
 Deakin Research Online

This is the published version:

Tuah, Nor Jaidi, Kumar, Mohan, Venkatesh, Svetha and Das, Sajal K. 2002, Performance
optimization problem in speculative prefetching, IEEE transactions on parallel and
distributed systems, vol. 13, no. 5, pp. 471-484.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044249

Reproduced with the kind permissions of the copyright owner.

Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Copyright : 2002, IEEE

http://hdl.handle.net/10536/DRO/DU:30044249

Performance Optimization Problem
in Speculative Prefetching
Nor Jaidi Tuah, Mohan Kumar, Senior Member, IEEE,

Svetha Venkatesh, Senior Member, IEEE, and Sajal K. Das, Member, IEEE

Abstract—Speculative prefetching has been proposed to improve the response time of network access. Previous studies in

speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a

complementary area which has been largely ignored, that of performance modeling. We analyze the performance of a prefetcher that

has uncertain knowledge about future accesses. Our performance metric is the improvement in access time, for which we derive a

formula in terms of resource parameters (time available and time required for prefetching) and speculative parameters (probabilities for

next access). We develop a prefetch algorithm to maximize the improvement in access time. The algorithm is based on finding the best

solution to a stretch knapsack problem, using theoretically proven apparatus to reduce the search space. An integration between

speculative prefetching and caching is also investigated.

Index Terms—Speculative prefetching, caching.

�

1 INTRODUCTION

CACHING and prefetching of data have been used to
improve the speed of information access across a

network. In caching, copies of remote data are kept locally
to reduce access time of repeatedly accessed data. In
prefetching, access to remote data is anticipated and the
data is fetched before it is required. This is in contrast to
demand fetch where data is fetched only when it is actually
requested.

Prefetching can either be speculative, where the knowl-

edge about future accesses is not perfect, or informed, where

the look-ahead to future accesses is certain. In this paper,

we investigate speculative prefetching. Previous studies in

speculative prefetching (see Section 1.1) focus on building

access models and evaluating the performance of such

models in predicting future accesses. While these models

are important, they do not constitute a complete framework

on which to build optimal prefetching strategies. To

complement an access model, simple heuristics are usually

resorted to, such as prefetching an item if the probability

of its access is larger than a fixed threshold. Though these

heuristics might be intuitively sound and their usefulness

is empirically confirmed, more analytical treatment is

required to understand their performance and merits.
We believe that, in addition to an access model, a

prefetcher requires a resource model and a performance
model. A resource model allows a prefetcher to predict the

amount of available and required resources. A performance
model allows a prefetcher to optimize the usage of resources
and adapt well to changing resource conditions, whereas
heuristics using empirically tuned parameters may settle for
a less optimal performance. In this paper, we develop a
prefetch algorithm based on a performance model, assum-
ing the existence of an access model and a resource model
to provide the necessary predictions.

Prefetching competes for memory resources with cach-
ing. We found excellent work on the integration of informed
prefetching and caching [13], [2], but no analogous work in
speculative prefetching.

1.1 Related Work

Many recent studies in speculative prefetching assume
persistence in trends of user request patterns. Tait [17] and
Lei and Duchamp [8] use file access pattern based on the
features of UNIX-style operating system where every
program gives rise to a tree of forked processes that access
some files. Each time a program runs, its access tree is
constructed and compared against previously saved trees to
detect a repeating pattern. When a good match is found, the
nodes that would complete the currently constructed tree
are prefetched.

Speculative prefetching has been proposed for improv-
ing web access [1], [9], [12]. Padmanabhan and Mogul [12]
suggested server-side access prediction. The server builds a
dependency graph where a link from item A to B means
that B is likely to be accessed within a short interval after an
access to A. Each link is labeled with the probability of the
follow-up access being made, possibly intervened by
accesses to other items. The authors in [12] also described
a resource model for the purpose of estimating the time for
retrieving files across the network, but this is simply to
drive the simulation and not incorporated into the pre-
fetcher.

The ETEL electronic newspaper project [1] proposed a
client-side prediction in which the client builds a patterned
frequency graph that contains a path for each sequence of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002 471

. N.J. Tuah is with the Faculty of Science, Universiti Brunei Darussalam,
Gadong BE 1410, Brunei. E-mail: jaidi@fos.ubd.edu.bn.

. M. Kumar and S.K. Das are with the Department of Computer Science and
Engineering, Unviersity of Texas at Arlington, Box 19015, Arlington, TX
76019-0015. E-mail: {kumar, das}@cse.uta.edu.

. S. Venkatesh is with the School of Computing, Curtin University of
Technology, GPO BOX U1987, WA 6845, Australia.
E-mail: svetha@cs.curtin.edu.au.

Manuscript received 7 July 1999; accepted 10 May 2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110186.

1045-9219/02/$17.00 � 2002 IEEE

accesses. Each arc in the graph is labeled with a probability
of the successor being accessed immediately after the
predecessor. ETEL monitors the accuracy of its prediction.
It prefetches single files when the accuracy is high. When
the accuracy is low, it prefetches multiple files.

Jiang and Kleinrock [5] combine the server-side and
the client-side predictions for web browsing with the help
of a dynamic threshold scheme. A formula for prefetch
threshold is derived within a performance model that
considers the costs of access delay and resource usage. To
minimize the total cost, a file is prefetched only if its
access probability is greater than or equal to the prefetch
threshold. The threshold changes dynamically based on
the system load, capacity, and the cost to the user.

Vitter and Krishnan [19] use data compression techni-
ques to build an access tree that can make optimal
predictions if the accesses are generated by a Markov
process.

Integrated prefetching and caching policies are investi-
gated in Transparent Informed Prefetching (TIP) [13] and
Application-Controlled File System (ACFS) [2]. However,
both TIP and ACFS assume look-ahead of future accesses.

1.2 Contributions of this Paper

With regard to performance of speculative prefetching,
most of the previous works do not attempt any analytical
study. Most of the results are essentially empirical, obtained
either through Monte-Carlo simulation [1], [9], trace-driven
simulation [8], [12], [17], or actual implementation [8], [17].
The theoretical analysis in [19] assumes zero delay in
retrieving data and performance is measured in terms of
fault rates.

Empirical studies have the disadvantage that fine-tuning
for performance is based on trial and error. Furthermore,
projecting an empirically derived result to a different
network condition may not be possible. This is because it
can be difficult to pinpoint and weigh the parameters that
contribute to the prefetcher performance. We believe that
the incorporation of an analytical performance model
would allow a prefetcher to be more efficient as well as
more adaptive.

In this paper, we study the performance of speculative
prefetching and develop algorithms to maximize the
expected improvement in access time (i.e., the network
response time as perceived by the user/application). Our

model presupposes some knowledge about future accesses.
In particular, it has a list of candidate items for the next
access. It also presupposes some knowledge about the
available and the required resources. In particular, the
available time for prefetching, the retrieval time for each
candidate item, and cache availability are known. Because we
include cache as a parameter, our model leads to an algorithm
that integrates prefetching with cache replacement.

