let us assume a peripheral retiming were
possible. Then c would see a and b delayed by CY, + 0,
and (Y b + p,, respectively. Similarly, d would see them

Peripheral
Retimlng -

Fig. 6. Peripheral retiming.

P

Fig. 7 . Circuit with no peripheral retiming: Example 1 .

Fig. 8 . Circuit with no peripheral retiming: Example 2.

delayed by CY, + /3d and (Y b + p d , respectively. The only
difference in delays for the inputs that d sees with respect
to c is due to the different number of latches on the pe-
ripheral edges at c and d , i.e., pd - p,. Thus, the input
delays are the same for all the outputs except for a con-
stant offset that depends on the output, and this offset is
added to each of the input delays. Clearly this is not pos-
sible for this e ~ a m p l e . ~

While these two examples give some insight into when
a peripheral retiming may not exist, by themselves they
do not provide a characterization of circuits that permit a
peripheral retiming. In order to obtain such a character-
ization, the path weight matrix of a network is defined.

Dejinition 2.3: A path weight matrix, W, of a sequen-
tial network is an m x n matrix, where

1) m is the number of inputs,
2) n is the number of outputs,
3) W j = * if no path exists between input i and output

j 9

3Even though the circuits in Figs. 7 and 8 cannot be peripherally retimed,
sub-circuits of these circuits can.

I

572 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF JNTEGRATED CIRCUITS AND SYSTEMS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 12. NO. 5. MAY 1993

O 1 O2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w - ::[: ;] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘3

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 . Path weight matrix.

4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWu = - if two paths between input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and output j

5) W, = Cpathii+o, w(e) if all paths between input i and

Fig. 9 shows a communication graph and the correspond-
ing path weight matrix.

In addition, the satisfiability condition on the path
weight matrix is defined, which is directly related to the
existence of a peripheral retiming.

have different weights,

output j have the same weight.

Dejinition 2.4: A matrix W is satisjiable if

circuits. In order to understand them better we would like
to characterize them in terms of their general topology.

Fig. 10(a) shows the general topology of circuits that
permit a peripheral retiming. A peripherally retimed cir-
cuit is shown in Fig. 10(b). This has been obtained by
moving the latches forward through the circuit, borrowing
latches at the inputs when required. Circuits satisfying this
topology are called balanced or pipelined circuits. Note
that inputs and outputs are permitted to and from each
stage of the pipeline. This is more general than simple
pipelines, where data enters the first stage and the result
leaves the last stage. Of course any of the input or output
vectors Zi or Oj may be empty.

It is now shown that this is exactly the topology cor-
resonding to circuits that can be peripherally retimed. Let
C be a circuit that can be peripherally retimed and C, be
the peripherally retimed circuit. We need to show the fol-
lowing.

1) In C,, ai is non-positive for all i and Pjis non-neg-

2) There is no path from input i to output j such that
ative for each j.

a; + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi < 0.
a) W, # -, Vi, j,
b) 3ai, 3Pj, 1 I i I m, 1 I j c: n, air Pi E I such Let ai latches be an input i and Pi latches be at outputj in

C,. This can be modified to obtain another solution as fol- that for each Wii # *, Wij = ai + pi.

These two conditions have been motivated by the two
examples considered above. Cyclic circuits (assuming
there is at least one latch on each path containing a cycle)
will have W, = - for each path containing a cycle. Thus,
only acyclic communication graphs can have a satisfiable
path weight matrix.

The path weight matrix helps us derive the necessary
and sufficient conditions on a circuit for it to have a pe-
ripheral retiming.

Theorem 2.2: A sequential network has a peripheral
retiming if and only if its path weight matrix is satisfi-
able.

Note the significance of this result: it gives a complete
characterization of the class of sequential circuits for
which all the latches can be pushed to the periphery; i.e.,
it specifies the necessary as well as the sufficient condi-
tions on the circuit topology.

A peripheral retiming involves finding a set of a’s and
@’s that satisfy the path weight matrix. These a’s and p’s
specify the peripheral retiming. In the retimed circuit there
are ai latches at the ith input pin and pi latches at the jth
output pin. A matrix that is satisfiable has no - entries,
and has at least one set of a i ’ s and pj’s such that ai + pi
= wj.

