

Performance prediction for industrial software with the
APPEAR method
Citation for published version (APA):
Eskenazi, E. M., Fioukov, A., Hammer, D. K., & Obbink, J. H. (2003). Performance prediction for industrial
software with the APPEAR method. In Proceedings 4th PROGRESS Symposium on Embedded Systems
(Nieuwegein, The Netherlands, October 22, 2003) (pp. 66-77). STW Technology Foundation.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/905a2258-874a-445e-9ac1-bb276c777b6c

Abstract— The Analysis and Prediction of Performance

for Evolving Architectures (APPEAR) method aims at the
performance estimation of newly developed or adapted
parts of software product families during the architecting
phase. Early performance prediction allows checking the
feasibility of systems before their implementation and thus
saves money and effort from developing potentially infea-
sible products. In contrast to all the existing methods, it
combines both structural and statistical techniques. It al-
lows choosing which part of the application is structurally
modeled, and which part is statistically approximated. The
statistical approach is employed to model those parts of a
system that remain unchanged for a long time during the
evolution. The analytical approach is used to model the
parts of the system that evolve rapidly and that are thus
not yet implemented. Also here, statistical modeling helps
to abstract from internal details of components and thus to
reduce the modeling complexity. Often, a simulation
model can be built that provides fast feedback on the
changes of relevant parts. The method was checked using
case studies in the Consumer Electronics and the Medical
Imaging System domains. The initial results are encourag-
ing for the case of single components. The APPEAR
method is currently being extended to address perform-
ance prediction for component compositions.

Keywords— Software architecting, Embedded Systems,
Performance prediction, Regression, Software modeling

I. INTRODUCTION
Early performance estimation makes it possible to ver-

ify the feasibility of systems before their implementa-
tion, thus saving money and effort otherwise devoted to
developing potentially infeasible products. An ability to
evaluate the software performance (e.g. response time,
latency, average CPU utilization, execution time) at an
early stage helps in estimating the impact of various ar-
chitectural decisions beforehand. This ability can also
assist the architect in comparing various architectural

solutions and quickly selecting the most appropriate one.
Finally, this ability helps to predict the performance of
the future versions of the software and thus to determine
whether these versions are worth developing.

Architects need a method to estimate the performance
of software early, during the architecting and design
phases. This method should be fast in comparison to
software implementation and subsequent measurements,
simple so that less time and fewer human resources are
required, general so that it can be applied to any type of
software, and accurate in order to provide useful results.
The method should also provide architectural insight
into the performance. This performance insight is the
information that helps to understand why the system ex-
hibits such performance and how this performance can
be controlled and hopefully optimized.

Performance insight includes (1) critical parameters
and (2) architectural bottlenecks. Critical parameters are
input parameters (e.g. amount of data to process) or
static architectural parameters (e.g. buffer size) that di-
rectly influence performance, while architectural bottle-
necks are architectural concepts and construction
mechanisms that result in performance losses.

Both goals – performance insight and performance es-
timation – can be achieved by constructing performance
models. These models should contain performance-
relevant details only. They allow the architect to observe
the dependencies between software performance and
performance-determining factors such as input/ output/
diversity parameters, bottlenecks, architectural concepts,
etc.

To date, various methods for performance estimation
have been developed. Two types of methods are relevant
here: purely simulation-based models and mathematical
models. The first type suffers from the combinatorial
explosion of details, while the second often makes too

Performance prediction for industrial soft-
ware with the APPEAR

method
E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, H.Obbink

Department of Mathematics and Computing Science, Technische Universiteit Eindhoven,
 Postbox 513, 5600 MB Eindhoven, The Netherlands

+31 (0) 40 – 247 4416
{ e.m.eskenazi, a.v.fioukov, d.k.hammer }@tue.nl, Henk.Obbink@philips.com

specific assumptions about the system under question.
These assumptions do not hold true for many systems,
and thus models built using these assumptions can be
both inaccurate and inadequate.

We propose the APPEAR (Analysis and Prediction of
Performance for Evolving Architectures) method [3],
which combines the best elements of several existing
estimation techniques. The proposed method does not
fully address performance prediction at the architecting
phase, but only makes it possible to predict the perform-
ance of adapted versions of existing software. This
method is not suitable for the performance estimation of
a completely new piece of software.

The method employs structural models for describing
the evolving and thus not yet implemented parts of the
software and statistical models for abstracting from de-
tails that are not performance-relevant. This mix is sup-
ported by the fact that fewer and fewer software applica-
tions are currently being developed from scratch. The
statistical approach is also employed to model those
parts of a system that remain unchanged for a long time
during the software evolution, e.g. the execution plat-
form. Abstracting from performance-irrelevant details by
statistical modeling helps to reduce the modeling com-
plexity. As result, the method exhibits the following
properties:

1. It is fast, because only relevant parts of the soft-
ware are modeled explicitly.

2. It is simple because all irrelevant details are cov-
ered by a statistical model.

3. It is general because it is software-type independ-
ent. As long as the software satisfies the main as-
sumptions of the method (see section III.B), the
method can be applied.

