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Summary 
The typical probabilistic deterioration model cannot guarantee a reliable long-term prediction for 
various situations of available condition data. To minimise this limitation, this paper presents an 
advanced integrated method using state-/time-based model to build a reliable transition probability 
for prediction long-term performance of bridge elements. A selection process is developed in this 
method to automatically select a suitable prediction approach for a given situations of condition 
data. Furthermore, a Backward Prediction Model (BPM) is employed to effectively prediction the 
bridge performance when the inspection data are insufficient. In this study, a benchmark example-
concrete element in bridge substructures is selected to demonstrate that the BPM in conjunction 
with time-based model can improve the reliability of long-term prediction.  
Keywords: probabilistic deterioration model; integrated method; transition probability; long-term 
performance; Backward Prediction Model (BPM); time-based model; state-based model.  

1. Introduction 
Reliable decision making of a bridge Maintenance, Repair and Rehabilitation (MR&R) activities is 
highly dependent on the reliable current year’s inspection data and well-estimated future structure 
conditions. To achieve cost-effectiveness of MR&R during bridge service life, developing a reliable 
deterioration model is essential. A large number of historical bridge condition ratings are usually 
required for a reliable deterioration model in a bridge management system (BMS) to attain best 
possible outcomes. However, some bridge agencies may not have sufficient historical bridge 
inspection records to achieve the basic requirement of running a deterioration model in the current 
BMSs. Thus, development of an advanced bridge deterioration model to predict reliable long-term 
bridge performance is an issue of utmost urgency.  
The difficulty in developing a reliable deterioration model is that bridge condition is mostly 
inspected using a quantitative method on a discrete scale, which implies inherent uncertainty in 
bridge deterioration conditions. Generally, the bridge deterioration process is affected by the 
explanatory variables, such as traffic volume, climatic condition, and material properties [1]. 
However, the most explanatory variables are unable to be captured by filed bridge inspection. 
Therefore, deterioration is often characterised by using probabilistic models to predict uncertain 
deterioration in condition state variation at a given discrete time and explanatory variables. The 
probabilistic models can be grouped into two categories: state-based and time-based model. The 
state-based models predict long-term bridge performance using transition probability obtained from 
the difference between the two condition states at a given discrete time interval. The most common 
example is Markov chain models. Time-based models, on the other hand, employ probability 
density function of time, referring to the state duration time required for a bridge element to 
deteriorate from an initial condition state to its next specified state. Parametric, semi-parametric and 
non-parametric models have been proposed to generate the probability distribution function of 
transition time [2]. 
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The challenge for probabilistic modelling is how to generate a reliable transition probability. For 
state-based model, several methods have been developed to calculate the transition probability, such 
as the expected-value method [3], poisson and binomial regression [4], and ordered probit model [5]. 
However, these methods have a most critical common shortcoming is that they are only workable 
when given condition data has ideal distribution over the time [6]. For a time-based model, the most 
common critical shortcoming in generating transition probability are that they require frequent 
inspection of condition ratings over a long period and has obvious transition changes in given 
condition data. Moreover, an element-level inspection record usually suffers the problem of various 
situations of condition rating data distributions due to insufficient inspection records. Therefore, 
using a stand-alone model such as state- or time-based model is unable or unreliable to predict long-
term bridge performance due to the shortcomings of these models outlined above. 
In order to minimise the above-mentioned shortcomings, this paper presents an integrated method 
incorporating both state- and time-based model. This integrated method is effective as compared to 
the stand-alone model because a selection process is embedded to the integrated method to 
automatically select a suitable prediction approach (either state- or time-based) for a given situation 
of available condition data. Moreover, a previously developed Backward Prediction Model (BPM) 
is also ultilised to generate the missing historical data for insufficient condition data. To verify the 
performance of the integrated method, four different types of situations regarding the amount and 
distribution of available condition rating data are predefined. In this study, the available inspection 
records are the concrete element 59C-Pilecap in bridge substructure. This type of situations is 
selected as a benchmark example to demonstrate the advantage of the integrated method in 
predicting long-term performance using insufficient data. This example is that time-based model 
uses the BPM-generated data together with available inspection data to estimate the transition 
probability and thereby predicting long-term bridge element performance. The outcome of this 
example is also used to identify the advantages of incorporating BPM in the integrated method. 

