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Abstract—This paper presents a sparse matrix partitioning strategy to improve the performance of SpMV on GPUs and multicore

CPUs. This method has wide adaptability for different types of sparse matrices, and is different from existing methods which only adapt

to some particular sparse matrices. In addition, our partitioning method can obtain dense blocks by analyzing the probability distribution

of non-zero elements in a sparse matrix, and result in very low proportion of zero padded. We make the following significant

contributions. (1) We present a partitioning strategy of sparse matrices based on probabilistic modeling of non-zero elements in a row.

(2) We prove that our method has the highest mean density compared with other strategies according to certain given ratios of partition

obtained from the computing powers of heterogeneous processors. (3) We develop a CPU-GPU hybrid parallel computing model for

SpMV on GPUs and multicore CPUs in a heterogeneous computing platform. Our partitioning strategy has balanced load distribution

and the performance of SpMV is significantly improved when a sparse matrix is partitioned into dense blocks using our method. The

average performance improvement of our solution for SpMV is about 15.75 percent on multicore CPUs, compared to that of the other

solutions. By considering the rows of a matrix in a unique order based on the probability mass function of the number of non-zeros in a

row, the average performance improvement of our solution for SpMV is about 33.52 percent on GPUs and multicore CPUs of a

heterogeneous computing platform, compared to that of the partitioning methods based on the original row order of a matrix.

Index Terms—GPU, matrix partition, multicore CPU, probability distribution, sparse matrix-vector multiplication

Ç

1 INTRODUCTION

1.1 Motivation

IN recent years, accelerator-based computing using accel-
erators such as the IBM Cell SPUs [1], FPGAs, GPUs, and

ASICs has achieved noticeable performance gain compared
to CPUs [2]. Among the accelerators, GPUs have occupied a
prominent place due to their low cost and high perfor-
mance-per-watt ratio along with powerful programming
models. However, as CPU architectures also evolve and
address challenges such as the power wall and the memory
wall, and compete with accelerators, it is imperative that
CPUs should also be included in the computations. It is fur-
ther observed by Lee et al. [3] that for several irregular
applications, including sparse matrix-vector multiplication
(SpMV), multicore CPUs can provide comparable perfor-
mance to that of GPUs. This suggests that such irregular
applications can benefit from heterogeneous algorithms
that run on a CPUs- and GPUs-based heterogeneous com-
puting platform. For instance, Pedram et al. [4] have

studied fundamental tradeoffs and limits in efficiency (as
measured in energy per operation) that can be achieved for
an important class of kernels, namely the level-3 Basic
Linear Algebra Sub-routines (BLAS), and established a
baseline by studying general matrix-matrix multiplication
(GEMM) on a variety of custom and general-purpose CPU
and GPU architectures.

SpMV is an essential operation in solving linear systems
and partial differential equations [10]. For many scientific
and engineering applications, the matrices can be very
large and sparse, and these sparse matrices may have vari-
ous sparsity characteristics. It is a challenging issue to
adopt an appropriate algorithm to implement and optimize
SpMV. Especially, for GPUs andmulticore CPUs based het-
erogeneous computing platforms, how to make full use of
the available computing resources to maximize the parallel
computing ability is the key to improve performance of
SpMV. First, reasonable partition of a matrix to match the
characteristics of parallel computing is the basis of improv-
ing performance. Second, the load balance between multi-
ple processors is the key to the use of parallel computing
capability. The loads on the processors depend on the dis-
tribution of computing tasks. The scale of a computational
task is determined by the size of the block to be processed.
Therefore, an optimal partitioning strategy of sparse matri-
ces is a key step for SpMV on GPUs and multicore CPUs
based heterogeneous computing platforms.

1.2 Our Contributions

The present paper makes the following unique contribu-
tions to partitioning for SpMV on GPUs and multicore
CPUs based heterogeneous computing platforms. (1) We
present a partitioning strategy of sparse matrices based on
probabilistic modeling of non-zero elements in a row.
(2) We prove that our method has the highest mean density
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compared with other strategies according to certain given
ratios of partition obtained from the computing powers of
heterogeneous processors. (3) We develop a CPU-GPU
hybrid parallel computing model for SpMV on GPUs and
multicore CPUs in a heterogeneous computing platform.

Our partitioning strategy is based on a probability mass
function (PMF), which characterizes the distribution of non-
zero elements in a sparse matrix. Our matrix partitioning
and performance optimization strategy consists of three
steps. First, the PMF of the target matrix is built according
to the analysis of the distribution of non-zero elements per
row. Second, the sparse matrix is partitioned into row vec-
tors sets (RVS’s) according to the ratios obtained from the
heterogeneous computing powers. Lastly, these RVS’s are
assigned to GPUs and multicore CPUs to execute SpMV in
a CPU-GPU hybrid parallel computing environment.

We use a probabilistic method to partition a sparse
matrix. Our matrix partitioning algorithm considers the
rows of a matrix in a unique order based on the probabil-
ity mass function of the number of non-zeros in a row.
This method has wide adaptability for different types of
sparse matrices and is different from existing methods
which only adapt to some particular sparse matrices.
Some methods also use some distribution characteristics
of a sparse matrix to partition, such as the number of
non-zeros. However, these methods lack of quantitative
techniques and analytical results. On the contrary, we rig-
orously prove the optimality of our partitioning method
compared with any other algorithms.

In this paper, we use SpMV CUDA kernels developed by
NVIDIA [5] on NVIDIA GTX 460 GPU and MKL BLAS
functions developed by Intel [6] on Intel Xeon E5506 CPU
for our experiments. According to our extensive experi-
ments on 10 representative matrices (totally 50 tested cases),
the performance improvement of our algorithm is very
effective and noticeable. The average performance improve-
ment of our solution for SpMV is about 12.76 percent on
multicore CPUs for 10 representative matrices, compared to
that of the automatic solution provided by Intel MKL lib,
and that is about 15.75 percent for all tested cases. The aver-
age performance improvement of our solution for SpMV is
about 33.19 percent on GPUs and multicore CPUs of a het-
erogeneous computing platform for 10 representative matri-
ces, compared to that of the partitioning methods based on
the original row order of a matrix, and that is about
33.52 percent for all tested cases.

This paper extends our previous work [7], [34]. The cur-
rent paper includes a refined formalization for sparse matri-
ces and a new partitioning strategy for SpMV analysis and
optimization. The proposed approach in this paper is gen-
eral, which is not limited by any specific GPU-CPU architec-
ture, because it is based on a mathematical and analytical
model. For different multicore and manycore architectures,
only the benchmarks need to be performed to get perfor-
mance parameters, and the algorithms are the same.

The remainder of the paper is organized as follows. In
Section 2, we review related research on SpMV. In Section 3,
we present a probabilistic model for sparse matrices. In Sec-
tion 4, we develop our partitioning strategies. In Section 5,
we analyze the optimality of our partitioning algorithm and
the execution time of SpMV on GPUs and multicore CPUs.

In Section 6, we describe our GPU and CPU hybrid parallel
computing method for SpMV. In Section 7, we demonstrate
our extensive experimental performance comparison
results. In Section 8, we conclude the paper.