4. It can deliver sufficiently accurate results. More-
over, the architects can trade estimation accuracy
against estimation effort: the more details that are
included into the structural model within the given
effort limitations, the higher the accuracy that can
be expected.

The rest of the paper is structured as follows. Section
II contains an overview of the related work. Section III
presents the essential description of the APPEAR
method. Section IV describes an experiment performed
for validating the APPEAR method. Section V compares
the APPEAR method with the existing methods for per-
formance evaluation. Section VI draws some conclu-
sions and gives an overview of future work.

II. RELATED WORK
Significant research effort has been made in the per-

formance-engineering domain. The main investigations
were aimed at defining the theoretical basis for software
performance engineering [13].

One of the most important, but also most critical, is-
sues in software architecting is early performance esti-
mation based on architectural models.

Some of the classical approaches [13], [14] to per-
formance prediction use queuing network models de-
rived from the structural description of the architecture,
and performance-critical use cases. Other approaches
include specific architecture description methods [6]. An
interesting approach is proposed in [11]. The executable
prototype (a simulation model) generates traces ex-
pressed in a specific syntax (angio-traces). These traces
are then used to construct performance-prediction mod-
els, based on layered queuing networks.

Stochastic Petri nets are also widely used for the
evaluation of software performance. An approach for the
generation of Petri nets from UML collaboration and
state chart diagrams is proposed in [12]. The generated
Petri nets are then used to estimate various performance
characteristics.

A well-known practice for early performance analysis
is the construction of a simulation model that captures
the performance-critical parts of the software. The re-
sults from such a model, fed with various parameters, are
either estimates for performance attributes or intermedi-
ate data that can be used to construct mathematical mod-
els.

An example of the use of regression techniques is pre-
sented in [10]. In this approach, the results of software
profiling are used to predict software reliability.

The approaches presented in [1] and [9] are similar to
the one presented in this paper. The second approach
considers the use of linear regression techniques only,
while the first approach also considers the use of adap-
tive local regression techniques (lazy learning [7]). Both
methods extrapolate the performance of already imple-
mented software for new hardware. In contrast, we treat
performance prediction at the architecting stage of an
adapted version of the software, i.e. before its implemen-
tation.

III. APPEAR METHOD

A. Method essence
This section overviews the basic principles of the AP-

PEAR method. A more extended description of the
method can be found in [3].

The APPEAR method suggests the following view of
the software stack. The software comprises two parts: (1)
applications and (2) a Virtual Service Platform (VSP).
The first consist of evolving components that are spe-
cific for different products of a product family, while the
second encompasses stable components that do not sig-
nificantly evolve during the software lifecycle of a prod-
uct. Both parts can interact with an execution environ-
ment (see Figure 1).

Applications

 Environment

VSP

ResponsesStimuli

Services Interactions

1Sv NSv

Figure 1. APPEAR view of the software stack

As a result of an input stimulus, an application can in-
voke several service calls of the VSP to perform the nec-
essary functionality. After completing these calls, the
application produces a response to the environment. The
timing dependency between the stimulus and response
can be characterized with some performance measure
(e.g. response time, latency, average CPU utilization,
execution time).

The APPEAR method predicts the performance of
adapted software applications by means of the statistical
prediction model. This model reflects the correlation
between the performance metric of interest and perform-
ance-relevant parameters of the applications: the use of
services calls, input parameters, diversity parameters,
etc. These parameters are said to form the signature type
of an application. The process of signature type identifi-
cation is detailed in Section III.D.

The correlation between signature values and per-
formance metric can be employed for extrapolating the
performance of adapted applications during the archi-
tecting phase. The prediction model is calibrated on the
existing applications. Both already existing and not-yet
implemented applications are described in terms of sig-
nature parameters. The stability of the VSP allows one to
use the same prediction model for both existing and
adapted applications.

To gain architectural insight into the execution archi-
tecture and its performance, a structural model of the
application is constructed. This so called simulation

model captures the performance-relevant parameters of
applications and assists the architect in signature in-
stance extraction for existing and adapted applications.

B. Assumptions
To implement the ideas described in the section above,

we assume the following:
1. Applications can interact with the VSP but not

with each other.
2. The influence of the scheduling of shared re-

sources is negligible, meaning that blocking and
pre-emption times are insignificant.

3. The sequence of service calls does not matter.
4. The software stack exhibits reasonable determin-

ism of the behavior and performance for each use
case, i.e. the measurements do not deviate too
much if they are repeated multiple times for ex-
actly the same use case.

5. Gradual product evolution. During the evolution
of a product, a significant portion of the software
remains unchanged and the changes do not affect
the character of the simulation model.

6. The amount of experimental data is sufficiently in
the neighbourhood of the input data for the
adapted application to provide a robust prediction.

C. Method steps
The APPEAR method [3] estimates the performance

of adapted applications using the simulation and predic-
tion models of existing applications. The model con-
struction process is shown in form of a flowchart in
Figure 2.