2. Methodology 
The simplified integrated method is presented in Figure 1. The major component of this method 
includes categorisation, calculating Overall Condition Ratings (OCRs), selection process, and 
process of time-based model.  
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and element & material type) 
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Condition Rating (OCRs) 
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Time-based model 
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Fig.1: The components and procedures of the proposed integrated method 
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The inspection records obtained from Queensland department of Transport and Main Roads 
(QTMR), Australia. The categorisation of bridge inspection records is carried out according to the 
classification of structural deterioration obtained from the QTMR. On this research, the available 
inspection records only deals with classification in relation to bridge location, construction era, 
element type and material type. Note that construction era is also considered as one categorisation 
because the quality of bridge construction materials and construction methods in the last few 
decades has been continuously improved as compared to the earlier constructed structures. Once 
categorisation process completed, the OCRs is computed using the following Equation: 
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where, q1, q2, q3 and q4 are element quantities in condition states (CSs) 1, 2, 3 and 4, respectively, 
and w1, w2, w3 and w4 are weighting factors for each condition state [7]. Four CSs are in the order of 
1 to 4 (excellent to very poor), and in this study they represent the bridge condition ratings 100%, 
70%, 50% and 20% in a descending order. 
The selection process is developed to identify the status of available inspection records, and in turn 
select a most suitable prediction approach based on four different alternatives. Time-based model as 
the first alternative is applied when available inspection records satisfied the input requirement of a 
time-based model. State-based model as the second alternative is used when available inspection 
records are only workable using state-based model. The third and last alternatives are applied when 
available inspection records are insufficient and unable to be used by either time-based or state-
based model. With insufficient inspection records, the BPM is employed to generate missing 
historical condition ratings. The BPM-generated condition ratings together with available inspection 
records are only workable using time-based model, is consider as third alternative. The last 
alternative is only workable using state-based model when BPM-generated condition ratings 
together with available inspection records [8]. In this paper, the third alternative, time-based model 
using BPM-generated condition rating together with available inspection records is selected as the 
benchmark example to demonstrate the advantage of the proposed integrated method.  
The mechanism of the BPM is depicted in Figure 2. The BPM is based on the Artificial Neural 
Networks (ANN) to establish a correlation between available condition rating records (year tp - tpn) 
and corresponding years’ non-bridge factors. The non-bridge factors, such as climate and 

environmental condition changes and 
traffic volume increases, are obtained 
from relevant information authorities. 
These non-bridge factors directly and 
indirectly affect the variation of the 
bridge conditions and thus the 
deterioration rate. Once the correlation 
is established by neural networks, the 
missing historical condition ratings 
(year t1-tp-1) can be generated by using 
the non-bridge factors [9].  
Once the BPM-generated missing 

historical condition data together with available inspection records are ready, the time-based model 
is able to generate transition probability. The process of the time-based model as illustrated in 
Figure 1 is detailed herein. The time-based models require sequential changes (past i, current j and 
future k) in condition ratings to define state transition events and the corresponding transition times. 
The value of sequential condition rating j is transferred to a lower condition state k=j-1. This is 
defined as a state transition event. Each transition event can be denoted as TE (j, k) [10]. The 
transition time is defined as the time spend for an element in an original condition state 
deteriorating to the next lower condition state in the condition rating scale. In this study, the QTMR 
inspection records are only available transition event TE (1, 2) and actual time of this transition 
event is unknown because visual inspection activities are performed periodically over an 
observation period, and the related time data are considered “multiply censored” [11]. Censored 
data means that the observed event does not changing in condition states during the observation 

Fig.2: Mechanism of the BPM [9] 

(1) 
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period. A censored event can become a transition event after a specific time (right censored, or R-
censored), before a specific time (left censored, or L-censored), or both (interval censored, I-
censored). In normal practice, the transition event is assumed to occur at the middle of the 
observation period if it is observed between two consecutive condition states [11]. The time-in-state 
includes the time spent for censored events and transition events. Table 1 is only used for 
computing the time-in-state for TE (1, 2) when the construction or MR&R work is performed at 
known time.  

The time-based models estimate 
the transition probability from the 
cumulative probability of the 
transition event within the 
transition time. In this study, the 
Kaplan and Meier methods is 
employed to estimate non-
parametric reliability function with 

respect to the cumulative transition probabilities and the corresponding transition times and events 
[10]. According to DeStefnano and Grivs (1998), the equations for calculating the reliability of a 
bridge element and estimating the cumulative transition probability are presented below: 