The rest of the paper is organized as follows: Section 2
describes the parameters and the performance metrics used
in our analysis. In Section 3, specific cases of prefetching are
investigated. In particular, we consider the cases of
prefetching only one and two items. In Section 4, we derive
formulae for improvement in access time when an arbitrary
number of items are prefetched. When the cache is assumed
empty, the problem of maximizing this improvement
reduces to a stretch knapsack problem described in Section 5.
In Section 6, we consider the problem of integrating the
prefetch and cache replacement decizion to maximize the
improvement in access time. Section 7 highlights the main
points of this research and scope for further work.

2 FRAMEWORK OF ANALYSIS

We use the generic term “item” to refer to the object being
accessed. This might be a file, a document, an SQL reply,
etc. Each item is identified by a unique number, e.g., item 2.
We use h i to enclose a list of items and use this font (ABC)
for list names. RS is the concatenation of R and S. jRj is the
number of elements in R. The symbols for set operations,
such as 2;
;� and n, are used for list operations with their
usual meanings.

2.1 Retreival Model

The opportunity for prefetching comes when an application
is waiting for the user input or carrying out some
processing. For convenience, we shall refer to the time of
such opportunity as the viewing time. We use the term
retrieval time to refer to the time to fully retrieve an item.
When a remote item is actually requested, the network may
appear to be more responsive if the requested item has been
prefetched and is already partially or fully retrieved. We
use the term access time to refer to the response time to an
actual request. Fig. 1 illustrates our terminology for the time
durations.

472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 1. Time durations.

We assume that the application can learn the probabil-
ities of items being requested in the future and their
retrieval times. Probabilities of future accesses can be
derived from an access model constructed using statistics
of past accesses, as in [1], [12]. In [19], a data compression
technique is used to create an access model. A technique for
estimating retrieval time in the presence of variable network
latency and bandwidth is given in [20].

Since the decision to prefetch is based on speculation,
there is no guarantee that a prefetched item is the one that
will be accessed next. The user may issue a request while a
prefetch for a different item is still in progress. When this
happens, we assume that the communication bandwidth is
shared evenly between the ongoing prefetch and the
demand fetch for the newly issued request. For example,
suppose we have two items, 1 and 2, which have individual
retrieval times of 100 seconds (secs) and 20 secs, respec-
tively. Assume that item 1 is prefetched at time 0, but, at
time 30 secs item 2 is requested and retrieval for item 2 thus
ensues. In the first 30 secs, the bandwidth is fully deployed
for the retrieval of item 1. In the next 40 secs, the bandwidth
is shared between the two items, at the end of which item 2
will arrive completely. After that the bandwidth will once
again be fully deployed to item 1 which will arrive after the
next 50 secs. This model does not consider the possibility of
overlapping the start-up latency of request for item 2 with
ongoing transmission of item 1.

2.2 Performance Metrics

Prefetch is carried out to improve the access time. We define
the improvement in access time, referred to simply as access
improvement and denoted by G, as follows:

G ¼ E½t j no prefetch� � E½t j prefetch�; ð1Þ

where t is the access time and E½ � denotes an “expected”
value. A positive value of G implies an expected decrease in
access time.

In speculative prefetching, since knowledge about future
accesses is imperfect, there is bound to be an increase in
network load resulting from incorrect prefetches. We refer
to the increase in network load as the retrieval excess cost,
denoted by C. The retrieval excess cost due to prefetching is
defined as the expected retrieval time with prefetching
minus the expected retrieval time without prefetching. A
simple formula for C is:

C ¼
X
i 2 F

ð1� piÞri; ð2Þ

where F is the list of prefetched items, pi is the probability
of item i getting accessed, and ri is its retrieval time.

We also use relative access improvement, denoted by Gr,
and access improvement over excess cost, denoted by Gc. These
are defined as follows:

Gr ¼
G

E½t j no prefetch� and Gc ¼
G

C
: ð3Þ

3 ANALYSIS OF SPECIFIC CASES

In this section, we analyze the specific cases of prefetching
one and two items. The current cache content is assumed
irrelevant for the next request.

3.1 Prefetching One Item

We first analyze the performance of prefetching a single
item when the following are known: the duration of
viewing time (v), the probability and the retrieval time of
the most probable item to be accessed next, and the
expected retrieval time for other items. Let the list of
accessible items be h1; . . . ; ni, with item 1 being the top
candidate for the next access. Let � denote the actual
request. Let the probability pi ¼ Pf� ¼ ig and ri be the
retrieval time for item i. Then, v, p1, r1, and

Pn
i¼2 Pf� ¼

i j � 6¼ 1gri ¼ R are known parameters. We make a simpli-
fication in our analysis by using R for retrieval time of items
other than item 1.

If prefetch is not performed, then the expected access
time is given by

E½t j no prefetch� ¼ p1r1 þ
Xn
i¼2

piR: ð4Þ

If prefetch is carried out, then the expected access time is
given by

E½t j prefetch item 1� ¼ p1thit þ
Xn
i¼2

pitmiss: ð5Þ

where thit ¼
0 if r1 � v
r1 � v otherwise

�
ð6Þ

and tmiss ¼
R if r1 � v
Rþ r1 � v if v < r1 � vþR
2R otherwise:

8<
: ð7Þ

In (6), access time is zero when the retrieval is completely
masked by the viewing time. The three conditions in (7)
correspond, respectively, to the following three cases: 1)
The prefetch is completed before the demand fetch begins,
2) the demand fetch is partially slowed down by the
prefetch, and 3) the demand fetch is completely slowed
down by the prefetch.

Using (4), (5), (6), and (7), we derive the access
improvement as

G ¼
p1r1 if r1 � v
v�

Pn
i¼2 pir1 if v < r1 � vþR

p1v�
Pn

i¼2 piR otherwise:

8<
: ð8Þ

Fig. 2 plots G, Gr, and Gc against r1 for various
combinations of R and p1, where time measures are relative
to v. In all cases, G and Gr are maximum when r1 ¼ v, i.e.,
when the viewing time is fully used for prefetching and the
item is ready when the application requires it.

The improvement indicated by G can be deceiving.
Though G may indicate considerable access improvement
when prefetching an item that has a slow retrieval time (for
brevity, henceforth we use the terms “slow item” and “fast
item”), the improvement can in fact be insignificant. This is
because the ratio Gr quickly diminishes as r1 gets larger.
The upper limit for the value of Gr when r1 > v is the
asymptotic v=r1. The ratio Gr also gets smaller as R gets
larger with respect to v. For web browsing, this means
prefetching does not give much improvement to a casual

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 473

user who does not spend much time in reading documents

and to a user who has a very slow network link. The latter

case may be surprizing because prefetching is performed

especially to help us manage with slow network retrieval.

Now, we show that it will not help much if the link is very

slow! Let us take an extreme case to illustrate this point. If

the network is infinitely slow (i.e., disconnected), then

prefetching will not help at all.
The retrieval excess cost for the prefetch is

Pn
i¼2 pir1.

Hence, Gc ¼ G=ð
Pn

i¼2 pir1Þ. The plots for Gc show that the

best improvement relative to the retrieval excess cost is

achieved when r1 � v. When p1 ¼ 1, Gc is infinity because

no extra retrieval time is spent for the prefetch.