Each rectangle corresponds to a step of the APPEAR
method; a rhombus depicts a condition; an arrow denotes
a precedence relationship between two steps. We con-
sider only the solid arrows. The outer dashed back line
depicts an escape route, when it is impossible to cali-
brate the prediction model within a certain number of
inner loop iterations.

After performing the first five steps, the prediction
model is calibrated in an iterative way. The forth step
can be omitted, if the architect has sufficient preliminary
knowledge about the performance-relevant parameters
and can therefore guess the initial signature type. Other-
wise, the architect can identify the initial signature type
by applying a regression technique (see Section III.D)

1. Use case
definition

2. VSP identification

3. Performance
Measurements

8. Modification of
simulation model
and signature type

6. Signature
instance extraction

7. Prediction model
calibration

Too many
iterations?

4. Initial signature
type identification by
regression

No

No

Quality is
sufficient?

5. Construction of
initial simulation
model

Yes

Yes

Figure 2. Construction of simulation and prediction mod-
els

D. Initial signature type identification by regression
Regression techniques are applied not only for the

construction of the prediction model but also for the
identification of the signature type.

It is possible to deduce the initial signature type by us-
ing execution traces if the software stack is properly in-
strumented, i.e. all performance-relevant service calls are
logged. The correlation between the use of these service
calls and the performance metric is analyzed by con-
structing an auxiliary prediction model. The service calls

that sufficiently calibrate this auxiliary prediction model
form the initial signature type.

The flowchart for constructing the auxiliary prediction
model is the following (see Figure 3):

Definition
of use cases

Performance
Prediction Model

Collection
 of measurements

Signature
instance

extraction

Performance
metric

Service calls

VSP
identification

Design
specs

Requirements
specs Tracing utility

1 3 4

5

2

Figure 3. Main steps of the initial signature type identifica-
tion

Step 1, Virtual Service Platform identification. The
guidelines and criteria for selecting the level of the VSP
are described in [3]. In most cases, this step is performed
by the architects.

Step 2, Definition of use cases for the existing ap-
plication. It is vital to determine a representative set of
the application use cases to collect data for calibrating
the auxiliary prediction model.

Step 3, Collection of measurements. The selected
use cases need to be executed and traced.

Step 4, Signature instance extraction. The perform-
ance-relevant parameters can be determined from the use
case traces. These parameters describe an application
from a performance viewpoint and form the initial appli-
cation signature type; they can include the number of
service calls invocations, input parameters, diversity pa-
rameters, etc.

Step 5, Construction of a performance prediction
model. The auxiliary performance prediction model
needs to be calibrated based on the measured signature
instances and corresponding performance metrics of the
application.

After constructing the auxiliary prediction model, the
candidate parameters for the signature type are identi-
fied. In addition, the p-values of associated t-statistics1
of signature parameters are determined by regression
analysis (see [5]). These p-values are the probabilities
that the regression coefficients for some signature pa-
rameters are zero. The greater the p-value, the less likely
it is that the signature parameters influence the perform-
ance metric The ultimate goal is to arrive at a list of pa-
rameters that are all significant (the p-values are below a
certain threshold). When interpreting the p-values, an

1 In linear regression, t-statistics are used to check the null hy-
pothesis, i.e. to check if regression coefficients are likely to equal
zero for certain signature parameters.

architect has to account for the following:
1. Variation of the values of signature parameters

with large p-values. The values of certain parame-
ters might not vary significantly for a given set of
use cases. In this case, additional use cases should
be traced to make sure that this is not a measure-
ment artifact. Another option is to attach the sig-
nature parameter with its range and to take this
range into account when predicting the perform-
ance of an adapted application. The predictions
are likely to be imprecise if they are made using
the prediction model calibrated on signature pa-
rameters with small ranges and large p-values.

2. P-values are only valid for a particular combina-
tion of signature parameters. If a certain signature
parameter is omitted, the p-values of the other pa-
rameters usually change.

The architect can select the signature type by using the
p-values in the following way:

1. The p-values can be ignored and the entire list of
signature parameters is considered, if the architect
is sure that all the chosen signature parameters are
relevant for modeling the performance and none
of them can be omitted.

2. A p-value threshold, usually called a significance
level, can be introduced for determining the sig-
nificant parameters. The choice of this threshold
depends on the context (e.g. a typical threshold is
0.05). The parameters with p-values greater than
this threshold are excluded from the candidate list.

3. When constructing a prediction model, the archi-
tect can start with the parameters with low p-
values, and then gradually add parameters with
greater ones if their inclusion improves the predic-
tion accuracy.

IV. PREDICTION OF TV TELETEXT SOFTWARE
UTILIZATION

This section describes the experiment that has been
performed to validate the APPEAR method. We applied
the APPEAR method to the current and adapted versions
of the Teletext decoder of a modern TV set. The execu-
tion time needed to acquire Teletext data by the adapted
version of the Teletext decoder was estimated using the
prediction model calibrated on the current version of the
Teletext decoder. The predictions were then compared to
the real measurements at the actual implementation of
the adapted Teletext receiver.

