
 Deakin, T. J., McIntosh-Smith, S. N., Price, J., Poenaru, A., Atkinson,
P. R., Popa, C., & Salmon, J. (2020). Performance Portability across
Diverse Computer Architectures. In 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC
(P3HPC) Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/P3HPC49587.2019.00006

Peer reviewed version

Link to published version (if available):
10.1109/P3HPC49587.2019.00006

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8945642. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://research-information.bris.ac.uk/en/publications/5c8737cc-f4ee-44c3-b55d-1f31d3fcc135
https://research-information.bris.ac.uk/en/publications/5c8737cc-f4ee-44c3-b55d-1f31d3fcc135

Performance Portability across Diverse Computer

Architectures

Tom Deakin∗, Simon McIntosh-Smith∗, James Price∗, Andrei Poenaru∗,

Patrick Atkinson∗, Codrin Popa∗ and Justin Salmon∗

∗High Performance Computing Research Group

University of Bristol, Bristol, UK

Email: {tom.deakin, S.McIntosh-Smith}@bristol.ac.uk

Abstract—Previous studies into performance portability have
typically analysed a single application (and its various imple-
mentations) in isolation. In this study we explore the wider
landscape of performance portability by considering a number
of applications from across the space of dwarfs, written in
multiple parallel programming models, and across a diverse
set of architectures. We apply rigorous performance portability
metrics, as defined by Pennycook et al [1]. We believe this is
the broadest and most rigorous performance portability study
to date, representing a far reaching exploration of the state of
performance portability that is achievable today. We will present
a summary of the performance portability of each application
and programming model across our diverge range of twelve
computer architectures, including six different server CPUs from
five different vendors, five different GPUs from two different
vendors, and one vector architecture. We will conclude with
an analysis of the performance portability of key programming
models in general, across different application spaces as well
across differing architectures, allowing us to comment on more
general performance portability principles.

Index Terms—performance portability, productivity, mini-app,
programming models

I. INTRODUCTION

In recent years, there has been significant disruption from

an ever increasing diversity in HPC processors. Traditional

CPU architectures have gained large numbers of cores and

wide SIMD units. As of today, 32-core sockets are available

in Marvell ThunderX2 and AMD Naples processors, with up

to 64-cores per socket due to arrive in the coming year. There

is renewed competition in the CPU space, with multiple CPU

vendors designing processors for high-performance comput-

ing, employing a variety of different instruction sets, ensuring

a healthy ecosystem and yielding improvements in the rate

of innovation and in performance per dollar. Additionally,

accelerators such as GPUs are being adopted in increasing

numbers to achieve the highest levels of performance, with

most of the Top 10 supercomputers in the world now using

accelerators [2]. This increased diversity in computer archi-

tecture is perhaps most keenly observed in the accelerator

field, with GPUs from NVIDIA, AMD and most recently

Intel, NEC’s SX-Aurora TSUBASA vector engine, FPGAs and

specialised processors such as the emerging architectures for

AI (e.g. Google’s TPU, GraphCore’s IPU and Intel’s Nervana).

©Crown copyright 2019/Mod/AWE

This diverse set of architectures are rapidly being adopted

in the race for Exascale systems. The ‘Fugaku’ (Post-K)

system at RIKEN will use Fujitsu’s A64FX Arm processors;

the ‘Aurora’ system at Argonne National Laboratory will use

heterogeneous processors from Intel including Xeon CPUs,

Xe GPUs, AI Nervana processors and Stratix FPGAs; the

‘Frontier’ system at Oak Ridge National Laboratory will use

AMD CPUs and GPUs; while the ‘El Capitan’ system at

Lawrence Livermore National Laboratories will be another

heterogeneous system. It is clear that there will be a significant

challenge for application developers to achieve performance

portability over such a more diverse range of vendors and

architectures than has been seen in many years.

This study seeks to assess the performance portability land-

scape using representative applications, programming models

and a wide range of processors available today which capture

the future direction of technology. We select from a range of

mini-apps, implemented in a range of parallel programming

models selected either because they are already widely used, or

because they represent likely future directions. These include

directive based models (OpenMP and OpenACC), high-level

C++ abstraction layers (Kokkos and SYCL) and close to the

metal offload models (OpenCL and CUDA). No programming

model is inherently performance portable. However, all the

models we have selected support writing performance portable

programs, to one degree or another. Some of the models in

our list are less portable than others, due to their vendor-

specific nature, but we include these in order to capture the best

achievable performance of an application on each platform,

regardless of the choice of implementation, in order to provide

a baseline. Indeed, a key part of performance portability is

that close to the best achievable performance is attainable,

in a portable manner (this is what is known as “application

efficiency” in the performance portability metric defined by

Pennycook et al in [1]). Both the directive-based and high-level

abstractions we use offer mechanisms for parallelisation within

each computational node (on the ‘host’ CPUs or via offload to

an accelerator); we do not consider multi-node programming

models where MPI is the predominant model chosen.

For this study, we use the following definition of perfor-

mance portability: A code is performance portable if it can

achieve a similar performance efficiency on a range of different

target architectures, where performance efficiency is as defined

in [1]. That is, performance efficiency is either:

1) Architectural efficiency: Achieved performance as a

fraction of peak theoretical hardware performance, or

2) Application efficiency: Achieved performance as a frac-

tion of best observed performance.

Additionally, we require not only that we achieve a similar

performance efficiency across our target architectures, but

that we also achieve a good performance efficiency. We

define this to mean within 20% of the best achievable perfor-

mance, which often corresponds to hand-optimised OpenMP

or CUDA/OpenCL code. The size of the set of target ar-

chitectures in any performance portability study is of course

dependent on perspectives and motivations; our set is chosen

to represent the current diversity in CPUs and GPUs, and to

represent potential future architectural developments.

In this study we make the following contributions:

• We present a broad reaching set of performance portabil-

ity results across five mini-apps running on up to twelve

hardware platforms. Each mini-app is implemented in up

to six different programming models, representing 360

different combinations of code, language and platform.

• We show a rigorous analysis of the portability of each

application using the Performance Portability Metric as

defined by Pennycook et al. [1].

• We discuss in depth the performance portability of the

OpenMP and Kokkos programming models with respect

to the performance achievable over a range of architec-

tures and applications. In this manner, we can measure

how performance portable an application may be given

the choice of programming model for the implementation.

A. Related Work

The authors of this paper have a long history in exam-

ining the performance portability of a range of codes. In

2013 they performed one of the first performance portability

studies, investigating the compute-bound molecular docking

code BUDE, using an optimised OpenCL implementation ini-

tially targetted at NVIDIA GPUs [3]. Extensive work enabled

this code to achieve similar percentages of peak floating-

point performance on other GPUs (from NVIDIA and AMD)

and on CPUs including Intel Xeon and Xeon Phi (Knights

Corner). To the best of our knowledge, this was the first

result to demonstrate successful performance portability across

different CPUs and GPUs. A similar approach was used

for the memory bandwidth bound codes D3Q9-BGK Lattice-

Boltzmann, ROTORSIM and CloverLeaf [4], where it was

shown that similar percentages of peak memory bandwidth

can be achieved across diverse hardware platforms.

