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Abstract— The Analysis and Prediction of Performance 

for Evolving Architectures (APPEAR) method aims at the 
performance estimation of newly developed or adapted 
parts of software product families during the architecting 
phase. Early performance prediction allows checking the 
feasibility of systems before their implementation and thus 
saves money and effort from developing potentially infea-
sible products. In contrast to all the existing methods, it 
combines both structural and statistical techniques. It al-
lows choosing which part of the application is structurally 
modeled, and which part is statistically approximated. The 
statistical approach is employed to model those parts of a 
system that remain unchanged for a long time during the 
evolution. The analytical approach is used to model the 
parts of the system that evolve rapidly and that are thus 
not yet implemented. Also here, statistical modeling helps 
to abstract from internal details of components and thus to 
reduce the modeling complexity. Often, a simulation 
model can be built that provides fast feedback on the 
changes of relevant parts. The method was checked using 
case studies in the Consumer Electronics and the Medical 
Imaging System domains. The initial results are encourag-
ing for the case of single components. The APPEAR 
method is currently being extended to address perform-
ance prediction for component compositions.  
 

Keywords— Software architecting, Embedded Systems, 
Performance prediction, Regression, Software modeling 

I. INTRODUCTION 
Early performance estimation makes it possible to ver-

ify the feasibility of systems before their implementa-
tion, thus saving money and effort otherwise devoted to 
developing potentially infeasible products. An ability to 
evaluate the software performance (e.g. response time, 
latency, average CPU utilization, execution time) at an 
early stage helps in estimating the impact of various ar-
chitectural decisions beforehand. This ability can also 
assist the architect in comparing various architectural 

solutions and quickly selecting the most appropriate one. 
Finally, this ability helps to predict the performance of 
the future versions of the software and thus to determine 
whether these versions are worth developing. 

Architects need a method to estimate the performance 
of software early, during the architecting and design 
phases. This method should be fast in comparison to 
software implementation and subsequent measurements, 
simple so that less time and fewer human resources are 
required, general so that it can be applied to any type of 
software, and accurate in order to provide useful results. 
The method should also provide architectural insight 
into the performance. This performance insight is the 
information that helps to understand why the system ex-
hibits such performance and how this performance can 
be controlled and hopefully optimized.  

Performance insight includes (1) critical parameters 
and (2) architectural bottlenecks. Critical parameters are 
input parameters (e.g. amount of data to process) or 
static architectural parameters (e.g. buffer size) that di-
rectly influence performance, while architectural bottle-
necks are architectural concepts and construction 
mechanisms that result in performance losses. 

Both goals – performance insight and performance es-
timation – can be achieved by constructing performance 
models. These models should contain performance-
relevant details only. They allow the architect to observe 
the dependencies between software performance and 
performance-determining factors such as input/ output/ 
diversity parameters, bottlenecks, architectural concepts, 
etc. 

To date, various methods for performance estimation 
have been developed. Two types of methods are relevant 
here: purely simulation-based models and mathematical 
models. The first type suffers from the combinatorial 
explosion of details, while the second often makes too 
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specific assumptions about the system under question. 
These assumptions do not hold true for many systems, 
and thus models built using these assumptions can be 
both inaccurate and inadequate. 

We propose the APPEAR (Analysis and Prediction of 
Performance for Evolving Architectures) method [3], 
which combines the best elements of several existing 
estimation techniques. The proposed method does not 
fully address performance prediction at the architecting 
phase, but only makes it possible to predict the perform-
ance of adapted versions of existing software. This 
method is not suitable for the performance estimation of 
a completely new piece of software. 

The method employs structural models for describing 
the evolving and thus not yet implemented parts of the 
software and statistical models for abstracting from de-
tails that are not performance-relevant. This mix is sup-
ported by the fact that fewer and fewer software applica-
tions are currently being developed from scratch. The 
statistical approach is also employed to model those 
parts of a system that remain unchanged for a long time 
during the software evolution, e.g. the execution plat-
form. Abstracting from performance-irrelevant details by 
statistical modeling helps to reduce the modeling com-
plexity. As result, the method exhibits the following 
properties: 

1. It is fast, because only relevant parts of the soft-
ware are modeled explicitly. 

2. It is simple because all irrelevant details are cov-
ered by a statistical model. 

3. It is general because it is software-type independ-
ent. As long as the software satisfies the main as-
sumptions of the method (see section III.B), the 
method can be applied. 