A. Overview of Teletext
1) Teletext broadcasting

Each Teletext transmission [15] comprises packets

that together can form pages. Each page has a three-digit
hexadecimal number in the range 100H to 8FFH. Pages
with decimal numbers (e.g., 100 to 199) need displaying
while the rest serves special purposes. All pages are or-
ganized in eight magazines, where the number of a
magazine is the most significant digit of the number of a
page that belongs to this magazine. The pages can also
have sub-pages that are distinguished with sub-codes.

Some packets are not directly related to a particular
page, but rather to a magazine or a broadcast service.
Different types of packets are discerned with a packet
number:

• Page header packets (packet number 0; these
packets open a new page, close the previous page
and fill gaps),

• Directly displayable page data packets (packet
numbers 1 to 23, 24 and 25),

• Non-displayable page data packets (packet num-
bers 26 to 28),

• Magazine enhancement data packets (29),
• General Purpose and Broadcast Service data pack-

ets (30, 31).
Packets with numbers greater than 24 are additionally

discerned with designation codes: numbers in the range
0 to 15. Depending on the designation code, the function
of a particular packet may change.

Teletext packets are transmitted during what are
known as Vertical Blanking Intervals (VBI) for both odd
and even fields2. In each field, up to sixteen packets can
be transmitted. A typical broadcaster transmits 11 to 14
packets per field.

All packets received during a single VBI have to be
processing before the next one. This means that there is a
soft deadline for processing Teletext packets arriving in
the same field.

There are several presentation levels of Teletext data -
1, 1.5, 2.5, and 3.5 - that determine the information
transmitted by a broadcaster as well as which enhance-
ments can be made to a Teletext page. All these levels
are forward- and backward- compatible, so that a first-
level Teletext decoder can display 3.5 level pages and
vice versa.

Teletext can support two types of navigation systems:
(1) First Level One Facilities (FLOF) and (2) Table of
Pages (TOP). Both navigation systems use a hypertext
representation of data.

2 A field corresponds to half an image that contains either odd or

even lines only.

Prediction model
S1 S2 S3 S4 S5

Simulation model
Teletxt 1.5 & FLOF
navigation
acquisition

Signature

 Simulation modelExisting applications

Teletxt 1.5 &
FLOF
navigation
Acquisition

2. Measurements

5. Signature instance extraction

6. Training

4. Model construction

1. Use cases definition (actual broadcasts)

Prediction error is
minimized

3. Initial signature type
identification

a) Calibration of prediction model

Predicton model
S1 S2 S3 S4 S5

Simulation model of
Teletext 2.5 &

TOP+FLOF
navigations

Signature

Simulation model

Teletext 2.5 &
TOP+FLOF
navigations

Adapted application

9. Prediction

8. Signature instance
extraction (adapted)

7. Use cases definition (actual broadcasts)

-

10. Measurement

11. Error
checking

b) Prediction

Figure 4. Experiment scheme

The FLOF navigation is based on inter-page links that
can be provided for a page. These links are transmitted
in packets with number 27 and designation codes 0 to 3.
The TOP navigation uses a special page that relates a
certain topic to some page. The user can select this topic
via a menu, and the corresponding page will be jumped
to. This navigation system is constructed using dedicated
pages with pre-defined page numbers.
2) Teletext acquisition software structure

The simplified structure of the Teletext sub-system
and its dependencies on the environment are sketched in
Figure 5.

Teletext
Acquisition

Packet
Decoding

Real-time
OS

Page
Storage

Teletext
Displaying

Service calls VSP level

Figure 5. Structure of the Teletext subsystem

The Teletext Acquisition component, a part of the

Teletext sub-system, builds upon the VSP formed by the
following components: the real-time operating system,
the Packet Decoding component, and the Page Storage
component.

The arrows in Figure 5 depict the ‘uses’ relationship.
The dashed line corresponds to the abstraction level of
service calls, i.e. the VSP. The bold rectangles denote
the components that are relevant to the performance
analysis of the Teletext acquisition component. The
normal rectangles denote the components that do not
influence Teletext acquisition. Particularly, the Teletext
Displaying component can be ignored, as it is not in-

volved in the acquisition process.
After acquiring all the data packets arriving in a single

field, a high priority task is invoked to decode and store
the packets. This task will be referred to as the Teletext
field routine in the rest of this paper. This task is imple-
mented within the Teletext acquisition component and
uses the service calls provided by the Real-time OS,
Packet Decoding and Page Storage components.

The decoding of the Teletext packets is performed by
a dedicated component (Packet Decoding). The packets
are then stored within the Page Storage component in a
local page cache. These packets are moved to a global
page store when all the packets of a page are received.

When an entire page is received, the parts of the soft-
ware subscribed for this page are notified.

B. Experiment scheme
Two versions of the Teletext acquisition component

were considered. The first one supports Teletext presen-
tation level 1.5 and the FLOF navigation only, whereas
the second one supports Teletext presentation level 2.5
and both TOP and FLOF navigation systems. We will
hereinafter refer to these components as the Teletext 1.5
and Teletext 2.5 acquisition components, respectively.

