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Abstract—It has been widely shown that high-throughput
computing architectures such as GPUs offer large performance
gains compared with their traditional low-latency counterparts
for many applications. The downside to these architectures
is that the current programming models present numerous
challenges to the programmer: lower-level languages, loss of
portability across different architectures, explicit data move-
ment, and challenges in performance optimization.

This paper presents novel methods and compiler transforma-
tions that increase programmer productivity by enabling users
of the language Chapel to provide a single code implementation
that the compiler can then use to target not only conventional
multiprocessors, but also high-throughput and hybrid ma-
chines. Rather than resorting to different parallel libraries or
annotations for a given parallel platform, this work leverages a
language that has been designed from first principles to address
the challenge of programming for parallelism and locality. This
also has the advantage of providing portability across different
parallel architectures. Finally, this work presents experimental
results from the Parboil benchmark suite which demonstrate
that codes written in Chapel achieve performance comparable
to the original versions implemented in CUDA on both GPUs
and multicore platforms.

I. INTRODUCTION

In the last few years, systems of heterogeneous compo-
nents, including GPU accelerator architectures, have become
increasingly popular. This popularity has been driven by
many emerging applications in client and HPC markets.
Significant cost, power, and performance benefits are derived
from executing these applications on systems containing
both SIMD and conventional MIMD devices. For this rea-
son, it is becoming increasingly common to find heteroge-
neous components from hand-held to large-scale [41].

Programmability and the ability to optimize for perfor-
mance and power are considered major difficulties intro-
duced by heterogeneous systems. These difficulties arise for
two main reasons. First, with todays tools, it is necessary
to use a different programming model for each system
component: CUDA [28] or OpenCL [21] is often used
to program GPU architectures, C or C++ extended with
OpenMP [12] or Intel TBB [30] are used for conventional
multicores, and MPI is used for distributed memory clusters.
This results in an increased complexity in programming
and porting across different architectures, as one must now
fully develop and maintain separate copies of the code.

The second difficulty is the need to schedule across device
classes: the user must decide how to partition and correctly
schedule the execution between the devices. This difficulty
is typically compounded by each device having separate
address spaces, forcing the user to take care of the allocation,
deallocation, and communication of data across devices.

This paper builds on the native data parallel support

of Chapel [8] to improve the programmability of hetero-
geneous systems containing GPU accelerator components,
while retaining performance and portability across other
architectures. Chapel is a high-level, general-purpose lan-
guage with constructs for control of work distribution,
communication, and locality. It includes support for both
data and task parallelism, and allows for nested parallelism.
Rather than rely completely on the compiler for performance
optimizations, this work leverages Chapel’s multiresolution
philosophy of allowing a programmer to start with a high-
level specification, then drop to a lower-level if the com-
piler is not providing sufficient performance. This gives
expert programmers the ability to tune their algorithm’s
performance with capabilities similar to those of lower-level
notations such as CUDA.

Contributions and Evaluations: The contributions of
this paper are as follows:

« The presentation of a high-level and portable approach
for developing applications with a single unified lan-
guage, instead of libraries or annotations, that can target
both GPU and multicore parallel architectures. With our
approach, a single code can be used to efficiently target
GPUs, traditional multicores, or a combination of both.

o Compiler transformations that map a high-level lan-
guage onto GPU accelerator architectures. This also
includes an algorithm for moving data automatically
between a host and the device. These techniques would
be applicable to other high-level languages, such as
Python or Java, with the goals of targeting GPUs.

o A compiler algorithm is presented to generate code for
multicores from our extended version of Chapel. In
order to run efficiently, this technique extracts coarse-
grain parallelism from code that contains both fine and
coarse granularities.

o Experimental results to show that the performance of
the hand-coded CUDA Parboil benchmarks [3] are



comparable to the Chapel implementation for both
GPUs and multicores, with the Chapel code being
simpler, shorter, and easier to read and maintain.

To measure the validity of the proposed approach, the
Parboil benchmark suite was ported to Chapel. The Chapel
compiler was then modified to generate the appropriate code
based on the target architecture. This paper evaluates code
generation techniques for both GPUs and multicores. The
performance results show that Chapel generates codes that
are competitive with the hand-tuned CUDA implementations
for GPUs and their multicore counterparts.

Outline: This paper is organized as follows: Section II
gives motivation for this work by providing a simple ex-
ample. Section III describes background information on the
Chapel language. Sections IV and V provide the implemen-
tation details for running on GPU and CPU architectures.
Section VI discusses optimizations applied to the GPU.
Section VII presents short Parboil benchmark examples
written in Chapel used to target both CPUs and GPUs.
Section VIII describes the initial results using the Parboil
benchmark suite. Sections IX and X present related and
future directions. Finally, conclusions are provided in Sec-
tion XI.

II. MOTIVATION

As a motivating example, consider the STREAM Triad
benchmark (part of the HPCC Benchmark Suite [25]), which
computes a scaled vector addition. Figure 1 provides a
comparison of different implementations of STREAM Triad.
A CUDA implementation is provided in Figure 1(a), while
Figure 1(b) is a Chapel implementation used to target a
GPU. The comparison between them shows that the Chapel
implementation has noticeably fewer lines of code and is
more readable. This is achieved using Chapel distributions,
domains, data parallel computations through the forall
loop, and variable type inference [1], [8]. Furthermore, the
Chapel implementation is easier to port. In fact, for the code
in Figure 1(b), if the users wanted to target a multicore plat-
form, they could either declare a different target distribution
(shown in line 3) or simply set an environment variable
specifying the target platform. To demonstrate portability,
Figure 1(c) shows an implementation of STREAM Triad
written for a cluster using a standard Block data distribution.
The only difference between this implementation and the
Chapel-GPU code in Figure 1(b) is the target distribution in
line 3.

