
Performance Prediction based on
Inherent Program Similarity

Kenneth Hoste†, Aashish Phansalkar‡, Lieven Eeckhout†,
Andy Georges†, Lizy K. John‡ and Koen De Bosschere†

†ELIS, Ghent University, Belgium
‡ECE, The University of Texas at Austin

{kehoste,leeckhou,ageorges,kdb}@elis.UGent.be
{aashish,ljohn}@ece.utexas.edu

ABSTRACT
A key challenge in benchmarking is to predict the performance of
an application of interest on a number of platforms in order to de-
termine which platform yields the best performance. This paper
proposes an approach for doing this. We measure a number of
microarchitecture-independent characteristics from the application
of interest, and relate these characteristics to the characteristics of
the programs from a previously profiled benchmark suite. Based
on the similarity of the application of interest with programs in the
benchmark suite, we make a performance prediction of the applica-
tion of interest. We propose and evaluate three approaches (normal-
ization, principal components analysis and genetic algorithm) to
transform the raw data set of microarchitecture-independent char-
acteristics into a benchmark space in which the relative distance
is a measure for the relative performance differences. We evalu-
ate our approach using all of the SPEC CPU2000 benchmarks and
real hardware performance numbers from the SPEC website. Our
framework estimates per-benchmark machine ranks with a 0.89 av-
erage and a 0.80 worst case rank correlation coefficient.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques, Performance
attributes

General Terms
Experimentation, Measurement, Performance

Keywords
Performance Modeling, Workload Characterization, Inherent Pro-
gram Behavior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06, September 16–20, 2006 , Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

1. INTRODUCTION
From a benchmark consumer point-of-view, a key challenge is to

determine the platform that yields the best performance for a given
application of interest. Ideally, the user’s application of interest
is his best benchmark. However, in many practical circumstances
the user has to rely on the performance scores of a standardized
benchmark suite for estimating the performance of the application
of interest for two reasons. First, it is too difficult or costly to port
the application program of interest to a wide range of platforms.
Second, there are many platforms for which the performance needs
to be measured before making a choice about which platform yields
to the best performance for the given application.

A popular tool for estimating performance of an application pro-
gram on an unavailable platform is detailed cycle-accurate proces-
sor simulation. However, next to not solving the porting problem,
simulation is very time consuming and thus is difficult to use in
practice.

This motivates us to come up with a different solution to this
ubiquitous problem in benchmarking. The methodology proposed
in this paper uses the already known performance scores of stan-
dardized benchmark suites on the systems of our interest. As a
part of our methodology we measure a set of microarchitecture-
independent characteristics for the new application of interest and
relate them to the same characteristics of the benchmarks in the
standardized benchmark suite. The microarchitecture-independent
characteristics capture the inherent program behavior that is un-
biased towards a particular microarchitecture. We then use the
knowledge of similarity between the application of interest and the
corresponding benchmarks to predict the performance of the appli-
cation of interest. In other words, we use the standardized bench-
marks as proxies for our application of interest based on similarity.

The key issue in a methodology that uses program similarity
based on microarchitecture-independent program characteristics is
to determine how differences in microarchitecture-independent char-
acteristics translate into differences in performance. We propose
and evaluate three approaches for achieving that, namely normal-
ization, principal components analysis and a genetic algorithm, of
which the genetic algorithm shows to be the most accurate. A ge-
netic algorithm learns how to rescale the benchmark space so that
the Euclidean distance in the benchmark space becomes a more
accurate measure for performance differences when running the
benchmarks on a variety of platforms.

We evaluate our framework for predicting machine ranks using
SPEC published speedup rates that cover various commercial ma-
chines with different ISAs, compiler settings and microprocessors.

uarch-indep
chars

performance
numbers

data
transform

data
transform

uarch-indep
chars

build data
transform

predict performance based
on programs in neighborhood

benchmark suite

application
of interest

benchmark space

Figure 1: The framework proposed in this paper for predicting performance based on microarchitecture-independent program
characteristics.

Current practice, which uses the average rank across all bench-
marks for predicting ranks for specific applications of interest, a-
chieves an average 0.83 and a worst case 0.64 rank correlation co-
efficient for the estimated speedups versus the measured speedups.
Our framework based on inherent program similarity achieves an
average correlation coefficient of 0.89; the worst case correlation
coefficient that we observe is 0.79. These results demonstrate that
our framework is indeed capable of tracking performance differ-
ences across platforms with different ISAs, compilers and micro-
processors. To the best of our knowledge, this paper is the first
to propose a methodology for predicting machine ranks for indi-
vidual programs based on microarchitecture-independent program
similarity.

This paper is organized as follows. We first detail on our per-
formance prediction framework. We then present our experimental
setup followed by the evaluation of our framework. Finally, we
discuss related work and conclude.