The aim of the experiment was to predict the execu-
tion time of the Teletext field routine of the Teletext 2.5
acquisition component using the APPEAR method cali-
brated by means of the Teletext 1.5 acquisition compo-
nent. It is preferable that the maximal absolute error does
not exceed 1 ms, because the Teletext field routine has a
soft deadline of 20 ms.

The use case considered was watching a TV channel
that carries Teletext information. This means that the TV
set performs in a steady state and collects the Teletext
data without any interference. Thirty use cases were
chosen arbitrary among the real broadcasts transmitted
via cable to drive both the implementation and the simu-
lation model. These use cases provided enough observa-
tions to calibrate the prediction model.

The experiment was conducted as follows (see Figure
4). First we applied the calibration part of the APPEAR
method to the Teletext 1.5 acquisition component: the
prediction model was calibrated based on the simulation
model and the actual implementation of the Teletext 1.5
acquisition component.

We then predicted the performance of the Teletext 2.5
acquisition component by using the already calibrated
prediction model and constructing the corresponding
simulation model.

Finally, we compared the obtained predictions with
the actual measurements from the implementation of the
Teletext 2.5 component. Note that the actual implemen-
tation was measured for the same broadcasts that were
used for predicting the performance.

C. Simulation model of the Teletext 1.5 acquisition
component

A simulation model of the Teletext 1.5 acquisition
component was constructed to extract signature in-
stances. This simulation model accepts the descriptions
of events that correspond to packet arrivals in each field.
It calculates a signature instance for this field based on
the packets received so far.

The simulation model mimics the behavior of the
Teletext acquisition component. Most of the functionali-
ty of this component is implemented within the Teletext
field routine. This routine accepts the packets received in
a certain field and invokes the corresponding packet
processing routine for each packet.

Figure 6 presents the UML state chart that describes
the behavior of the Teletext field routine. The packet
processing routine corresponds to the ProcessNext-
Packet composite state. Both packet and magazine num-
bers of recently-arrived packets are decoded. Depending
on these numbers, further processing is delegated to one
of the following states: ProcessHeaderPacket, Process-
BodyPacket, DropPacket, ProcessPacket29, or Process-
Packet830. Notice that these states correspond to func-
tionality executed higher in the call hierarchy than the
VSP level. The invocations of service calls are not de-
picted in Figure 5 for the sake of simplicity.

Based on the current state of the broadcast (this state is
stored in internal variables that are not shown in Figure
6), the contribution to the signature instance is calculated
for each arrived packet. After processing all packets, the
signature instance is generated for the entire field, and
the next field can be processed.

WaitingForNextField

[AllPacketsProcessed]

ProcessNextPacket
entry/mag=DecodeMag(Packet_Data);
packetn=DecodePacketNumber(Packet_Data);

ProcessHeaderPacket

[packetn==0]

ProcessBodyPacket

[packetn>=1
&&packetn <=28]

ProcessPacket29

[packetn==29]

ProcessPacket830

[error ||
(packetn==30
&&mag!=0)]

DropPacket

[!AllPacketsProcessed]/Packet_Data=getNextPacket()

exit/UpdateSignature() exit/UpdateSignature() exit/UpdateSignature()

exit/UpdateSignature()exit/UpdateSignature()

[packetn==30
&&mag==0)]

Figure 6. The high-level behavior of the Teletext
acquisition routine

D. Simulation model of thePage Storage component
Because the long-term history proved to significantly

influence the performance of the Teletext acquisition, it
had to be explicitly modeled. This long-term history is
maintained by the Page Storage component that tracks
all packets and pages received after the last channel
switch.

Notice that the Page Storage component belongs to the
VSP, and not to the application. Although the pure
APPEAR method described in Section III models only
applications explicitly, this component also had to be
modeled to calibrate the prediction model properly.

The simulation model of the Page Storage component
is implemented using an array indexed by the tuple
(page number, sub-code, packet number). An element of
this array equals one if a page (page number, sub-code)
contains a packet (packet number). In the opposite case,
this element equals zero.

The simulation model of the Page Storage component
executes together with the simulation model of the
Teletext acquisition component.

E. Signature type
The identified signature type accounts for different

types of packets, their encoding, and the way they are
stored. The following signature type has been identified
(each number is calculated per field):

• the number of Wide Screen Signaling (WSS)
packets,

• the number of Video Programming System (VPS)
packets,

• the total number of bytes that have no encoding,
• the total number of bytes that have odd parity en-

coding,
• the total number of bytes that have Hamming 8/4

encoding,
• the total number of triples that have Hamming

24/18 encoding,
• the total number of dropped packets,
• the total number of packets 8/30,
• the number of repeated headers,
• the number of erased pages,
• the number of opened pages,
• the number of closed pages,
• the total number of packets that have been up-

dated in the Page Storage.
Notice that the last signature parameter had to be ex-

tracted from the simulation model of the Page Storage
component (a part of the VSP), whereas the rest of the
signature parameters were extracted from the simulation
model of the Teletext acquisition component.