The window within which Gr and Gc indicate improve-

ment is rather critical. Initially, we tend to think that it is

useful to prefetch a slow item. However, the results show

that the improvement is small and the cost is high.

Generally, there is a more significant improvement in

prefetching a fast item, but, in absolute terms, it might be a

difference of just a few seconds of the user’s waiting time.
When the viewing time is large, it can be exploited to

prefetch more than one item. We shall consider two
different types of prefetch methods for multiple items,
namely, mainline prefetch and branch prefetch, as explained
below.

3.2 Mainline Prefetch

When the prefetcher is informed that “item 1 and then item 2

would be accessed,” it may prefetch both items within the

same viewing time. We refer to this as mainline prefetch. The

advantage of mainline prefetch is that we are maximizing

the overlap of prefetch time with viewing time. Another

advantage, which we will not consider in our analysis, is the

possibility of eliminating or reducing the start-up latency of

retrieving item 2. The disadvantage is that item 2 is further

into the future and, hence, is less certain.

Let us formally state the information required to perform

mainline prefetch and study its performance. Let �1 and �2
be the sequence of the next two accesses. We assume that the

possible items for�1 are distinct from those for�2. Let the lists

of candidates be h1; . . . ; n1i for �1 and hn1 þ 1; . . . ; n2i for �2.

Let p1 ¼ Pf�1 ¼ 1g, pz ¼ Pf�2 ¼ n1 þ 1 j �1 ¼ 1g, rz ¼ rn1þ1
andR ¼ the average retrieval time. The following are known:

p1, pz, r1, rz, v, and R. For later reference, we denote this piece

of information as M. To simplify our analysis, we assume a

uniform viewing time and use R to approximate bothPn1
i¼2 Pf�1 ¼ i j �1 6¼ 1gri and

Xn2
i¼n1þ2

Pf�2 ¼ i j �1 ¼ 1; �2 6¼ n1 þ 1gri:

If item 1 cannot be retrieved within the viewing time, we

can ignore the information regarding item n1 þ 1. This is

because, after the application makes a request, this

information becomes obsolete. So, we consider only the

case where item 1 can be retrieved within the viewing time,

i.e., r1 < v.
Assuming r1 < v, the mainline prefetch can be per-

formed by prefetching item 1 followed immediately by item

n1 þ 1. Another alternative is to prefetch item 1 only and

wait for the next access before deciding on another prefetch.

We shall refer to this as single prefetch. Let GrM and Gr1
M

,

respectively, denote the relative access improvement for

mainline prefetch and single prefetch, given M. Similarly,

GcM and Gc1
M

denote the respective access improvement

over retrieval excess cost.
Fig. 3 shows plots for GrM , GrM �Gr1

M
, and GcM �Gc1

M

against rz. The plots for GrM have two maximums—one at

r1 þ rz ¼ v and another at r1 þ rz ¼ 2v. The first maximum

point is due to a possibility in hiding the access latency of

item n1 þ 1 with the viewing time of the current item. The

second maximum is due to a possibility in hiding the access

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 2. Access improvement due to prefetching.

latency of item n1 þ 1 with the viewing time of the current
item and the viewing time of item 1 if indeed �1 ¼ 1.

There is no point in performing mainline prefetch if it
does not give any improvement over single prefetch; hence,
we are also interested in GrM �Gr1

M
. When r1 þ rz < v, there

is no difference in access time between mainline and single
prefetch. The curves then slope down, indicating that it is
better to wait for the next viewing time to give room for the
prefetch of the next item. However, the curves slope up
when r1 þ rz approaches 2v, indicating an increase in the
advantage of utilizing the residual viewing time of the
current item. For the smaller probability values, the
improvement increase is not high enough to make mainline
prefetch worthwhile.

We are also interested in how much additional retrieval
time is required to achieve the improvement in mainline
prefetch as opposed to single prefetch and, hence, the plots
for GcM �Gc1

M
. A prefetch for multiple items cannot

improve on retrieval excess cost over a prefetch of a single
item because more uncertainty is involved in the former.
The plots for GcM �Gc1

M
run close to the horizontal zero

axis. The negative plots indicate that, if mainline prefetch
brings further improvement in access time over single
prefetch, at the worst it is only with nominal extra retrieval
time. The positive plots indicate that the mainline prefetch
may bring improvement in access time over single prefetch
for the same or slightly more retrieval cost.

3.3 Branch Prefetch

Consider the information that “either item 1 or 2 would be
accessed.” When both items are prefetched within the same
viewing time, we refer to this as the branch prefetch as two
different possible continuations are prefetched.

Let us formally state the information required to perform

branch prefetch and study its performance. Let � be the

next access which can be any of items 1; 2; . . . ; n. The

following parameters are known: v, p1, p2, r1, r2, and

Pn
i¼3 Pf� ¼ i j � > 2gri ¼ R. We shall refer to this informa-

tion as B.
If item 1 is prefetched and there is residual viewing time

after its arrival, i.e., r1 < v, then branch prefetch may be
performed. As with mainline prefetch, we will assess
branch prefetch against single prefetch.

Let GrB and Gr1
B

denote the relative access improvement

for branch prefetch and single prefetch, respectively, given

B. The respective access improvement over excess cost are

denoted by GcB and Gc1
B
.

Fig. 4 shows graphs for GrB , GrB �Gr1
B
, and GcB �Gc1

B

against r2. The plots for GrB peak at the point where

r1 þ r2 ¼ v. The plots for GrB �Gr1
B

are positive for most of

the cases considered, indicating an improvement in access

time due to branch prefetch over single prefetch. However,

in all cases, the plots for GcB �Gc1
B

go from zero to negative.

This indicates that any improvement due to branch prefetch

is gained at the expense of considerably more network time.

3.4 Mainline versus Branch Prefetches

Direct comparison between GrM and GrB is not meaningful

because the parameters are different. To simplify the

analysis, we have ignored information pertaining to branch

prefetch when we formulated mainline prefetch and vice

versa. We may indirectly compare them by observing

their improvement over single prefetch given the same

respective parameters, i.e., by comparing the graphs of

GrM �Gr1
M

with GrB �Gr1
B
. Using a rough calibration, it

appears that branch prefetch is expected to result in a better

access time than mainline prefetch. For example, compare

mainline prefetch, where p1 ¼ pz ¼ 0:7 (Fig. 3), to branch

prefetch, where p1 ¼ 0:6 and p2 ¼ 0:3 (Fig. 4). The latter

gives more improvement over the single prefetch for the

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 475

Fig. 3. Difference of mainline and single prefetch.

Fig. 4. Difference of branch and single prefetch.

same parameters, even though the probabilities seem to

favor the former (unconditional probabilities of 0.7 and 0.49

versus 0.6 and 0.3). This can be explained by considering

the situation when item 1 does not get accessed next. In the

case of branch prefetch, the probability of item 2 getting

accessed next becomes p2
1�p1

, whereas, in mainline prefetch,

if item 1 is not accessed, then the probability of item n1 þ 1

getting accessed is considered zero.
The advantage of branch prefetch over mainline prefetch is

not clear cut. It is at the expense of much extra retrieval cost.