The portability of programming models across a range of

architectures was explored in the BabelStream benchmark [5],

and we include the latest results in this paper. The performance

of a number of parallel programming models on GPUs was

explored using the TeaLeaf mini-app [6], showing that each

model can achieve similar performance.

Pennycook et al invented a metric to assess performance

portability, and it is this metric which we will use in our

study [1]. This original study applied the metric to a number of

different applications to demonstrate its use and effectiveness

at characterising performance portability. Only a single pro-

gramming model was used for each application of the metric;

in this study we will apply the metric across all our data, which

includes codes, architectures and programming models.

Sedova et al. expand this metric to consider architecture

specialisation of certain key routines of applications [7]. In

this study, we aim to use the same code base on all platforms,

but we do discuss two mini-apps which require some algo-

rithmic differences between different classes of architecture.

The metric of Pennycook also requires an efficiency metric,

and one such alternative is proposed by Yang et al based

on the Roofline model in order to apply the metric to an

optimisation strategy [8]. We favour the original application

and architectural efficiencies proposed by Pennycook et al for

this study as they provide the simplest rating across our wide

stable of codes.

We do not consider domain specific languages (DSLs) in

our study, although portability is a key motivation in their

design. DSLs do allow isolation of the application from the

changes in hardware and the performance of such approaches

is commonplace (e.g. [9], [10]). In this study, we use parallel

programming models in which a wide range of applications

may be written, and so exclude DSLs.

Many previous performance portability studies usually focus

on just a few applications, platforms and parallel programming

models (as clearly demonstrated by the topics of presentations

at a 2019 meeting on performance portability1). It is a key

contribution of the work presented in this paper that we

push this horizon significantly further, considering many more

applications, more platforms and more parallel programming

models simultaneously, in a consistent and rigorous manner.

As such, our analysis comments on the current state of

performance portability in the general sense.

II. SYSTEMATIC EVALUATION OF PERFORMANCE

PORTABILITY

Motivated by the previous work which demonstrated that

performance portability can be obtained, our goal here is to

initiate a wide-ranging evaluation of performance portability

across many codes, many programming languages and many

architectures. This will provide the community with useful

data, along with an example study showing how performance

portability can be evaluated in other contexts, for example

starting to include performance portability as a formal metric

during continuous integration, with a regression in perfor-

mance portability being treated the same way as a regression

in functionality or performance would be. Our hope is that this

work will also contribute to the fundamental understanding of

performance portability.

This systematic study of performance portability faced a

number of challenges. In particular, each architecture is often

hosted in its own system, distinct from any other system,

1https://doep3meeting2019.lbl.gov/agenda

and as such comes with differences in software environments,

such as the compilers and math libraries that were available.

Additionally, in order to explore the portability of program-

ming models, each application must be written in each model

of interest, significantly increasing the effort required ensure

consistency across those different implementations. To aid

others in the rigorous study of performance portability, and to

support reproducibility, we have created an open repository of

the scripts we used to generate our results, in order to describe

how we obtained each result, taking into account the choice of

compiler and compiler flags on each platform for each code2.

The definition of performance portability can be a con-

tentious issue. We recognise that there is no one correct

definition. Instead, in this paper we consider a code as

performance portable if it can achieve a similar fraction of

performance efficiency on a desired set of target architectures,

where performance efficiency is defined in [1]. Two aspects

of this definition require further clarification: firstly we ex-

pect that a good fraction of peak performance is obtained

(after all this is high performance computing); and secondly,

the range of target architectures should be wide enough to

capture current hardware requirements, while also anticipating

future architectural developments. The performance portability

metric introduced to the community by Pennycook et al is

well aligned to this definition [1]. The metric, PP, is quoted

below from their paper for use in our evaluation, where

e(a, p) captures the performance efficiency of application a

on platform p.

PP(a, p,H) =















|H|
∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise
(1)

The metric is defined as the harmonic mean of the performance

efficiency e(a, p) of application a on a given platform p

on a set of platforms H . Two methods of measuring the

performance efficiency are defined:

• The performance efficiency is measured as a percentage

of theoretical peak hardware achieved by the application

where it is possible to obtain appropriate performance

models. This method is known as architectural efficiency.

• The performance efficiency is measured as a percentage

of the best performance observed of that application

on a given platform, eliminating other factors such as

programming model, etc. This method is known as ap-

plication efficiency.

We use both definitions in our study as appropriate.

For this study, we have selected five mini-apps to represent

critical workloads on many of the largest supercomputers in

the world: BabelStream [5], CloverLeaf [4], TeaLeaf [11],

Neutral [12] and MiniFMM [13]. A short description of each

mini-app will be given in Section III. These mini-apps are

written in a number of programming models: OpenMP and

2https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

OpenACC, SYCL and Kokkos, OpenCL and CUDA. These

programming models represent different levels of abstraction

over the underlying hardware: low level, or close to the

metal expressions of parallelism (CUDA and OpenCL); loop-

level parallelism expressed through pragmas (OpenMP and

OpenACC); and higher-level abstractions expressed through

C++ lambdas (Kokkos and SYCL).

We run each application implemented in each program-

ming model on a wide range of target hardware platforms,

where possible. We have selected twelve hardware platforms,

sampling the latest CPUs from Intel, AMD, IBM, Marvell

and Ampere, four generations of NVIDIA GPUs, a relatively

new GPU from AMD, and the NEC SX-Aurora TSUBASA

vector processor. This selection includes the best in class

from each processor vendor available on the market at the

time of writing. Each processor demonstrates trade-offs in

the theoretical peak performance of floating-point operations

and main memory throughput. In order to asses the efficiency

of the application (so as to calculate PP), we require the

theoretical peak performance of each device. Details about the

processors are presented in Table I, along with the machine

balance (GFLOP/s / GWord/s) which represents the average

number of floating-point operations for every 64-bit word

of memory accessed [14]. This balance shows the number

of operations that can be performed for every word loaded

from memory. Please refer to the Reproducibility Appendix

for further details on the hosting systems for each processor.

III. RESULTS

In this section we present the raw results for each applica-

tion running in each programming model on each hardware

platform. The results are presented as heatmaps, where the

colouring signifies yellow is “better” and green is “worse” in a

consistent manner. Where throughput or PP is used as the met-

ric, higher numbers are coloured yellow, and for runtime the

lower numbers are coloured yellow, in both cases indicating

“better” results. Due to the current maturity of these models

it is not always possible to collect each combination of model

and platform, either due to lack of a robust implementation of

a compiler or runtime, or else simply that a platform is not

supported by the model or the vendor’s implementation of it

(such as CPUs in CUDA). We will detail missing results for

each mini-app in the following sections.

For each application, we calculate the performance portabil-

ity using the metric PP. A simple application of the portability

metric to our results would yield PP = 0 in the majority

of cases due to at least one combination of platform and

model unable to produce a result. This clearly highlights the

challenges in achieving a minimum level of portability of

applications across a diverse range of hardware.

Therefore, for each mini-app we show a graph of per-

formance portability calculated for a sequence of subsets of

architectures. We use application efficiency to calculate PP.

The graphs start with computing PP for all the architectures.