111. PERIPHERALLY RETIMABLE CIRCUITS: GENERAL
TOPOLOGY

Theorem 2.2 states the necessary and sufficient condi-
tions under which a circuit has a peripheral retiming.
However, it gives no feel for the general topology of these

lows: Let amax be the value of the largest al. Subtract a,,,
from each a, and add it to each 0,. The resulting values
of a’s and p’s also satisfy the path weight matrix. As in
Fig. 10(b), C, has non-positive a’s and non-negative 0’s.
To see that the p’s must be non-negative, assume that this
were not true, i.e., some @, were negative. Let i be an
input from which there is a path to outputj. Then the path
weight in C, from i t o j must be negative since ai is non-
positive. This cannot happen since in the initial graph,
and hence the retimed graph, there is no path with nega-
tive weight. Thus, all p’s are nonnegative. Another con-
sequence of the fact that there is no path in the initial
graph of negative weight is that there cannot be a path
from input i to output j such that a, + P, < 0 in the re-
timed circuit. Thus, C, satisfies both the conditions listed
above and its topology is precisely that of Fig. 10(b).
Therefore, C must have the topology of Fig. 10(a).

The circuit in Fig. 10(a) naturally suggests that the
latches are pipelined latches and that there is an underly-
ing combinational logic block. Peripheral retiming ex-
poses this by moving the latches to the periphery. It may
seem that the combinational logic can be exposed by just
ignoring the latches (replacing them by wires). This cer-
tainly is true. However, once this circuit has been resyn-
thesized, the latches need to be placed back in the circuit.
This needs to be done while guaranteeing that each input
and output is in the correct stage of the pipeline. Periph-
eral retiming handles this elegantly. The latches at the
periphery are place holders for this information. When the
circuit is retimed after resynthesis, retiming ensures that
each input and output lies in the correct stage in the pipe-
line. The significance of negative latches is reiterated; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1

MALIK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai.: PERFORMANCE OPTIMIZATION OF PIPELINED CIRCUITS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA573 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
..e-..

(a) (b)
Fig. 10. Pipelined circuits and their retiming. (a) Pipelined circuit. (b) Pe-

ripherally retimed circuit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
without them it would not be possible to handle inputs and
outputs from each stage.

IV. PERFORMANCE OPTIMIZATION

The three-step procedure of peripheral retiming, com-
binational resynthesis, and a final legal retiming to exploit
combinational optimization techniques beyond latch
boundaries was described in Section 11. In the example
presented there, combinational optimization was being
used for area reduction. However, the retiming and re-
synthesis framework does not specify the nature of the
resynthesis permitted; any combinational resynthesis is
valid. This section examines the use of performance-di-
rected resynthesis in this framework.

4.1. Two Problems in Performance Optimization

4.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. Pipelined Pe rformance Optimization
Pipelined circuits were introduced in Section 111. Recall

that a pipelined circuit of n stages consists of n combi-
national circuits (C , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e , C,,) with stage i communicat-
ing with stage i + 1 through some signals that are latched.
(See Fig. 10(a).) Each Ci may have inputs Zi and outputs
Oi besides the latched inputs and outputs used to com-
municate with adjacent pipeline stages. This description
of a pipeline is general since it does not restrict all inputs
to come in at the first stage and outputs to leave the last
stage. Allowing inputs to any stage (rather than just the
first stage) in the pipeline provides the following addi-
tional flexibility:

1) The pipeline can operate on multiple streams of data
which may arrive separated from each other by an arbi-
trary number of clock cycles.

2) The pipeline can consider control signals that arrive
in cycles subsequent to the initial data and perform the
remaining computation based on these.

Similarly, allowing outputs from any stage permits the
following:

1) Multiple computations may be performed with the
different results being available during different clock pe-
riods.

2) Error conditions or any status signals can be pro-
vided as outputs in the cycle they are computed.

This description of pipelined circuits is general and in-
cludes most circuits that are considered to be pipelined by
digital circuit designers.