4 ACCESS IMPROVEMENT

Though we have used a few performance metrics (two of
which are ratios of G) in the previous section, the rest of the
paper elaborates mainly on G.

In this section, we shall formulate the access improve-

ment due to prefetching an arbitrary number of items. To

simplify the analysis, we only consider a single access. This

obviously means that we are dealing with a branch

prefetch. We assume that, when a request is made while a

prefetch for a different item is still in progress, the prefetch

completes before the demand fetch.
Let N ¼ h1; . . . ; ni be the list of all accessible items. Let �

be the next request. Assume that the access probabilities

pi ¼ Pf� ¼ ig are known for all i. (Note that Pf� ¼ ig
should be understood as Pf� ¼ i j current contextg.) Let ri
be the retrieval time of item i, which is also assumed known

for all i. Let the duration of the viewing time be v.
Let the list of items to be prefetched be F . When F ¼ h i,

the access improvement is trivially zero, i.e., Gðh iÞ ¼ 0.
Henceforth, in this section, we ignore this trivial case and
proceed with the assumption that F contains at least one
element. Assume that items are prefetched in sequence so
that, at the end of the viewing time, at most one item is still
awaiting completion. Let F be constructed as follows:

F ¼ Khzi where K
 N ; z 2 N n K; and
X
i 2 K

ri < v: ð9Þ

Here, K consists of items that are prefetched entirely within

the viewing time. The prefetch for the last element, z, may

(but not necessarily) continue past the viewing time. Note

that this construction is general and requires only that F is

not empty and all prefetches are initiated before the next

request is made. We specify the construction for F more for

convenience of notation rather than restriction.
The amount by which the retrieval time of F exceeds the

viewing time will be called the stretch time and denoted as

stðFÞ. This is defined as

stðFÞ ¼ max 0;
X
i 2 F

ri � v

()
: ð10Þ

4.1 Prefetch Only

Assume the cache is empty (or its current content can be

disregarded). Thus, any access improvement will be solely

due to prefetching. We shall use the symbols t� and G� for

access time and access improvement, respectively, under

this assumption.
When no prefetch is performed and a request is then

made for item i, that item must be retrieved. This obviously

gives an access time of ri. Hence, the expected access time is

E½t� j no prefetch� ¼
X
i 2 N

piri

Now, consider when items F are prefetched. At the

end of the viewing time, when the actual request is made,

items K are already fully prefetched. Thus, if the next

request is made for item i 2 K, the access time is t ¼ 0. If

the request is made for item z, then we must wait for z to

completely arrive, resulting in an access time of t ¼ stðFÞ
(which may be 0). If the request is for item i 62 F , then the

prefetch is completely off the mark and, consequently, the

requested item must be retrieved. This results in an access

time of t ¼ ri þ stðFÞ. These three different cases for access

time are shown in Fig. 5. The expected access time is

E½t� j prefetch F� ¼ pzstðFÞ þ
X

i 62 F
piðri þ stðFÞÞ

¼
X

i 62 F
piri þ

X
i 62 K

pistðFÞ:

Hence, the access improvement when the cache is empty

and F is prefetched is,

G�ðFÞ ¼ E½t� j no prefetch� � E½t� j prefetch F�
¼
X
i 2 F

piri �
X
i 62 K

pistðFÞ: ð11Þ

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 5. Access time. (A) If � 2 K, access time is zero. (B) If � ¼ z, access time equals the time to complete the prefetch. (C) If � 62 F , access time

equals the time to complete the prefetch, plus the time to retrieve the item actually requested.

4.2 Prefetch and Cache

We now consider the case where the cache is not empty and
its contents may be relevant for serving the next request. Let
the current list of items in the cache be C.

When no prefetch is performed, request for item i 62 C
requires the retrieval of that item. Hence, the expected
access time is given by

E½t j no prefetch� ¼
X
i 62 C

piri:

Now, consider when prefetch is performed. Let F be
constructed as in (9), except that now F cannot have any
elements in common with the cache, C. A list of victims, D,
need to be ejected from the cache to give room to the
incoming items. Disregarding the last item in the prefetch
list, z, the new cache content at the time the request is made
is Cnew ¼ KC n D. There are three cases for access time to
consider, similar to the three cases shown in Fig. 5: 1) If
� 2 Cnew, t ¼ 0, 2) if � ¼ z, t ¼ stðFÞ, and 3) if � 62 Cnewhzi,
t ¼ ri þ stðFÞ. Hence, the expected access time is

E½t j prefetch F ; eject D ¼ pzstðFÞ þ
X

i 62 Cnewhzi
piðri þ stðFÞÞ

¼
X

i 62 Cnewhzi
piri þ

X
i 62 Cnew

pistðFÞ:

Hence, when F is prefetched and D ejected, the access
improvement is

GðF ;DÞ ¼ E½t j no prefetch� � E½t j prefetch F ; eject D�
¼
X
i 2 F

piri �
X
i 2 D

piri �
X

i 62 KCnD
pistðFÞ

¼ G�ðFÞ �
X
i 2 D

piri �
X

i 2 CnD
pistðFÞ

0
@

1
A:

ð12Þ

5 STRETCH KNAPSACK PROBLEM

Assuming the cache is empty and has no size restriction, the
optimal list of items to prefetch can be obtained by solving
the following problem:

Find F to maximize G�ðFÞ ¼
X
i 2 F

piri �
X
i 62 K

pistðFÞ

subject to
X
i 2 K

ri < v:
ð13Þ

The problem in (13) is almost a binary knapsack problem
(KP). The KP has been extensively investigated (for
example, see the references in [11]). If we restrict
stðFÞ ¼ 0, the problem can be expressed as

Maximize
X
i 2 N

pirixi

subject to
X
i 2 N

rixi � v

and xi ¼ 0 or 1;

ð14Þ

which in fact is a KP, where the profit and the weight of
item i are piri and ri, respectively, and the knapsack

capacity is v. The main difference between the problems in
(13) and (14) is that, in the former, the knapsack capacity
may be exceeded. Recall that F ¼ Khzi. Only K needs to be
completely inside the knapsack, while z may be partly (but
not completely) outside and, thus, stretching the capacity.
For this reason, we use the term stretch knapsack problem
(SKP) to refer to the problem in (13).

Our algorithm for solving the SKP is a modification of
Horowitz-Sahni’s KP algorithm [4], which uses a branch-
and-bound approach where a search through a binary
decision tree is made coupled with bound checking to allow
pruning of branches.

5.1 Anatomy of Search Space

There is a gap between KP and SKP that we need to bridge
if we want to use the structure of a KP algorithm to search
for the SKP solution. The gap is in the difference between
their search spaces. For the KP, the solution is a set of items.
Its search space therefore consists of all possible combina-
tions of items. This can be completely covered by a traversal
through a binary decision tree where the two branches from
each nonleaf node represent the inclusion and the exclusion
of an item from the solution. On the other hand, the solution
for the SKP is a list of items. Its search space therefore
consists of all permutations of items. Thus, the search space
of the SKP is larger than that of the KP. In particular, if
stðFÞ > 0 and F� is a permutation of F , then it is possible
that G�ðFÞ 6¼ G�ðF�Þ.
Theorem 1. If $FF is an optimal solution to the problem in (13)

and stð $FFÞ > 0, then minfpf : f 2 $FFg ¼ p$zz, where $zz is the
last element in $FF .