In order to prevent any preconceived bias to requiring support

for any one platform in our set, we use the following heuristic

TABLE I
PROCESSOR CONFIGURATIONS AND SYSTEM BALANCE

Architecture Sockets Cores Clock Speed GHz FP64 TFLOP/s Memory Bandwidth GB/s STREAM Balance

Skylake 2 28 2.1 3.76 256 117.5

KNL 1 64 1.3 2.66 490 43.4

Power 9 2 20 3.2 1.02 340 24

Naples 2 32 2.5 1.28 288 35.6

ThunderX2 2 32 2.5 1.28 288 35.6

Ampere 1 32 3.3 0.21 159 10.6

NEC Aurora 1 8 1.4 2.15 1,200 14.3

K20 1 13 0.71 1.18 208 45.4

P100 1 56 1.13 4.04 732 44.2

V100 1 80 1.37 7.01 900 62.3

Turing 1 68 1.25 0.37 616 4.8

Radeon VII 1 60 1.4 3.5 1,000 28

to remove one platform from each set in turn; the x-axis on

our figure shows the removed architecture from the previous

subset. Firstly we remove the architecture which has the most

missing results. In the case of a tie, we remove the platform

which results in the largest change in PP for all architectures,

calculated as a L2-norm.

The resultant graphs show PP for each programming model

for a given mini-app, and show how the performance porta-

bility changes over a range of target architectures. It is useful

to present some intuition as to interpretation at this stage:

• The further to the left a model has a non-zero PP result,

the more portable it is.

• The area under the curve is intuitively related to how

performance portable it is over the widest range of

architectures.

We will later apply the performance portability metric in

novel ways across the programming models in Section IV.

A. BabelStream

The BabelStream benchmark is a re-implementation of

the classic McCalpin STREAM benchmark in many paral-

lel programming models [5]. It also includes a dot-product

kernel, and employs best-practice implementations for each

model. BabelStream also captures commonplace programming

patterns which are not captured by STREAM, such as only

making the problem size available at runtime and allocating

memory on the heap, as opposed to the stack, where it is

subject to unrealistic compiler optimisation.

The sustained memory bandwidth as output by the applica-

tion is shown as a percentage of the theoretical peak memory

bandwidth in Figure 1. This is equivalent to the architectural

efficiency (as defined in Section II). For the peak numbers,

please refer to Table I.

BabelStream provides the greatest coverage of all the ap-

plications in our study; it should be noted that it is by far the

simplest of the applications but if results are viable here then

other main memory bound codes should (in theory) behave

similarly. However, there are still results which we were not

able to obtain and no one programming model is able to run

across all processors in our study. Only OpenMP is supported

on the NEC Aurora, and clearly CUDA is unsupported on

architectures not from NVIDIA. We were unable to obtain

OpenACC results on Arm platforms and on the K20m due

to compatibility with the glibc version on that system. We

were not able to collect OpenCL results on Power 9 and Arm

due to lack of a compiler. The AMD GPU OpenMP compiler

and Kokkos ROCm backend is still in development, and the

other missing models are unsupported on the Radeon VII.

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

NEC Aurora

K20

P100

V100

Turing

Radeon VII

80.2%

92.2%

72.8%

65.9%

85.3%

66.4%

81.3%

69.2%

75.5%

86.0%

85.7%

-

68.1%

62.1%

73.6%

62.7%

84.7%

57.3%

-

72.9%

76.1%

92.0%

90.0%

-

-

-

-

-

-

-

-

72.3%

75.4%

92.6%

90.2%

-

32.4%

90.7%

72.5%

-

-

-

-

-

75.3%

92.1%

90.1%

-

41.8%

58.4%

-

-

-

-

-

72.8%

75.3%

93.2%

89.9%

79.4%

Higher is better

Fig. 1. Percentage of peak memory bandwidth achieved for BabelStream

Figure 2 shows PP calculated using application efficiency for

decreasing subsets for each programming model. OpenMP is

the first model to appear, showing it has the greatest portability

running on all but one of the platforms with PP = 97.5%, and

maintains a similar result across all subsets. This says that for

the Triad kernel written in OpenMP 4.5 (using the target

directives as appropriate), we can expect to achieve a high

percentage of theoretical peak across the hardware in our set;

this is a fantastic example of where performance portability is

indeed achieved.

If we also remove the NEC Aurora, Kokkos runs on all other

platforms with PP = 89.3%, and similar to OpenMP remains

at this level. This again shows that in writing BabelStream in

Kokkos, we were able to achieve portable performance which

we would expect to be around 90% of the best seen on our

platforms; this highlights the small overhead of less than 10%

on average for the higher level abstraction Kokkos provides

over OpenMP and CUDA.

al
l (

|H
|=

12
)

-R
ad

eo
n

VII
(|H

|=
11

)

-N
EC

 A
ur

or
a

(|H
|=

10
)

-A
m

pe
re

 (|
H|=

9)

-T
hu

nd
er

X2
(|H

|=
8)

-N
ap

le
s
(|H

|=
7)

-P
ow

er
 9

 (|
H|=

6)

-K
20

 (|
H|=

5)

-K
NL

(|H
|=

4)

-S
ky

la
ke

 (|
H|=

3)
0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 P
o
rt

a
b
ili

ty

OpenMP
Kokkos
CUDA
OpenACC
OpenCL

Fig. 2. Performance Portability for BabelStream

Excluding all the non-Intel CPUs, we see OpenCL achieves

PP = 76.7% on the remaining platforms (Skylake, KNL, K20,

P100, V100 and Turing). Once CPU platforms are removed

entirely (leaving only the NVIDIA GPUs), we observe PP =
99.2% indicating that the performance of the Intel OpenCL

runtime on CPUs is holding back the achievable portable

performance (we previously observed this for architectures

with NUMA effects [5]); inspection of Figure 1 also indicates

this; however, the impact is clearer to identify using PP.

We observe that OpenACC achieves a similar PP to

OpenCL, and indeed suffers similar NUMA effects on

CPUs [5]. Note that the heuristic we use to remove platforms

causes the K20m to remain in the subset of architectures

beyond the Power 9 (a supported OpenACC platform); we

had two missing models on Power 9 but only one for K20.

The subset of platforms at this stage is however rather limited

compared to our initial set, and so the cross-vendor support of

such a model is somewhat lacking; again we observe this in

Figure 2 with the first non-zero result being far to the right.

In summary, the BabelStream benchmark is simple enough

for us to showcase the best achievable coverage of the

programming models across our diverse set of architectures.

Despite this, many results were unobtainable due to lack of

support for all programming models on all platforms. The

performance portability metric shows that across the largest

subsets of architectures, both OpenMP and Kokkos achieve

close to the best possible performance across the most archi-

tectures, demonstrating that high performance of 90− 98% of

the best observed is portable.

B. TeaLeaf

The TeaLeaf mini-app solves the heat diffusion equation

on a 2D structured grid using a Conjugate Gradient linear

solver [11]. The code is main memory bandwidth bound on

each node, and at scale becomes communication bound by

the reductions in dot-product operations. As such in this study

it should demonstrate similar performance characteristics to

BabelStream.

The runtimes of TeaLeaf across the combinations of model

and architecture are shown in Figure 3. One can see that the

NEC Aurora which offers the highest memory bandwidth of

all platforms in our study yields the fastest runtime. Aside

from the issues already identified for BabelStream, we could

not collect OpenACC results on x86 CPUs due to runtime

segmentation faults in access to members of Fortran derived

types with PGI 18.10.