The performance optimization problem of pipelined
circuits is to maximize the clocking rate or equivalently
minimize the cycle time of the circuit. This determines
the throughput of the circuit. Sometimes the cycle time,
c, that needs to be attained is specified as a constraint,
based on the requirements of the system of which this cir-
cuit is a part. In that case, the optimization problem is to
meet the specified cycle time constraint. In general, not
all inputs are available at the clock edge; for example,
they may arrive later because of communication delays.
Similarly some of the outputs may be required well before
the clock edge, say, in order to satisfy setup time require-
ments. Thus, with each input signal an arrival time, a, is
associated which is the time after the clock edge that the
signal is available, and with each output signal a required
time, r, is associated which is the time before the clock
edge that this signal must be ready. Let A and R be the
sets of arrival times and required times for the inputs and
outputs, respectively. These capture the timing con-
straints due to the environment of this circuit. Thus, an
instance of the pipelined performance optimization prob-
lem 6,, is specified as 6, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{e, c , A, R} , where e is
the circuit and c the desired cycle time constraint. Note
that this problem statement assumes that c is provided as
part of the problem. If the problem is to minimize c, this
can be done by solving a number of problem instances
6,, each with a known c, by performing a binary search
for the least feasible c.

4.1.2. Combinational Speedup
The combinational speedup problem has been well

studied in recent years. Here, a given combinational cir-
cuit, e, is to be resynthesized so that it meets its timing
constraints. The timing constraints are specified as re-
quired times, r , on the outputs of the combinational cir-
cuit. In this case these times'are absolute and not with
reference to any clock edge. As before, the inputs may be
arbitrarily delayed and an absolute arrival time a is asso-
ciated with each input. Thus, an instance of this problem,
PC, is specified as Pc = {e, A , R } .

4. I . 3. Problem Transformation
Given an instance of the pipelined performance optim-

ization problem, 6,, it is first transformed to an instance
of the combinational speedup problem 6=. Subsequently

. __
I

514 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . MAY 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
it is demonstrated how a solution of PCmay be retimed
to obtain a solution of Pf.

As described in Section I11 we obtain a peripheral re-
timing for the pipelined circuit by retiming block Ci by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- (i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1). (See Fig. 10(b).) This is not unique; several
possible peripheral retimings exist. In terms of the circuit
this implies that we sweep all the latches forward through
the circuit, borrowing latches at the inputs as needed. This
results in the peripherally retimed circuits shown in Fig.
10(b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs before, peripheral retiming has exposed a larger
combinational circuit, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,, which is the cascade of C , , C2,
. . . , C,,. This is the combinational circuit that we will
use for the transformed problem, PC. In order to complete
the definition of Pc we need to specify A and R. We de-
termine them by using c, A, and R from P p as follows.
For an input to stage i of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC? with arrival time a in PP, the
arrival time in PCis a + (i - 1)c. For an output of stage
i in C? with required time r in 6,, the required time in 6,
is ic - r. Note that it is easy to determine which stage an
input or an output belongs to by looking at the number of
latches in the peripherally retimed circuit at that input or
output. The intuition behind this choice of modifications
of arrival and required times is that it captures the fact
that the input arrives only after i - 1 cycles and the output
is required only before the ith cycle. In the next section
we will see how this choice of A and R results in an in-
teresting relationship between problems and @=.

4.2. Main Results

We would like to obtain a solution of Pf from a solu-
tion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPC. It is not immediately obvious that this is pos-
sible; in fact, it seems almost unlikely to happen as the
analysis below shows. However, we need a few simple
definitions first.

Definition 4.1: Apath in a circuit is an alternating se-
quence of consecutive connections (possibly latched) and
gates.

As in [6] , [7] a propagation delay, dg, is associated with
each gate in the circuit.

Dejinition 4.2: A segment of a path is a path from an
input or a latch to an output or a latch.

Dejinition 4.3: The delay of a segment, s, is the sum
of the gate delays along the segment and is denoted by

Dejnition 4.4: The lumped delay of a segment s, de-
noted by A,, is the sum of the combinational logic delays
associated with the gates and the times associated with
late arrival of an input or early requirement of an output.
Thus, hs = a + D, + r.

Of course, a or r are equal to 0 if the segment has no
input or output, respectively.

Dejinition 4.5: A latch is said to be forward-blocked if
it cannot be legally moved forward across its output gate,
g , without violating a cycle time constraint.

DS *

This may happen for two reasons.

1) There exists a path from an input to g which does
not have any latch on it. Thus, it is never possible

input

(a)

Fig. 1 1 . Blocked latch motion. (a) Forward-blocked latch: There exists a
path from an input to g with no latch. (b) Forward-blocked latch: There
exists a path from a critical latch to g. (c) Backward-blocked latch: There
exists a path from g to an output without a latch.

to have a latch at each input of g which is needed
for the legal forward motion of the latch. (See Fig.

