
Performance Prediction in the Presence of

Feature Interactions
– Extended Abstract –

Norbert Siegmund,1 Sergiy Kolesnikov,1 Christian Kästner,2 Sven Apel,1 Don Batory,3

Marko Rosenmüller,4 and Gunter Saake4

1University of Passau, Germany, 2Carnegie Mellon University, USA
3University of Texas at Austin, USA, 4University of Magdeburg, Germany

1 Introduction. Customizable programs and program families provide user-selectable

features allowing users to tailor the programs to the application scenario or platform. Beside

functional requirements, users are often interested in non-functional requirements, such

as a binary-size limit, a minimized energy consumption, and a maximum response time.

To tailor a program to non-functional requirements, we have to know in advance which

feature selection, that is, configuration, affects which non-functional properties. Due to the

combinatorial explosion of possible feature selections, a direct measurement of all of them

is infeasible.

In our work, we aim at predicting a configuration’s non-functional properties for a spe-

cific workload based on the user-selected features [SRK+11, SRK+13]. To this end, we

quantify the influence of each selected feature on a non-functional property to compute the

properties of a specific configuration. Here, we concentrate on performance predictions

only. Unfortunately, the accuracy of performance predictions may be low when considering

features only in isolation, because many factors influence performance. Usually, a property,

such as performance, is program-wide: it emerges from the presence and interplay of

multiple features. For example, database performance depends on whether a search index or

encryption is used and how both features interplay. If we knew how the combined presence

of two features influences performance, we could predict a configuration’s performance

more accurately. Two features interact if their simultaneous presence in a configuration

leads to an unexpected behavior, whereas their individual presences do not. We call feature

interactions that affect performance performance feature interactions.

We improve the accuracy of predictions in two steps: (i) We detect which features interact

and (ii) we measure to what extent they interact. In our approach, we aim at finding the

sweet spot between prediction accuracy, measurement effort, and generality in terms of

beeing independent of the application domain and the implementation technique. The

distinguishing property of our approach is that we neither require domain knowledge,

source code, nor complex program-analysis methods, and our approach is not limited to

special implementation techniques, programming languages, or domains.

Our evaluation is based on six real-world case studies from varying domains (e.g., databases,

encoding libraries, and web servers) using different configuration techniques. Our experi-

ments show an average prediction accuracy of 95 percent, which is a 15 percent improve-

ment over an approach that takes no interactions into account [SKK+12].

2 Approach. We detect feature interactions in two steps: (a) We identify which features

interact and (b) with heuristics, we search for the combination of these interacting features

to pin down the actual feature interactions. Next, we give an overview of both steps.

Detecting Interacting Features. To identify which features interact, we quantify the

performance contribution of each feature. Our idea to detect interacting features is as

follows: First, we determine a feature’s performance contribution in isolation (i.e., how



a feature influences a program’s performance when no other feature is present) – called

minimal delta. Second, we determine a feature’s contribution when combined with all other

features – called maximum delta. Finally, we compare for each feature its minimal and

maximal delta. Our assumption is, if the deltas differ from each other, then there must be,

at least, one other feature that is responsible for this change. After applying this approach

to all features, we know which features interact (but not in which specific combinations).

The remaining task is to determine which combinations of these interacting features cause

an actual feature interaction.

Heuristics to Detect Feature Interactions. To pin down performance feature interac-

tions, we developed three heuristics based on our experience with product lines and previous

experiments. We identify a feature interaction by predicting the performance of a certain

feature combination and comparing the prediction against the actually measured perfor-

mance. If the difference exceeds a certain threshold (e.g., to compensate for measurement

bias), we found a feature interaction. Next, we shortly describe these heuristics.

• Pair-Wise Interactions (PW) – We assume that pair-wise interactions are the most

common form of non-functional feature interactions. Hence, we measure all pair-

wise combinations of interacting features (i.e., not all features) and compare them

with our predictions to detect interactions.

• Higher-Order Interactions (HO) – We assume that second-order feature interac-

tions (i.e., interactions among three features) can be predicted by analyzing already

detected pair-wise interactions. The rationale is, if three features interact pair wise in

any combination, they likely participate also in a triple-wise (second-order) interac-

tion.

• Hot-Spot Features (HS) – We assume the existence of hot-spot features. In previous

experiments, we identified that there are usually few features that interact with many

features and there are many features that interact only with few features. Using this

heuristic, we perform additional measurements to locate interactions of hot-spot

features with other interacting features.

Using these heuristics, we performed a series of experiments with the six real-world case

studies Berkeley DB Java, Berkeley DB C, SQLite, Apache web server, LLVM compiler

infrastructure, and x264 video encoder. We found that applying these heuristics improves

measurement accuracy from 80 %, on average, to 95 %, on average, which is within the

measurement error.

References

[SKK+12] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Batory,
Marko Rosenmüller, and Gunter Saake. Predicting Performance via Automated Feature-
Interaction Detection. In Proc. ICSE, pages 167–177. IEEE, 2012.

[SRK+11] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo Giarrusso, Sven Apel,
and Sergiy Kolesnikov. Scalable Prediction of Non-functional Properties in Software
Product Lines. In Proc. SPLC, pages 160–169. IEEE, 2011.

[SRK+13] Norbert Siegmund, Marko Rosenmüller, Christian Kästner, Paolo Giarrusso, Sven Apel,
and Sergiy Kolesnikov. Scalable Prediction of Non-functional Properties in Software
Product Lines: Footprint and Memory Consumption. Information and Software Technol-
ogy, 55(3):491–507, 2013.