Proof. Suppose 9f 2 $FF such that p$zz > pf . We will show
that this cannot be true if $FF is an optimal solution and,
hence, by contradiction, the theorem will be proven. Let
$KK be the list of all elements in $FF excluding $zz. (In other
words, $FF ¼ KKhzzi.) Form a list K� which is the same as $KK
except that the element f is replaced with $zz. Let
F� ¼ K�hfi. If F� is not a feasible solution, then it is
not consequential to the proof. So, let us further suppose
that F� is indeed a feasible solution. From (11),

G�ð $FFÞ ¼
X
i 2 $FF

piri �
X
i 62 $KK

pistð $FFÞ

and

G�ðF�Þ ¼
X
i 2 F�

piri �
X

i 62 K�
pistðF�Þ:

Since $FF and F� contain the same items, we getP
i 2 $FF piri ¼

P
i 2 F� piri and stð $FFÞ ¼ stðF�Þ. From our

assumption that p$zz > pf and the way K� is constructed,
we get X

i 2 K�
pi >

X
i 2 $KK

pi¼)
X
i 62 $KK

pi >
X
i 62 K�

pi:

Hence, G�ð $FFÞ < G�ðF�Þ. tu
Theorem 1 allows us to confine the search space to

permutations where the items are sorted in the descending
order of probability. Even though the search space is
reduced, it is guaranteed to contain an optimal solution.
Note that this ordering is equivalent to descending order

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 477

of profits per unit weight, which is presumed by several
KP algorithms (for example, [4], [10]).

When pi ¼ pj, the relative ordering of items i and j
cannot be arbitrary. For example, consider the problem
defined by: n ¼ 2; p1 ¼ 0:5; p2 ¼ 0:5; r1 ¼ 100; r2 ¼ 2; v ¼ 4.
The optimal solution to this problem, which is h2; 1i, will be
missed if the search is confined to the given ordering
(because item 2 comes before item 1 in the optimal list). To
avoid this problem, equally probable items are subsorted in
increasing retrieval times. Henceforth, we shall assume

ðpi > piþ1Þorðpi ¼ piþ1andri � riþ1Þ: ð15Þ

With the ordering in (15), we can now use a binary decision
tree to search for the SKP solution.

5.2 Relaxation and Upper Bound

In this section, we derive an upper bound for the SKP
solution. The upper bound will be used to prune the search
tree.

The SKP is an integer programming problem. In the
context of prefetching, an item is either entirely prefetched
or not at all. By allowing items to be partially prefetched, we
obtain the linear programming relaxation of SKP (linear
SKP, for short).

Let xi, where 0 � xi � 1, be the proportion of item i that
is prefetched. We use x without the subscript to refer to the
entire array x1; . . . ; xn. Let z be the last item to be
prefetched. Let ~KK be the list of wholly prefetched items
not including z, i.e., ~KK ¼ hi : xi ¼ 1; i 6¼ zi. The linear SKP is

Maximize ~GG�ðxÞ ¼
X
i 2 N

pirixi �
X
i 62 ~KK

pi ~ststðxÞ

where ~ststðxÞ ¼ max 0;
X
i 2 N

rixi � v

()
:

ð16Þ

The function ~stst is the stretch time function, reformulated for
the relaxed constraint of the linear SKP.

Suppose that the items, sorted according to (15), are
consecutively inserted into the knapsack until the first item,
~zz, is found which causes the knapsack to stretch. That is,

~zz ¼ min j :
Xj
i¼1

ri > v

()
:

Theorem 2. The optimal solution $xx of the linear SKP is
obtained as:

$xxi ¼
1 if 1 � i � ~zz� 1
ðv�

P~zz�1
i¼1 riÞ=r~zz if i ¼ ~zz

0 if ~zzþ 1 � i � n:

8<
:

Proof. By Dantzig’s Theorem [3], $xx is the solution to the
linear programming relaxation of KP where the profit
and the weight of item i are piri and ri, respectively, and
the knapsack capacity is v. Hence, this is also the solution
to (16) when ~ststðxÞ ¼ 0. We are left with the case of
~ststðxÞ > 0 to prove.

Suppose the optimal solution is x� where ~ststðx�Þ > 0,
and the last item inserted into the knapsack is z�. But, if
we decrease the value of x�z� by " while maintaining
~ststðx�Þ > 0, the value of ~GG� changes by an amount of

ð1�
P

i 2 ~KK pi � pz� Þrz�" " 0. Thus, we have obtained a
better or an equally good solution. We can iterate to
obtain an even better (or equally good) solution. At the
limit of ~ststðx�Þ ! 0, we can apply Dantzig’s Theorem. tu

Since the SKP solution space is a subset of the linear SKP
solution space, a tight upper bound on G� is given by,

UG� ¼ ~GG�ð$xxÞ ¼
X~zz�1
i¼1

piri þ v�
X~zz�1
i¼1

ri

 !
p~zz: ð17Þ

5.3 An Algorithm for Exact Solution

Our algorithm for the exact solution of the SKP is shown in
Fig. 6. We shall refer to it simply as the SKP algorithm. It is
based on Horowitz-Sahni’s algorithm for KP [4].

The SKP algorithm assumes that the items are sorted
according to (15). It performs forward moves and backtracking
moves. A forward move consists of inserting as many
consecutive items as possible to raise the value of G�. The
following recursive formula is used to calculate G�

incrementally.

G�ðh iÞ ¼ 0

G�ðKhziÞ ¼ G�ðKÞ þ pzrz �
X
i 62 K

pistðKhziÞ:

When an item causes G� to decrease, it is excluded and the
upper bound of the currently constructed solution is
computed. If the upper bound is lower than the value of
the best solution so far, the algorithm backtracks; otherwise,
it performs a deeper forward move. When the knapsack
stretches to accommodate an item (or when no item
remains), the current solution is complete with the remain-
ing items deemed excluded. A backtracking move consists
of removing the last inserted item from the solution.

6 MAXIMIZING ACCESS IMPROVEMENT

In Section 4, we derive a formula for access improvement
given in (12). Any prefetch strategy based solely on this
formula will be a greedy one in the sense that it tries to
optimize the performance of the next single access without
considering the effect of its decision further into the future.
There are three negative aspects to this greediness. First, we
will prefetch only candidates for the next request (branch
prefetch). If candidates are exhausted before the viewing
time is up, then the residual viewing time, which is an
important asset as far as prefetching is concerned, is simply
wasted. Even when the viewing time is completely utilized,
there might be items more worthy of being prefetched but
do not appear within the one-access window that we are
considering. Second, the selection of victims for cache
replacement also suffers from the shortsightedness of the
one-access window. Third, the stretch time may intrude
into the next viewing time and, thus, reduce the asset for the
next prefetch.

In this section, we will discuss how to maximize the
access improvement. We are not merely maximizing G of
(12), which is only an approximation using a one-access
branch analysis, but we also deal with the negative aspects
mentioned above. In particular, we will investigate if the
use of stretch time actually helps in the long run or perhaps
the possible intrusion into the next viewing time prevails.