Figure 2 shows performance results for the STREAM
Triad benchmark written in Chapel running on both a 32-
node instance of the Cray XT4 supercomputer and a GPU
with a problem size of n = 85,983,914. As the last two
bars show, performance for the Chapel and CUDA imple-
mentations are equivalent. It is important to emphasize that
for the cluster and Chapel-GPU results, only the declared
distribution was changed. In contrast, the CUDA code does

1 #define N 2000000

2 int main ()

3 float xhost_a, =*host_b, =xhost_c;

4 float xgpu_a, =*gpu_b, =*gpu_c;

5 cudaMalloc ( (voidxx) &gpu_a, sizeof (float) «N);
6 cudaMalloc ( (voidx*) &gpu_b, sizeof (float) xN) ;
7 cudaMalloc ( (voidx*) &gpu_c, sizeof (float) xN) ;
8 dim3 dimBlock (256);

9 dim3 dimGrid(N/dimBlock.x );

10 if( N % dimBlock.x != 0 ) dimGrid.x+=1;

11 set_array<<<dimGrid,dimBlock>>> (gpu_b,0.5f,N);
12 set_array<<<dimGrid,dimBlock>>> (gpu_c,0.5f,N);
13 float scalar = 3.0f;

14  STREAM_Triad<<<dimGrid,dimBlock>>> (gpu_b,

15 gpu_c, gpu_a, scalar, N);

16 cudaThreadSynchronize () ;

17 cudaMemCpy (host_a, gpu_a, sizeof (float) N,

18 cudaMemcpyDeviceToHost) ;

19 cudaFree (gpu_a) ;

20 cudaFree (gpu_b);

21 cudaFree (gpu_c);

2}

23 __global  void set_array (float xa, float value,
24 int len) {

25 int idx = threadIdx.x+blockIdx.xxblockDim.x;

260 if(idx < len) al[idx] = value;

27 '}
28 _ _global  void STREAM Triad(float *a, float =xb,

29 float xc, float scalar, int len) {
30 int idx = threadIdx.x+blockIdx.x*blockDim.x;
31 if (idx < len) clidx] = al[idx]+scalarxb[idx];

32}

(a) STREAM Triad written in CUDA

const alpha = 3.0;
config const N = 2000000;

const space = [1..N] dmapped GPUDist (rank=1);
var A, B, C : [space] real;

B = 0.5;

C = 0.5;

forall (a,b,c) in (A,B,C) do
a = b + alpha * c;
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(b) STREAM Triad written in Chapel for a GPU

const alpha = 3.0;
config const N = 2000000;

[ T

const space = [1..N] dmapped Block (boundingBox=[1..N]);
var A, B, C : [space] real;
B = 0.5;

6 C=0.5;

7 forall (a,b,c) in (A,B,C) do

8 a = b + alpha * c;

(c) STREAM Triad written in Chapel for a cluster

Figure 1. Comparison of STREAM Triad implementations

not support the same degree of portability. In addition to
single-node multicores and GPUs, this code has run on
large-scale cluster configurations achieving over 1.1TB/s in
performance using 2048 nodes [10].

III. BACKGROUND

This section presents a short overview of the Chapel
programming language and its support for data parallelism.
Chapel is a source-to-source compiler that generates C
source code. For this work, Chapel will additionally generate
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Figure 2. Results for the STREAM Triad benchmark comparing a cluster
of multicores (Cray XT4 2.1 GHz Quad-Core AMD Opteron) and GPU
(NVIDIA GTX280)

CUDA. A description of CUDA has been omitted, since it
is readily available [5].

A. Chapel Language Overview

Chapel is an object-oriented parallel programming lan-
guage designed from first principles, rather than as an
extension to an existing language. The base language sup-
ports iterator functions, OOP, generic programming, and
takes advantage of type inference. Chapel was designed to
facilitate programming of next-generation parallel machines.
Along with X10 [13] and Fortress [6], Chapel grew out of
the DARPA High Productivity Computing Systems (HPCS)
program. Chapel support for data parallelism, index sets,
and distributed arrays are derived from ZPL [34] and High
Performance Fortran (HPF) [20]. Chapel’s concepts of task
parallelism and lightweight synchronization are derived from
the Cray MTA/XMT’s extensions to C and Fortran [31].
Lastly, Chapel supports interoperability with C and CUDA
through C-style extern mechanisms. For interoperability with
other languages such as C++, Fortran, or Python, the Babel
interoperability tool [29] can be used.

B. Domains and Distributed Arrays

The core component for data parallelism in Chapel is the
concept of a domain, which is an extension to regions first
described in ZPL. A domain is a language construct that
describes an index space. These domains are a first-class
ordered set of Cartesian indices that can have any arbitrary
rank [1]. In addition to domains being iterated over by loops,
they are used to describe the size and shapes of arrays.
Consider the following example:

var D: domain(2) = [l1..n, 1..n];
var A: [D] real;

Here D is a 2D domain and is initialized to contain the set
of indices (i,j) with i € {1,2,..,n} andj € {1,2,..,n}. The

array A has its size defined by the domain, resulting in an
n X n array.

C. Data Farallelism in Chapel

Chapel has rich support for data parallel computation,
making it ideal for SIMD-like architectures such as the GPU.
The main construct for data parallelism in Chapel is the
forall loop which iterates over the indices in a domain’s
index set or over a subset of the elements in an array. There
is also built-in support for the reduction and scan operators.
Chapel also allows users to define their own reduction and
scan operations [15].

D. Distributions (Built-in and User-defined)

Data distributions in Chapel are essentially a recipe that
the compiler uses to map a computation and its associated
data to the nodes where the program executes. Languages
such as HPF and ZPL have support for distributed arrays,
but the semantics of the distributions are hardwired in
the compiler and runtime, leaving the programmer without
enough flexibility to manipulate many forms of distributed
data (such as sparse arrays). Similar to domains, distributions
are first-class objects: they can be named, manipulated, and
passed through functions.