F. Calibration of prediction the model
The linear regression tool S-Plus [5] was used to cali-

brate the prediction model based on the signature type
described above. The prediction model has the following
structure:

13

0
1

i i
i

y S .β β
=

= + ⋅∑ (1.1)

In this formula, y is the predicted execution time; iβ
are linear regression coefficients; iS are signature pa-
rameters (see sub-section E).

After calibrating the model (1.1), the following results

were obtained. The multiple 2R -coefficient is 0.974.
This means that the model explains the variability of
residual variance properly. All regression coefficients
proved to be significant, with a significance level of
0.05. The probability density and histogram of the resid-
ual are presented in Figure 7.

-0.008 -0.006 -0.004 -0.002 0.000 0.002 0.004 0.006
Residuals

0

200

400

600

800

1000

Figure 7. Histogram and probability density of the resid-
ual

The bulk of the residual (more than 98%) is concen-
trated within a ±1 ms interval.

The prediction errors can be explained as follows:
• Uncertainty of the long-term history. It was not

known if the previous versions of some pages had
already been stored in the Page Store, because the
measurements could not be synchronized with the
Teletext acquisition.

• The variability of the execution time needed to
process packets of type 830. It is suspected that
these packets might require a variable execution
time, depending on the particular packet.

G. Simulation model of the Teletext 2.5 acquisition
component

The simulation models are similar for the Teletext 1.5
and Teletext 2.5 acquisition components. The main
structure of the simulation model is depicted in Figure 6.
The differences between the two components amount to
the following:

-0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006
Absolute prediction error (s)

0

200

400

600

800

1000

1200

a)

-0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005 0.006
Absolute prediction error

0

200

400

600

b)

Figure 8. Absolute and relative prediction errors for entire broadcasts

1. Handling of packets 127 of a page with a non-
decimal page number (e.g. Magazine Inventory
Page, Table of Pages). The Teletext 2.5 acquisi-
tion component must both decode and store such
packets, whereas the Teletext 1.5 acquisition
component only has to store them.

2. Handling of a packet 28 with a designation code
greater then one, or packet 27 with a designation
code greater then three. These packets carry the
enhancement information of a displayable page
and must therefore be stored and decoded only by
the Teletext 2.5 acquisition component.

The modification of the Teletext 1.5 simulation model
to obtain a simulation model for Teletext 2.5 took only
one man day.

H. Prediction of the performance for the Teletext 2.5
component

Both implementation and simulation models were
driven using the same set of broadcasts. The predictions
were then compared to the measurements of the imple-
mentation.

The probability densities and histograms of the predic-
tion errors are given in Figure 8. These plots cover (a) all
acquired fields (both presentation levels and navigation
systems are included) and (b) fields for which at least
one packet related to the TOP navigation or Teletext
presentation level 2.5 was received.

In both plots, the y-axis is the probability density; the
x-axis is the prediction error measured in seconds.

Plot a) shows that the bulk of prediction error is con-
centrated within a ±1 ms range for the entire broadcasts.
This range widens, according to plot b), for fields related
to Teletext 2.5 and TOP navigation only. Notice that plot

b) illustrates how the prediction accuracy degrades for
the fields that are processed differently from the Teletext
1.5 decoder. This degradation is significantly less in plot
a), as the majority of the fields are processed by both
decoders in a similar way.

Predictions made for the entire broadcasts suffer an
average relative error of only 11%. For Teletext presen-
tation level 2.5 and the TOP navigation only, this error
increased to 16%.

I. Discussion
1) Biased observations

It is important that the observations used for calibrat-
ing the prediction model contain sufficient information
about all phenomena to be predicted. However, the col-
lected observations may tend to contain more informa-
tion about one group of the phenomena than about an-
other. This may lead to prediction errors for the latter
group, as the prediction model is dominated by the ob-
servations from the former group.

For example: in the conducted experiment, the predic-
tion accuracy degraded for the predictions made for
fields that were processed in different ways by the
Teletext 1.5 and Teletext 2.5 decoders. This degradation
can be explained by the fact that the calibration data was
dominated by the Teletext 1.5 and FLOF navigation data
only.

The data related to Teletext 2.5 and TOP navigation
formed only a small fraction of the entire calibration
dataset. This effectively made these data outlying obser-
vations. The predictions made using this calibration
dataset were in fact biased for the fields that contained
packets related to Teletext 2.5 and the TOP navigation.

0.0

2.0

4.0

6.0

8.0

10.0

0 1 2 3 4 5 6

The number of iterations

Ef
fo

rt
 [M

M
]

a) The effort of applying the APPEAR method

0.0

2.0

4.0

6.0

8.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13

Depth (units)

Ef
fo

rt
 (M

M
)

b) The effort of constructing a mechanistic model

Figure 9. Effort needed for predicting performance using different techniques

2) Explicit simulation model of VSP
It can be necessary to explicitly model a part of the

VSP in order to be able to calibrate the prediction model
properly. This part usually reflects the internal state of
the VSP that may affect the execution of the services.
Modeling parts of VSP broadens the scope of applica-
tions to which the APPEAR method can be applied.