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

We will also discuss a cache replacement policy that

removes some of the short-sightedness in choosing victims.
For the purpose of caching, we assume that items have

equal sizes.

6.1 Effect of Stretch Time

The use of stretch time allows more items to be prefetched.

However, the stretch time may intrude into the next

viewing time, reducing the asset for the next prefetch. We

want to know to which side the balance tips.
To investigate the effect of the use of stretch time, we

have performed “prefetch only” simulation in which the

cache is used only for prefetching items. Once a request is

satisfied, the cache is flushed out. (Alternatively, we can

assume that the requests come from a highly transient

process.)
The simulation consists of running 50,000 iterations

through the following steps:

1. Generate n; p; r and v randomly,
2. Prefetch,
3. Generate a random request,
4. Calculate access time, and
5. Output v and t.

The values for p are generated using two different methods:

skewy method and flat method. In the skewy method, we

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 479

Fig. 6. The SKP algorithm.

start with a pie of 1.0. A random portion of the pie is
allocated to an item and a random portion of the remainder
is allocated to another item. This is repeated until one item
remains which takes whatever is left of the pie. In the flat
method, each item is given a random number taken from
the same distribution. The numbers are then normalized so
that they total 1. The skewy method is used to generate a
situation where the next request is highly predictable and
the top candidate for the next access strongly dominates.
The use of the flat method results in a less predictable
situation, where the most likely item to get accessed is not
very far ahead from the second candidate.

Four different prefetch methods are employed in the
simulation: SKP-prefetch, KP-prefetch, perfect-prefetch, and no-
prefetch. The SKP-prefetch and the KP-prefetch use, respec-
tively, the SKP solution and the KP solution to select items
for prefetch. We already discussed how to find the SKP
solution in Section 5. The perfect-prefetch always prefetches
the correct item. For SKP-prefetch, a nonzero stretch time
may reduce the viewing time in the next iteration.

Fig. 7 shows the average access time against v. In Figs. 7a
and 7c, for which the skewy method is used, the
performance of the SKP-prefetch is slightly better than that
of the KP-prefetch. The exception is when v is small
(approximately less than 5) where the SKP-prefetch per-
forms worse than no prefetch. Increasing the number of
items from 10 to 25 has little effect as the probabilities of
additional items are vanishingly small.

In Figs. 7b and 7d, for which the flat method is used for
generating the probabilities p, the performances of the SKP-
prefetch and the KP-prefetch are almost the same. Indeed,
for the case of n ¼ 25, if there is any difference at all, it is too
small to perceive from the graph. Increasing the number of
items from 10 to 25 has the effect of increasing the average

access time. The increase is expected; in the extreme case
when n ¼ 1 and there are no clearly dominating items, any
speculative prefetch will be in vain.

The evidence that we get from our simulation results is
in favor of using stretch time as it allows fuller utilization of
the viewing time. However, there is always room for
improvement. The SKP algorithm maximizes access im-
provement without any constraints. It inserts an item if it
increases G�, even by an insignificant amount and even if it
results in a large stretch time. Consider the problem with
these parameters:n ¼ 2, p1 ¼ 0:99, p2 ¼ 0:01, r1 ¼ 5, r2 ¼ 101,
v ¼ 6. The SKP solution to this problem is h1; 2i. This is only 2
percent better (in terms of the value of G�) than the next best
solution, h1i. However, the stretch time, which is 100 units,
is a liability in 99 percent of the cases. The SKP-prefetch
only looks ahead one access and does not recognize this
liability. This causes the performance deficiency that we see
in Figs. 7a and 7c for small values of v.

6.2 Integrated Prefetch and Cache

We now consider the combined problem of choosing items
to prefetch into and items to remove from the cache. We
already derived in (12) the access improvement, GðF ;DÞ,
when F is prefetched and D ejected. So, to begin with, we
will solve the following problem:

Find hF ;Di to maximize

GðF ;DÞ ¼ G�ðFÞ �
X
i2D

piri �
X

i 2 CnD
pistðFÞ

0
@

1
A

subject to jDj ¼jF j:
ð18Þ

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 7. Performance of prefetch. Each plot is obtained by running the “prefetch only” simulation for 50,000 iterations. The value for v ranges from 1 to

100 (though the plot is clipped at v ¼ 50) and r ranges from 1 to 30.

The condition jDj ¼ jFj arises from our assumption that

items have equal sizes. A free block in the cache is

considered to contain an item with zero access probability.

So, the number of ejected items must always be equal to the

number of incoming items.

The complexity of the search space for the problem in

(18) is the same as that of the SKP. However, we have not

been able to come up with a bounding technique to subdue

its combinatorial explosion. So, we will settle for a

suboptimal solution.

The expression for G suggests the following method.

First, using the SKP algorithm, find F to maximize G�ðFÞ.
Then, find D to minimize

P
i 2 D piri �

P
i 2 CnD pistðFÞ,

which we will refer to as anti-g. The minimization problem

can simply be solved by sorting C in the ascending order of

piðri þ stðFÞÞ and taking the first jF j elements. Effectively,

we are splitting the problem in (18) into two totally separate

subproblems—what to prefetch and what to eject. This

nonintegrated approach has the following problem: There

may exist f 2 F and d 2 D such that the contribution of f

to G�ðFÞ is less than the contribution of d to anti-g. In this

case, hF n hfi;D n hdii is a better solution than hF ;Di. So,

we must include an arbitration step to prevent ejection of an

item from the cache by a less-worthy replacement.

A perfect arbitration must consider stðFÞ. The larger the

value of stðFÞ, the more difficult it should be to eject items

from the cache. However, if an item, having insufficient

value for cache occupancy, is eliminated from F , then stðFÞ
will change. The arbitration that causes the elimination

might not be valid anymore because, as a result of this

change, the price for cache occupancy may also change. To

simplify matters, we assume, only for the purpose of

arbitration, that stðFÞ ¼ 0 so that item f 2 F contributes

pfrf to G�ðFÞ and item d 2 D contributes pdrd to anti-g.

Item f can only be prefetched if it can find a victim d

such that pdrd ¼ mini 2 Cfpirig and pfrf > pdrd. We call

this pr-arbitration.

The pr-arbitration protects cached items that contribute

significantly to the performance of the next access, but it is

blind to accesses further into the future. Cached items that

do not appear in the list of candidates for the next access

have the same pr value, which is zero. To choose from among

potential victims that have the same pr value, we employ a

subarbitration. For this purpose, we define, for each item, a

value called delay-saving profit as freqðiÞ % ri, where freqðiÞ is

the frequency of accesses to item i. This formula is a simplified

form of the one used by WATCHMAN cache [15] and its web-

related spawn [16]. When subarbitration is required, we

choose the item with the lowest delay-saving profit. We

call this DS-arbitration.

While everything else is meticulously derived to solve

the problem in (18), the inclusion of the subarbitration

seems ad hoc. However, we have a simple justification for

this. The current prefetch-relevant context is known and

this leads us to the pr-arbitrated SKP algorithm. However,

the future contexts are probabilistic. The further we look

into the future, the less certain we get about them. To

simplify matters, we assume that the future contexts are

completely unknown. The access probability of item i when

the context is unknown is

& freqðiÞP
k freqðkÞ

:

So the total contribution to the cache value (given unknown
context) is

X
i 2 C

freqðiÞ % riP
k freqðkÞ

:

Since
P

k freqðkÞ is a constant with respect to C, our
problem is to maximize

P
i 2 C freqðiÞ % ri.