Chapel provides a set of commonly-used distributions
such as Block and Cyclic. Additionally, user-defined dis-
tributions [9], [11] enable the creation of a wide range of
distributions that are application- or target-specific. User-
defined distributions are developed directly in Chapel, typi-
cally using built-in features (e.g. classes, task parallelism,
locales). This has the benefit that distribution developers
can directly leverage the high-level facilities offered by the
language rather than having to program in a lower-level
language.

In order for users to write their own distribution, they
must implement routines to fulfill the required interface.
Interface components include the ability to create domains
and arrays, wholesale assignment of index sets, iterators
supporting sequential and parallel iteration over a domain,
random access to elements of an array, and support for
slicing and reindexing. If the user does not explicitly declare
a distribution, Chapel will implicitly use a distribution that
targets shared memory parallelism.

Chapel uses the dmapped keyword in order to map the
domain’s indices to the target architecture using the spec-
ified distribution. This approach is useful because Chapel
distributions are designed so that the distributions can be
swapped in order to change the implementation of a domain
and its arrays without changing the code. This is illustrated
by the examples in Figures 1(b) and 1(c), where the only
difference is the target distribution on line 3. The advantage
to this is that the code is cleaner and more portable: users
do not need to maintain a separate code base depending on
the target architecture.



IV. GENERATING CODE FOR GPU ACCELERATORS

This section describes the Chapel language and compiler
extensions that were added to target GPU platforms. Sec-
tions IV-A and IV-B discuss the Chapel GPU distribution
and its associated support for domains and arrays. In Sec-
tions IV-C and I'V-D, we describe support for data movement
between the device and host and how code is executed on
the GPU. Finally, Sections IV-E-IV-H will present code
generation and other low-level facilities.

A. GPU User-Defined Distribution

In this work, we have defined several distributions.
GPUDist indicates that data must reside in the memory
of the GPU and that computations will also be performed
on the device. As shown later in this section, there are other
user-defined distributions we have provided. In particular,
they are used to support specialized GPU memory, as well
as providing a different method of handling data movement.

In order to target the GPU, the user instantiates a
GPUDist distribution class whose constructor takes the
following arguments:

o rank: The dimensionality of the problem.

e blockSizeX, blockSizeYy, blockSizeZ
[optional]: The thread block size in the X, Y,
and Z dimensions. These correlate to the equivalent
thread block size dimensions used in CUDA. If the
user does not explicitly initialize one of these values,
they can be set using a heuristic approach based on
the occupancy of the kernel and device. This is similar
to the technique used in the Thrust library [2]. In the
case of compiling for a multicore, this value is also
useful, as will be shown in Section V.

B. GPU Domains and Distributed Arrays

A GPU domain and its arrays are declared identically to
those with standard distributions. When an array is declared
with a GPU domain, cudaMalloc () [5] is invoked rather
than the standard library malloc ().

In the following array declaration:

1 var gpuD = [1..n,1..n] dmapped GPUDist (rank=2);
2 var A: [gpuD] real;

line 1 defines a GPU distribution and domain with a rank of
2, while line 2 declares the 2D array A that is allocated on
the GPU. Section IV-F describes how this technique applies
to the other types of GPU memory.

C. Data Movement

Since the GPU and the host have different address spaces,
most GPU programming models require users to manage
the movement of data. This complicates programming and
reduces portability. To address this problem, we provide two
methods of data movement in the Chapel code: implicit and
explicit.

I const space = [l..m] dmapped GPUDist (rank=1);
2 var input, output : [space] real;

3 input = ... // load input data

4 for 1..n {

5 forall j in space {

7 output[j] = input[j];
8 }
9 ... = output;

Figure 3. Implicit Data Movement Example

Implicit Data Movement: In this approach, the pro-
grammer declares a single logical variable that can be ac-
cessed by the host and the device. The system automatically
creates temporary storage and transfers the value(s) between
the host and the GPU. The implicit data movement scheme is
dependent on compiler analysis to determine when to move
data. Section VI-A discusses our compiler algorithm that
generates the implicit data movement code.

An example of Chapel code which utilizes implicit data
movement is shown in Figure 3. Since the array input
is read from inside of the forall loop, it is implicitly
copied to the device before the forall is executed. After
the loop completes execution, the array output is copied
out to the host implicitly because it is modified inside of
the forall loop. To the programmer, the arrays declared
on line 2 are treated the same regardless of whether it is
inside or outside of a forall loop. In other words, the
arrays and their elements can be accessed or manipulated as
a non-GPU array throughout the program.

Explicit Data Movement: For complete control of data
movement between the host and device, the user can ex-
plicitly transfer the data. In this prototype, we only support
synchronous data transfers.

Consider the example in Figure 4. Line 1 declares
a domain and a new type of GPU distribution named
GPUExplicitDist (). This distribution takes the same
parameters as GPUDist (). On line 2, the user declares the
corresponding host variables. On line 3, the GPU-specific
arrays are declared using the distribution and domain from
line 1. The assignment operation on line 6 performs the
explicit data copy from host space into GPU space. After the
parallel computation is complete, the assignment operation
on line 11 performs the explicit copy of the results back to
the host.

D. Parallel Execution on the GPU

Chapel’s forall loops that have been declared over
a GPU domain enable parallel execution on GPUs. Each
iteration of the loop corresponds to a light-weight GPU
thread. Using the compiler-generated (or user-specified)
block size, the compiler strip-mines the forall loop into
block-sized units that correspond to thread blocks. As we



const space = [l..m] dmapped GPUExplicitDist (rank=1);
var h_input, h_output : [1l..m] real;
var g_input, g_output : [space] real;
for 1..n {
h_input = . // load input data
g_input = h_input;
forall j in space {

- NV RSO C R

9 g_output [j] = g_input[j];
10 }

11 h_output = g_output;

12 ... = h_output;

13}

Figure 4. Explicit Data Movement Example

const M=1024;
const Space=[1..M] dmapped GPUDist (rank=1,BlockSizeX=256);
forall i in Space { ... }

Space:
—1..256——> —257..512—> —513..768—> ——769..1024—>

I ]

! | Block 2 ! Block 3 ! Block 4

«——256 Threads—> | ——256 Threads——> | ¢——256 Thread
|

Block 1

Figure 5. Mapping a Chapel 1D domain onto CUDA’s thread blocks

will see in Section V, the compiler performs a similar
transformation when targeting a multicore. Figure 5 is based
on our previous STREAM Triad example of Figure 1(b).
Here, space represents a distributed domain from 1 through
M. Because blockSizeX = 256 and M = 1024, there are
[19247 = 4 thread blocks for execution on the GPU. This
block size provides the necessary information to map each
iteration 1 of the forall loop onto a particular block and

its associated thread.