2 RELATED WORK

2.1 Implementation of SpMV on GPUs
and Multicore CPUs

Bolz et al. [8] proposed one of the first SpMV CUDA [7] ker-
nel implementations. Vazquez et al. [11], [13] proposed new
implementations of SpMV for GPUs called ELLR-T, to
achieve high performance on GPUs. Williams et al. [14] pre-
sented several optimization strategies especially effective
for the multicore environments, and demonstrated signifi-
cant performance improvement compared to existing state-
of-the-art sequential and parallel SpMV implementations.
Lee et al. [3] discussed optimization techniques for both
CPUs and GPUs, and analyzed the architecture features
that contribute to performance difference between the two
architectures. Boyer et al. [15] proposed a new SpMV library
providing good results on Z/mZ rings to attain this effi-
ciency. It has been mandatory to augment the complexity of
the SpMV algorithms, since OpenMP and CUDA provided
multi-GPU and hybrid GPU/CPU implementations. Buluc
et al. [16] explored two techniques (bitmasked register
blocks and symmetry) that tap into the unused computa-
tional capability and used them to reduce the memory
bandwidth requirements for sparse-matrix vector multipli-
cation on two state-of-the-art multicore processors. Sun
et al. [17] presented a scalable and efficient FPGA-based
SMVM architecture which can handle arbitrary matrix spar-
sity patterns without excessive preprocessing or zero pad-
ding and can be dynamically expanded based on the
available I/O bandwidth. Pichel and Rivera [18] studied the
behavior of an important irregular application such as
SpMV on the Single-Chip Cloud Computer (SCC) processor
in terms of performance and power efficiency and an archi-
tectural comparison of the SCC processor with several lead-
ing multicore processors and GPUs, including the new Intel
Xeon Phi coprocessor.

2.2 Partition Strategies of Sparse Matrices for SpMV

For uneven distribution of non-zero elements in a sparse
matrix, some partition formats were proposed to improve
the load balance for SpMV on GPUs and multicore of CPUs,
such as blocked compressed sparse row (BCSR) format [19],
row-grouped CSR (GCSR) format [20], blocked ELLPACK
(BELLPACK) format [21], sliced coordinate (SCOO) format
[14], sliced ELLPACK (SELLPACK) format [23], fixed scale
blocked format [24], Segmented Interleave Combination
(SIC) format [25], compressed sparse blocks (CSB) [16], pad-
ded jagged diagonals storage (pJDS) format [26], doubly
separated block diagonal (DSBD) format [27], and Com-
pressed Sparse eXtended (CSX) format [28].

In addition, a sparse matrix must be partitioned into
small blocks to be assigned to multi-GPUs and multicore
CPUs, because they are too big to be computed or the per-
formance is poor on one processor. For the characteristics of
a sparse matrix and the configuration of a computing
environment, many partitioning strategies were proposed.
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Usually there are two basic types of strategies for partition-
ing a sparse matrix, which are based on rows and submatri-
ces. The strategies based on rows further include two types.
In the first type, a sparse matrix is partitioned into some
blocks according to the number of rows. In the second type,
a sparse matrix is partitioned into some blocks according to
the numbers of non-zeros (NNZ) of rows. Both types do not
split a row into different blocks. A row may be split into dif-
ferent submatrices using the strategies based on submatri-
ces, leading to the need of accumulation of computing
results from different threads. Other methods are generally
improvement and extension of these three basic strategies.

Some strategies partition a sparse matrix into BCSR,
GCSR, BELLPACK, sliced COO, and sliced ELLPACK using
the strategy based on rows. Some strategies partition sparse
matrices according to the characteristics of a sparse matrix,
such as the proportion of non-zero elements of the sparse
matrix [18], the compression effect of different formats [28],
and dense block in the sparse matrix [30]. Refs. [31] and [32]
proposed to perform three-way split and multi-way split
approaches to breaking down each matrix-vector product
into a number of smaller size matrix-vector products respec-
tively. Yzelman and Roose [33] proposed a new paralleliza-
tion technique to obtain parallel efficiency of 90 percent,
which is based on partition using hypergraph models. Refs.
[31], [32], and [33] improved the partitioning strategy based
on submatrices to achieve better distribution of parallel
tasks. In order to optimize the size of the block, some strate-
gies partition sparse matrices according to the configuration
of a computing environment, such as the cache scale of pro-
cessors [14], [25], the computing power of processors [15],
[29], and data transmission bandwidth [12], [16].

The partition strategies based on rows are sensitive to
sparsity distribution and cannot achieve satisfactory com-
pression effect in most cases. The optimization strategies
based on the configuration of a computing environment
have poor generality. The partition strategies based on the
characteristics of a sparse matrix need an effective analysis
method to analyze quantitatively the sparse characteristics
results in computing complexity. In addition, a row may be
split into different blocks by some partition strategies based
on submatrices, leading to the calculation of collective
results, which adds extra time overhead. In addition, for
GPU-CPU heterogeneous systems, the cross data access
between different processors and the synthesis of calcula-
tions using the strategies based on submatrices are costly
and lead to performance degradation of SpMV.

3 A PROBABILISTIC MODEL

Sparse matrices arise from various application domains
and their distribution patterns of non-zero elements
can be very specific and diversified. Furthermore, for
sophisticated scientific computations and engineering
applications, the scale of a sparse matrix can increase sig-
nificantly, and such a huge matrix should be split into
blocks to be processed in parallel. Due to irregularity of
the distribution of non-zero elements in a sparse matrix,
it is hard to find a partitioning method for all types of
sparse matrices. However, we can accurately describe the
distribution pattern of a sparse matrix by a PMF, and get

numerical characteristics of sparsity distribution by a
probabilistic method. Then, a suitable partition of a
sparse matrix can be found based on the PMF.

3.1 PMF of Sparse Matrices

The PMF of a sparse matrix has been defined in [34], which
is given below in order to improve readability. Let A be a
sparse matrix, which has N rows and M columns. The
discrete random variable X represents the number of
non-zeros in one row of A. The range of values of X is
VX ¼ f0; 1; 2; . . . ;Mg. For each i ¼ 0; 1; 2; . . . ;M, let fX ¼ ig
represent the event that the value of X is i. In particular,
fX ¼ 0g represents the event that there is no non-zero in
one row. Define another set B ¼ fb0; b1; b2; . . . ; bMg. Each bi,
i ¼ 0; 1; 2; . . . ;M, represents the number of rows, each of
which contains exactly i non-zeros.

A PMF is a function that gives the probability that a dis-
crete random variable is exactly equal to some value [35].
For each i ¼ 0; 1; 2; . . . ;M, pi ¼ bi=N is the probability of the
event fX ¼ ig. pk ¼ 0 means that a row with k non-zeros
does not exist in the sparse matrix A.

Definition 1. The PMF P of the discrete random variable X is
mathematically characterized by the following expression:

P ðX ¼ iÞ ¼ pi ¼ bi=N; i ¼ 0; 1; 2; . . . ;M; where

ðiÞ pi � 0; i ¼ 0; 1; 2; . . . ;M;

ðiiÞ
XM
i¼0

pi ¼
XM
i¼0
ðbi=NÞ ¼ 1

N

XM
i¼0

bi ¼ N=N ¼ 1:

(1)

When A is partitioned into blocks, each block is essen-
tially a set of row vectors.

Definition 2. A is split into K row vector sets (RVS), which are
A1; A2; . . . ; AK and satisfy the following properties:

Ai \Aj ¼ ;; i 6¼ j:
(2)

We call ðA1; A2; . . . ; AKÞ a partition of A.

3.2 Numerical Characteristics of RVS

Let Ai be an RVS, which is split from A. Let r denote a row
vector of Ai. Define NNZðrÞ to be the number of non-zero
elements in r. The number of non-zero elements in Ai is

NNZðAiÞ ¼
X
r2Ai

NNZðrÞ: (3)

The width of Ai is defined as

WðAiÞ ¼ maxðNNZðrÞ j r 2 AiÞ: (4)

Let NðAiÞ ¼ jAij be the number of row vectors in Ai. The
total number of elements in Ai as a dense matrix is

EðAiÞ ¼ NðAiÞ �WðAiÞ: (5)

The density DðAiÞ of Ai is the proportion of the number of
non-zero elements in all elements of Ai, expressed as
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DðAiÞ ¼ NNZðAiÞ
EðAiÞ : (6)

Define F ðAiÞ to be the proportion of filled zero in Ai, which
is F ðAiÞ ¼ 1�DðAiÞ.

