
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Performance Prediction of Scalable Computing: A Case Study *

Xian- He Sun

Dept. of Computer Scien.ce
L0uisian.a State University

Baton. Rouge, LA 70803-40~0

Abstract: While computers with tens of thou-

sands of processors have successfully delivered high

performance power for solving some of the so-called

“grand-challenge” applications. the notion of scalahil-

it,y is beconling an important nlet,ric in the evaluation

of parallel nlachine architect,ures and algorithms. In

t,his study. the prediction of scalability and its appli-

cation are carefully investigated. A simple formula

is presended to show the relation between scalability,

single processor computing power. and degradation of

parallelism. A case study is conducted on a multi-ring

IiSR-1 shared virtual menlory machine. Experinlen-

t,al and theoretical results show that the influence of

t,opology variation of an architecture is predictable.

Therefore. t,he performance of an algorithnl on a so-

phisticated. hierarchical architecture can be predicted

and a good al~orithni-machilie conlbination can be se-

lected for a given application.

1 Introduct ion
\i:ith modern t,echnology. parallel processing seems

to be the only way to achieve higher performance. In

recent years. various architectures have been proposed

to connect a large nunlber of processors into a single

powerful machine; and Larious algorithms have been

developed on t,hese proposed machines t,o explore the

pot,ential of high computation power. However. each

archit,ect,ure has some distinct properties. and each al-

gorithm has its own inherent data structures. The per-

formance of an algorit,hnl on a particular archit,ect,ure

nlay vary significantly as the system and problem sizes

“This research w-as support,ed by t,he Satiounl Aero-
uautica and Space Admiuist~ratiou uuder S-KS.& cont,ract.

TASl-lW30 w-hile t,he first. aut,hor w-ab in r&deuce at the

Iustit.ut,e for Comput,er Applicat.iom iu Science and Engi-

ueeriug (ICASE), SASA Langley Research Ceder, Hamp-
ton. V.4 23681.0001.

Jianpiny Zhu

NSF En.9ineerin.g Research Center

Dept. of Math. and Stat.
Mississippi State hiversity

Mississippi State, MS 3976%

increase. Predicting the performance of an algorithm-

machine conlbination is diflicult and elusive.

Simply speaking. a scalable architecture is an archi-

tecture capable of yielding very high raw of computa-

tion power when the system size is large. However the

high conlputation power may not be realized in solv-

ing a given application. since the achievable efficiency

of an application may drop quickly with the increase

of system size. ‘To evaluate the ability of maintain-

ing yerfonnance. several metrics have been proposed

to measure the scalability of algorithm-machine com-

binations [l. 2. 3. 4. 5. 61. Isospeed scalability [J] is

one of the proposed metrics. It measures the abil-

ity of an algorithm-machine combination to nmintain

unit processor speed. ‘Through a case study in this pa-

per. we investigate issues of performance prediction of

shared virtual memory machines. Performance models

are developed in terms of execution time and scalabil-

ity. Experimental results on a &l-node Iiendall Square

IiSR-1 show that. when performance information of

snmll scale systems is available. the performance of

large scale systems can be predicted. Machine archi-

tectures and algorithms can be compared in terms of

scalability without run-time information. Since a 64

node IiSR-1 is a shared virtual nlenlory machine with

multiple memory access times. the experience learned

in this study is reasonably general and may extend to

a class of applications.

2 Definition and Analysis
A main driving force of parallel processing is to

solve large problems fast. Considering both execution

time and problem size. Rhat we seek from parallel pro-

cessing is speed which is defined as: work divided by

time. In general. how should work be defined is con-

troversial. For scientific applications. it is coninionl~

agreed that the floating point (flop) operation count

is a good estimate of work (problem size). ‘The aver-

456

1060-3425195 $4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

age unit speed (or average speed. in short) is a good

measure of parallel processing in ternrs of speed.

Definition 1 The average unit speed is the
achieved speed of the given computing system divided

by p. th.e number of processors.