E. Code Generation for the GPU

A high-level view of the compilation process is shown
in Figure 6. The Chapel source-to-source compiler takes
as input a Chapel source file. When the compiler lowers
a forall loop that iterates over a GPU domain, it will
generate both C and CUDA source for the host and GPU.
Otherwise, it will just generate C. The body of the forall
is code generated as a CUDA kernel. By having the compiler
analyze the body of the loop, it is able to determine whether
any variables that are used in the loop are declared before
the loop begins. In that case, the compiler will automatically
pass them in as arguments to the kernel function. The
host portion performs the thread block creation, along with
passing the correct parameters into the CUDA kernel. As a

Chapel source-to-source compiler

CUDA source
compiled by nvcc

Generate C for Host
] and CUDA for GPU

Chapel source forall over

file gpu domain? N \ c Tod by back
e Generate C COmPIe Y bac
compiler (e.g. gcc)

Figure 6. Overview of Chapel compilation process

final step, the generated GPU code (for both host and device)
is compiled by NVIDIA’s nvee compiler, and the remaining
code is compiled by the back-end compiler (e.g. gcc).

In addition to forall loops, Chapel supports the data
parallel primitives reduce and scan, as mentioned in Sec-
tion III-A. When the compiler determines that a reduce
or scan operator uses data that have been declared on the
GPU, the compiler makes a call to a highly-tuned library
implementation of that operation. This is a similar approach
as others have taken [24]. An example using the reduce
primitive will be shown later in Section VII-A.

F. Targeting Specialized GPU Memory Spaces

A common strategy to maximize performance for GPUs
is to exploit the different physical memories in cases where
locality exists [32]. On NVIDIA-based GPUs, a programmer
has access to on-chip shared memory, read-only constant
cache memory, and a read-only texture memory. The trade-
off that occurs in using any of these specialized memories
in Chapel is that the user compromises portability for
performance. However, this GPU-specialized code can be
transformed into code that runs on traditional processors
by applying simple compiler transformations, as discussed
in Section V and in other publications [37], [16], [38].
To use any of the specialized memories within the GPU,
the user needs to declare their arrays using the following
distributions:

Shared Memory: NVIDIA’s GPUs offer an on-chip
scratchpad memory that is user programmed to optimize
for locality. Shared memory is faster than global memory
and, unlike texture and constant cache memory, is writeable
from the kernel. The data stored into shared memory is
only visible by threads within the same thread block where
the writing takes place. A compiler error occurs if the user
attempts to write or read into their shared memory array
when not executing a forall. In order to leverage this
memory from Chapel, the user declares the distribution
GPUSharedDist ().

Constant Cache Memory: Constant memory is used
to hold constant values. This data is hardware-cached to
optimize for temporal locality. There is only one cycle
of latency when a cache hit occurs if all the threads in
a warp access the same location. Otherwise, accesses to
constant memory are serialized if threads read from different
locations. With GPUs such as the NVIDIA GTX280, up to



const myspace = [l..m] dmapped GPUDist (rank=1);
const ccspace = [l..m] dmapped GPUCCDist (rank=1);;
var input: [ccspace] real;
var output: [myspace] real;
input = ... // load data into constant memory
for 1..n {

forall j in myspace {

- NV SRS TC R C R

9 output[j] = input[j];

10 }
11 ... = output;
12}
Figure 7. Constant Cache Example

64KB of data may be placed into constant memory. Data
to be stored in constant memory must be declared with the
GPUCCDist () distribution.

Figure 7 provides an example where the user would
leverage the GPU constant memory within Chapel. On lines
1-4, we create the constant memory distribution, domain,
and the respective constant memory array. Line 5 shows the
array being loaded with data from the host. Finally, in line 9,
the constant memory array is accessed, as with any typical
array.

Texture Cache Memory: Similar to constant memory,
texture memory is read-only and uses hardware caching for
locality. Performance increases are seen when applications
have spatial locality, as in stencil computations. The Chapel
compiler does not yet support storage in this memory.

G. Synchronization

CUDA uses __syncthreads () as a barrier between
threads in a thread block. In Chapel, we take the approach
that the programmer needs to also provide a similar synchro-
nization primitive thread_barrier () for correct GPU
code. While using a thread_barrier () is not needed
to program traditional CPUs, Algorithm 1, as described in
Section V, provides a compiler technique used to remove
calls to thread_barrier () when targeting CPUs.

H. GPU Low-Level Extensions

There are cases in which a user must leverage certain
facilities offered only by the CUDA programming model.
For example, CUDA provides fast math intrinsics that are
implemented in hardware, such as __fsinf (), instead of
the more accurate (but slower) sin (). In order to inter-
operate with these routines through Chapel, the compiler
translates invocations to these routines into their software
equivalent when targeting CPUs.

V. GENERATING CODE FOR MUTLICORE

To address the portability argument, we present transfor-
mations necessary to take a single program text written with
the GPU abstractions from the previous section and compile
and execute it efficiently on a traditional multicore platform.