4. It can deliver sufficiently accurate results. More-
over, the architects can trade estimation accuracy 
against estimation effort: the more details that are 
included into the structural model within the given 
effort limitations, the higher the accuracy that can 
be expected. 

The rest of the paper is structured as follows. Section 
II contains an overview of the related work. Section III 
presents the essential description of the APPEAR 
method. Section IV describes an experiment performed 
for validating the APPEAR method. Section V compares 
the APPEAR method with the existing methods for per-
formance evaluation. Section VI draws some conclu-
sions and gives an overview of future work. 

 

II. RELATED WORK 
Significant research effort has been made in the per-

formance-engineering domain. The main investigations 
were aimed at defining the theoretical basis for software 
performance engineering [13]. 

One of the most important, but also most critical, is-
sues in software architecting is early performance esti-
mation based on architectural models.  

Some of the classical approaches [13], [14] to per-
formance prediction use queuing network models de-
rived from the structural description of the architecture, 
and performance-critical use cases. Other approaches 
include specific architecture description methods [6]. An 
interesting approach is proposed in [11]. The executable 
prototype (a simulation model) generates traces ex-
pressed in a specific syntax (angio-traces). These traces 
are then used to construct performance-prediction mod-
els, based on layered queuing networks. 

Stochastic Petri nets are also widely used for the 
evaluation of software performance. An approach for the 
generation of Petri nets from UML collaboration and 
state chart diagrams is proposed in [12]. The generated 
Petri nets are then used to estimate various performance 
characteristics. 

A well-known practice for early performance analysis 
is the construction of a simulation model that captures 
the performance-critical parts of the software. The re-
sults from such a model, fed with various parameters, are 
either estimates for performance attributes or intermedi-
ate data that can be used to construct mathematical mod-
els.  

An example of the use of regression techniques is pre-
sented in [10]. In this approach, the results of software 
profiling are used to predict software reliability. 

The approaches presented in [1] and [9] are similar to 
the one presented in this paper. The second approach 
considers the use of linear regression techniques only, 
while the first approach also considers the use of adap-
tive local regression techniques (lazy learning [7]). Both 
methods extrapolate the performance of already imple-
mented software for new hardware. In contrast, we treat 
performance prediction at the architecting stage of an 
adapted version of the software, i.e. before its implemen-
tation. 

III. APPEAR METHOD 

A. Method essence 
This section overviews the basic principles of the AP-

PEAR method. A more extended description of the 
method can be found in [3]. 



  

The APPEAR method suggests the following view of 
the software stack. The software comprises two parts: (1) 
applications and (2) a Virtual Service Platform (VSP). 
The first consist of evolving components that are spe-
cific for different products of a product family, while the 
second encompasses stable components that do not sig-
nificantly evolve during the software lifecycle of a prod-
uct. Both parts can interact with an execution environ-
ment (see Figure 1). 

Applications

 Environment

VSP

ResponsesStimuli

Services Interactions

1Sv NSv

 
Figure 1. APPEAR view of the software stack 

As a result of an input stimulus, an application can in-
voke several service calls of the VSP to perform the nec-
essary functionality. After completing these calls, the 
application produces a response to the environment. The 
timing dependency between the stimulus and response 
can be characterized with some performance measure 
(e.g. response time, latency, average CPU utilization, 
execution time). 

The APPEAR method predicts the performance of 
adapted software applications by means of the statistical 
prediction model. This model reflects the correlation 
between the performance metric of interest and perform-
ance-relevant parameters of the applications: the use of 
services calls, input parameters, diversity parameters, 
etc. These parameters are said to form the signature type 
of an application. The process of signature type identifi-
cation is detailed in Section III.D. 

The correlation between signature values and per-
formance metric can be employed for extrapolating the 
performance of adapted applications during the archi-
tecting phase. The prediction model is calibrated on the 
existing applications. Both already existing and not-yet 
implemented applications are described in terms of sig-
nature parameters. The stability of the VSP allows one to 
use the same prediction model for both existing and 
adapted applications. 

To gain architectural insight into the execution archi-
tecture and its performance, a structural model of the 
application is constructed. This so called simulation 

model captures the performance-relevant parameters of 
applications and assists the architect in signature in-
stance extraction for existing and adapted applications. 

B. Assumptions 
To implement the ideas described in the section above, 

we assume the following: 
1. Applications can interact with the VSP but not 

with each other. 
2. The influence of the scheduling of shared re-

sources is negligible, meaning that blocking and 
pre-emption times are insignificant. 