6.3 Simulation Results

We have carried out Monte Carlo simulations to see how
SKP with arbitration performs. A 1,000-state Markov source
is used for this purpose. When going to state i, the Markov
source generates a request for item i and, after the request is
served, it waits for the duration of vi seconds, where
30 � vi � 300, before changing to another state. The state
transition matrix is constructed such that there are 10 to 20
possible transitions from any state. The retrieval time for item
i is si=bandwidthþ latency, where si is the size of item i. The
values of si are taken from a uniform integer distribution
ranging from 10 Kbyte to 1 Mbyte. Cache capacity is in
terms of number of items. This means that, for the purpose
of caching, each item fits exactly into one cache slot.

We simulate five different prefetch-cache policies:

1. Noþ pr: No prefetch is performed and pr-arbitration
is used to select cache victims,

2. KP þ pr: KP solution is used with pr-arbitration,
3. SKP þ pr: SKP solution is used with pr-arbitration,
4. SKP þ prþ LFU : Same as the previous one, with

subarbitration using LFU (least frequently used),
and

5. SKP þ prþDS: Same as the previous one, except
DS-arbitration is used instead of LFU.

Fig. 8 shows the results of the simulations for bandwidth
values of 5, 10, and 20 kbit/sec and cache sizes ranging
from 10 to 100 items. From this figure we can verify that the
SKP prefetch performs better than the KP prefetch for the
two lower bandwidth values. Adding subarbitration clearly
improves results in most cases. We are not surprised that
the SKPþ prþDS outperforms the other SKP variations.
While the pr-arbitration protects immediate candidates, the
DS-arbitration keeps in cache the items that would other-
wise consume too much network time. There are two
interesting outcomes in the case of bandwidth ¼ 20 kbit/sec.
First, the KP prefetch is leading, but very slightly. Probably
this is due to the following reason. The higher the
bandwidth, the more items can be prefetched within any
viewing time. At this bandwidth, the top candidates will
most likely arrive within the viewing time. Any stretch time
that results is most likely caused by a candidate with a very
small access probability, so small that the stretch time
becomes a liability most of the time (see the end of Section 6.1).
The other interesting outcome is that the SKPþ prþ LFU

policy performs worse than the SKPþ pr policy. Obviously,

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 481

the LFU subarbitration is not reliable because it is missing out

an important parameter, namely the retrieval time.
Fig. 9 shows more results for the SKPþ prþDS policy.

Results for the Noþ pr policy are also shown for compar-

ison. We vary bandwidth from 5 to 40 kbit/sec and latency

from 0 to 4 seconds. The most important thing to note is

that, for the case of no prefetch, doubling the bandwidth

reduces the access time approximately by half. However,

for the case of prefetch, the access time becomes approxi-

mately five times faster. This means that the relative

improvement gets more significant for higher bandwidths.

If we project the plots backward, halving the bandwidth

will make the access time twice as slow for no prefetch, but

five times slower for prefetch.

7 CONCLUSIONS AND FURTHER WORK

We have presented a performance model for speculative

prefetching, incorporating resources and access prediction.

Assuming the existence of an access model and a resource

model to provide necessary knowledge, we analyze the

performance of a prefetcher that utilizes this knowledge.
Prefetching mainly benefits a user who accesses rela-

tively fast items. Hence, the provision of hoarding [6], [7]

would greatly help, not only for disconnected operation for

which it is mainly intended, but also to complement

prefetching under low bandwidth operation.
The trade-offs between mainline prefetch and branch

prefetch present a challenge for implementation. Main-

line prefetch may slightly improve on access time over

single prefetch with only nominal extra retrieval cost.

Branch prefetch is likely to improve on access time over

single prefetch, but with considerably more retrieval

cost. Ideally, a prefetcher can adapt its strategy depend-

ing on the available resources and the target perfor-

mance. In a resource-rich environment, the prefetcher

can even combine mainline and branch prefetches.
Disregarding retrieval cost, we develop a prefetch

algorithm to maximize access improvement. The algorithm

uses theoretically proven apparatus to reduce its search

482 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

Fig. 8. Comparing different prefetch-cache policies. Each point is obtained by generating 5,000 requests from a Markov source. The latency is zero.

The graphs in the left column include plots for the case of no prefetch (No + pr). In the right column, we zom in to the range covered by the different

prefetch-cache policies.

space. We integrate the prefetch algorithm with cache
replacement using a two-stage arbitration. Our algorithm
assumes uniform sizes for all items.

The SKP algorithm considers only one access ahead.
Obviously, looking ahead deeper will improve the perfor-
mance. The SKP algorithm with arbitration maximizes
access improvement without regard to the increase in the
network usage. Even if the most probable items are already
in the cache, it will prefetch the lesser candidates if, by
doing so, it can improve the expected access time even by
an insignificant amount. This may be undesirable when
network usage is costly.

In Section 1, we mention that a prefetcher requires three
separate models. These are the access model, the perfor-
mance model, and the resource model. We have assumed a
generic (nonspecific) access model and a generic resource
model to feed relevant information to the performance
model. However, the generic models are not truly generic
and, hence, the performance model is not really universal.
Further, theoretical work should consider other perfor-
mance factors for more generality. For example, in a
subsequent work [18], we reformulate the performance
model to fit an access model that we believe is more
appropriate for web access.

An important factor that we have not included in our
model is the expected cache lifetime of individual items. If
an item goes stale quickly, obviously it should not be given
a high priority even if it is accessed frequently. Another
issue that we have avoided is the functional priority of each
item. For example, an HTML file is more important than a
graphics file used for bullets or banners because the
document is still readable without the latter, but not
without the former. Furthermore, when an HTML file is

available, the browser can start responding by displaying its

textual content even before its embedded graphics arrive. The

other way round, displaying embedded graphics outside

their context, does not make sense. Other possibly relevant

factors include access types (read, write, continuous media),

client mobility, and provision for batch retrievals.

ACKNOWLEDGMENTS

The work of N.J. Tuah was done under scholarship of the

Brunei government through Universiti Brunei Darussalam.

The work presented in this paper was carried out during his

doctoral study at the Curtin University of Technology in

Australia.

REFERENCES

[1] M. Banâtre, V. Issarny, F. Leleu, and B. Charpiot, “Providing
Quality of Service over the Web: A Newspaper-Based Approach,”
Computer Networks, vol. 29, nos. 8-13, pp. 1457-1465, Sept. 1997.

[2] P. Cao, “Application-Controlled File Caching and Prefetching,”
PhD thesis, Dept. of Computer Science, Princeton Univ., Jan. 1996.

[3] G.B. Dantzig, “Discrete Variable Extremum Problems,” Operations
Research, vol. 5, pp. 266-277, 1957.

[4] E. Horowitz and S. Sahni, “Computing Partitions with Applica-
tions to the Knapsack Problem,” J. ACM, vol. 21, pp. 277-292, 1974.