We achieve this by taking advantage of coarse- and fine-
grain parallelism that is exposed when targeting GPUs (i.e.
CUDA thread blocks and threads within a thread block).
Due to false-sharing issues and programming for locality,
multicores are ideally suited for coarse-grain parallelism.
For this, we assign adjacent thread blocks as work units to
the processors. Therefore, we transform all forall loops
that iterate over GPU domains to doubly-nested loops: the
outer loop is a standard Chapel forall that iterates over
blocks of threads, and the inner loop is a sequential for
that iterates over threads within a block.

In order to preserve correctness, shared memory arrays
are simply declared per-block as a non-distributed array. In
other words, a non-distributed array is declared between the
outer standard forall and the inner for loop.

This approach has two main advantages. First, Chapel
handles the outer forall loop by distributing workloads
evenly in a block-wise manner such that adjacent blocks are
assigned to a core. Second, by serializing the inner loop, all
calls to thread_barrier () can then be removed.

The disadvantage of the above approach is that serializing
the inner loop that iterates over threads inside of a block is
not always trivial. Algorithm 1 describes how we create an
outer parallel loop L; and an inner sequential loop Lo. Al-
gorithm 2 describes the technique used to serialize Ls. In the
scenario where there are no calls to thread_barrier (),
nothing is modified. If there is a thread_barrier ()
barr, which is not contained in any inner loop within Lo,
we need to distribute the loop over the code before and after
barr in order to remove the barrier. If there is a variable v
declared in the original Lo and it is accessed before and
after barr, we need to move the declaration of v before
the distributed loops. If there is an assignment to v that is
dependent on threadId, that is accessed before and after
barr, array expansion is applied to v by the thread-block
size. This is because each thread needs its own private copy
of v. Array expansion is applied at most once for each v.
On the other hand, if barr is within an inner loop L', we
need to distribute L, around three sections of code: the code
before L/, L' itself, and the code after L’. Next, we can
interchange L’ and the distributed Lo since all the threads
in a block must reach barr an equal number of times. This
interchange is valid since the outer loop can run in parallel.
Finally, we call Algorithm 2 recursively to handle a deeper
loop nest.

As an example demonstrating Algorithm 1, consider the
simplified kernel of RPES from the Parboil Benchmark Suite
shown in Figure 8. The code in Figure 8(a) shows the GPU-
centric Chapel code, while Figure 8(b) shows the trans-
formed Chapel code after performing the algorithm. First,
the original forall loop is converted into another forall
loop that iterates over thread blocks and a sequential for
loop that iterates over threads within a block. Both the
number of thread blocks and the number of threads within



Algorithm 1: Loop Transformation for Multicore

Input: List forallList containing every forall loop with
a GPU Distribution
foreach L € forallList do
L1 <+ Create standard Chapel forall loop that iterates
over thread-blocks with loop index blockId;
Lo < Create sequential for loop that iterates over
threads of a block with loop index threadId;
foreach shared array s € L do
L Declare s as a standard array in body of L1;

The body of L becomes the body of Lo;

OutList < Call LoopDist (L2);
Add OutList to the body of Lq;

Algorithm 2: ToopDist () Function

Input: Sequential loop L
Output: List of Variable Declarations and Loops
if 3 barr € L where barr is a thread_barrier () then
List VarDecl + 0;
foreach variable declaration v € L do
if 3 an assignment to v that is dependent on
threadId and v is accessed before and after barr
and v has not been expanded before then
Veap <—e€Xpansion of v by blockSize;
VarDecl < VarDecl U {vezp};
Replace all occurrences of v with
Vezp[threadId];

else
| VarDecl + VarDecl U {v};

if 3 a loop L' in the body of L and barr € L’ then

DL, + Loop with code before L’ surrounded by

header of L;

DL, < Loop with same header as L with inner

loop L' as the body;

DLs + Loop interchange L with L’ in DLo;

DLj3 + Loop with code after L’ surrounded by

header of L;

return < VarDecl, LoopDist(DL1),
LoopDist(DLs),LoopDist(DLs) >;

else

DL, < Distribute L over code before barr;

D L2 <+ Distribute L over code after barr;

return < VarDecl, LoopDist(DL1),
LoopDist(DLs) >;

else
L return < L >;

a thread block are computed based on the blockSize
value specified in Section IV-A. Second, the shared memory
array Data has to be declared just inside the new forall
loop. Next, loop distribution of the sequential for loop is
performed since there are calls to thread_barrier ().
Finally, the two sequential loops are interchanged, and the
inner call to thread_barrier () is removed.

I var Data = [0..BLOCK_SIZE-1] dmapped GPUSharedDist () ;
2 forall gpuSpace_reduc {
3 const blid getBlockID_x();

4 const thid getThreadID_x();

5 Data[thid] = getData(blid, thid, ...);

6 thread_barrier();

7 for s in 0..5 do {

8 const i = 1 << (s » -1 + LOG_BLOCK_SIZE - 1);
9 if thid < i then

10 Data[thid] += Datalthid + 1i];

11 thread_barrier();

12 }

13 if thid == 0 then

14 ReductionSum[Offset + blid] = Datal[O0];

(a) Original code in Chapel with GPU forall

forall blid in O0..num_blocks-1 {
var Data = [0..BLOCK_SIZE-1];
for thid in 0..BLOCK_SIZE-1 {
Data[thid] = getData(blid, thid, ...);
}
for s in 0..5 {
for thid in 0..BLOCK_SIZE-1 {
const i = 1 << (s % -1 + LOG_BLOCK_SIZE - 1);
9 if thid < i then
10 Data([thid] += Data[thid + 1i];
11 }
12 }
13 for thid in 0..BLOCK_SIZE-1 {
14 if thid == 0 then
15 ReductionSum[Offset + blid] = DatalO0];
16 }
17}

[ T Y N

(b) Translated code into Chapel multicore forall

Figure 8. Translation of a GPU forall into Multicore forall

VI. COMPILER TRANSFORMATIONS AND
OPTIMIZATIONS

This section first presents a simple algorithm used to
perform implicit data transfers between the host and device.
Afterwards, we describe algorithms to optimize the gener-
ated GPU code.