3. The sequence of service calls does not matter. 
4. The software stack exhibits reasonable determin-

ism of the behavior and performance for each use 
case, i.e. the measurements do not deviate too 
much if they are repeated multiple times for ex-
actly the same use case. 

5. Gradual product evolution. During the evolution 
of a product, a significant portion of the software 
remains unchanged and the changes do not affect 
the character of the simulation model. 

6. The amount of experimental data is sufficiently in 
the neighbourhood of the input data for the 
adapted application to provide a robust prediction. 

C. Method steps 
The APPEAR method [3] estimates the performance 

of adapted applications using the simulation and predic-
tion models of existing applications. The model con-
struction process is shown in form of a flowchart in 
Figure 2.  

Each rectangle corresponds to a step of the APPEAR 
method; a rhombus depicts a condition; an arrow denotes 
a precedence relationship between two steps. We con-
sider only the solid arrows. The outer dashed back line 
depicts an escape route, when it is impossible to cali-
brate the prediction model within a certain number of 
inner loop iterations. 

After performing the first five steps, the prediction 
model is calibrated in an iterative way. The forth step 
can be omitted, if the architect has sufficient preliminary 
knowledge about the performance-relevant parameters 
and can therefore guess the initial signature type. Other-
wise, the architect can identify the initial signature type 
by applying a regression technique (see Section III.D) 
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Figure 2. Construction of simulation and prediction mod-
els 

D. Initial signature type identification by regression 
Regression techniques are applied not only for the 

construction of the prediction model but also for the 
identification of the signature type. 

It is possible to deduce the initial signature type by us-
ing execution traces if the software stack is properly in-
strumented, i.e. all performance-relevant service calls are 
logged. The correlation between the use of these service 
calls and the performance metric is analyzed by con-
structing an auxiliary prediction model. The service calls 

that sufficiently calibrate this auxiliary prediction model 
form the initial signature type. 

The flowchart for constructing the auxiliary prediction 
model is the following (see Figure 3): 
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Collection
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Design
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Requirements
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Figure 3. Main steps of the initial signature type identifica-
tion 

Step 1, Virtual Service Platform identification. The 
guidelines and criteria for selecting the level of the VSP 
are described in [3]. In most cases, this step is performed 
by the architects. 

Step 2, Definition of use cases for the existing ap-
plication. It is vital to determine a representative set of 
the application use cases to collect data for calibrating 
the auxiliary prediction model. 

Step 3, Collection of measurements. The selected 
use cases need to be executed and traced. 

Step 4, Signature instance extraction. The perform-
ance-relevant parameters can be determined from the use 
case traces. These parameters describe an application 
from a performance viewpoint and form the initial appli-
cation signature type; they can include the number of 
service calls invocations, input parameters, diversity pa-
rameters, etc.  

Step 5, Construction of a performance prediction 
model. The auxiliary performance prediction model 
needs to be calibrated based on the measured signature 
instances and corresponding performance metrics of the 
application. 

After constructing the auxiliary prediction model, the 
candidate parameters for the signature type are identi-
fied. In addition, the p-values of associated t-statistics1 
of signature parameters are determined by regression 
analysis (see [5]). These p-values are the probabilities 
that the regression coefficients for some signature pa-
rameters are zero. The greater the p-value, the less likely 
it is that the signature parameters influence the perform-
ance metric The ultimate goal is to arrive at a list of pa-
rameters that are all significant (the p-values are below a 
certain threshold). When interpreting the p-values, an 
 

1 In linear regression, t-statistics are used to check the null hy-
pothesis, i.e. to check if regression coefficients are likely to equal 
zero for certain signature parameters.  



  

architect has to account for the following: 
1. Variation of the values of signature parameters 

with large p-values. The values of certain parame-
ters might not vary significantly for a given set of 
use cases. In this case, additional use cases should 
be traced to make sure that this is not a measure-
ment artifact. Another option is to attach the sig-
nature parameter with its range and to take this 
range into account when predicting the perform-
ance of an adapted application. The predictions 
are likely to be imprecise if they are made using 
the prediction model calibrated on signature pa-
rameters with small ranges and large p-values. 

2. P-values are only valid for a particular combina-
tion of signature parameters. If a certain signature 
parameter is omitted, the p-values of the other pa-
rameters usually change.  