In the ideal situation. average speed remains con-

stant when system size increases. Hardware peak per-

fornlance provided by vendors: are usually based on the

ideal assumption. If problenl size is fixed, the ideal

situation is unlikely to happen in practice, since when

problem size is fixed? the communication/computation

ratio is likely to increase with the number of proces-

sors. and therefore, the speed will decrease with the

increase of systenr size. On the other hand, if sys-

ten1 size is fixed? comnnrnication/computation ratio is

likely to decrease with the increase of problem size for

uiost practical algorithms. For these algorithnrs. in-

creasing problem size with the system size niay keep

the average speed constant. Based on this observa-

tion. the isospeed scalability has been formally defined

as the ability to nlaintain the average speed in [J].

to treasure the parallel processing gain over sequen-

tial processing. Traditionally! parallel efficiency is de-

fined as speedup divided by p! where p? the nunrber

of processors: is the ideal speedup. The traditional

parallel efficiency is the efficiency in ternrs of speedup.

Contrary to speedup, average speed is an indicator of

uniprocessor efficiency? where uniprocessor efficiency

is defined as average unit speed over peak uniproces-

sor speed. Maintaining average speed is equivalent to

maintaining the uniprocessor efficiency. Under certain

assumptions? nraintaining average speed is also equiva-

lent to nraintaining the parallel efficiency [7]. However?

in practice, these two approaches may lead to totally

different results [il. Unlike parallel efficiency! average

speed does not inherit any deficiency of speedup. It

does not require solving large problenis on a single pro-

cessor and does not give credits to slow computation.

while parallel efficiency does.

By the definition of scalability (l)! scalability can

be predicted if and only if the scaled work size? W’?

can be predicted. Proposition 1 provides a way to

obtain IV’.

Definition 2 A71 algorithm-machine combination

is scalable if th.e ach.ierjed aver-aye speed of the algo-

r&m 071. th.e yiven mach.ine can remain constant with

increasing numbers of processors, provided th.e problem

site can be increased ulith. th.e system size.

Proposition 1 If parallel degradation exists, then for

scalability (1)

For a large class of algorithm-illachille combina-

tions. the average speed can be nlaintained by in-

creasing problenl size [4]. ‘The necessary increase of

problenl size laries with algorithms. machines. and

their conibinations. ‘This variation provides a quan-

titative nleasurenlent for scalability. Let W’ be the

anlount of work of an algorithni when p processors are

employed in a machine. and let IV’ be the amount

of work needed to maintain the average speed when

p’ > p processors are enlployed. then we define the

scnlnbility fTo778 system sire p to system size p’ of the

algorithlil-lllachille conlbination as follows.

- ,
pi,tr, _ a~‘To

l-nA’
(‘3

uhere a is th.e f?.xed average speed, A is the computiny

rate of a single processor, TO is th.e parallel processing

overh.ead.

Proof: Sine W’ is the scaled work satisfying the

isospeed requirement.

The parallel execution time. r,, (IV’): can be divided

into two parts: ideal parallel processing tinle and par-

allel processing overhead. TO.

Tp(W’) = 5 + To =
WA
- +T,?

P’

The work WY’ is deternlined by the isospeed constraint.
I

\V’hen 11” = :lI-. that is when average speed is main-

tained with work per processor unchanged. the scala-

bility equals one. It is the ideal case. In general, work

per processor may have to be increased to achieve the

fixed average speed, and scalability is less than one.

where Tl is the sequential execution tinle and Tl/p’ is

the ideal parallel execution t&e. Thus,

W’

Speedup is a widely used perfornlance nietric in

parallel processing. It is defined as sequential exe-

cution tinle over parallel execution tinle and is used

and

Cl = J+r’ A +Top,!

451

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

cl

Note that in Equation (2): a. is the achieved aver-

age speed considering the parallel processing overhead?

and A is the computing rate without considering the

overhead. When parallel degradation does exist (i.e.

T,, > 0): A-’ > a and, therefore, equation (2) is trace-

able. To > 0 is a necessary and sufficient condition of

Prol>osition 1.