A. Implicit Data Transfers Between Host and Device

As mentioned in Section IV-C, implicit transfers between
the host and GPU require compiler support. Algorithm 3
gives a conservative approach for determining and gener-
ating the code necessary to transfer the data. If an array
that has been declared with a GPU distribution, is accessed
within a forall loop, the compiler will compute the read
and write sets of the array. If the read set is not empty, the
compiler will generate code to copy the data into the device.
Similarly, if the write set is not empty, the data is copied to
the host after the loop completes.

In the previous example from Figure 3, the user never
explicitly copies data between the device and host before
calling the forall loop. To the user, the variable appears
normal without the knowledge that it can only be used on
the GPU. Based on the algorithm, the compiler will always
copy data from the host to the device since input is read
inside the forall loop. Also, the array output is written



Algorithm 3: Tmplicit Data Transfer

Algorithm 4: Spill Scalar Args Into Constant Mem

Input: Array G declared with the GPU Distribution
Input: List forallList containing every forall loop with
a GPU Distribution
foreach L € forallList do
if USE(G) # @ then
Generate statement to copy G from host to device
L before L begins;

if DEF(G) # @ then
Generate statement to copy G from device to host
after L completes;

to, causing the compiler to copy that data out to the host.
As the example shows, since the forall loop is nested
inside of a for loop, the array input is copied into the
kernel redundantly. An improvement over the conservative
approach taken here would be to analyze the complete
program outside of the kernel to detect redundant copying.

B. Scalar Replacement of Aggregates and Dead Argument
Elimination

Compiling from a higher-level language like Chapel down
to CUDA opens doors to possible optimizations. Chapel
has support for multidimensional arrays with arbitrary in-
dex ranges. For this purpose, the Chapel compiler creates
structures containing meta-data about the array, including
start and end points, array strides, and a pointer to the raw
data. The program has additional levels of indirection that it
uses to look up the member variables of the structure, and
therefore requires more memory operations than the typical
array access in C. To avoid this increase, we perform scalar
replacement of aggregates [27]. This technique flattens fields
from a structure with single scalar elements. In particular,
this is applied on all structures that are used within a
forall loop that executes over an array or domain declared
with a GPU distribution. The scalarized fields are then
placed onto the formal argument list of the calling kernel
routine. After this transformation is complete, we perform
dead argument elimination on the original structures that
were passed in as formals, as they are no longer necessary.

C. Kernel Argument Spilling to Constant Memory

As a result of the previous optimization performed in
Section VI-B, the number of formal parameters to the GPU
kernel will likely have increased depending on the number
of fields in the original structures. Because shared memory
resources are reserved for arguments up to a maximum
size of 256 bytes [5], there will be a greater performance
impact as more arguments are passed. Additionally, if this
size limit is exceeded, a back-end compiler error will
be thrown. To get around this, Algorithm 4 describes a
mechanism based on data-flow analysis that will spill scalar
arguments into constant memory after a certain argument list

Input: List argList containing each formal argument of the
kernel function
Input: Spill threshold threshold
totalSize < 0;
foreach arg; € argList do
if sizeof(arg;)+totalSize > threshold and
DEF(arg;) = 0 then
Declare constant memory variable new; outside of
kernel;
new; <— arg;;
Remove arg; from argList;
foreach u; € USE(i) do
L U; — new;;

else
L totalSize+=sizeof(arg;);

size has been reached. In this algorithm, constant memory
variables are generated with the ___constant___ modifier
and are assigned from the host using the CUDA routine
cudaMemcpyToSymbol (). In the unlikely event the al-
gorithm is not able to spill enough of argList into constant
memory, the remainder of the arguments will be spilled into
GPU global memory. The default threshold value for when
to spill is set through a compiler flag (--max-gpu-args=#). It
should be noted that, while this algorithm does not increase
performance, it is necessary for correctness because of the
limit on the number of arguments supported by the CUDA
compiler.

VII. EXAMPLE CODES

The goal of this section is to discuss two examples
and illustrate the portability of these codes across different
parallel architectures. The examples are a 2D Jacobi method
and a code to compute Coulombic Potential [35]. We present
performance results for execution on a multicore, followed
by results on a GPU. In the GPU case, we evaluated the
two techniques of transferring data between the host and
device discussed in Section IV. The hardware used for these
experiments is the same as described in Section VIII-B.

A. 2D Jacobi

Figure 9 illustrates the 2D Jacobi method that targets a
GPU. This algorithm computes the solution of a Laplace
equation over a 2D grid. The point of this code is to
show an elegant high-level implementation of the algorithm
rather than present the user with a low-level and highly-
tuned implementation. Line 1 of the algorithm declares a
GPU distribution with a rank of 2. Lines 4-5 declare two
distributed domains, and lines 6-7 declare the associated
arrays. Lines 12—16 are a parallel stencil computation for
the GPU. Line 17 represents a maximum reduction. Finally,
line 18 performs a sliced array copy of the inner domain
gPSpace.



const gdist = new GPUDist (rank=2,
blockSizeX=16,
blockSizeY=16);
[1..n, 1..n] dmapped gdist;
[0..n+1, O0..n+1] dmapped gdist;
[gDomain] real;
[gPSpace] real;

1

2

3

4 const gPSpace =
5 const gDomain =
6 var X, XNew :

7 var tempDiff :

9 /+ initialize data =/

11 do {

12 forall ij in gPSpace {

13 XNew[ij] = (X[ij+north] + X[ij+south] +

14 X[ij+east] + X[ij+west]) / 4.0;
15 tempDiff[ij] = fabs(XNew[ij] - X[13]);

16 }

17 delta = max reduce tempDiff;
18 X[gPSpace] = XNew[gPSpace];
19 } while (delta > epsilon);

Figure 9. Chapel Implementation of Jacobi 2D
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Figure 10. Performance of Jacobi 2D

Figure 10 shows the performance of this code. First, we
show the performance on a multicore using 4 tasks. Then,
the performance on a GPU is shown using both the implicit
and explicit data transfer algorithm. It’s important to note
that, in this example, no lines of code were changed to
the ported code between the GPUs and multicores. The
Chapel GPU version of the code that uses the implicit data
transfer algorithm shows degradation in performance due to
the redundant data transfers that occur. This is the result of
the conservative approach taken in the compiler algorithm.