The architect can select the signature type by using the 
p-values in the following way: 

1. The p-values can be ignored and the entire list of 
signature parameters is considered, if the architect 
is sure that all the chosen signature parameters are 
relevant for modeling the performance and none 
of them can be omitted. 

2. A p-value threshold, usually called a significance 
level, can be introduced for determining the sig-
nificant parameters. The choice of this threshold 
depends on the context (e.g. a typical threshold is 
0.05). The parameters with p-values greater than 
this threshold are excluded from the candidate list. 

3. When constructing a prediction model, the archi-
tect can start with the parameters with low p-
values, and then gradually add parameters with 
greater ones if their inclusion improves the predic-
tion accuracy. 

IV. PREDICTION OF TV TELETEXT SOFTWARE 
UTILIZATION 

This section describes the experiment that has been 
performed to validate the APPEAR method. We applied 
the APPEAR method to the current and adapted versions 
of the Teletext decoder of a modern TV set. The execu-
tion time needed to acquire Teletext data by the adapted 
version of the Teletext decoder was estimated using the 
prediction model calibrated on the current version of the 
Teletext decoder. The predictions were then compared to 
the real measurements at the actual implementation of 
the adapted Teletext receiver. 

A. Overview of Teletext 
1) Teletext broadcasting 

Each Teletext transmission [15] comprises packets 

that together can form pages. Each page has a three-digit 
hexadecimal number in the range 100H to 8FFH. Pages 
with decimal numbers (e.g., 100 to 199) need displaying 
while the rest serves special purposes. All pages are or-
ganized in eight magazines, where the number of a 
magazine is the most significant digit of the number of a 
page that belongs to this magazine. The pages can also 
have sub-pages that are distinguished with sub-codes. 

Some packets are not directly related to a particular 
page, but rather to a magazine or a broadcast service. 
Different types of packets are discerned with a packet 
number: 

• Page header packets (packet number 0; these 
packets open a new page, close the previous page 
and fill gaps), 

• Directly displayable page data packets (packet 
numbers 1 to 23, 24 and 25), 

• Non-displayable page data packets (packet num-
bers 26 to 28), 

• Magazine enhancement data packets (29), 
• General Purpose and Broadcast Service data pack-

ets (30, 31). 
Packets with numbers greater than 24 are additionally 

discerned with designation codes: numbers in the range 
0 to 15. Depending on the designation code, the function 
of a particular packet may change. 

Teletext packets are transmitted during what are 
known as Vertical Blanking Intervals (VBI) for both odd 
and even fields2. In each field, up to sixteen packets can 
be transmitted. A typical broadcaster transmits 11 to 14 
packets per field. 

All packets received during a single VBI have to be 
processing before the next one. This means that there is a 
soft deadline for processing Teletext packets arriving in 
the same field. 

There are several presentation levels of Teletext data - 
1, 1.5, 2.5, and 3.5 - that determine the information 
transmitted by a broadcaster as well as which enhance-
ments can be made to a Teletext page. All these levels 
are forward- and backward- compatible, so that a first-
level Teletext decoder can display 3.5 level pages and 
vice versa. 

Teletext can support two types of navigation systems: 
(1) First Level One Facilities (FLOF) and (2) Table of 
Pages (TOP). Both navigation systems use a hypertext 
representation of data.  

 

 
2 A field corresponds to half an image that contains either odd or 

even lines only. 
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Figure 4. Experiment scheme 

The FLOF navigation is based on inter-page links that 
can be provided for a page. These links are transmitted 
in packets with number 27 and designation codes 0 to 3. 
The TOP navigation uses a special page that relates a 
certain topic to some page. The user can select this topic 
via a menu, and the corresponding page will be jumped 
to. This navigation system is constructed using dedicated 
pages with pre-defined page numbers. 
2) Teletext acquisition software structure 

The simplified structure of the Teletext sub-system 
and its dependencies on the environment are sketched in 
Figure 5. 

Teletext
Acquisition

Packet
Decoding

Real-time
OS

Page
Storage

Teletext
Displaying

Service calls VSP level

 
Figure 5. Structure of the Teletext subsystem 

 
The Teletext Acquisition component, a part of the 

Teletext sub-system, builds upon the VSP formed by the 
following components: the real-time operating system, 
the Packet Decoding component, and the Page Storage 
component. 