1]/)1[()(ˆ
-´-= xxxx RrrtR  

)(ˆ1)(TP xx tRt -=  

where )(ˆ
xtR = estimated reliability of a bridge element at time tx (years); rx = reversed rank order of  

all time value observed within the sample interval; and TP(tx) = cumulative transition probability 
for all x = 1, 2, 3,….yth sample observation in ascending time order; and R0 = 1 at t = 0. 
As shown in Figure 1 under “time-based model”, more than 3 state transition events, i.e. TE≥3 (in 
this study, TE (1, 2), TE (2, 3) and TE (3, 4)) is required to compute the transition probabilities. 
However, when the state transition events are less than 3, i.e. only TE (1, 2) or TE (1, 2) and TE (2, 
3), the Markov process needs to be employed to generate an individual transition probability matrix. 
In this process, the condition ratings generated from the time-based model are assumed as the 
average overall condition ratings A(t). The transition probability is obtained by minimising the 
difference between average condition rating A(t) and estimated condition rating E(t). A non-linear 
programming objective function is described as follow:  

 

 where, N = the number of years in one age group; and U = the number of unknown probabilities; 
E(t) = the estimated OCRs at age t by the Markov chain method [8] 
The accuracy of the transition probability depends on the closeness of the average OCRs and the 
OCRs predicted by Markov chain method. The Chi-square goodness of fit test is used to validate 
the accuracy of the transition probability. The calculation formula for the Chi-square method is 
given below: 

å
=

-
=

k
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where, χ2 = a Chi-square distribution with k-1 degrees of freedom, Ei = value of the condition rating 
in year i predicted by the Markov chain method, Ai = value of condition rating in year i obtained 
from time-based model, and k = number of prediction years. 
 
 
 
 

Table 1: Time-in-state for TE (1, 2) from CS1 to CS2 

Condition state Time-in-state Data type 
i j k Tj  

Construction yr CS1 CS2 Tij + Tjk/2 Uncensored 
Construction yr CS1 CS1 Tij + Tjk R-censored 

(4) 

(2) 

(3) 
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3. Benchmark Example 
The benchmark example concrete element type 59C-Pilecap/Footing in bridge substructures has 

total of 7 bridges and 14 inspection records. 
This is a foundation element and used to 
support pile bases at piers and abutments. 
Therefore, it is important to select this element 
as an example to predict long-term 
performance of bridge element. Figure 3 shows 
the distribution of available inspection data and 
3rd –order polynomial regression curve. As 
shown in the figure, the regression curve 
presents an unrealistic average condition rating 
deterioration rate and the available inspection 
records have only one transition event TE (1, 
2). In order to obtain a workable transition 
probability for concrete element type 59C, the 
BPM is employed to generate the missing 
historical condition ratings for bridges 
ID#XX142XX, #XX144XX and #XX147XX.  
Consequently, the BPM generated missing 
condition ratings together with the available 
data provide a total of 4 transition events TE (1, 

2) to be used in the time-based model to generate transition probability. 
The Kaplan and Meier method is used to generate the non-parametric values with regard to the 
cumulative transition probabilities corresponding to transition times and specific transition events. 
The example of estimating the cumulative transition probabilities of TE (1, 2) for concrete element 

type 59C is illustrated in Table 2. 
In this table, Model 0 is defined as 
a censored event, and Model 1 is 
defined as a transition event. 
Reliability is calculated by 
Equation (2) and transition 
probability is calculated by 
Equation (3). A linear regression is 
used to calculate the uniform 
distribution function for concrete 
element type 59C as presented in 

Figure 4. The linear regression parameters 
are then used to generate the transition 
probability for transition event TE (1, 2) for 
this concrete element type.   
As an example, the transition probability for 
TE (1, 2) for bridge substructure element 
59C-Bridge#XX48XX is shown in Figure 5. 
Note that these generated transition 
probabilities can only be used to predict 
condition ratings from CS1 to CS2. For 
future and long-term prediction, the Markov 
chain method has to be used in this case to 
generate an individual transition probability 
for each element. Table 3 summarises the 
predicted OCRs using transition probabilities 
obtained from the time-based model for 
bridge element 59C-Bridge#XX48XX. The 
predicted OCRs are considered as the 

Table 2: Calculating cumulative Transition Probability  

Observation 
(x) 

Time-in-
state (tx) 

Model Rank 
(rx) 

Reliability Cumulative 
TP 

1 2.50 1 5 0.800 0.200 
2 5.96 1 4 0.600 0.400 
3 10.50 1 3 0.400 0.600 
4 14.50 1 2 0.200 0.800 
5 24.75 0 1 0.200 0.800 

 

 
Fig. 3: Available inspection records  

 

Fig. 4: Element type 59C deterioration model 
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average condition rating A(t) to be used in Equation (4) to generate the individual transition 
probability.  