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

NEC Aurora

K20

P100

V100

Turing

317

191

254

348

314

793

79.1

1605

190

281

962

370

885

393

372

439

892

-

712

187

127

181

-

-

-

-

-

-

-

445

122

81.0

116

-

-

341

-

-

-

-

629

153

103

139

Lower is better

Fig. 3. Runtime (s) for the TeaLeaf mini-app

al
l (

|H
|=

11
)

-N
EC

 A
ur

or
a

(|H
|=

10
)

-A
m

pe
re

 (|
H|=

9)

-T
hu

nd
er

X2
(|H

|=
8)

-N
ap

le
s
(|H

|=
7)

-K
NL

(|H
|=

6)

-S
ky

la
ke

 (|
H|=

5)

-P
ow

er
 9

 (|
H|=

4)
0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 P
o
rt

a
b
ili

ty

OpenMP
Kokkos
CUDA
OpenACC

Fig. 4. Performance Portability for TeaLeaf

We will use application efficiency to calculate PP, with the

results shown in Figure 4. In comparison with the equivalent

graph for BabelStream in Figure 2, it is clear that PP is

lower here for all programming models. OpenMP achieves

PP = 45.9% for all platforms here (excluding Radeon VII).

The final data point shown is for just NVIDIA GPU platforms;

observe that the PP for OpenMP reduces as the subsets

become dominated by these GPUs. We see in Figure 3 that

the OpenMP on GPUs results have poor application efficiency

with the exception of P100. Indeed, the P100 is the only

platform where the Cray compiler was available, with the other

results collected using the Clang compiler for which OpenMP

target is still in development and performance is expected

to improve over time.

For the Kokkos implementation of TeaLeaf, we see that

PP = 57.4% for the largest supported subset and maintains a

similar level for subsequent subsets. We see an improvement

when the KNL is removed, and note that this result has an

efficiency of 22% which we believe is due to vectorisation

issues of the loops by the Intel compiler on this processor. On

the GPU dominant platform subsets, we see Kokkos achieves

a greater performance portability than OpenMP (PP = 63.8%
and 23.6% respectively for the final subset). Kokkos uses

the low level CUDA (which performs well here) rather than

OpenMP to target NVIDIA GPUs and so can insulate the

developer from the observed performance discrepancies.

For OpenACC on the NVIDIA and Power platforms alone,

PP = 77.1% and |H| = 5; however, this is a narrow set of

platforms and so we cannot draw many conclusions.

In summary, the performance portability of a larger ap-

plication like TeaLeaf begins to show more discrepancies in

the attainable performance. OpenMP and Kokkos again do

well across the largest platform subsets, however OpenMP is

limited today by the maturity of compilers for GPUs. The

metric and our presentation in the figures highlights where

performance issues in the implementation of the model occur

due to immature compilers or performance bugs, and the

breadth of the results here helps discover these cases.

C. CloverLeaf

The 2D structured grid Lagrandian-Eulerian hydrodynamics

mini-app, CloverLeaf, has been well studied and forms part

of the Mantevo suite of benchmarks [4], [15]. The kernels

are primarily stencil updates or element-wise updates, and

so are typically main memory bandwidth bound. Figure 5

shows the runtime of CloverLeaf. We have refrained from

colouring the K20 OpenMP result as it is very poor; as we

found with TeaLeaf, the Clang compiler is currently lacking

in comparison with the Cray compiler for OpenMP target.

Note too that the K20 GPU is rather old, and we expect that

little tuning of the current Clang compiler has been performed

for this architecture. Additionally, we found that the OpenMP

target implementation of CloverLeaf did not work correctly

on the V100 and Turing GPUs, however we believe these are

issues with the mini-app rather than the model and plan to

investigate this further.

The NEC Aurora result presented here removes the file I/O,

which had an enormous overhead under the reverse offload

environment. This I/O has negligible time on other the other

platforms. Note too that with some other minor changes to

the source to ensure the immature NEC compiler vectorises

correctly, the runtime can improve from 323s to 188s. We do

not use this improved result in our analysis, however note that

the compilers for other platforms apply these automatically.

We plot PP for decreasing subsets in Figure 6. We find that

Kokkos provides the best platform coverage here, running on

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

NEC Aurora

K20

P100

V100

Turing

Radeon VII

376

250

376

327

457

1309

323

226

-

-

-

463

666

544

395

772

1452

-

1297

163

108

211

-

-

-

-

-

-

-

-

592

139

88.8

213

-

877

698

768

337

-

-

-

-

133

90.1

199

-

-

-

-

-

-

-

-

572

149

97.9

213

106

9737

Lower is better

Fig. 5. Runtime (s) for the CloverLeaf mini-app

al
l (

|H
|=

12
)

-R
ad

eo
n

VII
(|H

|=
11

)

-N
EC

 A
ur

or
a

(|H
|=

10
)

-A
m

pe
re

 (|
H|=

9)

-T
hu

nd
er

X2
(|H

|=
8)

-N
ap

le
s
(|H

|=
7)

-P
ow

er
 9

 (|
H|=

6)

-K
NL

(|H
|=

5)

-S
ky

la
ke

 (|
H|=

4)

-T
ur

in
g

(|H
|=

3)

-V
10

0
(|H

|=
2)

-K
20

 (|
H|=

1)
0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 P
o
rt

a
b
ili

ty

OpenMP
Kokkos
CUDA
OpenACC
OpenCL

Fig. 6. Performance Portability for CloverLeaf

all platforms except the Radeon VII and the NEC Aurora and

demonstrates PP = 66.2% on the latest set of platforms. Note

that this is a similar percentage to that achieved for Kokkos

TeaLeaf; we will discuss such matters further in Section IV.

For CloverLeaf, the PP of the Kokkos implementation remains

relatively stable across the subsets too.

OpenMP is noticeably absent, and this is due to our issues

with collecting results on NVIDIA GPUs as detailed above.

Our heuristic for removing least supported platforms removes

the CPU platforms first which have two missing results before

removing the GPUs where we could not obtain OpenMP

results. It is difficult to determine an appropriate ordering for

subsets of our wide range of platforms in a fair, systematic and

robust way. On the nine platforms where we have results for

OpenMP, PP = 35.0%; this is somewhat low due to the poor

K20 result; excluding this substantially raises PP to 91.9%
over eight platforms.

Figure 5 shows that on NVIDIA GPUs, CUDA and OpenCL

achieve similar performance and this is also seen in Figure 6

where the PP for both models is similar on this subset.

As with TeaLeaf, we find that the platform support for Ope-

nACC limits the portability and so it is difficult to accurately

comment on performance portability.

In summary, our implementations of CloverLeaf suffer from

a lack of portability due in part to issues with platform

support or bugs in the implementation; the maintenance of

even mini-apps in multiple programming models is somewhat

burdensome and CloverLeaf is the oldest application in this

study. The Kokkos implementation provides the best coverage,

running on ten of our twelve platforms, and does demonstrate

reasonable performance portability too. On the eight platforms

supported by OpenMP with mature compiler support, OpenMP

achieves the best PP, however this is not displayed in Figure 6

due to lack of robust GPU support in comparison with the

other programming models.