2) There exists a path from a critical latch to g. Infor-
mally a latch is critical if it cannot be moved for-
ward without violating the cycle time constraint.
(The formal definition of a critical latch is deferred
till later in this section.) Thus, it is not possible to
move a latch from each input of g to its output. (See
Fig. ll(b).)

Definition 4.6: A latch is said to be backward-blocked
if it cannot be legally moved backward through a gate g.

For this to happen, there must be a path from g to an
output which does not have a latch on it. Thus, it is never
possible to have a latch at each output of g , which is
needed to move this latch backward. (See Fig. ll(c).)

Consider a path, p , from an input of stage i to an output
of stage i + j in PC. Assume that the solution of @,-just
meets the delay constraints for this path; i.e., the path is
critical for PC. Therefore, the combinational logic delay,
delay(p), along this critical path is given by

delay(p) = ((i + j) c - r) - (a + (i + 1)c) - E

where E is an arbitrary small positive number. Simplifying
this results in

l l (a).>

delay@) = (j + 1)c - r - a - E . (1)

Now suppose that we do find a final retiming that meets
the cycle time constraint c along this path. Since retiming
does not change the number of latches between any input
and output, there will be j latches between the input-out-
put pair in consideration. Thus, in the retimed circuit this
path h a s j + 1 segments. Then for each segment, hk <
c. Summing over k for this path, we see that

j c hk < 0' + 1)c
k = O

which gives

or equivalently,
i

MALIK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: PERFORMANCE OPTIMIZATION OF PIPELINED CIRCUITS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA575 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
But Ci=, Dk is deZuy(p) and we know from (1) that this
is equal to (j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1)c - r - a - E. Thus, we cannot add
any delay to any segment without violating the cycle con-
straint. Therefore, each path segment along this path is
critical inasmuch as moving any latch would violate the
cycle constraint. It is possible that the solution to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPc may
actually result in the constraints along all paths in e, to
be just met. In that case, for each path there is only one
available position of latches that will meet the cycle time
constraint. Since different paths overlap, it is possible that
the positions of latches dictated by each path may be in
conflict.

To make matters worse, latches cannot be arbitrarily
placed along a path as assumed by the above analysis. The
latch motion may be blocked in either the forward or
backward direction. This makes it even less probable that
the latches can be positioned so that for all the paths they
lie at the single position that meets the cycle time con-
straint and simultaneously avoid being blocked by the po-
sitions of inputs and outputs.

Since there are only discrete positions along the length
of the path where a latch may be placed, viz before and
after gates, the granularity of control that we have over
the latch positions is only the largest possible gate delay
6. To handle this, the following relaxed problem is de-
fined: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASi = {e, c + 6, A, R } derived from Pp. A solu-
tion to 6'; exceeds the cycle time constraint for P p by no
more than 6.

To show that any solution of 6, can be retimed to get
a solution of 6'; a few more concepts must be consid-
ered.

Definition 4.7: A segment is said to be critical if it just
meets the performance constraints for the segment; i.e.
the latch at the end of the segment cannot be moved for-
ward across a gate g without violating the constraints for

critical segment.
Definition 4.8: A segment is said to be violating if it

does not meet the timing requirements for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS i . Thus, Xk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 c + 6 for a violating segment.

Definition 4.9: A path is said to be critical if all its
segments are critical.

Definition 4.10: A latch is said to be critical if it ter-
minates a critical segment.

Definition 4.11: A path is said to be violating if the
last segment is violating and all the other segments are
critical.

We label each input of the circuit based on the number
of latches at that input in the peripherally retimed circuit
in Fig. lo@). If an input has -(i) latches, then its label
is i . Each latch in a pipelined circuit can be labeled by a
unique integer that specifies its level in the circuit. This
labeling obeys the following two rules.

1) If there is a purely combinational path (with no
latches) from an input with label i to this latch, then
the label on the latch must be i .

2) If there is a path with no latches from a latch with
label i - 1 to this latch, then its label must be i .

P;. Thus, C I < C + 6 and X k + dg 1 C + 6 for a

For a pipelined circuit, a unique labeling exists for the
latches which satisfies both rules.