For the described experiment, it was necessary to ex-
plicitly introduce a simulation model of the Page Storage
component in order to calibrate the prediction model
properly.

V. COMPARISON OF APPEAR AND MECHANISTIC
METHODS

This section describes the comparison between the ef-
forts needed for application of the APPEAR method and
mechanistic approaches in predicting the execution time
of an application. Mechanistic models is understood to
mean models that explicitly describe the internal behav-
ior of software.

We restricted the comparison scope to the following
approaches:

• The APPEAR method,
• Mathematical or simulation-based prediction

techniques based on a behavioral model of the
software.

The effort figures for the APPEAR method were de-
rived by applying the algorithm from Section III.C to the
case study described in Section IV, while the estimates
for the mathematical and simulation-based techniques
are expert estimates. These estimates were obtained as
outlined in the sub-section below.

A. Performance estimation using a mechanistic behav-
ior model

Analysis of the Teletext acquisition component has
shown that it can be modeled with formalisms that de-
scribe the program control flow (e.g. flowcharts, MSCs,
UML activity diagrams, etc). Note that the models based

on these formalisms are often constructed during the de-
sign phase of the program development life cycle. These
models can be used to predict the performance if they
are annotated with the use of resources (e.g. the CPU)
and other timing information.

To determine the effort needed for performance esti-
mation based on these types of models, we assume the
following:

1. The performance estimates can be obtained based
on either simulation or mathematical calculation.

2. The major effort in predicting the performance is
the construction of such a mechanistic behavior
model.

3. The mechanistic model needs additional annota-
tions with performance-relevant parameters (e.g.
operation durations). This annotation requires ex-
tra effort.

The effort can be calculated using Boehm's basic
COCOMO model [1]. This model allows estimating the
effort to develop software based on the expected number
of lines of code (LOC). Moreover, it can also be used to
estimate the effort to be spent at each phase of the soft-
ware development cycle (including the design phase).

Let us assume that the abstraction level of the mechan-
istic behavior model is related to the depth of the call
graph that is used for the actual implementation of this
model. The deeper the call graph, the more details it cov-
ers. For each level of the call graph hierarchy, it is possi-
ble to count the LOCs that implement the functions cov-
ered by this graph.

B. Comparison
Figure 9 summarizes the results of the effort estima-

tions for the two performance prediction approaches: (a)
the APPEAR method, and (b) construction of an anno-
tated mechanistic model.

In plot a), the x-axis represents the number of itera-
tions needed for calibrating the prediction model in the

APPEAR method. In plot b), the x-axis denotes the
depth of the call graph used for mechanistic behavior
modeling. The y-axes are the effort in man months for
both plots.

The chart demonstrates that the APPEAR method re-
quires significantly less effort than mechanistic model-
ing. Moreover, the effort for the latter increases rapidly
if the abstraction level is lowered. This growth is caused
by a combinatorial explosion of the details. At the cer-
tain moment, most details are already included in the
model, and the addition of new details does not signifi-
cantly influence the effort anymore. This phenomenon
explains the saturation in plot b). By contrast, the effort
needed for applying the APPEAR method increases con-
stantly with the number of iterations that are necessary
to calibrate the prediction model.

Unfortunately, it is difficult to provide precise confi-
dence intervals for the obtained effort estimates. The
basic COCOMO model predicts the actual effort with a
factor of 2 for 60% of the observations used as calibra-
tion data. Notice that the basic COCOMO model tends
to underestimate the actual effort.

Because our estimates are based on the basic
COCOMO model, their accuracy is not better than the
accuracy of the estimates made using this model.

The effort estimations for the APPEAR method are
based on the two case studies conducted (the other case
study is described in [3]]). However, as yet there are no
sufficient experimental data to indicate the confidence of
the predictions made.

VI. CONCLUSIONS
In this paper, we presented the APPEAR method

(Analysis and Prediction of Performance for Evolving
Architectures). The APPEAR method is applied during
the architecting phase of adapted software, and is faster,
simpler, and more general than currently-existing tech-
niques. The APPEAR method allows the architect to
trade estimation effort against estimation accuracy and to
obtain architectural insight into the performance of an
architecture.

We also presented an example of the method applica-
tion to the software of a modern TV set. This example
was meant to validate the method. Two versions of the
existing Teletext software were chosen for the method
application. One version was used to construct and cali-
brate the prediction model, while the other was used to
predict the performance. The predicted values were
compared with the measured ones to determine the qual-
ity of the prediction.

The results of the APPEAR method validation ap-

peared to be positive. First, the prediction accuracy was
acceptable with respect to the requirements of the archi-
tects. Second, this validation explored a number of
important aspects that have to be considered during
method application: (a) the coverage of the calibration
space should be balanced with respect to the phenomena
to be modeled, and (b) the internals of the stable part
(VSP) may also need to be modeled to make the method
more applicable. Finally, we used the same example to
estimate the effort required by another performance
prediction technique (mechanistic modeling) and
compared it to the APPEAR method. The results of this
investigation are also positive: the APPEAR method
requires significantly less effort than mechanistic
approaches for performance estimation.