2. PERFORMANCE PREDICTION FRAME-
WORK

Figure 1 illustrates the framework that we propose in this paper
for predicting performance based on microarchitecture-independent
program similarity. The framework assumes a collection of pro-
grams which we call the benchmark suite. For each of these bench-
marks, we have a collection of microarchitecture-independent char-
acteristics as well as performance numbers on a (number of) plat-
form(s). The performance numbers could be obtained from simu-
lation or from real hardware execution. These microarchitecture-
independent characteristics along with the performance numbers
are then used to build a data transformation matrix — building the
data transformation matrix can also be done without using perfor-
mance numbers, thus using microarchitecture-independent charac-
teristics solely (hence the dashed line between the ‘performance
numbers’ box and the ‘build data transform’ box in Figure 1). Once
the data transformation matrix is computed, the original microarchi-
tecture-independent data matrix is transformed using the data trans-
formation matrix. The benchmarks can now be viewed as points in
a transformed data space which we call the benchmark space.

For an application of interest for which we want to predict per-
formance, we then compute a set of microarchitecture-independent
characteristics — this is the same set of characteristics that we
used to build the benchmark space. We subsequently transform

the microarchitecture-independent characteristics using the same
data transformation matrix as above. This locates the application
of interest in the benchmark space. Performance is then predicted
by appropriately weighting the performance numbers of the bench-
marks in the neighborhood of the application of interest.

We now discuss a number of aspects of this framework: (i) the
microarchitecture-independent characteristics, (ii) how to build the
data transformation matrix, and (iii) how to compute a performance
number for the application of interest.

2.1 Microarchitecture-independent character-
istics

Ideally, the program characteristics that serve as input to our
framework should be platform-independent characteristics. In other
words, they should be compiler-independent, ISA-independent and
microarchitecture-independent in order to capture the true inherent
program behavior. Since this is difficult to do, we take a prag-
matic approach and use microarchitecture-independent character-
istics. The characteristics that we collect are specific to a given
ISA and a given compiler, however they are independent of a given
microarchitecture, i.e., the characteristics are independent of cache
size, branch predictor size, processor core configuration, etc. As
will be shown in the evaluation section of this paper, these charac-
teristics, inspite of being ISA-dependent and compiler-dependent,
are accurate enough for tracking performance across different plat-
forms with different ISAs and compilers.

Table 1 summarizes the 47 microarchitecture-independent char-
acteristics that we use in this paper. The range of microarchitecture-
independent characteristics is fairly broad in order to cover all ma-
jor program behaviors such as instruction mix, inherent ILP, work-
ing set sizes, memory strides, branch predictability, etc. Measur-
ing these program characteristics can be done efficiently through
instrumentation which is substantially faster than simulation. We
include the following characteristics:

Instruction mix. We include the percentage of loads, stores,
control transfers, arithmetic operations, integer multiplies and floa-
ting-point operations.

ILP. In order to quantify the amount of instruction-level paral-
lelism (ILP), we consider an out-of-order processor model in which
everything is idealized and unlimited except for the window size —
we assume perfect caches, perfect branch prediction, infinite num-
ber of functional units, etc. We measure the amount of IPC that can
be achieved for an idealized processor with a given window size of

category no. characteristic
instruction mix 1 percentage loads

2 percentage stores
3 percentage control transfers
4 percentage arithmetic operations
5 percentage integer multiplies
6 percentage fp operations

ILP 7 32-entry window
8 64-entry window
9 128-entry window
10 256-entry window

register traffic 11 avg. number of input operands
12 avg. degree of use
13 prob. register dependence = 1
14 prob. register dependence ≤ 2
15 prob. register dependence ≤ 4
16 prob. register dependence ≤ 8
17 prob. register dependence ≤ 16
18 prob. register dependence ≤ 32
19 prob. register dependence ≤ 64

working set size 20 I-stream at the 32B block level
21 I-stream at the 4KB page level
22 D-stream at the 32B block level
23 D-stream at the 4KB-page level

category no. characteristic
data stream strides 24 prob. local load stride = 0

25 prob. local load stride ≤ 8
26 prob. local load stride ≤ 64
27 prob. local load stride ≤ 512
28 prob. local load stride ≤ 4096
29 prob. local store stride = 0
30 prob. local store stride ≤ 8
31 prob. local store stride ≤ 64
32 prob. local store stride ≤ 512
33 prob. local store stride ≤ 4096
34 prob. global load stride = 0
35 prob. global load stride ≤ 8
36 prob. global load stride ≤ 64
37 prob. global load stride ≤ 512
38 prob. global load stride ≤ 4096
39 prob. global store stride = 0
40 prob. global store stride ≤ 8
41 prob. global store stride ≤ 64
42 prob. global store stride ≤ 512
43 prob. global store stride ≤ 4096

branch predictability 44 GAg PPM predictor
45 PAg PPM predictor
46 GAs PPM predictor
47 PAs PPM predictor

Table 1: Microarchitecture-independent characteristics.

32, 64, 128 and 256 in-flight instructions.
Register traffic characteristics. We collect a number of char-

acteristics concerning registers [6]. Our first characteristic is the
average number of input operands to an instruction. Our second
characteristic is the average degree of use, or the average number
of times a register instance is consumed (register read) since its pro-
duction (register write). The third set of characteristics concerns the
register dependency distance. The register dependency distance is
defined as the number of dynamic instructions between writing a
register and reading it.

Working set. We characterize the working set size of the instruc-
tion and data stream. For each benchmark, we count how many
unique 32-byte blocks were touched and how many unique 4KB
pages were touched for both instruction and data accesses.