The following basic lemma is critical to prove the
equivalence of 6; and Pc.

Lemma 4.1: Let k be any integer not exceeding the
largest label on any latch in e. Then, it is possible legally
to retime e to e,, such that in C,:

1) There exists a violating path from an input to an
output that passes through latches labeled only
<k, OR

(a) No segment starting at a latch or input labeled

(b) Each latch labeled 5 k is either critical or for-

(c) Each critical latch terminates a critical path from

2) The following three conditions are satisfied:

< k is violating.

ward-blocked.

some input to that latch.

Pro08 The proof is by induction on k.
Induction Hypothesis: Assume the statement in the

lemma is true for all i < k.
Induction Basis: The statement in the lemma is proven

for i = 0.
Let us try and place all latches (using retiming) with

label 0 so that the input segments do not violate the cycle
time constraint c + 6.

Case 1: It is not possible to do so. Then one of the
following must be true.

1) There exists a path from an input to an output for
which a + D + r 1 c + 6. This path is a violating
path from an input to an output and thus the first
condition in the lemma is satisfied.

2) There exists a path from an input, i , to a latch, 1 ,
for which a + D L c + 6. This latch must be back-
ward-blocked or else we would have moved it back-
wards to get rid of this violation. If it is backward
blocked, then the input gate of this latch must have
a path to an output, 0, with no latch on it. Thus, for
the path from i to 0, the following must be true: a
+ D + r 1 c + 6 . This follows from the fact that
r is non-negative and you need to go through at least
the same, and possibly additional logic while going
from i to o instead of going from i to 1. This input
to output path is violating and the first condition in
the lemma is satisfied.

Case 2: It is possible to do so. Then we can move each
latch with label 0 forward till it is either critical or for-
ward-blocked. If a latch is critical, then it must be so be-
cause it terminates a critical path from some input. Now
all three parts in the second condition of the lemma state-
ment are satisfied.

Induction Step: It is now proven for i = k. As in the
basis step we can either place all latches with label k with-
out violating the cycle time constraint c + 6 , or we can-
not. Consider each of these separately.

Case 1: We cannot. Then by an argument similar to
that used in Case 1 of the base case, there is a segment

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

516 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12, NO. 5, MAY 1993

from either a latch or an input or an output that is violat-
ing. In fact, this violating segment must be from an input
or a critical latch. To see why this must be so, suppose
that the violating segment is from a non-critical latch to
the output. Since the non-critical latch was blocked by
either a critical latch or an input, the segment from this
critical latch or input to the output is violating. If it is
from an input, then the path from this input to the output
is violating, satisfying the first condition of the lemma. If
it is from a critical latch, by the induction hypothesis the
critical latch terminates a critical path from an input. This
path along with the violating segment starting from this
latch forms a violating path from an input to an output,
satisfying the first condition in the lemma. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Case 2: We can. Then each latch with label k can be
moved forward until it is either forward-blocked or criti-
cal while ensuring that no segment is violating. For each
critical latch with label k there must be a critical segment
from an input or a critical latch. The reasoning as to why
all critical segments to a latch cannot be from non-critical
latches is the same as that used in Case 1 above. If the
critical segment is from an input, then the critical latch
does terminate a critical path from an input. If it is from
a critical latch, then by the induction hypothesis this crit-
ical latch terminates a critical path starting at an input.
The concatenation of this critical path with this critical
segment gives the required critical path from an input for
the critical latch with label k which satisfies the second
condition in the lemma. U
With this we can now prove the following.

Lemma 4.2: If the solution to 6, cannot be retimed to
meet cycle time constraint c + 6, then there must exist a
violating path from an input to an output.

Proof: Let k be the maximum label on a latch in any
retimed circuit. Using Lemma 4.1 with this k, we see that
either there is a violating path from an input to an output,
in which case we are done, or all critical latches with label
k terminate a critical path starting at an input. Note that
since the cycle time constraint was not met, there must be
a violating segment starting at a latch or input with label
k. Actually this violating segment must be from a critical
latch or input with label k by the same argument used in
Case 2 of the induction step in the proof for Lemma 4.1.
If this is from an input, then this segment forms a violat-
ing path from an input to an output. If it is from a critical
latch, then this segment appended to the critical path from
an input terminating at that latch forms a violating path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0
Finally, it is shown that the existence of a violating

path implies that the constraint for that path in Pc was not
satisfied.