Assume that a sparse matrix A is partitioned to K RVS’s
A1; A2; . . . ; AK , where Ai is an NðAiÞ �WðAiÞ submatrix.
The mean density of the partition ðA1; A2; . . . ; AKÞ is

DðA1; A2; . . . ; AKÞ ¼ NNZðAÞ
EðA1Þ þ EðA2Þ þ � � � þEðAKÞ ; (7)

where

NNZðAÞ ¼
XK
i¼1

NNZðAiÞ: (8)

The mean proportion of filled zero is

F ðA1; A2; . . . ; AKÞ ¼ 1�DðA1; A2; . . . ; AKÞ: (9)

4 PARTITIONING ALGORITHMS

The partitioning of a sparse matrix based on probabilistic
modeling has two steps, which are (1) establishing a proba-
bility model for the sparse matrix; (2) partitioning the sparse
matrix according to the computing powers of processors.

4.1 A Probability Model

The number of non-zero elements in each row is examined
and the information is stored. The number of rows with the
same NNZ is saved in an array B, which has length M þ 1,
where B½i� is the number of rows which have i non-zero ele-
ments, i ¼ 0; 1; 2; . . . ;M.

For the sparse matrix A shown in Fig. 1, we have
N ¼M ¼ 20. The number of non-zero elements of each row
in A, i.e., Ap½1::N �, is shown in Fig. 2. The PMF of the ran-
dom variable X, i.e., ðp0; p1; . . . ; pMÞ, is shown in Fig. 3. A
sample partition of A includes 9 RVS’s, which are B1 ¼
f5; 16g, B2 ¼ f1; 7; 19g, B3 ¼ f3; 13g, B5 ¼ f2; 6; 10g, B6 ¼
f8; 17g, B7 ¼ f4; 11; 15g, B9 ¼ f12g, B10 ¼ f14; 20g, and
B13 ¼ f9; 18g, where all row vectors in the same RVS have
the same NNZ. Notice that NNZðAÞ ¼ 117, and the mean
density is 117=ð20� 13Þ ¼ 117=260 ¼ 45%.

4.2 Partitioning Strategies

Assume that there are K processors, whose computing
powers are CP1; CP2; . . . ; CPK respectively. The total com-
puting power is calculated as

CP ¼
XK
i¼1

CPi: (10)

How to split the SpMV into K tasks to be assigned to the K
processors? It is clear that the scale of a task assigned to a
processor is measured by the number of non-zero elements
in the RVS, which should be linearly proportional to the
computing power of the processor.

In this section, we present four sparse matrix partitioning
algorithms. The first algorithm is based on the number of
rows. The second algorithms is based on the NNZ of the
rows. Both algorithms split a sparse matrix A into RVS’s
according to the original order of rows in A. Our third algo-
rithm does not follow the original order of rows, but splits
A according to its PMF. The fourth algorithm is based on
submatrices.

4.2.1 Partitioning Based on the Number of Rows

Algorithm 1 splits a sparse matrix A into K RVS’s in such a
way that the number of rows in an RVS Ai is linearly pro-
portional to the computing power CPi of a processor (line
7). All the row vectors are considered in their original order
in A (lines 8 and 12). However, Algorithm 1 does not con-
sider theNNZ of the rows, i.e.,NNZðAiÞmay not be linearly
proportional to the computing power CPi. This may result
in unbalanced load distribution. Some simple strategies
such as BCSR usually use Algorithm 1.

Let us assume that there are K ¼ 3 processors and the
computing powers are CP1 ¼ 1, CP2 ¼ 2, and CP3 ¼ 6, with
the ratios of three partitions being 11, 22, and 67 percent.
For the sparse matrix A in Fig. 1, by using Algorithm 1, the
three RVS’s are A1 ¼ f1; 2g, A2 ¼ f3; 4; 5; 6g, and A3 ¼
f7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20g, with NðA1Þ¼ 2,
WðA1Þ ¼ 5, NðA2Þ ¼ 4, W ðA2Þ ¼ 7, NðA3Þ ¼ 14, WðA3Þ ¼
13, The NNZ’s of the three RVS’s are NNZ ðA1Þ ¼ 7,
NNZðA2Þ ¼ 16, and NNZðA3Þ ¼ 94, with percentages of
total NNZ 6, 14, and 80 percent respectively. The density of
these RVS are DðA1Þ ¼ 7=ð2� 5Þ ¼ 70%, DðA2Þ ¼ 16=ð4�
7Þ ¼ 57%, and DðA3Þ ¼ 94=ð14� 13Þ ¼ 52% respectively,
and the mean density is DðA1; A2; A3Þ ¼ 117=ð10þ 28þ
182Þ ¼ 117=220 ¼ 53%. The numbers of zero padded are 3,
12, and 88 respectively if these RVS are stored using the

Fig. 1. A sparse matrix (black entry = non-zero element).

Fig. 2. The NNZ of each row.
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ELL format. The total number of zero padded is 3þ 12þ
88 ¼ 103, and the mean proportion of filled zero is
F ðA1; A2; A3Þ ¼ 103=220 ¼ 47%.

Algorithm 1. Partitioning based on the number of rows

Require: The row vectors of A, i.e., Av½1::N �; theK
computing powers CP1; CP2; . . . ; CPK .

Ensure: TheK RVS’s, i.e., A1; A2; . . . ; AK .
1: for each i 2 ½1::K� do
2: Ai  ;;
3: end for
4: i 1;
5: index 0;
6: while (i � K) do
7: row ðCPi=CP Þ �N ;
8: for each j 2 ½1::row� do
9: Ai  Ai [ fAv½indexþ j�g;
10: end for
11: i iþ 1;
12: index indexþ row;
13: end while
14: return A1; A2; . . . ; AK .

4.2.2 Partitioning Based on NNZ

Algorithm 2 splits a sparse matrix A into K RVS’s in such
a way that NNZðAiÞ is linearly proportional to the com-
puting power CPi of a processor (line 7). All the row vec-
tors are considered in their original order in A (lines 5
and 12). Some traditional partitioning strategies usually
use Algorithm 2, such as BELLPACK, sliced COO, and
sliced ELLPACK.

For the sparse matrix A in Fig. 1, by using Algorithm 2,
the three RVS’s are f1; 2; 3g, f4; 5; 6; 7; 8g, and f9; 10;
11; 12; 13; 14; 15; 16; 17; 18; 19; 20g. The NNZ’s of the three
RVS’s are 10, 21, and 86, with percentages of total NNZ 9,
18, and 73 percent respectively. The density of these RVS
are 10=ð3� 5Þ ¼ 67%, 21=ð5� 7Þ ¼ 60%, and 86=ð12�
13Þ ¼ 55% respectively, and the mean density is 117=ð15þ
35þ 156Þ ¼ 117=206 ¼ 57%, higher than that of Algo-
rithm 1. The numbers of zero padded are 5, 14, and 70
respectively if these RVS are stored using the ELL format.
The total number of zero padded is 5þ 14þ 70 ¼ 89, and

the mean proportion of filled zero is 89=206 ¼ 43%, lower
than that of Algorithm 1.

Algorithm 2. Partitioning based on NNZ

Require: The row vectors of A, i.e., Av½1::N �; the number of
non-zeros NNZ; the number of non-zero elements of each
row in A, i.e., Ap½1::N�; the K computing powers CP1;
CP2; . . . ; CPK .