Combining scalability (1) and equation (2)? we have

Equation (3) is very useful. It not only gives a way to

predict scalability! but more iml>ortant!y it shows the

following three properties of isosyeed scalability.

1. Scalability (1) increases with the decrease of the

fixed average speed n.

2. A. the con+uting rate of a single processor. is

the inverse of single processor speed. Equation

(3) shows that scalability increases with single

processor speed.

3. Scalability increases with the decrease of degra-

dation of parallelism To.

Property 1 is very reasonable. Scalability is the ability

of a computing system to maintain yerforxnance when

system size is scaled up. Property 1 shows that less

eifort is needed to nmiutain lower efficiency. if we cou-

sider (7A a3 the uuiyrocessor efficiency. Equation (3)

gives the relation between the effort (scalability) and

performance (the fixed average speed) of an algorithm-

nlachine combination. Property 1 also shows that.

by adjusting the average speed CI. isosyeed scalability

can be applied to a large class of algorithm-machine

coulbinations. from massively parallel systems with

less yowerful processing elements to suyercomlmters

with few powerful processors. Equation (3) also gives

the relation between isospeed scalability. comlmting

power of a single processor. aud degradation of par-

allelisul. Properties 2 and 3 show that isospeed scal-

ability does uot give credits to slow computing aud

collllllllllicatioll. These two properties are very imyor-

taut in evaluatiou of computing systems. They distin-

guish isosyeed scalability with parallel metrics based

on speedup. It is known that syeeduy is in favor of

parallel systems with high communication/coluyuting

ratio [8].

Although equation (3) is very useful, using it in per-

formance prediction may not be as sinlPle as it looks.

The degradation of yarallelism. To. which contains

both coluruunication and workload imbalance degra-

dation, may be difficult to compute. Also, the single

processor rate may \ary with algorithm and problem

size, especially for shared virtual memory machines

[7]. A detailed case study is given in next section to

illustrate how the prediction formula could be used in

practice, and how the predicted scalability could be

used to evaluate machine architectures.

3 The Case Study
Our case study was performed on the KSR-1 par-

allel comyuter. It has a distributed physical memory

which makes large ensemble size yossible, and a shared

address space which allows users to develop lxograms

in a shared-memory-like environment.

Ring1

connecting up to 34 Ring:O’s

Figure 1. Configuration of KSR-1 lmmllel coxnlmters.

p: processor M: 32 Mbytes of local memory

Figure 1 shows the architecture of the E;SR-1 yaral-

lel computer [9]. Each I>rocessor on the KSR-1 has 32

Mbytes of local memory. The CPU is a super-scalar

processor with a peak performance of 40 hIflol>s in

double precision. Processors are organized into differ-

ent rings. The local ring (ring:O) can connect up to

32 lxocessors! and a higher level ring of rings (ringl)

can contain uy to 34 local rings with a nmxi~num of

1088 yrocessors.

Access to non-local data on IGR is provided by a

hierarchy of Search Engines. The Search Engine SE:0

locates data in the local ring, while the Search Engine

SE:1 provides data access between local rings. These

different Search Engines are connected in a fat-tree-

like structure [9? lo]. Th e memory hierarchy of IiSR

is shown in Figure 2.

Each yrocessor has 512 Iibytes of fast aubcnche

which is similar to the normal cache on other par-

allel comyuters. This subcache is divided into two

equal parts: an instruction subcache and a data sub-

cache. ‘The 32 Mbytes of local memory on each yro-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

1 Search Engine:0

I Group:0 Cache
1GB I

r Search Engine: 1

Figure 2. MemolT hierarchy of KSR-1.

cessor is called a local cache. A local ring (ring:O)

with up to 32 processors can have 1 Gbytes total of

local cache which is called Group:0 m&e. Access to

the Group:0 cache is provided by Search Engine:O. Fi-

nally. a higher level ring of rings (ring:l) connects up

to 34 local rings with 34 Gbytes of total local cache

which is called Group:1 cc&e. Access to the Group:1

cache is provided by Search Engine:l. The entire

nlenlory hierarchy is called ALLCACHE nlelnory by

the Kendall Square R.esearch. Access by a processor

to the ALLCACHE memolT systeln is accomplished

by going through different Search Engines as shown

in Fig. 2. The latencies for different memos loca-

tions (111 are: 2 cycles for subcachx. 20 cycles for local

cc&e. 150 cycles for Group:0 cach.e. and 570 cycles

for Group:1 cach.e.