Data stream strides. The data stream is characterized with re-
spect to local and global data strides [10]. A global stride is defined
as the difference in the data memory addresses between temporally
adjacent memory accesses. A local stride is defined identically ex-
cept that both memory accesses come from a single instruction —
this is done by tracking memory addresses for each memory opera-
tion. When computing the data stream strides we make a distinction
between loads and stores.

Branch predictability. The final characteristic we want to cap-
ture is branch behavior. The most important aspect would be how
predictable the branches are for a given benchmark. In order to
capture branch predictability in a microarchitecture-independent
manner we used the Prediction by Partial Matching (PPM) pre-
dictor proposed by Chen et al. [2], which is a universal compres-
sion/prediction technique.

A PPM predictor is built on the notion of a Markov predictor. A
Markov predictor of order k predicts the next branch outcome based
upon k preceding branch outcomes. Each entry in the Markov pre-
dictor records the number of next branch outcomes for the given
history. To predict the next branch outcome, the Markov predictor
outputs the most likely branch direction for the given k-bit history.
An m-order PPM predictor consists of (m+1) Markov predictors
of orders 0 up to m. The PPM predictor uses the m-bit history to
index the mth order Markov predictor. If the search succeeds, i.e.

the history of branch outcomes occurred previously, the PPM pre-
dictor outputs the prediction by the mth order Markov predictor. If
the search does not succeed, the PPM predictor uses the (m-1)-bit
history to index the (m-1)th order Markov predictor. In case the
search misses again, the PPM predictor indexes the (m-2)th order
Markov predictor, etc. Updating the PPM predictor is done by up-
dating the Markov predictor that makes the prediction and all its
higher order Markov predictors. In this paper, we consider four
variations of the PPM predictor: GAg, PAg, GAs and PAs. ‘G’
means global branch history whereas ‘P’ stands for per-address or
local branch history; ‘g’ means one global predictor table shared by
all branches and ‘s’ means separate tables per branch. The order of
all of these predictors equals 13 in our measurements. We want to
emphasize that these characteristics for computing the branch pre-
dictability are microarchitecture-independent. The reason is that
the PPM predictor is to be viewed as a theoretical basis for branch
prediction — it attains upper-limit performance — rather than an
actual predictor that is to be built in hardware.

2.2 The Data Transformation Matrix
As a second step in our methodology, the raw data matrix, which

is a matrix where the rows are the benchmarks and where the columns
are the microarchitecture-independent characteristics, needs to be
transformed. This is done by multiplying the raw data matrix with
the data transformation matrix. We now propose three different
methods of data transformation, namely normalization, principal
components analysis and a genetic algorithm.

2.2.1 Normalization
An important issue with the raw data matrix is that some microar-

chitecture-independent characteristics vary in the range 10±1 where-
as other characteristics vary in the range 1 ± 0.1, e.g., the vari-
ance of the ILP metric is orders of magnitude larger than the vari-
ance of the instruction mix metric. Using the Euclidean distance
in the benchmark space built from the raw data matrix would thus
give higher weight to characteristics that take larger values. Nor-
malization so that the mean is zero and the variance is one for
all microarchitecture-independent characteristics across all bench-

marks alleviates this issue. Normalization gives an equal weight to
all the microarchitecture-independent characteristics.

2.2.2 Principal Components Analysis
A second important issue is that some dimensions in the bench-

mark space (even after normalization) can be correlated. The Eu-
clidean distance gives higher weight to correlated characteristics.
In other words, the underlying program characteristic that causes
the microarchitecture-independent characteristics to correlate, gets
a higher weight in the Euclidean distance. Principal components
analysis (PCA) [7] is a statistical data analysis technique that ex-
tracts uncorrelated dimensions from a data set.

The input to PCA is a matrix in which the rows are the cases and
the columns are the variables. In this paper, the cases are the vari-
ous benchmarks; the columns are the 47 normalized microarchitec-
ture-independent characteristics. PCA computes new variables, cal-
led principal components, which are linear combinations of the
original variables, such that all principal components are uncorre-
lated. PCA tranforms the p variables X1, X2, . . . , Xp into p prin-
cipal components Z1, Z2, . . . , Zp with Zi =

Pp

j=1
aijXj . This

transformation has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥
V ar[Zp] — this means Z1 contains the most information and Zp

the least; and (ii) Cov[Zi, Zj] = 0, ∀i 6= j — this means there
is no information overlap between the principal components. Note
that the total variance in the data (variables) remains the same be-
fore and after the transformation, namely

Pp

i=1
V ar[Xi] =

Pp

i=1
V ar[Zi]. In this paper, Xi is the ith microarchitecture-

independent characteristic; Zi then is the ith principal component
after PCA. V ar[Xi] is the variance of the original microarchitecture-
independent characteristic Xi computed over all benchmarks. Like-
wise, V ar[Zi] is the variance of the principal component Zi over
all benchmarks.