Lemma 4.3: If there exists a violating path from an in-
put to an output in any retimed circuit equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,
then the constraint for the corresponding path was not sat-
isfied for PC.

Prouf: By summing up the delay constraints along
the violating path it is seen how the delay constraint for
the corresponding path cannot be met in PC. Recall that

from an input to an output.

a path is violating if the last segment is violating and all
other segments are critical. Let the violating path have j
+ 1 segments. I f j = 0, then a + D + r L c + 6. The
constraint on this path in Pc is that (kc - r) - (a + (k
- 1)c) > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD or equivalently, a + r + D < c (k is the
label on the input). Thus, this constraint is violated. I f j
> 0, then the following inequalities are obtained from the
fact that the path is violating.

a + D , 1 c

D ; 1 c , l < i < j

r + Di 2 c + 6.

From these we see that

i
a + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC oi + r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (j + I)C.

k = O

The constraint on the same path in PCis

i
((j + k)c - r) - (a + (k - I)C) > C D~

k = O

This can be rewritten as

i
(j + l) c > a + C ~ ; + r

k = O

which is not met as we can see from (2) above.

Proof: Follows from Lemmas 4.2 and 4.3.

U
Theorem 4.1: If Pc has a solution, then this can be

0
From Theorem 4.1 we see that solving CPc is sufficient

in order to obtain a solution to P p to within a gate delay.
Now it is shown that any solution to P p must be a retim-
ing of a solution of 6 c .

Theorem 4.2: If there exists a solution to PP, then this
can always be obtained by retiming some solution of PC.

Proof: For any path from an input to an output in
the retimed circuit the following inequality must be sat-
isfied for each segment: hk > c. Summing over all seg-
ments:

retimed to give a solution of 6;.

i
a + C oi + r < (j + I)C.

k = O

The constraint on this path in Pc is exactly this and is
therefore satisfied. Since this is true for all paths, e, for
the solution of P p is a solution of PC. The solution of P p
is then obtained by moving in the peripheral latches by

Thus, for the pipelined problem to have a solution
(within a gate delay) it is necessary and sufficient that the
combinational problem has a solution. This is significant
since it tells us that the problems are equivalent and,
therefore, we need concentrate only on the relatively sim-
pler combinational speedup problem.

retiming. 0

MALIK er al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: PERFORMANCE OPTIMIZATION OF PIPELINED CIRCUITS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA517 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TABLE I

EXPERMENTAL RESULTS: PERFORMANCE OPrIMIZATION OF PtPELtNED CtRCUtTS

Rysn-Ret Ret-Rsyn PR-Rsyn-Ret

Name Area Latches Cycle Area Latches Cycle Area Latches Cycle
~

ex 1 804 27 14.4 518 28 15.4 758 25 14.4

ex3 292 9 12.6 265 14 14.0 37 1 22 12.4
ex2 500 25 16.6 542 22 15.4 57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 42 11.0

V. EXPERIMENTAL RESULTS: PERFORMANCE
OPTIMIZATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. I . Example Circuits and Experimental Procedure
Since there is no set of benchmark examples of pipe-

lined circuits, we constructed a few simple examples for
our experiments. The following three arithmetic circuits
were designed for this purpose. Each of these is a two-
stage pipelined circuit.

ex1 A two-stage adder that adds four 8-bit numbers
(A, B, C , and 0). The first stage computes the
partial sums A + B and C + D and the second
stage computes the final sum. Each adder is a
ripple-carry adder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ex2 A two-stage adder that adds two 16-bit numbers.
The first stage computes the sum of the 8 least-
significant bits and the second stage computes
the final sum. Each adder is a ripple-carry ad-
der.

ex3 This circuit computes the parity of the sum of two
8-bit numbers (A and B). During the first stage
the sum is generated using a ripple-carry ad-
der. In the next stage the parity of the sum is
computed using a balanced parity tree.

Three design scenarios are evaluated, and the cycle time
achieved by each is reported in Table I. The three scen-
arios explore different methods to obtain a faster version
of the initial pipelined circuit and are as follows.

1) resynthesis followed by retiming (Rsyn-Ret),
2) retiming followed by resynthesis (Ret-Rsyn),
3) the approach proposed in Section IV, i.e., periph-

eral retiming followed by resynthesis followed by
retiming (PR-Rysn-Ret).