The arrows in Figure 5 depict the ‘uses’ relationship. 
The dashed line corresponds to the abstraction level of 
service calls, i.e. the VSP. The bold rectangles denote 
the components that are relevant to the performance 
analysis of the Teletext acquisition component. The 
normal rectangles denote the components that do not 
influence Teletext acquisition. Particularly, the Teletext 
Displaying component can be ignored, as it is not in-

volved in the acquisition process. 
After acquiring all the data packets arriving in a single 

field, a high priority task is invoked to decode and store 
the packets. This task will be referred to as the Teletext 
field routine in the rest of this paper. This task is imple-
mented within the Teletext acquisition component and 
uses the service calls provided by the Real-time OS, 
Packet Decoding and Page Storage components. 

The decoding of the Teletext packets is performed by 
a dedicated component (Packet Decoding). The packets 
are then stored within the Page Storage component in a 
local page cache. These packets are moved to a global 
page store when all the packets of a page are received. 

When an entire page is received, the parts of the soft-
ware subscribed for this page are notified. 

B. Experiment scheme 
Two versions of the Teletext acquisition component 

were considered. The first one supports Teletext presen-
tation level 1.5 and the FLOF navigation only, whereas 
the second one supports Teletext presentation level 2.5 
and both TOP and FLOF navigation systems. We will 
hereinafter refer to these components as the Teletext 1.5 
and Teletext 2.5 acquisition components, respectively. 

The aim of the experiment was to predict the execu-
tion time of the Teletext field routine of the Teletext 2.5 
acquisition component using the APPEAR method cali-
brated by means of the Teletext 1.5 acquisition compo-
nent. It is preferable that the maximal absolute error does 
not exceed 1 ms, because the Teletext field routine has a 
soft deadline of 20 ms. 

The use case considered was watching a TV channel 
that carries Teletext information. This means that the TV 
set performs in a steady state and collects the Teletext 
data without any interference. Thirty use cases were 
chosen arbitrary among the real broadcasts transmitted 
via cable to drive both the implementation and the simu-
lation model. These use cases provided enough observa-
tions to calibrate the prediction model. 



  

The experiment was conducted as follows (see Figure 
4). First we applied the calibration part of the APPEAR 
method to the Teletext 1.5 acquisition component: the 
prediction model was calibrated based on the simulation 
model and the actual implementation of the Teletext 1.5 
acquisition component. 

We then predicted the performance of the Teletext 2.5 
acquisition component by using the already calibrated 
prediction model and constructing the corresponding 
simulation model.  

Finally, we compared the obtained predictions with 
the actual measurements from the implementation of the 
Teletext 2.5 component. Note that the actual implemen-
tation was measured for the same broadcasts that were 
used for predicting the performance. 

C. Simulation model of the Teletext 1.5 acquisition 
component 

A simulation model of the Teletext 1.5 acquisition 
component was constructed to extract signature in-
stances. This simulation model accepts the descriptions 
of events that correspond to packet arrivals in each field. 
It calculates a signature instance for this field based on 
the packets received so far. 

The simulation model mimics the behavior of the 
Teletext acquisition component. Most of the functionali-
ty of this component is implemented within the Teletext 
field routine. This routine accepts the packets received in 
a certain field and invokes the corresponding packet 
processing routine for each packet. 

Figure 6 presents the UML state chart that describes 
the behavior of the Teletext field routine. The packet 
processing routine corresponds to the ProcessNext-
Packet composite state. Both packet and magazine num-
bers of recently-arrived packets are decoded. Depending 
on these numbers, further processing is delegated to one 
of the following states: ProcessHeaderPacket, Process-
BodyPacket, DropPacket, ProcessPacket29, or Process-
Packet830. Notice that these states correspond to func-
tionality executed higher in the call hierarchy than the 
VSP level. The invocations of service calls are not de-
picted in Figure 5 for the sake of simplicity. 

Based on the current state of the broadcast (this state is 
stored in internal variables that are not shown in Figure 
6), the contribution to the signature instance is calculated 
for each arrived packet. After processing all packets, the 
signature instance is generated for the entire field, and 
the next field can be processed. 

WaitingForNextField

[AllPacketsProcessed]

ProcessNextPacket
entry/mag=DecodeMag(Packet_Data);
packetn=DecodePacketNumber(Packet_Data);

ProcessHeaderPacket

[packetn==0]

ProcessBodyPacket

[packetn>=1
&&packetn <=28]

ProcessPacket29

[packetn==29]

ProcessPacket830

[error ||
(packetn==30
&&mag!=0)]

DropPacket

[!AllPacketsProcessed]/Packet_Data=getNextPacket()

exit/UpdateSignature() exit/UpdateSignature() exit/UpdateSignature()

exit/UpdateSignature()exit/UpdateSignature()

[packetn==30
&&mag==0)]

 

Figure 6. The high-level behavior of the Teletext 
acquisition routine 

D. Simulation model of thePage Storage component 
Because the long-term history proved to significantly 

influence the performance of the Teletext acquisition, it 
had to be explicitly modeled. This long-term history is 
maintained by the Page Storage component that tracks 
all packets and pages received after the last channel 
switch. 