Some of the principal components account for a higher variance
than others. By removing the principal components with the low-
est variance from the analysis, we can reduce the dimensionality of
the data set while controlling the amount of information that is lost.
We retain q principal components which is a significant information
reduction since q � p in most cases. To measure the fraction of in-
formation retained in this q-dimensional space, we use the amount
of variance (

Pq

i=1
V ar[Zi])/(

Pp

i=1
V ar[Xi]) accounted for by

these q principal components. For example, criteria such as ‘80%
of the total variance should be explained by the retained principal
components’ could be used for data reduction. An alternative cri-
terion is to retain all principal components for which the individual
retained principal component explains a fraction of the total vari-
ance that is at least as large as the minimum variance of the original
variables.

The output obtained from PCA is a matrix in which the rows
are the various benchmarks and the columns are the retained prin-
cipal components. We subsequently normalize the principal com-
ponents, i.e. we rescale the principal components to unit variance.
This gives equal weight to all of the principal components [5].

2.2.3 Genetic Algorithm
Since we use the Euclidean distance as a distance measure in the

benchmark space, we implicitly assume that the Euclidean distance
in the (microarchitecture-independent) benchmark space is propor-
tional to the performance differences across a variety of platforms.
Normalization and PCA only partially address this issue. Normal-
ization assumes that all normalized microarchitecture-independent
characteristics have an equal impact on overall performance; PCA
assumes that all normalized underlying (and uncorrelated) program
characteristics have an equal impact. However, some program char-

acteristics have a much larger impact on performance than others.
For example, the branch prediction accuracy typically has a much
larger impact on overall performance than the fraction multiply op-
erations. As such, an appropriate distance measure should give a
higher weight to the branch prediction accuracy metric than to the
fraction multiply operations.

A higher or lower impact to a particular program characteristic
can be given by multiplying the program characteristic by a given
factor. This scaling gives a higher or lower weight to the given
program characteristic when computing the Euclidean distance in
the benchmark space.

We propose a genetic algorithm (GA) for computing these weights.
A genetic algorithm is an evolutionary optimization method that
starts from a population of solutions. For each solution in the popu-
lation, a fitness score is computed and the solutions with the highest
fitness score are selected for constructing the next generation. This
is done by applying mutation and crossover on the selected solu-
tions from the previous generation. Mutation randomly changes a
single solution; crossover generates new solutions by mixing exist-
ing solutions. This algorithm is repeated, i.e., new generations are
constructed, until no more improvement is observed for the fitness
score.

The fitness score that we use here is the prediction accuracy
of our framework to predict performance speedups across a wide
range of machines. As such, the genetic algorithm learns how the
distance measure in the benchmark space correlates with perfor-
mance across a variety of platforms. The genetic algorithm thus
uses performance numbers for building the data transformation ma-
trix; the normalization and PCA approaches do not use perfor-
mance numbers.

2.3 Performance Prediction
Once the data transformation matrix is computed using one of

the approaches discussed in the previous section, we transform
the raw data matrix by multiplying it with the data transformation
matrix. Each benchmark then is a point in the multidimensional
benchmark space. Predicting performance for an application of in-
terest then requires that microarchitecture-independent character-
istics are measured and that these characteristics are transformed
using the data transformation matrix. This locates the application
of interest in the benchmark space.

Predicting performance for the application of interest is done by
taking a weighted average over the performance numbers of the
benchmarks in the neighborhood of the application of interest. All
the benchmarks that are part of the neighborhood are called prox-
ies of the application of interest. The weighting is done based on
the distance between the proxy and the application of interest. In
fact, the weight wi is inversely proportional to the distance di. The
weight wi is computed as

wi =

Pn

i=1

1

di

di

, (1)

with n being the number of proxies of the application of interest.
In this paper, we focus on predicting performance speedups, rather
than predicting raw performance. Predicting relative performance
differences is often more important in practice. The performance
speedup of the application of interest is computed as the weighted
harmonic average over the speedups of the proxies:

S =
1

Pn

i=1

wi

Si

. (2)

2.4 Discussion
An inherent limitation with this performance prediction frame-

work is that accurate performance prediction is difficult for an ap-
plication of interest that is isolated in the benchmark space. The
fact that an application of interest is isolated in the benchmark
space indicates that the application of interest is dissimilar to all of
the programs in the benchmark suite in terms of its microarchitectiure-
independent characteristics. As such, it is to be expected that an
accurate performance prediction will be difficult to make based on
the almost non-existing similarity of the application of interest with
the programs in the benchmark suite.

As a result, an important issue to our performance prediction
framework is which programs to select for inclusion in the bench-
mark suite, i.e., the benchmark suite should be diverse enough to
cover a wide range of program behaviors. In this paper, we use
SPEC CPU2000 as our benchmark suite because the SPEC web-
site records performance numbers for all of the SPEC CPU2000
benchmarks for a large variety of platforms. Showing that our per-
formance prediction framework works using a standardized bench-
mark suite has a lot of practical appeal. People can compare their
application of interest versus the SPEC CPU benchmarks based on
inherent program behavior and make performance predictions us-
ing the publicly available SPEC CPU results for a large number of
commercial machines.

As a part of our future work, we will study how to build a bench-
mark suite that reduces the number of weak spots in the benchmark
space in order to make accurate predictions for a wider range of
applications of interest. One potential avenue could be to look at
program phases of existing benchmarks to populate the benchmark
space.