D. Neutral

Neutral is a Monte Carlo neutral particle transport mini-

app, developed to explore the properties and performance

of on-node parallelism in this algorithm [12]. One finding

of this work was that the most optimal data layout and

parallel scheme differed on CPU and GPU architectures, with

the former requiring an array-of-structures (AoS) and “Over

Particles” scheme, and the latter requiring a structure-of-arrays

(SoA) and “Over Events” scheme. The mini-app has versions

of each kernel implemented with both approaches, and so we

follow this convention in our results. Note that the OpenACC

and OpenCL versions are missing the AoS implementation at

this time, and so we omit the CPU results. The aforementioned

study also demonstrated that Neutral was often bound by the

latency of memory access, and the architectures which are

latency tolerant gave the best performance. Unfortunately, the

OpenMP target implementation causes internal compiler

errors with the Cray 8.6 compiler and the application crashes

immediately with the latest version of the Clang compiler;

therefore we cannot present results here. The runtimes of

Neutral are shown in Figure 7.

OpenMP Kokkos CUDA OpenACC OpenCL

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

NEC Aurora

K20

P100

V100

Turing

Radeon VII

8.0

23.8

8.3

14.5

12.6

37.4

-

-

-

-

-

13.0

28.1

11.1

16.6

13.5

43.3

-

52.7

9.5

6.2

9.3

-

-

-

-

-

-

-

-

41.6

4.4

3.1

6.9

-

-

-

-

-

-

-

-

92.5

8.9

3.3

8.7

-

-

-

-

-

-

-

-

29.7

3.9

3.3

6.7

3.7

2784

Lower is better

Fig. 7. Runtime (s) for Neutral mini-app

al
l (

|H
|=

12
)

-R
ad

eo
n

VII
(|H

|=
11

)

-N
EC

 A
ur

or
a

(|H
|=

10
)

-A
m

pe
re

 (|
H|=

9)

-T
hu

nd
er

X2
(|H

|=
8)

-N
ap

le
s
(|H

|=
7)

-P
ow

er
 9

 (|
H|=

6)

-K
NL

(|H
|=

5)

-S
ky

la
ke

 (|
H|=

4)

-T
ur

in
g

(|H
|=

3)

-V
10

0
(|H

|=
2)

-P
10

0
(|H

|=
1)

0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 P
o
rt

a
b
ili

ty

OpenMP
Kokkos
CUDA
OpenACC
OpenCL

Fig. 8. Performance Portability for Neutral

Our PP calculations are shown in Figure 8. As with

CloverLeaf, Kokkos achieved the best coverage running on

ten of our twelve platforms with a similar metric where

PP = 66.0%. On removing the V100 platform, the performance

portability improves, and as seen in Figure 7 this result was

indeed rather poor — a similar observation was made for KNL

running the Kokkos implementation of TeaLeaf.

The algorithm for selecting platform subsets always contains

at least one GPU and as we do not yet have OpenMP results

for these devices, OpenMP remains with PP = 0 for all subsets.

On CPU architectures, OpenMP gets the best performance and

the other base case for the PP metric is observed: PP = 100%.

On NVIDIA GPUs alone, we see that OpenCL gives the best

performance; indeed the results are better than CUDA due to

low efficiency on the K20. The PP reflects this, showing the

CUDA line below that of OpenCL. OpenCL achieves the best

performance on the NVIDIA GPUs (excepting CUDA on the

V100) and this renders PP = 98.4%. We can see that on this

subset, the OpenACC implementation attains PP = 51.5%,

which is similar to that demonstrated by Kokkos.

In summary, Neutral shows the complexity involved in

measuring performance portability where different algorithms

are required to achieve good performance on a given class

of platforms. Each programming model is able to implement

the required changes, however we do not have complete

coverage of implementations for our chosen set of models

and platforms. As such, our choice of subsets becomes much

more limited in general. Kokkos here has the best coverage of

platforms, and shows similar levels of performance portability

to other other mini-apps in this study.

E. MiniFMM

MiniFMM is a fast multipole mini-app for N-body ap-

plications, using a linear time tree-based approximation for

computing the attractive forces between the bodies rather than

the naive quadratic time complexity algorithm [13]. The mini-

app is unique in our study in that it uses complex numbers

and is naturally expressible as a recursive tree of tasks. It

also is much more compute bound, uses single-precision FP32

complex numbers, and has a higher FLOP/byte ratio than the

other mini-apps in this study. Also included is an iterative

version which negates the need for a sophisticated device-

side tasking model, by pre-computing the dependency tree and

traversing it in parallel. Note that tasks are still used on the

host side however; the NEC OpenMP runtime does not support

tasks and so we were able to run the mini-app there at all. The

iterative version was used for implementing the method on

the GPU as no robust and efficient task-parallel programming

model exists for entirely on-GPU execution. The runtimes are

presented in Figure 9. Aside from the issues already identified,

we found that the OpenACC implementation crashed quickly

on CPU platforms and so we do not have these results.

OpenMP Kokkos CUDA OpenACC

Skylake

KNL

Power 9

Naples

ThunderX2

Ampere

K20

P100

V100

Turing

8.7

11.4

23.6

13.1

21.9

116

56.7

5.0

3.1

3.2

12.9

20.2

38.5

20.5

30.6

127

28.2

4.7

4.4

4.2

-

-

-

-

-

-

17.3

3.5

2.5

2.3

-

-

-

-

-

-

-

4.3

3.8

3.2

Lower is better

Fig. 9. Runtime (s) for MiniFMM mini-app

al
l (

|H
|=

10
)

-A
m

pe
re

 (|
H|=

9)

-T
hu

nd
er

X2
(|H

|=
8)

-N
ap

le
s
(|H

|=
7)

-P
ow

er
 9

 (|
H|=

6)

-K
NL

(|H
|=

5)

-S
ky

la
ke

 (|
H|=

4)

-K
20

 (|
H|=

3)
0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 P
o
rt

a
b
ili

ty

OpenMP
Kokkos
CUDA
OpenACC

Fig. 10. Performance Portability for MiniFMM

We consider the PP for MiniFMM in Figure 10. Both

OpenMP and Kokkos show consistent levels of performance

portability: the line is relatively flat across the subsets and

consistent around 70%. The PP for OpenMP is in general

around 10% higher than that for Kokkos. Again we notice

that one architecture, in this case K20, has an inefficient

implementation and reduces the metric until it is removed from

the platform list. Indeed, we only achieve 20% application

efficiency here due to the use of the development LLVM

compiler which is relatively untested on K20.

We must note that we used the Clang builtin for leveraging

shared memory on the GPUs, which is available via OpenMP

5.0 however is not implemented in the compiler yet. The

Kokkos implementation used this GPU version with explicit

shared memory allocation and was run without modification

on the CPU, a platform with no programmable shared memory.

As the PP shows, good efficiency is still achieved with

this Kokkos implementation assisting in applying memory

abstractions appropriately to various target architectures.

For this mini-app, we find that both Kokkos and OpenMP

show a high level of performance portability across the range

of architectures, with PP scores higher than many of the

other mini-apps in the study. Kokkos shows a more consistent

level of performance across all the architectures than OpenMP,

however the performance is lower than that which OpenMP

achieves in most cases.