For purposes of this experiment only one delay optimi-
zation routine is applied, the critical-path restructuring on
a technology-independent network [121, as part of the re-
synthesis procedure. The delay through the circuit is
measured using a two-input NAND gate representation of
the circuit. Each gate contributes one unit of delay, and
each fan-out contributes an additional delay (0.2 units in
this experiment). The area of the combinational part is
measured as the number of literals (gate input connec-
tions) in the same two-input NAND representation.

From the results in Table I we make the following ob-
servations :

1) The order of retiming and resynthesis operations im-

pacts the value of cycle time that can be achieved. Neither
order can be counted on to be the best for all circuits.

2) The cycle time obtained by the proposed method
matches or is better than the best result that can be ob-
tained by any combination of a single retiming and a sin-
gle resynthesis step. This is what is expected theoreti-
cally, and it is gratifying that this is achieved in practice
as well. It is clear from circuit ex2 that the additional flex-
ibility gained from looking at the maximal combinational
logic sub-network obtained by peripheral retiming pro-
vides the optimization techniques greater freedom in re-
stucturing the circuit to reduce the cycle time.

In the current experiments there is an increase in the num-
ber of latches, over the initial number of latches, when
the proposed method is used. This is due to the fact that
no attempt is made to minimize the latches during retim-
ing and also due to the particular resynthesis technique
used. The critical path restructuring increases the width
of the circuit, and hence more latches are used.

VI. SUMMARY AND FUTURE WORK
The paper presents a technique to resynthesize a pipe-

line circuit optimally to meet performance specifications.
The proposed approach exploits combinational resyn-
thesis as well as retiming techniques in a unified frame-
work that guarantees the best possible circuit structure
(under the constraint that the best combinational resyn-
thesis techniques are used). The equivalence of the two
problems, pipelined circuit optimization and combina-
tional speedup, has been proved. This allows researchers/
designers to focus only on the relatively easier combina-
tional speedup problem, Preliminary results demonstrate
the practical impact of the proposed method in increasing
the performance of pipelined circuits.

In the future we would like to extend the method be-
yond pipelined circuits to general sequential circuits. In
addition, several things need to be done to increase the
practicality of this approach. We need to develop retiming
procedures that consider fan-out loads. Stronger combi-
national resynthesis techniques need to be developed since
they are key to improvement here.

REFERENCES

[l] K. A. Bartlett, G . Bonello, and S. Raju, “Timing optimization of
multi-phase sequential logic,” IEEE Trans. Computer-Aided Design,
vol. 10, pp. 51-62, Jan. 1991.

[2] C. L. Berman, J . L. Carter, and K. F. Day, “The fanout problem:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 , MAY 1993

From theory to practice,” in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvanced Research in VLSI: Proc. 1989
Decennial Caltech Conf., pp. 69-99, Mar. 1989.
G. De Micheli, “Performance-oriented synthesis of large-scale dom-
ino CMOS circuits,” IEEE Trans. Computer-Aided Design, vol. 6,
pp. 751-765, Sept. 1987. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-, “Synchronous logic synthesis: Algorithms for cycle-time min-
imization,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 63-
73, Ian. 1991.
E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology mapping in MIS,” in Proc. Int. Conf. Com-
puter-Aided Design, pp. 116-1 19, 1987.
C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchro-
nous circuitry by retiming,” in Advanced Research in VLSI: Proc.
Third Caltech Conf., pp. 23-36, 1983.
C. E. Leiserson and J. B. Saxe, “Optimizing synchronous systems,”
J. VLSIand Computer Syst., vol. 1, no. 1, pp. 41-67, Spring 1983.
C. E. Leiserson and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. B. Saxe, “Retiming synchronous circuitry,”
Afgorithmica, vol. 6, no. 1, pp. 5-36, 1991.
S. Malik, “Combinational logic optimization techniques in sequen-
tial logic synthesis,” Ph.D. dissertation, M90/115, Electronics Re-
search Lab. Univ. of California, Berkeley, Nov. 1990.
S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincen-
telli, “Retiming and resynthesis: Optimizating sequential networks
with combinational techniques,” IEEE Trans. Computer-Aided De-
sign, vol. 10, pp. 74-84, Ian. 1991.
P. G. Paulin and F. Poirot, “Logic decomposition algorithms for the
timing optimization of multi-level logic,” in Proc. Int. Conf. Com-
purer Design, pp. 329-333, 1989.
K. J. Singh, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “Timing optimization of combinational logic, ” in Proc. Znr.
Con$ Computer-Aided Design, pp. 282-285, 1988.
H. Touati, C. Moon, R. K. Brayton, and A. Wang, “Performance-
oriented technology mapping,” in Advanced Research in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVLSI: Proc.
Sixth MIT Conf., pp. 79-97, Apr. 1990.