3. EXPERIMENTAL SETUP
In this paper, we use all of the SPEC CPU2000 benchmarks with

all of their reference inputs. The binaries were taken from the Sim-
pleScalar website; they are compiled for the Alpha ISA. Measuring
the microarchitecture-independent characteristics discussed in sec-
tion 2.1 is done using ATOM [15]. ATOM is a binary instrumenta-
tion tool that allows for instrumenting functions, basic blocks and
instructions. The instrumentation itself is done offline, i.e., an in-
strumented binary is stored on disk. Then the microarchitecture
characteristics are measured by running the instrumented binary.

In the evaluation section of this paper, we use the real hardware
performance numbers reported on the SPEC CPU website1. We
use the speedup ratios with base optimization compared to the ref-
erence SPEC CPU machine which is a SUN Ultra5 10 workstation
with a 300MHz SPARC processor with 256MB main memory. We
use speedup numbers for 36 machines with different ISAs, proces-
sors and machine configurations from a variety of computer manu-
facturers such as AMD, Intel, Alpha, HP, IBM, SUN, etc. Table 2
enumerates all the machines that we use in this study.

Recall that the genetic algorithm uses performance numbers for
learning how to scale the microarchitecture-independent character-
istics for accurate performance predictions. As such, in order to
make a fair evaluation of the genetic algorithm, we use a leave-one-
out methodology. The leave-one-out methodology leaves a bench-
mark out of the data set for building the model using the genetic
algorithm; the model is then subsequently used for predicting the
performance for the left-out benchmark.

1http://www.spec.org/cpu2000

AMD Epox 8KHA Motherboard, AMD Athlon(TM) XP2100+
AMD TYAN Thunder K8QS Pro (S4882), AMD Opteron(TM) 850
Compaq AlphaServer DS10 6/600
Acer Altos G520 (3.6GHz Intel Xeon)
Acer Altos G710 (3.0GHz Intel Xeon)
Dell Precision WorkStation 340 (1.5GHz Pentium 4)
Dell Precision WorkStation 340 (2.2GHz Pentium 4)
Dell Precision Workstation 380 (3.8GHz Pentium 4, 2MB L2)
Fujitsu PRIMEPOWER650 (1890MHz)
Fujitsu PRIMEPOWER900 (2160MHz)
Fujitsu Siemens Celcius 460
Fujitsu Siemens Celsius V810, Opteron(TM) 252, Linux64-bit
Fujitsu Siemens PRIMERGY BX620S2, 64-bit Intel Xeon 3.60GHz
AMD Gigabyte GA-7DX Motherboard, 1.2GHz Athlon Processor
HP Integrity rx4640-8 (1.6GHz/9MB L2 Itanium2)
HP AlphaServer GS1280 7/1300
HP ProLiant BL25p, AMD Opteron(TM) 252
IBM eServer Bladecenter HS20 (3.8GHz Intel Xeon, 2MB L2 Cache)
IBM eServer e326 (AMD Opteron(TM) 246)
IBM eServer p5 575 (1900MHz, 1 CPU)
IBM eServer pSeries 690Turbo (1700MHz, 1 CPU)
ION SR2300WV2 (3.2GHz Intel Xeon processor w. 2MB L3 cache)
Intel D850EMV2 motherboard (2.53GHz, Pentium4 processor)
Intel D850MD motherboard (2.0GHz, Pentium 4 processor)
Intel D875PBZ motherboard (3.2GHz, Pentium 4 processor)
Intel D925XECV2 motherboard (3.46GHz, Pentium 4 processor)
Pathscale ASUS SK8N Motherboard, AMD Opteron (TM) Model 248
AMD Rioworks HDAMA Motherboard, AMD Opteron 246
SGI Altix3700 Bx2 (1600MHz 9MB L3, Itanium2)
SGI Altix3000 (1500MHz, Itanium2)
SGI Origin200 360MHz R12k
Sun Blade 1000 Model1900
Sun Blade 2500 (1.6GHz)
Sun Fire V1280 (1200 MHz)
Sun Java Workstation W1100z
Supermicro X6DH8/E-G2 Motherboard (Intel Xeon 3.6GHz 2M Cache)

Table 2: Real hardware systems used in this paper.

4. EVALUATION
We now evaluate if our framework can predict the speedup ranks

of real systems for an application of interest. To demonstrate the
results we initially plot the estimated speedup numbers versus the
actual speedup numbers for four example benchmarks, namely art,
gap, gcc and mesa as shown in Figure 2. Each dot in these scat-
ter plots represents one machine; there are 36 machines plotted in
total. The graphs in the right column are for the GA data transfor-
mation method; the graphs on the left are for the ‘average speedup’
method. The ‘average speedup’ approach is what people would use
in current practice given the SPEC CPU data; they would choose
a machine that achieves high average performance on all of the
benchmarks. We observe that the estimated speedups correlate very
well with the measured speedups for the average speedup method.
However, the estimated speedup results for the GA data transfor-
mation method correlate better with the measured speedups than
the average speedup approach.