IV. PERFORMANCE PORTABILITY OF OPENMP AND

KOKKOS

The analysis in Section III considered the performance

portability of each mini-app in turn. In this section, we collate

the performance portability metric PP results for a consistent

subset of platforms across each mini-app. We focus on the

OpenMP and Kokkos programming models as these provided

the most portability across the most platforms for each mini-

app; recall that where platforms are unsupported PP = 0
which is of little interest. They also demonstrate two different

paradigms in programming model abstractions: the directive

based OpenMP and the C++ abstraction framework (parallel

execution of lambda functions) Kokkos. We take the following

three subsets of platforms:

• CPUs: Skylake, KNL, Power 9, Naples, ThunderX2.

• GPUs: P100, V100, Turing.

• All: the two categories above.

We have excluded the less mature and least well covered plat-

forms (NEC SX-Aurora, Ampere and AMD Radeon VII). We

have also removed the NVIDIA K20 GPU which is currently

being phased out of the large systems in production today

(such as OLCF’s Titan). These excluded platforms would dis-

tort the calculation of portability due to reasons of immaturity

in the software stack and tell us little about the portability of

our mini-app implementations in the programming models.

We calculate PP for OpenMP and Kokkos across these three

sets of architectures for each mini-app, and present the results

in Figure 11. Application efficiency was used for all mini-apps

to ensure the numerical values are directly comparable across

mini-apps.

We can examine trends along each row of this figure by

considering how each model fares on a given set of platforms

BabelStreamTeaLeaf CloverLeaf Neutral MiniFMM

OpenMP CPU

Kokkos CPU

OpenMP GPU

Kokkos GPU

OpenMP all

Kokkos all

98.4%

83.0%

95.5%

99.5%

97.3%

88.5%

100.0%

49.8%

22.5%

64.3%

43.6%

54.4%

100.0%

60.7%

0.0%

85.7%

0.0%

68.2%

100.0%

77.6%

0.0%

51.1%

0.0%

65.0%

100.0%

66.1%

0.0%

60.4%

0.0%

63.9%

Mean Std. Dev.

99.7 0.6

67.5 11.9

23.6 37.0

72.2 17.7

28.2 38.5

68.0 11.2

Higher is better

Fig. 11. Performance portability of OpenMP and Kokkos

for different applications. On CPU platforms, OpenMP gets

the best performance with PP scores at (or very close to)

100%. For BabelStream, OpenMP does not get the highest

performance on Naples (OpenACC) and Power 9 (Kokkos),

however the performance different is very slight. Kokkos on

CPU platforms does show some overhead, with the expec-

tation that performance is reduced by 17–50%. One would

expect some overhead, as the Kokkos abstraction is itself

implemented using OpenMP.

On the GPU platforms, the support for a robust OpenMP

offload across all platforms in lacking, and so renders PP = 0
in some cases where one platform was unable to correctly

produce a result. Kokkos on GPU architectures on the other

hand does well, again with overheads of between 0.5–49%,

and around 14–49% excluding the BabelStream result. Note

we only consider GPUs from one vendor, as unfortunately we

were unable to collect sufficient results from other vendors.

Considering the “all” subset of architectures encompassing

both CPUs and GPUs, the performance portability metric

shows that the lack of widespread support for OpenMP on

GPUs limits the portability of OpenMP as of today. These

results show that where support is in place, the TeaLeaf mini-

app achieved on average 45% application efficiency. Kokkos

fares better thanks to the GPU support, and the final row of

Figure 11 shows that performance portability is possible.

Figure 11 also shows the average (mean) and standard

deviation of the performance portability metric results. As

shown, for the Kokkos results on all platforms considered in

the section, we see see PP = 68%, and so one would expect

that for an application written in Kokkos we would expect

to achieve within 32% of the “best” performance for a given

platform. The standard deviation here is also fairly low at 11%,

indicating that one would expect results to differ from the

mean by only this much, leading us to expect that on average

Kokkos should achieve 57–79% of the best performance.

Indeed, this comes with no source changes at all, whereas

OpenMP 4.5 requires different directives for CPU and GPU;

the meta-directives in OpenMP 5.0 look like a very promising

solution for this.

V. PRODUCTIVITY

An important part of the performance portability picture is

the productivity of writing and maintaining applications. As

mentioned in Section II, we required implementations of each

of our mini-apps in each programming model used in this

study. This results in lots of code to maintain in a mixture of

Fortran, C and C++ as appropriate for each model.

The lines of code for each implementation of each mini-

app, normalised to the smallest implementation for that code

is shown in Figure 12 to give some indication for productivity.

We used the simple UNIX tool wc -l to count all lines of the

source, including comments which form an important part of

the mini-apps. For CloverLeaf we only counted Fortran files

(the implementation also include C kernels). Where the mini-

app had multiple implementations, we selected only the source

files required for each programming model in turn (including

drivers/infrastructure each time). The figure highlights the

verbosity of some of the low level models (such as OpenCL

and CUDA). We also see that the original reference versions

of CloverLeaf and TeaLeaf are rather long in comparison to

the more recent ports to other models. Using lines of code

is often a crude metric (as surveyed by Harrell et al [16]),

and there are often more sophisticated methods, such as that

recently proposed by Pennycook [17].

These mini-apps have been developed over a period of

many years and as such we do not have raw data relating to

productivity collected during the development of each mini-

app (using a process such as one suggested by Harrell et

al [18]). For want of this however, in our experience, it has

typically taken about two weeks to port an application from

any one model to another. This includes language translation,

bug fixing, etc. As such, the verbosity of the language,

represented in lines of code, does not capture the similar levels

of effort to program in any of these models. The time to

express a single parallel loop (concisely in a C++ abstraction,

or else a separately compiled kernel like in OpenCL) is greatly

amortised after the first is written, as the code can be copied

and altered for the other loops saving a great deal of time.

The collection of the results for this study alone is worthy

of mention of productivity. Given our choice of 12 platforms,

5 programming models and 5 mini-apps, there were up to 300

individual runtimes to collect for inclusion in this study. We

have left out some results as not all are valid combinations;

this in and of itself is an important observation. The majority

of platforms are configured differently, with different software

and programming environments, and so therefore required

different paths for the various compilers, runtimes and libraries

to be configured correctly.

To assist us, we developed a set of scripts which we

make public on GitHub 3. These scripts are structured in a

way which allows us to share with the community how our

codes were built and run on each of the systems required for

this study. In this way we hope that the labour required to

reproduce our results and expanding our efforts to include

more codes and models is minimal.

3https://github.com/UoB-HPC/benchmarks/tree/doe-p3-2019

BabelStream TeaLeaf CloverLeaf Neutral MiniFMM

1

1.2

1.4

1.6

1.8

2

2.2
1

1
.8
8

1
.2
7

1
.0
8

1

1
.3
6

1
.0
3

1
.7

1
.1
9

1.
7
6

1
.0
8

1 1

1.
2
7

1.
6
6

1.
0
8

1 1

1.
2
4

1.
6
6

1.
1

1.
0
4 1.
1
3 1.
2

1
.8

1.
6
8 1.