Ensure: TheK RVS’s, i.e., A1; A2; . . . ; AK .
1: for each i 2 ½1::K� do
2: Ai  ;;
3: end for
4: i 1;
5: j 1;
6: while (i � K) do
7: NNZC  ðCPi=CP Þ �NNZ;
8: NNZT  0;
9: while (NNZT < NNZC) do
10: NNZT  NNZT þAp½j�;
11: Ai  Ai [ fAv½j�g;
12: j jþ 1;
13: end while
14: i iþ 1;
15: end while
16: return A1; A2; . . . ; AK .

4.2.3 Partitioning Based on PMF

For a sparse matrix, only the non-zero elements need to be
computed. So it is more reasonable that the computing scale
of the sparse matrix is calculated in accordance with NNZ.
The ELL format of a sparse matrix is suitable to be com-
puted on GPU and the performance of ELL is usually better
than CSR and COO, because the ELL format is well-suited
to vector architectures. The NNZ of rows in the block parti-
tioned from the sparse matrix by Algorithms 2 may have
large deviation, resulting in decline in performance of ELL.
Algorithm 3 attempts to improve Algorithm 2 based on the
PMF of a sparse matrix. Assume that A is split into
B1; B2; . . . ; Bq, where all row vectors in the same Bi have
the same NNZ. Furthermore, we have WðB1Þ < WðB2Þ
< � � � < WðBqÞ. Algorithm 3 generates K RVS’s, i.e.,
A1; A2; . . . ; AK , based on B1; B2; . . . ; Bq. Notice that the row
vectors are no longer considered in their original order in A,
but rather in the order of B1; B2; . . . ; Bq. The strongest fea-
ture of Algorithm 3 is that row vectors with the same or sim-
ilar NNZ are grouped together, thus increasing the density
of the RVS’s and reducing the zeros padded.

For the sparse matrix A in Fig. 1, by using Algorithm 3,
the three RVS’s are f1; 3; 5; 7; 13; 16; 19g, f2; 6; 8; 10; 17g,
and f4; 9; 11; 12; 14; 15; 18; 20g. The NNZ’s of the three
RVS’s are 14, 27, and 76, with percentages of total NNZ
12, 23, and 65 percent respectively, very close to the
required 11, 22, and 67 percent. The density of these RVS
are 14=ð7� 3Þ ¼ 67%, 27=ð5� 6Þ ¼ 90%, and 76=ð8� 13Þ ¼
73% respectively, and the mean density is 117=ð21þ
30þ 104Þ ¼ 117=155 ¼ 75%, much higher than that of
Algorithm 2. The numbers of zero padded are 7, 3, and
28 respectively if these RVS are stored using the ELL for-
mat. The total number of zero padded is 7þ 3þ 28 ¼ 38,
and the mean proportion of filled zero is 38=155 ¼ 25%,
much lower than that of Algorithm 2.

Fig. 3. The probability mass function (pi 6¼ 0 is shown).
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Algorithm 3. Partitioning based on PMF

Require: The number of rows of the sparse matrix, N ; the row
vectors of A, i.e., Av½1::N �; the number of non-zeros NNZ;
the RVS’s by PMF, i.e., B1; B2; . . . ; Bq; the probability of
B1; B2; . . . ; Bq, i.e., p1; p2; . . . ; pq; the K computing powers
CP1; CP2; . . . ; CPK .

Ensure: TheK RVS’s, i.e., A1; A2; . . . ; AK .
1: for each i 2 ½1::K� do
2: Ai  ;;
3: end for
4: i 1;
5: j 1;
6: while (i � K) do
7: NNZC  ðCPi=CP Þ �NNZ;
8: NNZT  0;
9: while (NNZT < NNZC) do
10: if j� pj �N � ðNNZC �NNZT Þ then
11: Ai  Ai [Bj;
12: NNZT  NNZT þ j� pj �N ;
13: j jþ 1;
14: else
15: row dðNNZC �NNZT Þ=je;
16: B0j  the first row vectors from Bj;
17: Ai  Ai [B0j;
18: Bj  Bj �B0j;
19: pj  pj � row=N ;
20: NNZT  NNZT þ row� j;
21: end if
22: end while
23: i iþ 1;
24: end while
25: return A1; A2; . . . ; AK .

4.2.4 Partitioning Based on Submatrices

The DIA format is used usually for the diagonal-like matri-
ces. However, for most diagonal-like matrices with some
non-zeros outside the diagonal, the compression effect of
DIA will be deteriorating and lead to the decrease of the
computing performance. So for the diagonal-like matrices,
some blocks are split along the main diagonal from the
sparse matrix using the submatrix-based algorithms. We
improve the partitioning strategies based on submatrices to
adapt to the GPUs and CPUs heterogeneous environment,
which is shown Algorithm 4. The blocks set R1 is stored by
the DIA format and R2 is stored by the CSR format, as
shown in Fig. 4. BLOCKSIZE usually takes 32, because the

number of threads in a warp is 32, and can also take 16,
because the half warp can be scheduled for GPU. For Test 1
in Section 7.2.1, R1 and R2 are assigned into multicore
CPUs to be processed. For Test 2 in Section 7.2.2, R1 is
assigned into GPUs to be processed and R2 is assigned into
multicore CPUs.

Algorithm 4. Partitioning based on submatrices

Require: The row vectors of A, i.e., Av½1::N �; the size of
block, BLOCKSIZE .

Ensure: The blocks set along the main diagonal, R1; the
blocks set outside the main diagonal, R2.

1: R1 ;;
2: R2 ;;
3: for each i 2 ½1::N � do
4: ri  the row index of Av½i�;
5: ci  the column index of Av½i�;
6: if ci > ðri modBLOCKSIZEÞ �BLOCKSIZE and

ci < ðri modBLOCKSIZE þ 1Þ �BLOCKSIZE then
7: R1 R1 [ fAv½i�g;
8: else
9: R2 R2 [ fAv½i�g;
10: end if
11: end for
12: store R1 by DIA;
13: store R2 by CSR;
14: return R1; R2.

The partitioning strategy is tested and compared to
Algorithms 1, 2, 3. For Test 1 in Section 7.2.1, the performance
of the partitioning strategy is poorer than that of Algo-
rithms 2 and 3, and is better than that of Algorithm 1 for the
sparse matrices with very obvious diagonal feature. How-
ever, the performance of the partitioning strategy is poorer
for irregular matrices, because the DIA format is more zero-
padded. For Test 2 in Section 7.2.2, the performance of the
partitioning strategy is poorer than that of Algorithm 3, and
is better than that of Algorithm 1 for small number of sparse
matrices with very obvious diagonal feature, and there are
only two sparse matrices in all tested cases, for which the
performance is better than that of Algorithm 2.

5 PERFORMANCE ANALYSIS

In this section, we analyze the optimality of the partitioning
algorithm based on PMF. We also analyze the execution
time of SpMV on GPUs and multicore CPUs.

5.1 Optimality Analysis

The effect of a partitioning method determines two impor-
tant factors, i.e., the uniformity and the compression ratio of
the RVS’s. Increased density of the RVS’s will improve the
uniformity, while reduced zero padded will improve the
compression ratio of the sparse matrix.

Let the total number of elements in a partition ðA1;
A2; . . . ; AKÞ be

EðA1; A2; . . . ; AKÞ ¼ EðA1Þ þ EðA2Þ þ � � � þEðAKÞ: (11)

The following theorem shows that Algorithm 3 always gives
the minimum EðA1; A2; . . . ; AKÞ, for all partitions with iden-
tical NNZ’s.

Fig. 4. Partitioning based on submatrices along the main diagonal.
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Theorem 1. Assume that a sparse matrix A is partitioned into K
RVS’s A01; A

0
2; . . . ; A

0
K according to certain method, and into

A1; A2; . . . ; AK by Algorithm 3, where NNZðA0iÞ ¼
NNZðAiÞ, for all i ¼ 1; 2; . . . ; K. Then, we have EðA1;
A2; . . . ; AKÞ � EðA01; A02; . . . ; A0KÞ.