4.1 Predicting machine ranks
To quantify the accuracy of predicting the ranks of different sys-

tems we compute rank correlation coefficients. For a given ap-
plication of interest we rank all the machines based on the pre-
dicted speedups. A similar rank can be computed based on the
measured speedups. We then compute the Spearman rank corre-
lation coefficient which is a measure for how well the estimated
rank corresponds to the measured rank. The closer to 1, the bet-
ter the estimated rank. The results are shown in Figure 3 for the
three data transformation methods that we evaluate in this paper:
normalization, PCA and genetic algorithm. For PCA, we retain 6
principal components which explain slightly more than 80% of the
total variance; we experimented with different number of princi-
pal components, however, 6 principal components showed to yield

Figure 2: Scatter plots showing the estimated speedups versus the measured speedups for all 36 machines for four benchmarks:
art, gap, gcc and mesa; this is for the average speedup approach (left column) and for the GA data transformation method (right
column).

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

b
z
ip

2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

fa
c
e

re
c

fm
a

3
d

g
a

lg
e

l

g
a

p

g
c
c

g
z
ip

lu
c
a

s

m
c
f

m
e

s
a

m
g

ri
d

p
a

rs
e

r

p
e

rl
b

m
k

s
ix

tr
a

c
k

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

a
v
g

S
p

e
a

rm
a

n
c
o

rr
e

la
ti
o

n
c
o

e
ff
ic

ie
n

t average speedup normalization PCA w/ 6PCs genetic algorithm

Figure 3: The Spearman correlation coefficients for estimating the ranks for the average benchmark suite speedup results, and the
normalization, PCA and GA data transformation methods.

avg speedup normalization PCA GA
normalization 21 – 17 10
PCA 17 9 – 10
GA 23 16 16 –

Table 3: Summarizing the number of benchmarks out of the
26 SPEC CPU benchmarks for which a data transformation
method in the rows outperforms a data transformation method
in the columns.

the best results. The baseline Spearman rank correlation coefficient
that we compare against is obtained from a rank based on average
speedup numbers across all benchmarks. This baseline rank corre-
lation coefficient is 0.83 on average. The normalization and PCA
data transformation methods achieve a higher average correlation
coefficient, namely 0.889 and 0.876, respectively. The genetic al-
gorithm achieves a slightly higher correlation coefficient, namely
0.892. Also important, next to achieving a good average correlation
coefficient, is that the minimum correlation coefficient for our data
transformation techniques (0.80 for normalization, 0.77 for PCA
and 0.79 for the genetic algorithm) is significantly higher than the
minimum correlation coefficient for the average speedup method
(0.64).

Table 3 summarizes the number of benchmarks for which one
data transformation method achieves a higher rank correlation co-
efficient than another data transformation method. The genetic al-
gorithm which outperforms the normalization and PCA data trans-
formation methods for 16 out of the 26 benchmarks, and outper-
forms the average speedup method for 23 of the 26 benchmarks,
clearly is the best performing data transformation method.

In order to further quantify the significance of our results, we
have done the following experiment. We quantified the perfor-
mance loss by picking the machine with the highest rank according
to the average speedup method compared to the best performing
machine for a given application of interest. The average perfor-
mance loss using this approach is 20%. Using the genetic algo-
rithm to point to the machine with the highest rank yields a perfor-
mance loss of only 13.6%. Doing the same experiment with the top
3 highest machine ranks yields 19.7% versus 11.1% performance
loss, respectively. As such, we conclude that the small differences
in rank correlation coefficient can make a big difference in practice.

4.2 Number of proxies
As mentioned in section 2.3, we compute the estimated speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 all

number of proxies

S
p

e
a

rm
a

n
c
o

rr
e

la
ti
o

n
c
o

e
ff
ic

ie
n

t

mean

wors t

Figure 4: The average and worst Spearman rank correlation
coefficient as a function of the number of proxies.

for the application of interest as a weighted average over a number
of proxies. Figure 4 quantifies the average and the worst Spearman
rank correlation coefficient as a function of the number of proxies.
Using a single proxy for the application of interest yields relatively
poor results; the worst rank correlation coefficient is 0.48. The best
results are obtained for three proxies — and we used three prox-
ies for all the other results presented in this paper. More proxies
degrade the prediction accuracy.

Table 4 shows the three proxies along with their weights for all
of the SPEC CPU2000 benchmarks. It is interesting to observe that
the weights for all of the proxies are very close to 1/3. In other
words, the distance between the proxies and the application of in-
terest is fairly uniform. There are a few exceptions though, see for
example art and galgel. These two benchmarks are substantially
closer to each other than any of the other benchmarks. Another
interesting note is that some benchmarks do not appear as a proxy
in this table, such as gcc, mcf, lucas and swim. This is because
these benchmarks are isolated in the benchmark space, or in other
words, these benchmarks exhibit a unique inherent program be-
havior. Other benchmarks are very popular proxies (bzip2 being
the most notable example) and hence are similar to several other
benchmarks.