3.1 The Application

The nunlerical algorit.hnl used in this case study

is the Householder Transfornlat.ion algorithnl for the

QR factorization of nlatrices. It is used for solving the

nornial equation

ATAx = ATb (4)

without explicitly fornling AT A.

In nlany cases. for instance the inverse problelu. of

partial differential equations [12]. the norlnal equa-

tion system resulting from the discretization is too

ill-conditioned to be solved directly. Tikhnov’s reg-

ularization nlethod [13] is frequently used in this case

to increase nunlerical stability. The key step in solv-

ing the R.egularized Lemt Squares Problem (RLSP) is

to introduce a regularization factor ct’ > 0. Instead

of solving (4) directly. we solve the following systenl

(ATA+aI)x = ATb for x: which can also be written

as

(A=, 61) (iI) x = (-47 da) (;) (-9

or

(f3

so that the major task is to carry out the QR factor-

ization for xnatrix l3 which has the structure

where we usually have In 2 II. with m of the saxne

order as 17.. Because of the special structure in (7), not

all elements in the lnatrix are affected in a particular

transfornlation step. In the first step. all elenlents

within the franle in nlatrix (7) will be affected. In

each new step, the fraxne in (7) will shift downwards

one row with the left xnost column out of the game.

‘Therefore, at the ith step. the subnlatrix B< affected

in the transfornlation has the form:

,!O
I*

(,) i ! i .: . (8)
I

a,,,+i-l,i a-. a..
li)

%n+i-1.” 1
If the colunlns of nlatrix Bi of (8) are denoted by

bj. i.e. Bi = [bi bf,, ... bk]? then the Householder

‘Transfornlation can be described ay:

Householder Transformation

Initialize iriatrix B

for I = 1: n.

2.wi=b]-o.J:

1. ct’i = -~lgn,(a;:)(biTbi)“’

‘I

3. gj = WTbi.(Ct’? -
! 3 '

CViClif))> j = i+ l?*-*?R.

4.bi=bJ-Bjwi. j=i+l. . . . ,I.

end for

459

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

The calculation of Ljjj’s and updating of hi’s can be

done in parallel for different index j.

3.2 Scalability Analysis

Based on the definition of isospeed scalability! the

work W’ at processor number p’ should keep the sys-

tem ensemble running at the same average speed a as

with p processors, so that

u-
bp-t

IL7 = jqiq = p/T,, (W’) * (9)

where T,(W) and T,l (IV’) are the execution times us-

ing p aud p’ processors respectively.

For the particular problem discussed here, the run

time model is

T,(n) = [$ + 3?] T + n2,3, (lo)

aud the work is

W(n) = 2n3 + h”. (11)

where tj, is the number of coluums in a 2r1. x II. matrix

to be transformed. p is the number of processors. T

is the rate of computing without conmlunication over-

head. and LJ is the latency for access of remote data in

Group:0 cache. We use T, instead of A. to represent

the computing rate. because in practice the comput-

ing rate may vary with algorithm. problem size. and

system size. \I\:e reserve the notation A for theoreti-

cal computing rate. Following the discussion given in

Sect,ion 2, the run time T,(n) in (10) can apparently

be represented as

T&b) = Tc:(n.p) + T,,(mp). (12)

where Tc(n.p) is the computing time of ideal paral-

lelism and T,(n.,p) represents the degradation of yar-

allelisul. \+?e then have

Tc(rr. p) =
2173 + 3rr2

T.
P

T,(,l,.p) = (&I.’ - y)T + n2d.

The first term of TO is due to the workload imbalance.