Shared Malik received the B.Tech. degree in
electrical engineering from the Indian Institute of
Technology, New Delhi, India, in 1985 and the
M.S. and Ph.D. degrees in computer science from
the University of California, Berkeley, in 1987 and
1990, respectively.

Currently he is an Assistant Professor with the
Department of Electrical Engineering, Princeton
University, Princeton, NI. His current research
interests are in the synthesis and verification of
digital systems.

Kanwar Jit Singh received the E. Tech. degree
in electrical engineering from the Indian Institute
of Technology, Kanpur, India, in 1986. Currently
he is a doctoral student and research assistant in
electrical engineering at the University of Cali-
fornia, Berkeley. His current research interests in-
clude delay modeling, performance optimization
of combinational and synchronous circuits, timing
analysis, and formal verification.

Rober K. Brayton (M’75-SM’78-F’81) received
the B.S.E.E. degree from Iowa State University
in 1956 and the Ph.D. degree in mathematics from
MIT in 1961.

From 1961 to 1987 he was a member of the
Mathematical Science Department of the IBM T.
I. Watson Research Center, Yorktown Heights,
NY. In 1987, he joined the Department of Elec-
trical Engineering and Computer Sciences at the
University of California at Berkeley, where he is
currently a Professor. He has authored or coau-

thored more than 150 technical papers, and is the coauthor of three books:
Logic Minimization Algorithms for VLSI Synthesis, Computer Aided De-
sign: Sensirivity and Optimization, and Integrating Functional and Tem-
poral Domains in Logic Design. During the years 1965-1966 he was a
visiting Professor at MIT, 1975-1976 at Imperial College, London, and
1985-1986 at the University of California at Berkeley. His interests and
contributions have been in the areas of nonlinear networks, stability theory,
numerical methods for differential equations, sparse matrices, simulation
of electrical circuits, optimization methods for circuit design, combina-
tional and sequential logic synthesis for arealperformanceltestability , and
formal verification.

Dr. Brayton is a Fellow of the AAAS. He received the two Best Paper
Awards from the IEEE Circuits and Systems Society (1971 and 1987) and
one from HICSS’90. In addition, he has been the recipient of four IBM
Outstanding Innovation Awards and two IBM patent awards.

Albert0 Sangiovanni-Vincentelli (M’74-SM’81-
F’83) received the Dr. Eng. degree from the
Politecnico di Milano, Italy, in 1971.

From 1971 to 1977, he was with the Politecnico
di Milano, Italy. In 1976, he joined the Depart-
ment of Electrical Engineering and Computer Sci-
ences, University of California, Berkeley, where
he is presently a Professor. His research interests
are in various aspects of computer-aided design an
integrated circuits, with particular emphasis on
VLSI, simulation, and optimization. He was an

Associate Editor of the lEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, is
currently an Associate Editor of the IEEE TRANSACTIONS ON COMPUTER
AIDED DESIGN. In addition, he is a member of the Large-scale Systems
Committee of the IEEE Circuits and Systems Society and the Computer-
Aided Network Design (CANDE) Committee. He was Executive Vice-
President of the IEEE Circuits and Systems Society in 1983.

Dr. Sangiovanni-Vincentelli received the Distinguished Teaching Award
from the University of California in 1981, At both the 1982 and the 1983
IEEE-ACM Design Automation Conference, he was given a Best Paper
and a Best Presentation Award. In 1983. he received the Guillemin-Cauer

Dr. Malik has been the recipient of the President of India’s Gold Medal
for academic excellence (1985) and an IBM Faculty Development Award
(1991).

Award for the best paper published in the IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS and the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN in
1981-1982. He is a member of ACM and Eta Kappa Nu.

T