Notice that the Page Storage component belongs to the 
VSP, and not to the application. Although the pure 
APPEAR method described in Section III models only 
applications explicitly, this component also had to be 
modeled to calibrate the prediction model properly. 

The simulation model of the Page Storage component 
is implemented using an array indexed by the tuple 
(page number, sub-code, packet number). An element of 
this array equals one if a page (page number, sub-code) 
contains a packet (packet number). In the opposite case, 
this element equals zero. 

The simulation model of the Page Storage component 
executes together with the simulation model of the 
Teletext acquisition component. 

 



  

E. Signature type 
The identified signature type accounts for different 

types of packets, their encoding, and the way they are 
stored. The following signature type has been identified 
(each number is calculated per field): 

• the number of Wide Screen Signaling (WSS) 
packets, 

• the number of Video Programming System (VPS) 
packets, 

• the total number of bytes that have no encoding, 
• the total number of bytes that have odd parity en-

coding, 
• the total number of bytes that have Hamming 8/4 

encoding, 
• the total number of triples that have Hamming 

24/18 encoding, 
• the total number of dropped packets, 
• the total number of packets 8/30, 
• the number of repeated headers, 
• the number of erased pages, 
• the number of opened pages, 
• the number of closed pages, 
• the total number of packets that have been up-

dated in the Page Storage. 
Notice that the last signature parameter had to be ex-

tracted from the simulation model of the Page Storage 
component (a part of the VSP), whereas the rest of the 
signature parameters were extracted from the simulation 
model of the Teletext acquisition component. 

F. Calibration of prediction the model 
The linear regression tool S-Plus [5] was used to cali-

brate the prediction model based on the signature type 
described above. The prediction model has the following 
structure: 
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i

y S .β β
=

= + ⋅∑    (1.1) 

In this formula, y  is the predicted execution time; iβ  
are linear regression coefficients; iS are signature pa-
rameters (see sub-section E). 

After calibrating the model (1.1), the following results 

were obtained. The multiple 2R -coefficient is 0.974. 
This means that the model explains the variability of 
residual variance properly. All regression coefficients 
proved to be significant, with a significance level of 
0.05. The probability density and histogram of the resid-
ual are presented in Figure 7.  

-0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
Residuals

0

200

400

600

800

1000

 
Figure 7. Histogram and probability density of the resid-
ual 

The bulk of the residual (more than 98%) is concen-
trated within a ±1 ms interval. 

The prediction errors can be explained as follows: 
• Uncertainty of the long-term history. It was not 

known if the previous versions of some pages had 
already been stored in the Page Store, because the 
measurements could not be synchronized with the 
Teletext acquisition. 

• The variability of the execution time needed to 
process packets of type 830. It is suspected that 
these packets might require a variable execution 
time, depending on the particular packet. 

G. Simulation model of the Teletext 2.5 acquisition 
component 

The simulation models are similar for the Teletext 1.5 
and Teletext 2.5 acquisition components. The main 
structure of the simulation model is depicted in Figure 6. 
The differences between the two components amount to 
the following: 
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Figure 8. Absolute and relative prediction errors for entire broadcasts 

1. Handling of packets 127 of a page with a non-
decimal page number (e.g. Magazine Inventory 
Page, Table of Pages). The Teletext 2.5 acquisi-
tion component must both decode and store such 
packets, whereas the Teletext 1.5 acquisition 
component only has to store them. 

2. Handling of a packet 28 with a designation code 
greater then one, or packet 27 with a designation 
code greater then three. These packets carry the 
enhancement information of a displayable page 
and must therefore be stored and decoded only by 
the Teletext 2.5 acquisition component. 

The modification of the Teletext 1.5 simulation model 
to obtain a simulation model for Teletext 2.5 took only 
one man day. 

H. Prediction of the performance for the Teletext 2.5 
component 

Both implementation and simulation models were 
driven using the same set of broadcasts. The predictions 
were then compared to the measurements of the imple-
mentation. 