 1 2 3 4 
1 0.764 0.471 0 0 
2 0 1.000 0 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

 

 1 2 3 4 
1 0.715 0.285 0 0 
2 0 1.000 0 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

 

Transition probability for bridge age 4 Transition probability for bridge age 5 

 1 2 3 4 
1 0.666 0.334 0 0 
2 0 1.000 0 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

 

 1 2 3 4 
1 0.616 0.384 0 0 
2 0 1.000 0 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

 

Transition probability for bridge age 6 Transition probability for bridge age 7 

 1 2 3 4 
1 0.567 0.433 0 0 
2 0 1.000 0 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

 

Transition probability for bridge age 8 
Fig. 5: Transition probabilities for TE (1, 2) obtained from the time-based model for bridge element 

59C-Bridge#XX48XX 
Table 3: Predicted OCRs using transition probability obtained from the time-based model   

 Initial input Predicted values using transition probability obtained from  
the time-based model 

Year 1999 2000 2001 2002 2003 2004 
Bridge age 3 4 5 6 7 8 
OCRs (%) 100.00 92.92 86.38 80.90 76.72 73.81 

4. Results and discussion 
The purpose of this study is to demonstrate the capability of applying the BPM in the integrated 
method by a benchmark example. Detail 
result of this example is presented in this 
section. Figure 6 presents the individual 
transition probability matrix for bridge 
element 59C-Bridge#XX48XX. The 

transition probability matrix is obtained 
by using the time-based model 
incorporating the Markov chain method.  

 1 2 3 4 
1 0.795 0.205 0 0 
2 0 0.546 0.454 0 
3 0 0 1.000 0 
4 0 0 0 1.000 

Fig.6: Individual transition matrix  

Fig. 7: Comparison between the  
average A(t) and predicted E(t)  
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Figure 7 compares the average condition rating A(t) obtained from the time-based model and the 
predicted condition ratings E(t) from the Markov chain method for bridge element 59C-
Bridge#XX48XX. As the shown in figure, the predicted OCRs from the Markov chain method are 
very close to the average condition ratings. Moreover, Table 4 summaries the degrees of freedom, 
critical x2 values at significance level α = 0.05 and that obtained from perdition method. The 
comparison shows that the estimated x2 = 0.0001 is much smaller than that at significance level α = 
0.05. This means that generated transition probability are well acceptable to predict long-term 
bridge performance.   
Table 4: Comparison of the 2 values at significance level α = 0.05 

Element type Construction era Degrees of freedom 2
critical (α=0.05) 2 value 

59C 1981-2000 5 11.07 0.0001 

Once the transition probability is confirmed, the long-term bridge element prediction can be simply 
conducted. Figure 8 shows long-term prediction for Bridge#XX48XX. It is based on the latest 
inspection record as an initial condition state vector from this bridge, by which the element 
condition rating for future 25 years are predicted without MR&R. The long-term prediction 
outcome presented in the figure shows both element quantity and OCR each year.  

 

 
This study demonstrates the advantage of integrated method and capability of the BPM in 
predicting long-term performance of bridge element. The advantages can be summarised as follows: 
(1) the integrated method categorises the bridge elements according to bridge location, construction 
era, element type and material type, by which similar elements are grouped together to identify 
common deterioration patterns; (2) The benchmark example demonstrates that the BPM-generated 
historical condition ratings together with available inspection records as input can be used by the 
time-based model; (3) The  BPM-generated data together with available inspection records can 
improve the reliability of estimating the transition probabilities and thereby improving the reliability 
of long-term bridge element prediction.  

5. Conclusion 
This study presents an integrated method using typical probabilistic deterioration modelling 
techniques to provide alternative workable solution for various situations of available condition data. 
The most prominent techniques, such as state-based and time-based models are employed in this 
integrated method to predict long-term bridge element performance. Moreover, the selection 
process is employed to automatically select a suitable prediction approach for a given situation of 
condition data. Application of the selection process in the integrated method leads more effective 
prediction outcomes as compared to stand-alone model (i.e. state-based or time-based model). The 
BPM is also used in the proposed integrated method to generate the missing historical data for 
insufficient data scenarios. One situation is selected as a benchmark example to demonstrate the 
workability of the time-based model in conjunction with BPM in the integrated method. The 
outcome shows that the integrated method is effective with insufficient historical condition ratings 

Fig. 8: Long-term prediction by element quantities and OCRs (59C-Bridge#XX48XX) 
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are only available. On the basis of this study, further investigation in necessary with more case 
studies in order to demonstrate the reliability and accuracy of the proposed integrated method.  
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