Proof. Let A½i;j� represent the union Ai [ � � � [Aj. Assume
that ðA01; A02; . . . ; A0KÞ 6¼ ðA1; A2; . . . ; AKÞ. This means that
there exists i, 1 � i < K, such that A0½1;i� 6¼ A½1;i� and

A0½iþ1;K� 6¼ A½iþ1;K�. For example, i can be the smallest

index such that A0i 6¼ Ai. Notice that NNZðA0½1;i�Þ ¼
NNZðA½1;i�Þ and NNZðA0½iþ1;K�Þ ¼ NNZðA½iþ1;K�Þ. Further-
more, we have W ðA0½iþ1;K�Þ ¼W ðA½iþ1;K�Þ, because W

ðA0½iþ1;K�Þ ¼ maxðNNZðrÞ j r 2 AÞ ¼WðA½iþ1;K�Þ.
Let C ¼ A0½1;i� \A½iþ1;K�, and C0 ¼ A0½iþ1;K� \A½1;i�. It is

clear that C 6¼ ; and C0 6¼ ;. Let B ¼ A0½1;i� \A½1;i�. Since

A0½1;i� ¼ B [ C; A½1;i� ¼ B [ C0;

we have

NNZðA0½1;i�Þ ¼ NNZðBÞ þNNZðCÞ;

and

NNZðA½1;i�Þ ¼ NNZðBÞ þNNZðC0Þ:

By NNZðA0½1;i�Þ ¼ NNZðA½1;i�Þ, we get NNZðCÞ ¼ NNZ
ðC0Þ. Since WðA1Þ �W ðA2Þ � � � � �W ðAKÞ, we know
thatWðCÞ �WðC0Þ andNðCÞ � NðC0Þ.

Notice that A0½1;i� ¼ A½1;i� [ C � C0, which implies that

NðA0½1;i�Þ ¼ NðA½1;i�Þ þNðCÞ �NðC0Þ;

and

WðA0½1;i�Þ ¼W ðA½1;i� [ C � C0Þ ¼WðCÞ �WðA½1;i�Þ:

Hence, we obtain

EðA0½1;i�Þ ¼WðA0½1;i�Þ �NðA0½1;i�Þ
¼WðA0½1;i�Þ � ðNðA½1;i�Þ þNðCÞ �NðC0ÞÞ
¼WðCÞ � ðNðA½1;i�Þ þNðCÞ �NðC0ÞÞ
�WðA½1;i�Þ �NðA½1;i�Þ þWðCÞ � ðNðCÞ �NðC0ÞÞ
¼ EðA½1;i�Þ þWðCÞ � ðNðCÞ �NðC0ÞÞ:

Also, notice that A0½iþ1;K� ¼ A½iþ1;K� [ C0 � C, which
implies that

NðA0½iþ1;K�Þ ¼ NðA½iþ1;K�Þ þNðC0Þ �NðCÞ;

and

EðA0½iþ1;K�Þ ¼WðA0½iþ1;K�Þ �NðA0½iþ1;K�Þ
¼WðA½iþ1;K�Þ � ðNðA½iþ1;K�Þ þNðC0Þ �NðCÞÞ
¼ EðA½iþ1;K�Þ þWðA½iþ1;K�Þ � ðNðC0Þ �NðCÞÞ:

Finally, we have

EðA01; A02; . . . ; A0KÞ ¼ EðA0½1;i�Þ þEðA0½iþ1;K�Þ
� EðA½1;i�Þ þWðCÞ � ðNðCÞ �NðC0ÞÞ
þEðA½iþ1;K�Þ þWðA½iþ1;K�Þ � ðNðC0Þ �NðCÞÞ
¼ EðA1; A2; . . . ; AKÞ
þ ðWðA½iþ1;K�Þ �WðCÞÞ � ðNðC0Þ �NðCÞÞ
� EðA1; A2; . . . ; AKÞ;

where we notice thatWðA½iþ1;K�Þ �WðCÞ. tu
The following corollary claims that Algorithm 3 always

gives the highest mean density.

Corollary 1. Assume that a sparse matrix A is partitioned intoK
RVS’s A01; A

0
2; . . . ; A

0
K according to certain method, and into

A1; A2; . . . ; AK by Algorithm 3, where NNZðA0iÞ ¼
NNZðAiÞ, for all i ¼ 1; 2; . . . ; K. Then, we have DðA1;
A2; . . . ; AKÞ � DðA01; A02; . . . ; A0KÞ.

Proof. According to Eq. (7), we have

DðA1; A2; . . . ; AKÞ ¼ NNZðAÞ
EðA1; A2; . . . ; AKÞ ;

and

DðA01; A02; . . . ; A0KÞ ¼
NNZðAÞ

EðA01; A02; . . . ; A0KÞ
:

According to Theorem 1, we have EðA1; A2; . . . ;
AKÞ � EðA01; A02; . . . ; A0KÞ, which implies that DðA1;
A2; . . . ; AKÞ � DðA01; A02; . . . ; A0KÞ. tu
The following corollary claims that Algorithm 3 always

gives the lowest mean proportion of filled zero.

Corollary 2. Assume that a sparse matrix A is partitioned intoK
RVS’s A01; A

0
2; . . . ; A

0
K according to certain method, and into

A1; A2; . . . ; AK by Algorithm 3, where NNZðA0iÞ ¼
NNZðAiÞ, for all i ¼ 1; 2; . . . ; K. Then, we have F ðA1;
A2; . . . ; AKÞ � F ðA01; A02; . . . ; A0KÞ.

Proof. According to Eq. (9), we have

F ðA1; A2; . . . ; AKÞ ¼ 1�DðA1; A2; . . . ; AKÞ;
and

F ðA01; A02; . . . ; A0KÞ ¼ 1�DðA01; A02; . . . ; A0KÞ:

According to Corollary 1, we have DðA1; A2; . . . ;
AKÞ � DðA01; A02; . . . ; A0KÞ, which implies that F ðA1;
A2; . . . ; AKÞ � F ðA01; A02; . . . ; A0KÞ. tu

5.2 Execution Time Analysis

In order to implement SpMV in such a way that it can be
computed in parallel on GPUs and CPUs, a big sparsematrix
should be partitioned into multiple RVS’s to be computed on
CPUs and/or GPUs respectively. According to the ratios of
computing powers of processors, a sparse matrix A is parti-
tioned to K RVS’s A1; A2; . . . ; AK . First, in order to achieve
load balance, the computing scale of an RVS should match
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the computing power of a processor, and the computing
scale of an RVS depends on the NNZ of the RVS. The load
balance using Algorithms 2 and 3 is better than that using
Algorithm 1, because the RVS’s using Algorithms 2 and 3 are
generated according to NNZ, while the RVS’s using Algo-
rithm 1 are produced according to the number of rows. Sec-
ond, in order to improve the utilization of computing
resources, the densities of the RVS’s should be increased.