The probability densities and histograms of the predic-
tion errors are given in Figure 8. These plots cover (a) all 
acquired fields (both presentation levels and navigation 
systems are included) and (b) fields for which at least 
one packet related to the TOP navigation or Teletext 
presentation level 2.5 was received. 

In both plots, the y-axis is the probability density; the 
x-axis is the prediction error measured in seconds. 

Plot a) shows that the bulk of prediction error is con-
centrated within a ±1 ms range for the entire broadcasts. 
This range widens, according to plot b), for fields related 
to Teletext 2.5 and TOP navigation only. Notice that plot 

b) illustrates how the prediction accuracy degrades for 
the fields that are processed differently from the Teletext 
1.5 decoder. This degradation is significantly less in plot 
a), as the majority of the fields are processed by both 
decoders in a similar way. 

Predictions made for the entire broadcasts suffer an 
average relative error of only 11%. For Teletext presen-
tation level 2.5 and the TOP navigation only, this error 
increased to 16%. 

I. Discussion 
1) Biased observations 

It is important that the observations used for calibrat-
ing the prediction model contain sufficient information 
about all phenomena to be predicted. However, the col-
lected observations may tend to contain more informa-
tion about one group of the phenomena than about an-
other. This may lead to prediction errors for the latter 
group, as the prediction model is dominated by the ob-
servations from the former group. 

For example: in the conducted experiment, the predic-
tion accuracy degraded for the predictions made for 
fields that were processed in different ways by the 
Teletext 1.5 and Teletext 2.5 decoders. This degradation 
can be explained by the fact that the calibration data was 
dominated by the Teletext 1.5 and FLOF navigation data 
only. 

The data related to Teletext 2.5 and TOP navigation 
formed only a small fraction of the entire calibration 
dataset. This effectively made these data outlying obser-
vations. The predictions made using this calibration 
dataset were in fact biased for the fields that contained 
packets related to Teletext 2.5 and the TOP navigation. 
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a) The effort of applying the APPEAR method 
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b) The effort of constructing a mechanistic model  

Figure 9. Effort needed for predicting performance using different techniques 

2) Explicit simulation model of VSP 
It can be necessary to explicitly model a part of the 

VSP in order to be able to calibrate the prediction model 
properly. This part usually reflects the internal state of 
the VSP that may affect the execution of the services. 
Modeling parts of VSP broadens the scope of applica-
tions to which the APPEAR method can be applied. 

For the described experiment, it was necessary to ex-
plicitly introduce a simulation model of the Page Storage 
component in order to calibrate the prediction model 
properly. 

V. COMPARISON OF APPEAR AND MECHANISTIC 
METHODS 

This section describes the comparison between the ef-
forts needed for application of the APPEAR method and 
mechanistic approaches in predicting the execution time 
of an application. Mechanistic models is understood to 
mean models that explicitly describe the internal behav-
ior of software. 

We restricted the comparison scope to the following 
approaches: 

• The APPEAR method, 
• Mathematical or simulation-based prediction 

techniques based on a behavioral model of the 
software. 

The effort figures for the APPEAR method were de-
rived by applying the algorithm from Section III.C to the 
case study described in Section IV, while the estimates 
for the mathematical and simulation-based techniques 
are expert estimates. These estimates were obtained as 
outlined in the sub-section below. 

A. Performance estimation using a mechanistic behav-
ior model 

Analysis of the Teletext acquisition component has 
shown that it can be modeled with formalisms that de-
scribe the program control flow (e.g. flowcharts, MSCs, 
UML activity diagrams, etc). Note that the models based 

on these formalisms are often constructed during the de-
sign phase of the program development life cycle. These 
models can be used to predict the performance if they 
are annotated with the use of resources (e.g. the CPU) 
and other timing information. 

To determine the effort needed for performance esti-
mation based on these types of models, we assume the 
following: 

1. The performance estimates can be obtained based 
on either simulation or mathematical calculation. 

2. The major effort in predicting the performance is 
the construction of such a mechanistic behavior 
model. 

3. The mechanistic model needs additional annota-
tions with performance-relevant parameters (e.g. 
operation durations). This annotation requires ex-
tra effort. 

The effort can be calculated using Boehm's basic 
COCOMO model [1]. This model allows estimating the 
effort to develop software based on the expected number 
of lines of code (LOC). Moreover, it can also be used to 
estimate the effort to be spent at each phase of the soft-
ware development cycle (including the design phase). 