8

1.
6

1

1
.8
4

2.
2

1
.6

1
.4
5

L
O

C
n

o
rm

al
is

ed
to

sm
al

le
st

OpenMP OpenMP Target Kokkos CPU Kokkos GPU OpenACC CUDA OpenCL

Fig. 12. Normalised lines of code for each implementation of each mini-app

VI. CONCLUSION

This paper represents the first broad study into performance

portability of different applications across a diverse range

of processors and programming models. The performance

portability metric, originally proposed by Pennycook et al [1],

was used to rigorously analyse the performance data and

provide empirical evidence for how performance portable an

application may be. A key part of our work was to analyse the

performance portability of a range of applications written in

OpenMP and Kokkos as well as a range of architectures. Our

results show that as of today, it is possible to achieve perfor-

mance portability in some cases, however in other instances

we see quite variable results. Some programming models may

do well on some platforms but perform poorly on others. Often

this is a result of the compiler producing large differences in

runtime, particularly in the case of OpenMP target. Both

Kokkos and OpenMP do well in coverage of platforms to

provide at least portability. The non-open and non-standard

programming models, such as OpenACC, worked only on a

very limited set of platforms.

We saw that Kokkos does well in allowing applications to

achieve portable performance across the greatest range of both

applications and architectures. The definition of performance

portability presented in Section I asks for 20% of best per-

formance; we found that Kokkos fared best and got close to

our goal, achieving within 32% of the best performance on

average.

Our results here, combined with our previous work de-

scribed in Section I-A, show that a number of lessons can be

learnt in how best to approach writing a performance portable

code:

• Use open (standard) programming models supported by

multiple vendors across multiple hardware platforms.

• Expose maximal parallelism at all levels of the algorithm

and application, and thus allowing the programming

model to map the work to appropriate hardware resources.

• Avoid over-optimising for any one platform, and develop

and improve codes on multiple platforms simultaneously

so as to demand portable performance.

• Although not discussed in this study, multi-objective

auto-tuning can help find suitable parameters in a flexible

code base to achieve good performance on all plat-

forms [19].

Such techniques will allows us as a community to improve

on the current state of performance portability. It is important

to mandate performance portability when developing appli-

cations, and require that a minimum level of performance

portability is maintained. This paper addressed the systematic

measurement performance portability, and demonstrates a way

to quantify the performance portability of a suite of codes.

This study will form the basis of our future work in this area,

where we plan to increase our coverage by including additional

mini-apps in this study from our partners. Additionally, when

new architectures become available, such as the Arm-based

Fujitsu A64FX and AMD Rome CPUs, we hope to add such

results to our existing analysis. Also, the development of

open standard programming models, such as OpenMP 5.0

and SYCL, provide new opportunities for developing portable

codes. As the community continues to develop ways to analyse

programmer productivity, in particular with an existing source

code, we hope to apply such techniques to our performance

portability study in the future.

ACKNOWLEDGMENT

Many thanks to Matt Martineau (NVIDIA) for his as-

sistance with this study. This work used the Isambard UK

National Tier-2 HPC Service (http://gw4.ac.uk/isambard/) op-

erated by GW4 and the UK Met Office, and funded by

EPSRC (EP/P020224/1). This work was also part funded

by the EPSRC ASiMoV project (EP/S005072/1). Access to

the Cray XC50 supercomputer ‘Swan’ was kindly provided

through Cray Inc.’s Marketing Partner Network. Thanks extend

to AWE for their financial support. This work was carried

out using the computational facilities of the Advanced Com-

puting Research Centre (ACRC), University of Bristol —

http://www.bristol.ac.uk/acrc/. Many thanks to Chris Edsall

from the ACRC at Bristol University for providing access to

AMD Naples on the Oracle Cloud.

REFERENCES

[1] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A Metric for Performance
Portability,” in Programming Models, Benchmarking and Simulation

(PMBS) workshop at SC, 2016, pp. 1–7.
[2] E. Strohmaier, H. Simon, J. Dongarra, and M. Meuer, “Top 500

- November 2018,” http://www.top500.org, 2018. [Online]. Available:
www.top500.org

[3] S. McIntosh-Smith, J. Price, R. B. Sessions, and A. A. Ibarra,
“High performance in silico virtual drug screening on many-core
processors,” The International Journal of High Performance Computing

Applications, vol. 29, no. 2, pp. 119–134, 2015, pMID: 25972727.
[Online]. Available: https://doi.org/10.1177/1094342014528252

[4] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price,
“On the Performance Portability of Structured Grid Codes
on Many-Core Computer Architectures,” in Supercomputing,
ser. Lecture Notes in Computer Science, J. M. Kunkel,
T. Ludwig, and H. W. Meuer, Eds. Cham: Springer
International Publishing, 2014, vol. 8488, pp. 53–75. [Online].
Available: http://link.springer.com/10.1007/978-3-319-07518-1http://
link.springer.com/10.1007/978-3-319-07518-1{\ }4

[5] T. Deakin, J. Price, M. Martineau, and S. McIntosh Smith, “Evaluating
attainable memory bandwidth of parallel programming models via
BabelStream,” International Journal of Computational Science and

Engineering, vol. 17, no. 3, pp. 247–262, 2018. [Online]. Available:
http://www.inderscience.com/link.php?id=10011352

[6] M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Assessing the
performance portability of modern parallel programming models using
TeaLeaf,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 15, p. e4117, aug 2017. [Online]. Available: http:
//doi.wiley.com/10.1002/cpe.4117

[7] A. Sedova, J. D. Eblen, R. Budiardja, A. Tharrington, and J. C. Smith,
“High-Performance Molecular Dynamics Simulation for Biological and
Materials Sciences: Challenges of Performance Portability,” in 2018

IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC). IEEE, nov 2018, pp. 1–13. [Online].
Available: https://ieeexplore.ieee.org/document/8639943/

[8] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo,
B. Friesen, B. Cook, D. Doerfler, L. Oliker, J. Deslippe, and
S. Williams, “An Empirical Roofline Methodology for Quantitatively
Assessing Performance Portability,” in 2018 IEEE/ACM International

Workshop on Performance, Portability and Productivity in HPC

(P3HPC). IEEE, nov 2018, pp. 14–23. [Online]. Available: https:
//ieeexplore.ieee.org/document/8639946/

[9] T. Zhao, S. Williams, M. Hall, and H. Johansen, “Delivering
Performance-Portable Stencil Computations on CPUs and GPUs Using
Bricks,” in 2018 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC). IEEE, nov 2018, pp. 59–
70. [Online]. Available: https://ieeexplore.ieee.org/document/8639931/

[10] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J.
Kelly, “OP2: An active library framework for solving unstructured mesh-
based applications on multi-core and many-core architectures,” 2012

Innovative Parallel Computing, InPar 2012, no. 2, 2012.
[11] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. Gaudin,

P. Garrett, W. Liu, R. Smedley-Stevenson, and D. Beckingsale, “TeaLeaf:
A Mini-Application to Enable Design-Space Explorations for Iterative
Sparse Linear Solvers,” in 2017 IEEE International Conference on

Cluster Computing (CLUSTER). IEEE, sep 2017, pp. 842–849.
[Online]. Available: http://ieeexplore.ieee.org/document/8049027/

[12] M. Martineau and S. McIntosh-Smith, “Exploring On-Node Parallelism
with Neutral, a Monte Carlo Neutral Particle Transport Mini-App,”
in 2017 IEEE International Conference on Cluster Computing

(CLUSTER), vol. 2017-Septe. IEEE, sep 2017, pp. 498–508. [Online].
Available: http://ieeexplore.ieee.org/document/8048962/

[13] P. Atkinson and S. McIntosh-Smith, “On the performance of parallel
tasking runtimes for an irregular fast multipole method application,”
in Scaling OpenMP for Exascale Performance and Portability, B. R.
de Supinski, S. L. Olivier, C. Terboven, B. M. Chapman, and M. S.
Müller, Eds. Cham: Springer International Publishing, 2017, pp. 92–
106.