B. Coulombic Potential

The code for the Coulombic Potential (CP) application is
shown in Figure 11. On lines 3-5, we declare two different
GPU distributions. On lines 6-8, distributed domains are
declared with the previously declared distributions. Lines 9
and 11 declare the input and output arrays. Lines 13-23
perform the parallel forall computation on the GPU. It
should be mentioned that, on line 13, each iteration of the
forall returns a two-tuple containing x and y coordinates.

const volmemsz = VOLSIZEX x VOLSIZEY;

const volmemsz_dom = [1..VOLSIZEY,1l..VOLSIZEX];

const dst = new GPUDist (rank=1);

const totdst = new GPUDist (rank=2,
blockSizeX=BLOCKSIZEX, blockSizeY=BLOCKSIZEY) ;

const totspace = volmemsz_dom dmapped totdst;

const energyspace = [l..volmemsz] dmapped dst;

const atomspace = [1..MAXATOMS] dmapped dst;

var energygrid : [energyspace] real = 0.0;

10 /* initialize atominfo from input file */

11 var atominfo : [atomspace] float4 = ...;

R 7 T

13 forall (xindex,yindex) in totspace {

14 var energyval = 0.0;
15 var (coorx,coory) = (gspacingxxindex,
16 gspacingxyindex) ;
17 for atom in atominfo {
18 var (dx,dy) = (coorx-atom.x, coory-atom.y);
19 var r_1 = 1.0 / sqgrt(dxxdx + dyxdy + atom.z);
20 energyval += atom.w x r_1;
21 }
22 energygrid[yindex,xindex] += energyval;
23}
Figure 11. Coulombic Potential in Chapel

Figures 12(a) and 13(a) present the results for CP running
on both a GPU and a multicore. As in the previous example,
no changes to the source code were made. These results will
be discussed in more detail in Section VIII-C.

VIII. EVALUATION

This section presents our experimental results. In Sec-
tion VIII-A, we describe the benchmarks used for the ex-
periments. Section VIII-B describes our experimental setup.
Section VIII-C evaluates the effectiveness of the compiler.
For that, three types of evaluations are performed. First, we
evaluate the GPU performance of the Chapel code compared
with codes from the hand-coded Parboil benchmark suite.
Second, we evaluate the performance of the same bench-
marks on a traditional multicore platform. To compile and
execute the Parboil CUDA code on a multicore, we use
both the PGI CUDA-X86 [38] and Ocelot compilers [16].
The third evaluation estimates the productivity benefits of
using Chapel. We use the difference in code size between
the Chapel and CUDA source as the metric of productivity.
This is a simple and not always compelling metric, but in
this case, we believe that it gives a reasonable indication of
the productivity advantage of using Chapel.

A. Parboil Benchmarks

The Parboil benchmark codes used are Coulombic Po-
tential (CP), MRI-FHD and MRI-Q [36], Rys Polynomial
Equation Solver (RPES) [33], and the Two Point Angular
Correlation Function (TPACF) [23]. The benchmark Sum
of Absolute Differences (SAD) relies on texture memory,
which our system does not support. Petri Net Simulation
(PNS) was not ported due to time constraints.

In the case of the GPU evaluation, the Chapel codes that
are compared use both implicit and explicit data transfers to



see what additional overhead results from the conservative
implicit data transfer algorithm introduced in Section VI-A.

B. Environmental Setup

For the GPU evaluations, each benchmark was run using
an NVIDIA GTX280. The host code was executed on
an Intel Quad-core 2.83GHz Q9550. For timing measure-
ments, we used CUDA’s kernel profiling mechanism (i.e.
CUDA_PROFILE=1) that measures the execution time spent
in the kernel along with execution time spent on data
transfers between the host and the device.

For the multicore evaluation, we use an Intel Quad-
core 2.67GHz Nehalem i7 920, where each core supports
two hyperthreads. The generated C code from Chapel was
then compiled by the back-end PGI 11.8 C/C++ com-
piler. The CUDA codes were also compiled using the PGI
CUDA-X86 compiler that generates OpenMP with the flags
-Mcudax86 —fast. Similarly, the CUDA codes were
compiled by the Ocelot compiler with optimization flag
optimizationLevel:full being set.

C. Experimental Results

Figures 12(a)-12(e) and 13(a)-13(e) demonstrate the per-
formance, in execution time, of the Parboil benchmarks
running on a GPU and multicore platform, respectively. Due
to the difference in magnitude of times (milliseconds vs
seconds) between GPU and multicore executions, we plot
them separately and to different scales.

In Figures 12(a)-12(e), each bar is broken down into two
portions: the total time spent performing data transfers vs.
time performing the computation. In Figures 12(b)-12(e),
the difference in compute performance was minimal between
the CUDA and the Chapel implementations. When we look
solely at the compute performance in Figures 12(a) and
12(d), the CUDA reference implementations have slightly
better performance when compared with the Chapel im-
plementations. In these cases, the performance difference
was due to additional overhead, such as for loops being
generated inefficiently. As the Chapel compiler matures, we
expect these minor differences in compute performance to
decrease.