The second term is due to the coumunication (remote

memory access) delay. Using relation (2) we get

bi” =
n&-7 3n” j- + 3,1.‘2T + n*g)

1- 11T
(13)

The matrix size n. is the parameter used to adjust the

problem size. Substituting

w’ = 2n13 + 3n12

into (13), we have

2n,,3 + 3n,,2 _ ap’(-FT + 3d2T + 7d2/q -
1 - a?-

which eventually leads to

3a rp’ + a Pp’

n’= 2(1-a7) -

3

2(1- a7-)’
(11)

Equation (14) is true for any work-processor pair

which nmintains the fixed average speed? plus that T

and if are unchanged. In particular.

3a Tp + (7 By 3

“= 2(1-UT) - 2(1-CIT)’

Combining equation (14) and (15). we have

(15)

Cl@

which shows that the lariation of 11. is in direct yropor-

tion to the variation of ensemble size. provided that T

and i3 are independent of the number of processors.

Equation (16) indicates that the matrix size R.’ must

increase at the same rate as the number of processors

p’ does to maintain the pre-specified average speed n.

If p’ = mp. then we will have n,’ = mu,. Assume n.

is large so that the cubical term in equation (11) is

dominant. we have the relation

Therefore. the scalability of this algorithm-machixle

combination can be estimated as

t7Ip.W 1
+!‘(p.p’) = qp. mp) M m = -.

rn2
(17)

In particular. if JR = 2. which means the number of

processors is doubled for each case. the scalability will

be approximately f .

It is clear from (16) that the parameters T and

[j nlust first be determined before we can predict

the execution time and scalability. With the run-

time model given by (10). we can estimate T and

$ in the model to fit the measured run times us-

ing the least squares method. Assume that the ex-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

ecutions times TpI (n.l), . . .) TPr (n.k) are available on

Pl. Pz?‘.* ? pk processors? with problem sizes being

JI,~. 11.2 . -. n.k respectively: we will have

where

bi = F + 3nZ, Ci = n,:.
t

4 Scalability Prediction and Its Appli-

cat ion
The peak performance provided by vendors gives

the hardware performance limit but can hardly be

used to predict execution time accurately. For most

application problems. the sustained speed is only a

small percentage of the peak perforxnance. The same

argument applies to coxuruunication latency. The ob-

served latency can be significantly different from the

machine specifications. The architecture specification

[ll] for IiSR-1 gives

T = 0.025 (t(M). ,I1 = 7.5 (ps). (19)

‘To deteruliue the value of T and B for this particular

algorithm-machine pair. we ran the code on p = 2 and

4 processors and measured the total execution time

T,(n) with n. = 302 and rr = 512 respectively. ‘Then T

aud ij are calculated by using the ulodel in (18). The

parameters obtained this way are

T’ = 0.18 (P). A’ = 3.3; o((.s). (20)

Comparing (19) and (20). we see that T' is significantly

larger than T. The sustaiued coulputational speed is

1
- = 5.x (Mflops)
T’

which is about 14% of the peak yerforiuauce of 40

Flops. This speed includes all the effects of subcache

misses and other overheads. On the other hand, the

value of B’ in (20) is significantly sumller than ir of

(19). which means the actual observed communication

speed is faster. This can be attributed to two factoem:

1. Overlapping of comulunications with computa-

tions. In the Householder transformation. one

processor calculates the pivoting column and

then broadcasts it to all other processors. ‘This

broadcasting process can be partly overlapped

with the other computations.

2. Automatic prefetch. The KSR-1 Fortran coxn-

piler analyzes loops and, whenever possible,

generates instructions to prefetch remote data

needed for subsequent loops. thus saving data ac-

cess time.

t

- measured execution time
------- predicted execution time ELI

175.0

E 125.0
i=

75.0

25.0
2

Figure 3. Measured and predicted execution time

Problem sire l;s scaled up with. available memory

Figure 3 shows both the measured execution tiuie

and the predicted execution time in second. The pre-

dicted execution time is based on equation (10) and

(20). Th e ro p bl em size is scaled-up using the memory-

bounded scale-up model [3]? i.e. when the number of

processors increases. the matrix size also increases to

fill up the available local memory. For the R.LSP ap-

plication, iuexuory requirement is a square function of

the parameter n.! and the computation count is a cu-

bical function of n.. That explains why the run time

goes up with more processors.