If the RVS’s are processed on a GPU, the computing time
of SpMV includes two parts, i.e., the time Tt of data trans-
mission between GPU and CPU, and the execution time Te

on the GPU. Due to the features of GPU with a thread grid,
the ELL format with row vectors of equal length has better
performance than that of the COO and CSR formats for

SpMV. The size of data put into the GPU is
PK

i¼1 EðAiÞ, if
the sparse matrix is stored by the ELL format. Assume that
the storage space of RVS Ai is DSðAiÞ using ELL, which can
be calculated by Eq. (12):

DSðAiÞ ¼ EðAiÞ � ðSs þ SiÞ þNðAiÞ � Si; (12)

where Si is the size of an integer, and Ss is the size of a sin-
gle-precision floating point number. Tt is expressed by
Eq. (13):

Tt ¼
PK

i¼1 DSðAiÞ
PCIe

¼
PK

i¼1ðEðAiÞ � ðSs þ SiÞ þNðAiÞ � SiÞ
PCIe

¼ ðSs þ SiÞ �
PK

i¼1 EðAiÞ þ Si �N

PCIe
;

(13)

where PCIe is the transmission rate of the PCIe bus which
connects CPU and GPU. According to Theorem 1, for the

ELL format, the
PK

i¼1 EðAiÞ is the smallest by using the par-
titioning Algorithm 3 and Tt is the smallest.

The threads on CPU are scheduled separately without
synchronization. So the row vectors with various lengths in
an RVS do not wait for each other during computing. If the
RVS is computed on CPU, the COO or CSR format should
be used for SpMV, because the two formats do not need to
fill zero.

When A is computed on multiple processors in parallel,
the computing time of an RVS assigned to each processor
should be the same by using Algorithm 3, so that the largest
parallel efficiency can be achieved.

Assume that the size of the global memory of GPU is
MEMG. Then, the storage space assigned to SpMV cannot
be more than MEMG. If DSðAiÞ > MEMG, the RVS Ai can-
not be loaded into GPU, and A should be partitioned using
Algorithm 3 again.

For SpMV, the mean density of A determines the effective
computing ratio, which is the proportion of the amount of
useful computing to the total amount of computing. Proces-
sor utilization is improved with the increased effective com-
puting ratio. For a sparse matrix A, the mean proportion of
filled zero is the storage space vacancy ratio, which is the pro-
portion of the storage space of zero in the total storage
space. The storage space vacancy ratio should be reduced to
increase the effective computing ratio.

5.3 The Computing Power of CPU and
GPU Based on Benchmarks

Warp is a scheduling unit on GPU, which has 32 threads. All
threads of a warp are running at the same time on a stream-
ingmultiprocessor (SM). So the running time of a warp is the
time of the thread with the longest running time. For the
thread grid on GPU, assume that the block can contain at
most T threads, and the T threads are scheduled to run on
SM bywarp. The utilization of SM is the proportion of

the valid running time ðTimevÞ
the total running time ðTimetÞ :

For the ELL format, a thread processes a row of the sparse
matrix. So the running time of a thread can be represented
by the NNZ of the row. Timev of a warp is the sum of the
NNZ of the rows run on the warp, and Timet is

32�MAXðNNZ of the rows run on the warpÞ:
The computing efficiency of the warp is the density of the
subset assigned into the warp. The block with T threads is
split into T/32 warps to be processed on SM. So the com-
puting efficiency of SM depends on the density of the block.
To improve the utilization of SM, we must improve the den-
sity of the block. We provide a method to calculate the lower
limit of the density of the block for given a lower limit of the
utilization of SM. For the block partitioned using PMF, the
rows are ordered by the NNZ in an ascending order. We
assume that theNNZ of the first row is 1 in order to simplify
calculation. To get the lower limit of the density of the block,
the width of the block should be as small as possible.
Assume that the width of the the ith warp in the block is
Wi. The NNZ of rows 1–31 should be Wi�1 þ 1 in order to
reduce the width of the ith warp. Since the density of the
warp should be more than 0.9, the upper limit NNZ of the
32nd row in the ith warp can be calculated by Eq. (14):

NNZðRow32Þ ¼ 31Wi�1 þ 31

27:8

� �
: (14)

If the utilization of SM is greater than 0.9 and T ¼ 1024, the
lower limit of the density of the block is 0.2494 by Eq. (15):

D ¼
PT=32

i¼1 31ðWi�1 þ 1Þ þ 31Wi�1þ31
27:8

l m� �

32
PT=32

i¼1 Wi

; W0 ¼ 0: (15)

We get the blocks from the sparse matrix by different
density using PMF to test. The utilization of multicore CPU
is less affected by the sparsity pattern of the sparse matrix,
because each core in CPU is independently scheduled. The
threads between cores do not need synchronization if there
is no dependency between threads. The computing power
of GPU is improving faster than that of CPU with the
improvement of density of blocks. The tested results remain
stable at about 75:1, if the density of the blocks is more than
30 percent and the standard deviation is within the accept-
able range, as shown in Table 1 of Section 1 in the supple-
mentary material. The tested values and calculated values
have good consistency. The density of the blocks partitioned
using Algorithm 3 for GPU are more than 30 percent, and
the proportion of the computing power of GPU over that of
CPU is valid for Algorithm 3.
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6 IMPLEMENTATION OF SPMV ON GPUS

AND MULTICORE CPUS

6.1 GPUs and Multicore CPUs Hybrid
Parallel Programming

More and more applications have been running on GPU-
CPU heterogeneous systems. (Section 2 of the supple-
mentary material provides more detailed discussion.) A
parallel algorithm must be designed for the architectures
and instructions of GPU and CPU to improve the com-
puting performance. But hybrid parallel programming
will face some challenges on a GPU-CPU heterogeneous
system, because of the different architectures and
instructions.

The GPU does not have the process control capability as
a device in CUDA, which is controlled by the CPU. The
data is transported from the host memory to the global
memory of the GPU. Then the CPU invokes the calculation
process of the GPU by calling the kernel function.

OpenMP provides a simple and easy-to-use parallel com-
puting capability of multi-threads on multicore CPUs [20].
A hybrid programming model can be established by
openMP and CUDA in a CPU-GPU heterogeneous comput-
ing environment. OpenMP dedicates one thread for control-
ling the GPU, while the other threads are used to share the
workload among the remaining CPU cores. The CPU-GPU
hybrid parallel computing model is illustrated in Fig. 5,
where D1, D2, D3, D4; . . . ; Di1, Di2, Di3, Di4 are sub-tasks
which are stored in the host memory, and Thread1, Thread2,
Thread3, Thread4; . . . ; Threadi1, Threadi2, Threadi3, Threadi4
are multi-threads which are assigned to cores of CPUs.

First, a computing task must be divided into multiple
sub-tasks, so that these sub-tasks are assigned to multi-
cores of CPUs to perform respectively. Second, in the pro-
cess of execution, two groups of threads are created in the
parallel section of OpenMP, where a group of threads are
dedicated to controlling the GPUs, while other threads
undertake the CPU workload by utilizing the remaining
CPU cores.

6.2 Parallel Implementation of SpMV
Based on Partitioning

A sparse matrix is partitioned into some RVS’s, which are
assigned to GPUs and multicore CPUs to perform SpMV by
a hybrid parallel computing model. According to the parti-
tion, the computing time of a task assigned to each core on

CPUs should be the same in order to optimize the comput-
ing performance. If SpMV can be computed in parallel only
once on all GPUs and CPUs, then these RVS’s partitioned
from the sparse matrix are assigned to GPUs and the cores
of CPUs according to their computing powers. If SpMV can-
not be computed in parallel only once because some RVS’s
are too big to be loaded into the GPU once, the sparse matrix
should be partitioned many times.

The implementation of SpMV includes three steps: (1) get
the ratios of partition according to the computing powers of
GPUs and CPUs by testing benchmarks; (2) partition the
sparse matrix; (3) assign the RVS’s to GPUs and CPUs to
process in parallel. Notice that the computed results do not
need to be summarized, because the sparse matrix is parti-
tioned by rows.