The additional overhead due to the conservative implicit
data transfer algorithm is apparent in Figures 12(b), 12(c),
and 12(e). These three benchmarks demonstrate the deficien-
cies in our conservative approach for selecting which data to
transfer into and out of the kernel. In the RPES algorithm,
similar to the previous example in Figure 3, there is a parallel
forall loop nested inside of a for loop. In the CUDA
and Chapel explicit data transfer implementations, data is
not transferred within the top-level for loop iterations; but,
in the case of the implicit data transfer algorithm, the data
is copied redundantly. The CP and TPACF algorithms in
Figures 12(a) and 12(d) have an insignificant amount of
overhead associated with the implicit data transfer scheme.
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Figures 13(a)-13(e) present the original Parboil bench-
marks running on a multicore platform. Here we are com-
paring a serial C implementation of the benchmark with
that of the Chapel, PGI CUDA-X86, and Ocelot compilers.
In the case of the Coulombic Potential (CP) benchmark in
Figure 13(a), we see that the performance is similar for
all three compilers. In the remaining Figures 13(b)-13(e),
there is a noticeable performance difference between the
three compilers. In particular, for Figure 13(e), we observed
the PGI compiler deadlocking on the RPES benchmark
when run with 8 threads. RPES and TPACF are the only
benchmarks tested that use GPU shared memory and thus
rely on thread barrier synchronization. One likely possibility
for the difference in performance (and possibly correctness)
between the compilers is that PGI and Ocelot might not
be fully removing all possible barriers when targeting this
code on a multicore. This would also explain why deadlocks
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Benchmark | # Lines (CUDA) | # Lines (Chapel) | % Shorter | # of Kernels
CP 186 154 17.2% 1
MRI-FHD 285 145 49.1% 2
MRI-Q 250 125 50.0% 2
RPES 633 504 20.4% 2
TPACF 329 209 36.5% 1
Table I

PARBOIL SOURCE CODE COMPARISON (CHAPEL VS CUDA)

occur on RPES when running with 8 threads.

Table I shows a comparison between the Chapel and
CUDA implementations with the primary metric being the
difference in lines of source code. In order to compute the
total number of lines of code, we removed all comments,
timing mechanisms, and blank lines. For all the benchmarks,
the Chapel code was shorter by 17-50%. Not only is the
code shorter, but as the examples in this paper show, it is
cleaner and more elegant.

In summary, these results demonstrate that when using

a language such as Chapel, we achieve performance that is
comparable to that of the GPU-specific CUDA while making
the code portable to execute efficiently on a traditional CPU
platform. In addition, there are productivity and elegance
gains in using Chapel over CUDA due to the lower amount
of necessary code.

IX. RELATED WORK

Improving the programmability of accelerator architec-
tures is currently an active area of research. The works
of CUDA-X86 [4], MCUDA [37], and Ocelot [16] take
the approach of having the programmer implement their
algorithms in CUDA before having the compiler target
a multicore platform. The approach that Chapel takes is
different since it starts with a higher-level language that can
be used to target GPUs, multicores, and clusters. There has
also been some work providing language bindings to target
the GPU [39], [22], but in these methods, the actual kernel
is still expressed in CUDA or OpenCL.

Another approach that some have taken in translating their
application code into the GPU accelerator space uses anno-
tations or compiler directives on existing languages [19],
[38], [7], [24], [26]. Chapel differs here in that it does not
depend on annotations to induce the parallelism over a GPU,
resulting in code we believe is more readable to the user.
Additionally, the annotation-based approaches do not have
as strong of support for high-level loop abstractions. This
means a user of an annotation-based language needs to go
in and decorate their loops when they want the code to be
parallel. In contrast, Chapel’s domains permit such things to
be factored away in a more structured manner.

The work of OmpSs [17] addresses the issue of program-
ming portability for heterogeneous multicore architectures.
Our approach differs in that we use a single unified and high-
level language to express computations that will execute
on both GPUs and multicores. In their approach, they
extend OpenMP and have the user provide implementation-
specific kernels that will be mapped onto the respective
devices. These approaches differ since the compute kernels
are typically written as embedded CUDA or OpenCL.

X10 [14] and Habanero [40] both have shown support for
GPUs, but they use different techniques to handle single-
source portability across other architectures. They do not
provide any mechanism for reverting to a multicore platform
from a tuned GPU implementation. Also, there does not
seem to be support for implicit data copies; programmers
themselves have to explicitly perform the copies. Lastly, we
could not find enough data to show how these approaches
apply to larger scaled GPU applications.

X. FUTURE DIRECTIONS

There are many areas of future direction for this research.
For instance, one could strive to avoid exposing too much of
the GPU low-level centric code to the programmer. While



this is beneficial to our compilation down to a multicore, it
still forces the programmer to think in terms of CUDA in
some aspects. For example, this includes relying on CUDA’s
synchronization primitives. One method to address this is
to use the method in which programmers express their
algorithms purely in terms of nested forall, coforall,
and for loops, and leave it to the compiler to generate
the necessary kernel from that. The second method, and
possibly complementary approach, is to provide whole-array
operation support. The Chapel language currently supports
bulk-array operations that convert to parallel forall loops.
We hope to expand on this by having the compiler optimize
these operations through techniques such as loop fusion,
where we can safely combine multiple forall loops into
a single kernel.

As shown in Section VIII-C, the algorithm used for
implicitly transferring data between the devices is too con-
servative, leaving room for improvement. One method for
exploration would be to perform an interprocedural compiler
analysis that looks across multiple forall loops and,
based on the usage of the data, generates the necessary
transfer code when required. The second alternative would
be to incorporate the work done in the GMAC (Global
Memory for Accelerators) project [18]. GMAC is library-
based system that provides coherency between data on the
device and on the CPU.

While Chapel already supports execution on traditional
clusters containing multicores, the work presented here is
primarily focused on single-node architectures containing a
GPU. The next step of this research is to integrate support
for clusters of single and multi-GPUs.

XI. CONCLUSION

In this paper, we presented methods to increase pro-
grammer productivity by leveraging an emerging program-
ming language built for parallelism and locality control.
By utilizing Chapel’s support for user-defined distributions,
programmers are offered a concise and elegant approach to
targeting GPU-based architectures. Additionally, we show
that it is possible to be portable across multicore archi-
tectures and yet retain performance without resorting to
different parallel libraries or language annotations such as
pragmas or directives.
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