It is clear froiu the figure that the predicted execu-

tion time matches the measured execution time well

until p = 22. After that. the error increases signif-

icantly. This is due to the multi-ring structure of

I&R-l. Each ring has 32 processors. Since several

of the 32 processors are dedicated for I/O aud control

processes and are usually not used in computation.

umlti-ring communication is involved even for p less

than (but close to) 32. ‘This multi-ring conmunication

requires data access to Group:1 cache which slows the

computations significantly. The listed access time for

461

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Group:1 cache on KSR-1 is [ll]

ij2 = 28.5 (P). (21)

Again. the measured access time for our application is

significantly different from the listed value. especially

when most coummnications are within a single ring.

‘To determine the conmlunication delay for nmltiyle

rings. we ran the code on 36 processors and measured

the execution time. Then the value of B ulafl calculated

from (10) by fixing T = 0.18 (ps) as given in (20). The

new ij value is

j3” = 6.27 (ps) (22)

which is about twice as large as that given in (20).

225.0

.E
l-

125.0 - _____ ---------

------_ predicted execution time using 8”
----- predicted execution time using e

25.0 1
36 40

Number ci&ocessor~
52

Figure 4. Measured and predicted execution time us-
iug the adjusted parameters

Problem size is scaled up with. available memory

Figure 4 shows the execution time for p > 32. We

see that wit,h the new value of 19”. the predicted ruu

time matches the measured execution time nicely

Ba3ed on the test runs on p = 2. 4 and 3G pro-

cessors and equation (14). the matrix size IZ.’ can be

predicted. ‘Table 1 shows the predicted and measured

matrix sizes respectively. The average syeed a main-

tained in this test is 3.25 hgfloys which is about 58%

of the sustained speed in (20). From Table 1 we can

see that the predicted matrix size is veiy close to the

actual matrix size uleasured by running the code on 8.

16. 32. and 56 processors. The last column in ‘Table 1

shows the predicted size 18,’ using I?‘. If the i3’ given in

(20) is used in predict,iug the matrix size. t,hen n.’ will

size 11 2 1 4 8 16 J2I 56

predicted [[54] 115 238 484 9,6 2889
measured]I 54 I 109 230 461 1006 1 2r 17

Table 1. Predicted and measured matrix size

be 1715 at p = 56, uhich is significantly sumller than

the xueasured n.‘. The difference shows the influence

of slower remote memory access of Group:1 cache on

scalability.

With the matrix sizes given in Table 1 and the

Parameters given in (20) and (22)? we can conilmte

the scalabiitg +(p.p’). Table 2 and 3 give the yre-

dieted and measured scalability resyectively. We can

see that the Predicted and measured scalabilities are

fairly close. The prediction at enseulble size of 56 is

based on the justified communication delay /?I. Figure

5 depicts the difference between the measured scala-

bility and the predicted scalability obtained by using

ij’. The curves in the figure represent uleasured and

predicted +(p. 56) resyectively with p tarying from 1

to 56. Note that in order to see clearly the differ-

ence between the two curves in figure 5: we plotted

- log($(p? 56)). instead of “!(p! 56). Therefore. the

curve with lower - log($(p.X)) value actually rey

resents higher scalability than the curve with higher

- log($(p? 56)) value.

In order to build a scalable shared virtual mew

ory machine. the architecture of IiSR.-1 is designed

as a combination of bus and fat-tree (see Section 3).

Theoretically. the computing system can be scaled uy

to any number of yrocessors by increasing the hier-

archy of the tree. Figure 5 shows the limitation of

the ring-tree approach. The scalabiity is severely re-

duced when inter-ring remote access is required. It

shows that. unless inter-ring cowuunication can be

iulyroved. unilwocessor efllciency will reduce quickly

with the increase of euseulble size and a high coul-

yuting power may not be achievable by increasing the

hierarchy of the fat-tree.