benchmark first proxy second proxy third proxy
benchmark weight benchmark weight benchmark weight

ammp sixtrack 0.3450023 facerec 0.3298283 equake 0.3251694
applu apsi 0.3529558 mgrid 0.3321383 sixtrack 0.3149060
apsi facerec 0.3632251 applu 0.3310163 mgrid 0.3057585
art galgel 0.5262046 equake 0.2486268 applu 0.2251686
bzip2 crafty 0.3678218 vpr 0.3247506 gzip 0.3074277
crafty bzip2 0.3457154 gzip 0.3291154 mesa 0.3251692
eon vortex 0.3432195 perlbmk 0.3363128 wupwise 0.3204677
equake mgrid 0.3698197 facerec 0.3155218 wupwise 0.3146585
facerec apsi 0.3708346 wupwise 0.3234905 mesa 0.3056749
fma3d perlbmk 0.3660400 mesa 0.3522770 eon 0.2816830
galgel art 0.5048660 equake 0.2628316 applu 0.2323024
gap parser 0.3844569 perlbmk 0.3277766 bzip2 0.2877665
gcc gap 0.3390179 vortex 0.3317401 perlbmk 0.3292420
gzip bzip2 0.3723797 vpr 0.3230235 parser 0.3045968
lucas sixtrack 0.3547355 ammp 0.3331614 apsi 0.3121031
mcf twolf 0.3655187 vpr 0.3456542 bzip2 0.2888271
mesa crafty 0.3360154 fma3d 0.3327870 perlbmk 0.3311976
mgrid applu 0.3867341 equake 0.3145360 apsi 0.2987299
parser gap 0.3594303 bzip2 0.3560188 crafty 0.2845508
perlbmk mesa 0.3450405 bzip2 0.3330650 fma3d 0.3218945
sixtrack fma3d 0.3439120 applu 0.3375917 apsi 0.3184963
swim lucas 0.3569074 mgrid 0.3227215 sixtrack 0.3203710
twolf vpr 0.4386195 bzip2 0.3045816 parser 0.2567989
vortex eon 0.3465275 perlbmk 0.3282399 parser 0.3252326
vpr twolf 0.3855639 bzip2 0.3689636 parser 0.2454725
wupwise facerec 0.3516994 eon 0.3451375 equake 0.3031630

Table 4: The three proxies along with their weights for each of the benchmarks.

5. RELATED WORK
The fundamental facilitator for our performance prediction ap-

proach is a good quantitative measure for program similarity. Sev-
eral researchers have proposed methods for quantifying program
similarity. Saavedra and Smith [13] use the squared Euclidean
distance computed in a benchmark space built up using dynamic
program characteristics at the Fortran programming language level
such as operation mix, number of function calls, number of address
computations, etc. Conte [3] uses kiviat views to qualitatively com-
pare program behavior based on microarchitecture-dependent char-
acteristics such as cache miss rates, branch mispredict rates, etc. Yi
et al. [17] use a Plackett-Burman design for classifying benchmarks
based on how the benchmarks stress the same processor compo-
nents to similar degrees. Vandierendonck and De Bosschere [16]
rank benchmarks based on their uniqueness in the standard bench-
mark suite using the SPEC performance rating, i.e., the benchmarks
that exhibit different speedups on most of the machines are given
a higher rank. All of these studies reveal interesting insights into
how benchmarks behave and into how (dis)similar benchmarks are
from each other.

Based on this prior work, researchers have proposed benchmark
suite composition techniques [4, 5, 12]. These techniques first mea-
sure a number of program characteristics, then apply principal com-
ponents analysis, and finally apply cluster analysis in order to find
distinct groups of program behavior. A representative is then cho-
sen from each cluster for inclusion in the benchmark suite. The
key idea is to select benchmarks so that all major program behav-
iors are represented in the benchmark suite. This technique can
be used for building a benchmark suite that covers the benchmark
space well, or it could be used to build a reduced benchmark suite
from an existing benchmark suite. This reduced benchmark suite
yields accurate performance predictions compared to the original
benchmark suite.

The current paper extends [11] which used the above workload

characterization methodology consisting of principal components
analysis and cluster analysis to predict performance for individual
benchmarks. As shown in this paper, an important issue with prin-
cipal components analysis however is that the distance measure in
the benchmark space may not relate well to the performance differ-
ences across various platforms. This paper shows that the genetic
algorithm for learning how the differences in microarchitecture-
independent characteristics relate to performance differences yields
better results. The current paper also improves [11] in three other
ways: (i) the use of a better set of microarchitecture-independent
characteristics, (ii) limiting the number of proxies and (iii) the use
of more benchmarks in the evaluation. Doing a head-to-head com-
parison between the method in [11] and our approach, for the bench-
marks considered in [11], shows an improvement of the average
rank correlation coefficient from 0.76 to 0.91.

A large body of work has also been done on the correlation be-
tween microarchitecture-independent program characteristics and
processor performance, see for example [1, 9, 14]. However, these
techniques do not predict performance for an application of inter-
est based on cross-program similarity. Instead, these techniques
predict performance based on intra-program phase-level similari-
ties. This requires that particular phases of the application need to
be executed for making a performance prediction; this is not the
case for our method.