7 EXPERIMENTAL EVALUATION

7.1 Experiment Settings

The following test environment has been used for all
benchmarks. The test computer is equipped with two
Intel Xeon Core E5506 CPUs running at 2.13 GHz and
two NVIDIA Geforce GTX 460 GPUs. Each CPU has 4
cores. Each GPU has 336 CUDA processor cores, working
on 1.5 GHz clock and 1 GB global memory with 256 bits
bus width and 1.9 GHz clock, with CUDA compute
capacity 2.1. As for software, the test machine runs the 64
bit Windows 7 and NVIDIA CUDA toolkit 5.0. The hard-
ware parameters of the testing computer are shown in
Table 2 of Section 3.1 in the supplementary material
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TC.2014.2366731. All the evaluation results are averaged
after running 100 times. The time of SpMV includes the
time of partitioning for all algorithms in test.

All benchmarks are chosen from the UF Sparse Matrix
Collection [36]. We chose 50 sparse matrices to test for Algo-
rithms 1, 2, 3, and 4. The experimental results of 10 repre-
sentative tested sparse matrices are shown in the main
paper and that of all tested cases are shown in the supple-
mentary material, available online. Tables 3, 4, and 5 of Sec-
tion 3.2 in the supplementary material provide more
detailed information of the ten representative sparse matri-
ces. Most of these matrices are derived from scientific com-
puting and real engineering applications.

NVIDIA Corporation provides three libraries
(CUBLAS, CUSPARSE and CUSP) to support matrix com-
putation. All libraries provide CUDA development tools
and source codes [5]. CUBLAS offers three levels of
library functions, where the second level supports SpMV
of dense matrices.

CUSPARSE provides three levels of functions for sparse
matrices, with the first level for ADD operation, second for
MUL operation of SpMV, and the third level for MUL oper-
ation of sparse matrices. It uses both the CSR and HYB for-
mats. HYB is a hybrid format of ELL and COO. ELL decides
the column width of data matrix according to the maximum
number of non-zero elements in each row, which means
that ELL’s efficiency of compression will be reduced by the
negative effect of the sparse matrix. HYB function for SpMV
has a parameter, which has tree values: AUTO, USER,

Fig. 5. A CPU-GPU hybrid parallel computing model.
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MAX. A function will automatically select a segmentation
threshold to divided the sparse matrix into ELL and COO if
the parameter is AUTO. The caller must provide a segmen-
tation threshold if the parameter is USER. If the threshold is
0, HYB will become COO. If the parameter is MAX, HYB
will become ELL. The HYB function are tested using AUTO,
MAX and 0 respectively. We find that the performance of
AUTO and MAX is almost the same in our experiments,
because the rows in the same block have the same or similar
NNZ for the blocks partitioned using Algorithm 3, and the
time of segmentation by the threshold can be saved for
MAX. But the performance of the parameter 0 is worse than
that of AUTO and MAX. So we select MAX to test for Algo-
rithm 3. But we select AUTO to test for Algorithms 1 and 2,
because some sparse matrices cannot be processed by MAX
using Algorithms 1 and 2. NVIDIA provides another
library, CUSP (2012), to offer SpMV for the GPU platform.
CUSP supports a variety of compression formats such as
COO, DIA, CSR, ELL, and HYB. The COO, CSR, and HYB
from CUSP show worse performance than CUSPARSE. We
chose the DIA format in CUSP to test for Algorithm 4.

The Intel Math Kernel Library provides developers of
scientific and engineering software with a set of linear
algebra, fast Fourier transforms, and vector math func-
tions optimized for the latest Intel processors. MKL con-
tains LAPACK, the basic linear algebra subprograms
(BLAS), and the extended BLAS (sparse) [6], which have
higher performance compared to the other lib functions
for most of the processors, and they have been parallel-
ized and require no alterations of your application to gain
the performance enhancements of multiprocessing. We
test SpMV using CSR function of MKL with better perfor-
mance than COO function.

7.2 SpMV Test and Performance Evaluation

We define flop-rate as the ratio of computing scale to com-
puting time. The scale of the computation for SpMV is
2�NNZ, because each non-zero element should perform a
multiplication and an addition operations. The flop-rate is

calculated by 2�NNZ=T � 10�9, where T is the computing
time of SpMV (the unit is second). The unit of flop-rate is
Gops, which is giga operations per second.

The computing power of CPU and GPU are obtained by
benchmarks, where the tested sparse matrices are obtained

from the UF Sparse Matrix Collection and the tested func-
tions of SpMV are from Intel MKL and NVIDIA CUS-
PARSE. We choose 30 sparse matrices to test, where the
number of non-zero elements covers millions to hundreds
of millions. We get the average value of 30 testing matrices.
Assume that the computing power of a core on CPU is as 1.
The computing power of the other cores on CPU and GPU
are calculated by ratios. 30 sparse matrices of benchmarks
are tested on the test computer to obtain the results, where
the computing power of GPU is 75 times that of a core of
CPU for the tested computer.

We have performed the following two experiments for
comparative performance evaluation.

1) SpMV is tested on two multicore CPUs using
Algorithms 2, 3 and 4, and the performance is com-
pared to the testing using the automatic paralleliza-
tion strategy of MKL function according to the
partition ratios of (1,1,1,1,1,1,1,1), because the com-
puting power of each core on CPU is the same.

2) SpMV is tested on GPUs and multicore CPUs using
Algorithm 3, and the performance is compared to
the testing using Algorithms 1, 2 and 4 according to
the partition ratios of (75,75,1,1,1,1,1,1), because the
computing power of GPU is about 75 times that of a
core on CPU.

7.2.1 Test 1

The automatic parallelization strategy of MKL function uses
openMP parallel mechanism, where the sparse matrix is
partitioned using Algorithm 1 for the CSR format. The den-
sity of partitioning has little influence on the performance of
SpMV in Test 1, because CSR has no zero padded. However,
the balance of computing tasks between cores of CPU has
greater influence, and the load scale of cores for SpMV
depends on the number of non-zero elements assigned on
cores. The relative difference of a partition over computing
powers is calculated by

XK
i¼1
ðNNZðAiÞ � CPi �NNZÞ=ðCPi �NNZÞ � 100%;

where CPi is the ratio which the ith RVS should take in a
partition. The average relative difference of the ten tested
matrices using Algorithms 1, 2, and 3 are 5.3580, 0.0138,
and 0.0096 percent respectively, as shown in Table 1, and
that of all tested cases are 17.3600, 0.0348, and 0.0119

TABLE 1
The Relative Difference (%) of Partitioning in Test 1

Sparse Matrix Algori. 1 Algori. 2 Algori. 3

Fluorem/PR02R 1.5137 0.0050 0.0075
Boeing/pwtk 4.2082 0.0044 0.0038
TSOPF/TSOPF_RS_b300_c3 11.7656 0.1280 0.0845
Schenk_AFE/af_shell10 0.0210 0.0001 0.0001
Rajat/rajat31 0.0058 0.0000 0.0000
Schenk_ISEI/ohne2 0.5187 0.0007 0.0006
Schenk/nlpkkt120 11.2423 0.0000 0.0000
Schenk/nlpkkt160 11.3389 0.0000 0.0000
Schenk/nlpkkt200 11.3976 0.0000 0.0000
vanHeukelum/cage15 1.5706 0.0000 0.0000

Average relative difference 5.3580 0.0138 0.0096

Fig. 6. The time of Algorithms 1, 2, 3, and 4 in Test 1 (single-precision).
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percent respectively, as shown in Table 6 of Section 3.3 in
the supplementary material. We can find that the NNZ of
the RVS’s by using Algorithms 2 and 3 match with the
computing powers of CPUs very well, while Algorithm 1
does not, leading to load imbalance between cores.