The scalability difference given in figure 5 is based

on the measured scalability and the measured T and

ij’. Figure 9 shows the scalability difference with the

theoretical I>erfornlance data A. 01, and ij2? where the

average speed is fixed at the 58% of the peak perfor-

mance. It gives the theoretical difference of the RLSP

application when Group:1 coulmunication is required.

Coml>aring the curves in figure 5 with those in figure

6, we can clearly see the similarity. Both figures show

that the scalability with remote cache access is much

lower than that without considering remote data ac-

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

462

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

‘Table 2. Predicted scalability of RLSP-BSRl Coxnbi-
nation

Table 3. Meamred Scalability of R.LSP-KSR.1 combi-
nation.

cess. The geueral trends in both figures are very simi-

lar. Siuce the curves in liigure G were plotted based on

umchine specification, it. shows that. while machine

specification does not provide good estimate of ex-

ecut,iou time or speed. it does give a foundation to

predict the influence of architecture lariation on per-

formance. Equation (3) is an useful tool to predict

performance of an algorithm-machine pair. even when

the computing system is scaled up from one level of

architecture hierarchy to another level. It provides the

variation of performance with only hardware specifica-

t,ion available. The influence of architecture variat,ion

is differeut on differeut, algorithnls. When architec-

ture scales up from one level of hierarchy to another.

au algorithui that performed worse than another algo-

rit,hui at a lower level of architecture hierarchy might

become better at a higher level of hierarchy. Scal-

ability formula (3) provides a guideline for chasing

algorithrus when system size is scaled up. Figure 7

shows the scalability curves for the Givens Rotation

algorithm [14] which can also be used to solved the

least squares problem. The same machine speciiica-

tious as those used for figure G are used in figure 7.

W:e can see that the scalability of the Givens rotation

algorithm is worse than that of the Householder algo-

rit,hm. However. the difference is iuiproving when the

system scales up. This demonstrates that the scala-

biity of the Givens algorithm is less affected by the

hierarchical remote cache access than the Householder

algorithm does. The Givens algorithm may provide a

better scalability and, therefore, better execution time

when the system size is large enough so that xnulti-

level ring coumunication is required. Figure 6 and

7 show how algorithms could be compared with the

notion of scalability.

------- predicted scalability using B

0.00 ’
0 6 16 24

number of processors p

Figure 5. Measured and predicted scalability
Equation (20) is used in prediction

,

- predicted scalability using B,
------- predicted scalability using fI, & e,

\
:

:
:

‘..*

-..,

‘a._

---_.
--..

--..

----- -______

-----____
----__

--mm

\

2

6 16 24 .D2

number of processors p

Figure 6. Predicted scalability using machine specifi-
cations

The average speed a nmintained in this study is

about 58% of the sustained speed. The efficiency

maintained is reasonably high. The scalability given

iu Table 2 and 3 could be higher if a WLS lower, as

463

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

- predicted
------- predicted scalability using f3, & 8,

0.00 1
0 6 16 24 32

number of processors p

Figure 7. Predicted scalability of Givens rotation us-
ing xnachine specifications

shown in equation (3). Al so. the coxnputing rate r in

general laries with the nunrber of processors and prob-

lexn size on any xnachine with memory hierarchy. For

our inlplenlentation. since the initial problem size is

large and it increases with the nunlber of processors.

the conqnrting rate is quite stable. The scalability

prediction will be nlore involved if the conlput,ing rate

varies with the systexn size [IS].