We consider three points to be important subjects for
further investigation:

1. Performance estimation for component composi-
tions. So far, the application was treated as a
whole. In order to make it possible to apply the
APPEAR method to component-based software,
the method should be extended. Extension pre-
sumes introduction of compositional techniques
for the APPEAR models, so that it would be pos-
sible to estimate the performance of the compo-
nent composition, given the performance models
of the components.

2. Similarity of the software applications. The
APPEAR method can only be effectively applied
to adapted applications that are sufficiently “simi-
lar” to existing ones [3]. During this investigation,
a similarity metrics must be defined, as well as es-
timation techniques to determine the level of simi-
larity between two applications. The relation be-
tween the values of similarity measures and the
confidence of the predictions must also be
checked.

3. Evolution of the platform. Both components and
platforms of modern systems evolve over time:
more functionality, more connectivity, more inter-
operability, etc. is added. During this evolution, it
is important to maintain the predictability of the
performance. This requires the construction ap-
propriate APPEAR models and their adaptation.

VII. ACKNOWLEDGEMENTS
We are grateful Sjir van Loo from Philips Research

Laboratories, and Ben Pronk from Philips Semiconduc-
tors for constructive discussions about the APPEAR
method and their help in conducting the case study. We
would like to thank Ivo Canjels, Arie van de Spoel,

Marnix van Kempen and Shamsuddin Slegers from Phil-
ips Medical Systems, and Rob van Ommering, Chritiene
Aarts, Wim van der Linden, Marc Stroucken, and Pierre
van de Laar from Philips Research Laboratories for their
technical support.

The work presented in this paper was conducted
within the AIMES project (EWI.4877) and funded by
STW.

REFERENCES
[1] Boehm, B. Software Engineering Economics. Prentice-Hall,

Inc., 1981.
[2] G. Bontempi, W. Kruijtzer, “A Data Analysis Method for Soft-

ware Performance Prediction”, In the proceeding of DATE 2002
on Design, automation and test in Europe, pp.971-976, March
2002, Paris, France.

[3] E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, H. Obbink, B.
Pronk. Analysis and Prediction of Performance for Evolving
Architectures. In Proceedings of Software Infrastructures for
Component-Based Applications on Consumer Devices Work-
shop, Lausanne, Switzerland, September 2002, http://www-
nrc.nokia.com/Vivian/Public/Misc/artEskeVR.pdf

[4] N. A. Weiss, “Introductionary Statistics”, Addison-Wesley,
1995

[5] A. Krause, M. Olson, “The basics of S-Plus”, 3rd Edition,
Springer Verlag, 2002

[6] F. Aquilani, S. Balsamo and P. Inverardi, "An Approach to Per-
formance Evaluation of Software Architectures", Research Re-
port, CS-2000-3, Dipartimento di Informatica Universita Ca' Fo-
scari di Venezia, Italy, March 2000.

[7] G. Bontempi, “Local Learning Techniques for Modeling, Pre-
diction and Control”, PhD thesis, IRIDIA- Universite’ Libre de
Bruxelles, Belgium, 1999.

[8] J.H. Friedman, “Multivariate Adaptive Regression Splines”,
Tech. Report 102, Department of Statistics, Stanford University,
USA, August 1990.

[9] P. Giusto , G. Martin , E. Harcourt, Reliable estimation of exe-
cution time of embedded software, Proceedings of the DATE
2001 on Design, automation and test in Europe, p.580-589,
March 2001, Munich, Germany.

[10] K. Goseva-Popstojanova and K.S. Trivedi, "Architecture Based
Approach to Reliability Assessment of Software Systems", Per-
formance Evaluation, Vol.45/2-3, June 2001.

[11] C.E. Hrischuk, C.M. Woodside and J.A. Rolia, "Trace Based
Load Characterization for Generating Software Performance
Models", IEEE Trans. on Software Engineering, Vol. 25, Nr. 1,
pp 122-135, Jan. 1999.

[12] P. King and R. Pooley, “Derivation of Petri Net Performance
Models from UML Specifications of Communications Soft-
ware”, Proc. 11th Int. Conf. on Tools and Techniques for Com-
puter Performance Evaluation (TOOLS), Schaumburg, Illinois,
USA, 2000.

[13] C. Smith and L. Williams, “Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software”, Addison-
Wesley, 2001.

[14] B. Spitznagel and D. Garlan, “Architecture-based performance
analysis”, in Yi Deng and Mark Gerken (editors), Proc. 10th In-
ternational Conference on Software Engineering and Knowl-
edge Engineering, pp 146—151, Knowledge Systems Institute,
1998.

[15] ETS 300 706: “Enhanced Teletext Specification”
[16] Homepage of the COVERS and AnyLogic tools:

www.xjtek.com
[17] Homepage of the UPPAAL tool: www.uppaal.com