In Test 1, SpMV is tested on the multicore CPU using
Algorithms 2, 3, 4, and the automatic parallelization strat-
egy of MKL function. Algorithm 1 is used to partition in
the automatic parallelization strategy of MKL function. In
Figs. 6 and 7, T1, T2, T3, and T4 are the time of SpMV
using the automatic parallelization strategy of MKL func-
tion, Algorithm 2, Algorithm 3, and Algorithm 4. In
Figs. 8 and 9, F1, F2, F3, and F4 are the flop-rate. The
load on the multicore for SpMV may not be balanced
using the automatic parallelization strategy of MKL func-
tion itself, because of the imbalance of the number of
non-zero elements between the rows. But the computing
tasks of multicore on CPUs are split evenly using Algo-
rithms 2 and 3, and the load on the multicore for SpMV
can be balanced. The load balancing problem is not con-
sidered in Algorithm 4, leading to poor performance.
However, it is better than that of Algorithm 1 for the
sparse matrices with very obvious diagonal feature, such
as Rajat/rajat31 and Schenk_ISEI/ohne2.

It is observed from Figs. 6, 7, 8, and 9 that (1) For the ten
representative tested sparse matrices, the average execution
time of SpMV reduces by 16.60, 0.61, and 20.31 percent for
single precision, 18.39, 0.47, and 20.23 percent for double
precision, by using Algorithm 3 compared with the auto-
matic parallelization strategy of MKL function, Algorithm
2, and Algorithm 4; and for all tested cases, the reduction is

27.37, 2.77, and 6.83 percent for single precision, 27.89, 0.39,
and 29.23 percent for double precision. (2) For the 10 repre-
sentative tested sparse matrices, the average flop-rate of
SpMV reduces by 20.67, 0.62, and 27.65 percent for single
precision, 25.08, 0.48, and 27.52 percent for double preci-
sion, by using Algorithm 3 compared with the automatic
parallelization strategy of MKL function, Algorithm 2, and
Algorithm 4; and for all tested cases, the reduction is 42.51,
2.99, and 62.03 percent for single precision, 68.83, 0.38, and
72.51 percent for double precision.

7.2.2 Test 2

For the 10 representative tested sparse matrices, the average
relative difference of the ten tested matrices using Algo-
rithms 1, 2, and 3 are 38.1100, 0.0091, and 0.0093 percent
respectively, as shown in Table 2, and that of all tested cases
are 25.5616, 0.0326, and 0.0054 percent respectively. We can
find that the NNZ of the RVS’s by using Algorithms 2 and 3
match with the computing powers of GPUs and CPUs very
well. For matrices PR02R, pwtk, af_shell10, rajat31, ohne2,
and cage15, the NNZ of the RVS’s by using Algorithm 1
match reasonably, but for TSOPF_RS_b300_c3, nlpkkt120,
nlpkkt160, and nlpkkt200, the match is very poor, leading to
load imbalance between processors.

For GPU, the density of the RVS’s has greater influence
on the performance of SpMV using the ELL format. The
densities of the ten representative tested matrices using
Algorithms 1, 2, and 3 are shown in Fig. 10, where E1, E2,
and E3 are the densities using Algorithms 1, 2, and 3,

Fig. 7. The time of Algorithms 1, 2, 3, and 4 in Test 1 (double-precision).

Fig. 8. The flop-rate of Algorithms 1, 2, 3, and 4 in Test 1 (single-
precision).

Fig. 9. The flop-rate of Algorithms 1, 2, 3, and 4 in Test 1 (double-
precision).

TABLE 2
The Relative Difference (%) of Partitioning in Test 2

Sparse Matrix Algori. 1 Algori. 2 Algori. 3

Fluorem/PR02R 2.2046 0.0094 0.0090
Boeing/pwtk 7.1559 0.0058 0.0113
TSOPF/TSOPF_RS_b300_c3 93.0066 0.0621 0.0631
Schenk_AFE/af_shell10 0.3845 0.0015 0.0009
Rajat/rajat31 0.1071 0.0007 0.0002
Schenk_ISEI/ohne2 3.5364 0.0093 0.0070
Schenk/nlpkkt120 85.1116 0.0008 0.0005
Schenk/nlpkkt160 85.3570 0.0002 0.0002
Schenk/nlpkkt200 85.5064 0.0002 0.0003
vanHeukelum/cage15 18.7229 0.0005 0.0003

Average relative difference 38.1100 0.0091 0.0093
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respectively. The average densities of the ten tested matrices
using Algorithms 1, 2, and 3 are 10, 41, and 55 percent
respectively, and that of all tested cases are 11, 40, and
61 percent respectively.

In Test 2, SpMV is tested on GPUs and multicore CPUs
using Algorithms 1, 2, and 3. In Figs. 11 and 12, T1, T2,
T3, and T4 are the time of SpMV using Algorithm 1,
Algorithm 2, Algorithm 3, and Algorithm 4 respectively,
and F1, F2, F3, and F4 are the flop-rate in Figs. 13 and
14. For the sparse matrices with uneven distribution, such
as af_shell10, nlpkkt120, nlpkkt160, nlpkkt200, and
cage15, the RVS’s obtained from the original row order
have low density, leading to high zero filling proportion
and low effective computing ratio. The performance of
most test cases is poor by using Algorithm 4, because the
computation efficiency of GPU is not good for the DIA
format, but it is better than that of Algorithms 1 or 2 for
the sparse matrices with very obvious diagonal feature,
such as Rajat/rajat31, Schenk_ISEI/ohne2, Janna/Serena,

Oberwolfach/bone010, Bodendiek/CurlCurl_3, BenEle-
chi/BenElechi1, and CEMW/t2em.

It is observed from Figs. 11, 12, 13, and 14 that (1) For
the ten representative tested sparse matrices, the average
execution time of SpMV reduces by 34.31, 13.95, and
37.94 percent for single precision, 50.00, 13.10, and
49.79 percent for double precision, by using Algorithm 3
compared with Algorithms 1, 2, and 4; and for all tested
cases, the reduction is 35.59, 22.29, and 40.17 percent for
single precision, 43.50, 16.60, and 42.93 percent for double
precision. (2) For the ten representative tested sparse
matrices, the average flop-rate of SpMV reduces by 54.99,
17.64, and 65.35 percent for single precision, 154.68, 16.84,
and 144.63 percent for double precision, by using Algo-
rithm 3 compared with Algorithms 1, 2, and 4; and for all
tested cases, the reduction is 65.22, 36.17, and 76.15 per-
cent for single precision, 97.27, 22.14, and 93.80 percent
for double precision.

7.3 Additional Experimental Results

Due to space limitation, additional experimental results are
presented in Sections 3.4 and 3.5 of the supplementary
material, available online.

8 CONCLUSIONS

In this paper, we use a probabilistic model to develop a
partitioning strategy for sparse matrices. This method has
wide adaptability for different types of sparse matrices,
and is different from existing methods which only adapt
to some particular sparse matrices. Our partitioning strat-
egy is based on the PMF of a sparse matrix, which charac-
terizes the distribution of non-zeros in a sparse matrix.

Fig. 10. Comparison of density of Algorithms 1, 2, and 3 in Test 2.

Fig. 11. The time of Algorithms 1, 2, 3, and 4 in Test 2 (single-precision).

Fig. 12. The time of Algorithms 1, 2, 3, and 4 in Test 2 (double-precision).

Fig. 13. The flop-rate of Algorithms 1, 2, 3, and 4 in Test 2 (single-
precision).

Fig. 14. The flop-rate of Algorithms 1, 2, 3, and 4 in Test 1 (double-
precision).
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Our partitioning strategy consists of two steps, i.e., distri-
bution analysis and RVS partitioning. The proposed
approach in this paper is general, and is neither limited
by any GPU programming language nor restricted to any
parallel architecture, because it is based on a mathemati-
cal and analytical model. In future work, we will consider
solving large-scale sparse linear equations using the cur-
rent SpMV method.
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