[14] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical

Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25,
dec 1995.

[15] M. a. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia

National . . . , no. September, pp. 1–38, 2009. [Online]. Available:
http://207.211.63.18/MantevoOverview.pdf

[16] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall,
D. Jacobsen, D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, and
R. Robey, “Effective Performance Portability,” in 2018 IEEE/ACM

International Workshop on Performance, Portability and Productivity

in HPC (P3HPC). IEEE, nov 2018, pp. 24–36. [Online]. Available:
https://ieeexplore.ieee.org/document/8639933/

[17] J. Pennycook, J. Sewall, and D. Jacobsen, “Quantifying productiv-
ity/maintenance cost with code base investigator,” Presentation at De-
parment of Energy Performance Portability and Productivity Meeting,
April 2019.

[18] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen,
D. N. Asanza, A. Hsu, H. C. Cabada, H. Kim, and R. Robey, “Towards
effective productivity: The case for in-situ tracking of performance porta-
bility development,” Presentation at Deparment of Energy Performance
Portability and Productivity Meeting, April 2019.

[19] J. Price and S. McIntosh-Smith, “Exploiting auto-tuning to analyze
and improve performance portability on many-core architectures,” in
High Performance Computing, J. M. Kunkel, R. Yokota, M. Taufer, and
J. Shalf, Eds. Cham: Springer International Publishing, 2017, pp. 538–
556.

APPENDIX A

ARTIFACT DESCRIPTION APPENDIX: PERFORMANCE

PORTABILITY ACROSS DIVERSE COMPUTER

ARCHITECTURES

A. Abstract

Capturing the performance of implementations of five codes

in up to five parallel programming models across twelve plat-

forms required a systematic and reproducible approach. Many

different programming environments, systems and compilers

were required in order to collect these results. We describe

here the scripts which we developed to build and run each

code in a consistent manner across platforms. The scripts were

made flexible to allow us to test multiple compilers where a

choice was available.

B. Description

1) Check-list (artifact meta information):

• Program: BabelStream, TeaLeaf, CloverLeaf, Neutral,
MiniFMM.

• Compilation: Variety of compilers, detailed in scripts.
• Data set: Input files detailed in scripts.
• Run-time environment: We used a wide range of compilers

(and version numbers) for this study: Cray, GCC, LLVM, XL
and PGI. We used the default environment (OS, etc) on each
system.

• Hardware: We run on a number of systems in order to have
large coverage of platforms. The Cray XC50 supercomputer
‘Swan’ was used for the Intel Intel Xeon Platinum 8176 (Sky-
lake) and Intel Xeon Phi 7210 (Knights Landing) processors.
The University of Bristol HPC ‘Zoo‘ was hosted the Ampere
Arm CPU, the NVIDIA GTX 2080 Ti (Turing) GPU, and the
AMD Radeon VII GPU. The Oracle Cloud was used for access
to AMD Naples. We used two of the University of Bristol’s
Advanced Computing Resource Centre’s systems: BlueCrystal
Phase 3 for access to the NVIDIA K20m (Tesla) GPU, and the
BlueGem system for access to the NVIDIA V100 (Volta) GPU
with an Intel x86 host. We used GW4’s ‘Isambard’ Cray XC-
50 system for access to Marvell ThunderX2 Arm processors,
and ‘Isambard Phase 1’ (a Cray CS400) for access to NVIDIA
P100 (Pascal) GPUs and IBM Power 9 CPUs with NVIDIA
V100 (Volta) GPUs.

• Execution: Detailed in scripts.
• Experiment workflow: Codes are built and run via a set of

scripts written in a common format.
• Publicly available?: Yes

2) How software can be obtained (if available): The scripts

which download, build and run the software on each sys-

tem are available on GitHub: https://github.com/UoB-HPC/

benchmarks/tree/doe-p3-2019. We call this the benchmarks

repository. The source code for the mini-apps themselves are

all available on GitHub. The location of these may be viewed

in the corresponding fetch.sh script in the benchmarks

repository.

3) Hardware dependencies: The mini-apps used in this

study are designed to run on different architectures, and

in general there is a version of each code which runs on

the hardware listed in the checklist above. Please see the

main body of the paper (detailed throughout Section III) for

currently unsupported or unavailable combinations.

4) Software dependencies: Each system has a unique set

of compilers and programming environments. We installed

additional compilers as required. The Kokkos versions were

built using Kokkos 2.8.00 compiled on each system. The

combinations of system and compiler is detailed in the options

available for each benchmark.sh script in our repository.

In total, we used this collection of compilers in this study:

• GCC: 4.8, 4.9, 6.1, 7.2, 7.3, 8.1, 8.2, 9.1.

• Intel: 2018, 2019.

• XL: 16.1.

• PGI: 18.4, 18.10, 19.4.

• CCE: 8.7.

• LLVM: trunk.

CloverLeaf and TeaLeaf both require MPI implementations,

however we only ran with a single MPI rank and so the choice

of MPI library is unimportant. We used a combination of

Cray’s MPICH and OpenMPI as appropriate depending on

what was available on the system.

5) Datasets: We detail the input deck or problem param-

eters for each mini-app. Each input deck is a standard one

which ships with the source code of the mini-app.

• BabelStream: The default problem of 225 FP64 elements

per array.

• TeaLeaf: tea_bm5.in.

• CloverLeaf: clover_bm16.in.

• Neutral: csp.params

• MiniFMM: large.in

C. Installation

On each system, we clone the benchmark repository:

git clone -b doe-p3-2019 \

https://github.com/UoB-HPC/benchmarks

cd benchmarks

D. Experiment workflow

The scripts are designed to download, build and run the

mini-app, setting the correct paths so it can be build and run

against the correct software versions.

Change to the mini-app and platform/system subdirectory,

for example:

cd babelstream/tx2-isambard

Then to download and build the code with the default

compiler and programming model, execute:

./benchmark.sh build

A different choice of compiler and model can be supplied to

this command. To build the Kokkos version of BabelStream

with GCC, one might execute:

./benchmark.sh build gcc-8.2 kokkos

The code is run (possibly by submitting a job to the system

queue) as follows:

./benchmark.sh run

Any choices of compiler and model when building must also

be supplied when running. For the previous example, the

command to run the code following building is:

./benchmark.sh run gcc-8.2 kokkos

To see the supported combinations of compiler and pro-

gramming model, run the script without any arguments:

./benchmark.sh

E. Evaluation and expected result

Once the code has finished running on the system (directly

or via a job submission queue), any output is placed in a

directory named with the following convention:

<platform>_<compiler>_<model>

The stdout output is captured in an output file in this

directory. Any output files created by the application are also

placed here.

For our previous example of Kokkos BabelStream on Thun-

derX2, the following directory would contain the built binary

and any output files:

benchmarks/babelstream/tx2-isamabard/tx2_gcc-8.2_kokkos

F. Experiment customization

The benchmark.sh script and corresponding run.sh

script are both designed to be easily customisable to add

additional compilers and models.