[5] Z. Jiang and L. Kleinrock, “An Adaptive Network Prefetch
Scheme,” IEEE J. Selected Areas in Comm., vol. 16, no. 3, pp. 358-
368, Apr. 1998.

[6] J.J. Kistler, “Disconnected Operation in a Distributed File System,”
PhD thesis, Carnegie Mellon Univ., May 1993.

[7] G.H. Kuenning, “Seer: Predictive File Hoarding for Disconnected
Mobile Operation,” PhD thesis, Univ. of California, Los Angeles,
1997.

[8] H. Lei and D. Duchamp, “An Analytical Approach to File
Prefetching,” Proc. USENIX Ann. Technical Conf., Jan. 1997.

[9] E.P. Markatos and C.E. Chronaki, “A Top-10 Approach to
Prefetching on the Web,” Technical Report TR 173, ICS-FORTH,
Greece, Aug. 1996.

[10] S. Martello and P. Toth, “An Upper Bound for the Zero-One
Knapsack Problem and a Branch and Bound Algorithm,” European
J. Operational Research, vol. 1, pp. 169-175, 1977.

[11] S. Martello and P. Toth, Knapsack Problems: Algorithms and
Computer Implementation. Wiley, 1990.

[12] V.N. Padmanabhan and J.C. Mogul, “Using Predictive Prefetching
to Improve World Wide Web Latency,” ACM SIGCOMM
Computer Comm. Rev., pp. 22-36, July 1996.

[13] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka, “Informed Prefetching and Caching,” Proc. 15th ACM
Symp. Operating System Principles, pp. 79-95, Dec. 1995.

[14] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon,
“Design and Implementation of the Sun Network File System,”
Proc. Summer 1985 USENIX Conf., pp. 119-130, June 1985

[15] P. Scheuermann, J. Shim, and R. Vingralek, “WATCHMAN: A
Data Warehouse Intelligent Cache Manager,” Proc. 22nd Very
Large Databases (VLDB) Conf., 1996.

[16] P. Scheuermann, J. Shim, and R. Vingralek, “A Case for Delay-
Conscious Caching of Web Documents,” Computer Networks,
vol. 29, nos. 8-13, pp. 997-1005, Sept. 1997.

[17] C.D. Tait, “A File System for Mobile Computing,” PhD thesis,
Graduate School of Arts and Sciences, Columbia Univ., 1993.

[18] N.J. Tuah, M. Kumar, and S. Venkatesh, “Performance Modelling
of Speculative Prefetching for Compound Requests in Low
Bandwidth Networks,” Proc. Third ACM Int’l Workshop Wireless
Mobile Multimedia, pp. 83-92, 2000.

[19] J.S. Vitter and P. Krishnan, “Optimal Prefetching via Data
Compression,” Proc. IEEE 32nd Ann. Symp. Foundation of Computer
Science, pp. 121-130, 1991.

[20] R.P. Wooster and M. Abrams, “Proxy Caching that Estimates Page
Load Delays,” Computer Networks, vol. 29, nos. 8-13, pp. 977-986,
Sept. 1997.

TUAH ET AL.: PERFORMANCE OPTIMIZATION PROBLEM IN SPECULATIVE PREFETCHING 483

Fig. 9. Performance of SKPþ prþDS for different network conditions.
Each point is obtained by generating 5,000 requests from a Markov
source. For the no prefetch cases, the Noþ pr policy is used. For the
prefetch cases, the SKPþ prþDS policy is used. The cache size is
100 times.

Nor Jaidi Tuah received the BSc degree from
Thames Polytechnic, United Kingdom, in 1989.
He received the MSc degree from Queen Mary
and Westfield College, United Kingdom, in
1990. He obtained the PhD degree from
Curtin University of Technology, Western
Australia, in 2000. He is currently with the
Universiti Brunei Darussalam in the Depart-
ment of Mathematics. His research interests

include artificial intelligence, functional programming, and parallel/
distributed computing.

Mohan Kumar is an associate professor in the
Department of Computer Science at the Uni-
versity of Texas at Arlington. From 1992 to 2000,
he was a faculty member at the School of
Computing, Curtin University of Technology in
Western Australia. His research areas include
mobile computing, wireless networks, pervasive
computing, and parallel and distributed comput-
ing. He has published more than 70 articles in
refereed journals and conference proceedings in
the above areas. He is on the editorial board of

The Computer Journal and co-guest-edited special issues of the
Computer Journal, The IEEE Transactions on Computers, and others.
He a senior member of the IEEE.

Svetha Venkatesh is a professor at the School
of Computing at Curtin University of Technology,
Perth, Western Australia. Her research is in the
areas of active vision, biological-based vision
systems, image understanding, and applications
of computer vision to image and video database
indexing and retrieval. She is the author of
approximately 180 research papers in these
areas and is a senior member of the IEEE.

Sajal K. Das received the PhD degree in
computer science in 1988 from the University
of Central Florida, Orlando. Currently, he is a full
professor of computer science and engineering
and the founding director of the Center for
Research in Wireless Mobility and Networking
(CReWMaN) at the University of Texas at
Arlington (UTA). Prior to 1999, he was a
professor of computer science at the University

of North Texas (UNT), Denton, where he founded the Center for
Research in Wireless Computing (CReW) in 1997 and served as the
director of the Center for Research in Parallel and Distributed
Computing (CRPDC) during 1995-1997. He is a recipient of the UNT
Student Association’s Honor Professor Award in 1991 and 1997 for best
teaching and scholarly research, UNT’s Developing Scholars Award in
1996 for outstanding research, and UTA’s Outstanding Senior Faculty
Research Award in Computer Science in 2001. He has visited numerous
universities, research organizations, and industry research labs for
collaborative research and invited seminar talks. He was a visiting
scientist at the Council of National Research in Pisa, Italy, and Slovak
Academy of Sciences in Bratislava, and was also a visiting professor at
the Indian Statistical Institute, Calcutta. He is frequently invited as a
keynote speaker at international conferences and symposia. His current
research interests include resource and mobility management in
wireless networks, mobile computing, QoS provisioning and wireless
multimedia, mobile Internet, network architectures and protocols,
distributed/parallel processing, performance modeling, and simulation.
He has published more than 185 research papers in these areas,
directed several projects funded by industry and government, and filed
four US patents in wireless mobile networks. He received the Best Paper
Awards for significant research contributions at the ACM Fifth Interna-
tional Conference on Mobile Computing and Networking (MobiCom’99),
the Third ACM International Workshop on Modeling, Analysis, and
Simulation of Wireless and Mobile Systems (MSWiM 2000), and the
ACM/IEEE International Workshop on Parallel and Distributed Simula-
tion (PADS’97). He serves on the editorial boards of the Journal of
Parallel and Distributed Computing, Parallel Processing Letters, Journal
of Parallel Algorithms and Applications, and Computer Networks. He
serves on numerous IEEE and ACM conferences as a technical
program committee member, program chair, or general chair. He is a
member of the IEEE TCPP Executive Committee and advisory boards of
several cutting-edge companies. He a member of the IEEE and the
IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

484 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 5, MAY 2002