Another approach to the benchmarking problem that we address
in this paper is analytical modeling. Ideally, an analytical model
would consume microarchitecture-independent characteristics as well
as microarchitecture parameters and produce accurate performance
estimates of the given application on the given microarchitecture.
The work that gets close to such an approach is the superscalar
processor model presented by Karkhanis and Smith [8] that esti-
mates performance based on microarchitecture-dependent charac-
teristics such as cache miss rates and branch misprediction rates.
And various researchers have proposed techniques to predict cache

miss rates based on microarchitecture-independent characteristics
such as the stack distance, see for example [18]. However, we are
unaware of any work that proposes a superscalar processor model
based on microarchitecture-independent characteristics solely —
the major impediment for achieving this is a good model for es-
timating branch misprediction rates based on microarchitecture-
independent characteristics.

6. SUMMARY
This paper proposed an approach for addressing the ubiquitous

problem in benchmarking which is the identification of the plat-
form that yields the best performance for the given application of
interest. The key idea is to compare inherent program character-
istics of the application of interest against the same characteristics
for all programs in the standardized benchmark suite. Based on
the inherent similarity of the application of interest with the bench-
marks in the benchmark suite, a number of proxies are identified
and a performance prediction can be made using the performance
numbers of the proxies.

We evaluated three approaches for transforming the raw microar-
chitecture-independent data matrix into a benchmark space in which
the relative distance is an accurate measure for program similarity
and hence the relative performance differences across a variety of
platforms. Of the three approaches, normalization, principal com-
ponents analysis and genetic algorithm, the genetic algorithm is the
most accurate. Our framework yields an average 0.89 rank corre-
lation coefficient for predicting relative performance ranks of 36
commercial machines with different ISAs, compilers and micro-
processors; the worst case correlation coefficient is 0.80. Current
practice which uses the average machine ratings for predicting ma-
chine ranks achieves an average 0.83 rank correlation coefficient
and a worst case correlation coefficient of 0.64.

Acknowledgements
This research is supported in part by Ghent University, the Insti-
tute for the Promotion of Innovation by Science and Technology
in Flanders (IWT), the Fund for Scientific Research – Flanders
(FWO Vlaanderen), the HiPEAC Network of Excellence, the Euro-
pean SARC project No. 27648, the NSF grant 0429806, IBM, Intel
and AMD Corporations. Lieven Eeckhout is a Postdoctoral Fellow
with the Fund for Scientific Research – Flanders (Belgium) (FWO
Vlaanderen).

7. REFERENCES
[1] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and

B. Davies. The fuzzy correlation between code and performance
predictability. In Proceedings of the 37th International Symposium
on Microarchitecture (MICRO), pages 93–104, Dec. 2004.

[2] I. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch
prediction via data compression. In Proceedings of the 7th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII), pages 128–137,
Oct. 1996.

[3] T. Conte. Insight, not (random) numbers. Keynote talk at the 2005
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Mar. 2005.

[4] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program
microarchitecture independent characteristics and phase behavior for
reduced benchmark suite simulation. In Proceedings of the 2005
IEEE International Symposium on Workload Characterization
(IISWC), pages 2–12, Oct. 2005.

[5] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quantifying
the impact of input data sets on program behavior and its
applications. Journal of Instruction-Level Parallelism, 5, Feb. 2003.
http://www.jilp.org/vol5.

[6] M. Franklin and G. S. Sohi. Register traffic analysis for streamlining
inter-operation communication in fine-grain parallel processors. In
Proceedings of the 22nd Annual International Symposium on
Microarchitecture (MICRO-22), pages 236–245, Dec. 1992.

[7] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical
Analysis. Prentice Hall, fifth edition, 2002.

[8] T. S. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium
on Computer Architecture (ISCA-31), pages 338–349, June 2004.

[9] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The
strong correlation between code signatures and performance. In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar. 2005.

[10] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase
classification. In Proceedings of the 2004 International Symposium
on Performance Analysis of Systems and Software (ISPASS), Mar.
2004.

[11] A. Phansalkar and L. K. John. Performance prediction using
program similarity. In Proceedings of the 2006 SPEC Benchmark
Workshop, Jan. 2006.

[12] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring
program similarity: Experiments with SPEC CPU benchmark suites.
In Proceedings of the 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’05), pages
10–20, Mar. 2005.

[13] R. H. Saavedra and A. J. Smith. Analysis of benchmark
characteristics and benchmark performance prediction. ACM
Transactions on Computer Systems, 14(4):344–384, Nov. 1996.

[14] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
Proceedings of the Tenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS-X), pages 45–57, Oct. 2002.

[15] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. Technical Report 94/2, Western
Research Lab, Compaq, Mar. 1994.

[16] H. Vandierendonck and K. De Bosschere. Many benchmarks stress
the same bottlenecks. In Proceedings of the Seventh Workshop on
Computer Architecture Evaluation using Commercial Workloads
(CAECW), pages 57–64, Feb. 2004.

[17] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous
approach for improving simulation methodology. In Proceedings of
the Ninth International Symposium on High Performance Computer
Architecture (HPCA-9), pages 281–291, Feb. 2003.

[18] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate prediction across
all program inputs. In Proceedings of the Twelveth International
Conference on Parallel Architectures and Compilation Techniques
(PACT), Sept. 2003.