Let us assume that the abstraction level of the mechan-
istic behavior model is related to the depth of the call 
graph that is used for the actual implementation of this 
model. The deeper the call graph, the more details it cov-
ers. For each level of the call graph hierarchy, it is possi-
ble to count the LOCs that implement the functions cov-
ered by this graph. 

B. Comparison 
Figure 9 summarizes the results of the effort estima-

tions for the two performance prediction approaches: (a) 
the APPEAR method, and (b) construction of an anno-
tated mechanistic model. 

In plot a), the x-axis represents the number of itera-
tions needed for calibrating the prediction model in the 



  

APPEAR method. In plot b), the x-axis denotes the 
depth of the call graph used for mechanistic behavior 
modeling. The y-axes are the effort in man months for 
both plots. 

The chart demonstrates that the APPEAR method re-
quires significantly less effort than mechanistic model-
ing. Moreover, the effort for the latter increases rapidly 
if the abstraction level is lowered. This growth is caused 
by a combinatorial explosion of the details. At the cer-
tain moment, most details are already included in the 
model, and the addition of new details does not signifi-
cantly influence the effort anymore. This phenomenon 
explains the saturation in plot b). By contrast, the effort 
needed for applying the APPEAR method increases con-
stantly with the number of iterations that are necessary 
to calibrate the prediction model. 

Unfortunately, it is difficult to provide precise confi-
dence intervals for the obtained effort estimates. The 
basic COCOMO model predicts the actual effort with a 
factor of 2 for 60% of the observations used as calibra-
tion data. Notice that the basic COCOMO model tends 
to underestimate the actual effort.  

Because our estimates are based on the basic 
COCOMO model, their accuracy is not better than the 
accuracy of the estimates made using this model. 

The effort estimations for the APPEAR method are 
based on the two case studies conducted (the other case 
study is described in [3]]). However, as yet there are no 
sufficient experimental data to indicate the confidence of 
the predictions made. 

VI. CONCLUSIONS 
In this paper, we presented the APPEAR method 

(Analysis and Prediction of Performance for Evolving 
Architectures). The APPEAR method is applied during 
the architecting phase of adapted software, and is faster, 
simpler, and more general than currently-existing tech-
niques. The APPEAR method allows the architect to 
trade estimation effort against estimation accuracy and to 
obtain architectural insight into the performance of an 
architecture. 

We also presented an example of the method applica-
tion to the software of a modern TV set. This example 
was meant to validate the method. Two versions of the 
existing Teletext software were chosen for the method 
application. One version was used to construct and cali-
brate the prediction model, while the other was used to 
predict the performance. The predicted values were 
compared with the measured ones to determine the qual-
ity of the prediction. 

The results of the APPEAR method validation ap-

peared to be positive. First, the prediction accuracy was 
acceptable with respect to the requirements of the archi-
tects. Second, this validation explored a number of 
important aspects that have to be considered during 
method application: (a) the coverage of the calibration 
space should be balanced with respect to the phenomena 
to be modeled, and (b) the internals of the stable part 
(VSP) may also need to be modeled to make the method 
more applicable. Finally, we used the same example to 
estimate the effort required by another performance 
prediction technique (mechanistic modeling) and 
compared it to the APPEAR method. The results of this 
investigation are also positive: the APPEAR method 
requires significantly less effort than mechanistic 
approaches for performance estimation. 

We consider three points to be important subjects for 
further investigation: 

1. Performance estimation for component composi-
tions. So far, the application was treated as a 
whole. In order to make it possible to apply the 
APPEAR method to component-based software, 
the method should be extended. Extension pre-
sumes introduction of compositional techniques 
for the APPEAR models, so that it would be pos-
sible to estimate the performance of the compo-
nent composition, given the performance models 
of the components. 

2. Similarity of the software applications. The 
APPEAR method can only be effectively applied 
to adapted applications that are sufficiently “simi-
lar” to existing ones [3]. During this investigation, 
a similarity metrics must be defined, as well as es-
timation techniques to determine the level of simi-
larity between two applications. The relation be-
tween the values of similarity measures and the 
confidence of the predictions must also be 
checked. 

3. Evolution of the platform. Both components and 
platforms of modern systems evolve over time: 
more functionality, more connectivity, more inter-
operability, etc. is added. During this evolution, it 
is important to maintain the predictability of the 
performance. This requires the construction ap-
propriate APPEAR models and their adaptation. 
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