5 Conclusion
Recent trends in parallel processing suggest that

the issue of performance prediction is becoxning nlore

complex and diflicult. Massively parallel computing

has been adopted as a cost-effective way to achieve

high coxnputing power. Sophisticated architectures

have been proposed to deliver yerfornlance scalabii-

ity with a large nuxnber of processors. Shared virtual

xnexnory and other systenl supports that hide the corn-

nlunication and obher inlylenlentation details front the

users are beconling xnore prevalent. At the saxne tinle.

with various architectures and algorithnls available.

perforxnance prediction is beconling the salvation of

chasing an appropriate algorithxn-machine pair for an

application. especially when the xnachine has a soyhis-

ticated. hierarchical architecture. The study given in

this paper is an attenlpt to conlbine sixnple forxnulas

with run-tixne inforxnations to provide a reasonable

prediction on xnodern parallel computers. A sinlyle

prediction forxnula is presented. ‘Then. a cave study

is conducted on a multi-ring I&R.-l virtual xnexnory

nlachine to illust.rate how the forxnula could be used

in practice. Four different aspects are discussed in

the paper. First, a xnethod is proposed to meawre

the needed run-time parameters. Second, when the

systenr size is scaled up from one level of architec-

ture hierarchy to another level of hierarchy? an adjust-

nrent is proposed to catch the influence of the archi-

tecture variation. Experimental results on the xnulti-

ring KSR-1 machine shows our predicted yerfornlance

xnatchs the xneasured perfornrance well, in both execu-

tion tixne and scalability. Then, with this case study,

we have shown that it is possible to predict the influ-

ence of architecture hierarchy on scalability by sixn-

ply using hardware specifications. Finally. we have

discussed issues of chasing an appropriate algorithnr

for a given application when the cornyuting system is

scaled up front one level of hierarchy to another.

While the numerical experiment was conducted on

a KSR-1 machine, the result given in this study is not

lixnited to KSR-1 architecture. It is a general result of

scalability prediction and should be useful in evalua-

tion of any scalable architecture and algorithm.

Acknowledgment
The authors are grateful to the Cornell Theory Cen-

ter for providing us access to the IiSR. parallel coxn-

puter.

References
1.

2.

3.

4.

5.

6.

7.

A. Y. Graxna. A. Gupta. and V. Iiunrar! “Isoeffi-
ciency: Measuring the scalability of parallel algo-
rithnls and architectures.” IEEE Parallel B Dis-
tributed Tcch71oloty. vol. 1. pp. 12-21, Aug. 1993.

J. Gustafson, G. Montry. and R. Benner. “Devel-
opnent of parallel xnethods for a 1024-processor
hypercube,” SIAM J. of Sci. and Stat. Comput-
ing. vol. 9, pp. 6099638. July 1988.

X.-H. Sun and L. Ni? “Scalable problems and
nrenlory-bounded speedup.* J. of Parallel and
Distributed Computing. vol. 19, pp. 27-37, Sept.
1993.

X.-H. Sun and D. R.over? Scalability of parallel
algorithm-machine conlbinations.” IEEE Trans-
actions on Parallel nnd Distributed Systems.
pp. 599-613. June 1994.

P. T. Morley. “The effect of tixne constraints on
scaled speedup.” SIAM J. of Sci. and Stat. Com-
puting, vol. 11, pp. 838-858, Sept. 1990.

X. Zhang. Y. Yan, and Ii. He. “Latency matric:
An experimental xnethod for measuring and eval-
uating parallel progranl and architecture scala-
bility.” J. of Parallel and Distributed Computing:
Oct. 1994.

?i.-H. Sun and J. Zhu. “Shared virtual n1en1-
ory and generalized speedup,” in Proc. of the
Eigh.th. International Parallel Processing Sympo-
sium! pp. 637-643. April 1994.

464

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

8. X.-H. Sun and .I. Gustafson. “Toward a better
parallel perforniance metric?” Pnmllel Computing!
vol. 1;. pp. 10931109. Dee 1991.

9. Kendall Square Research. “IiSR parallel program-
ming.” Walthaq USA, 1991.

10. C. Leiserson. “Fat-trees: Universal networks for
hardware-ellicient supercomputing.” IEEE !lhns-
crctions on Computers, vol. 34. no. 10, pp. 892-
901. 1985.

11. Kendall Square R.esearch. “IiSR technical SUIW
niary. ” Waltham, USA, 1991.

12. Y. M. Chen. J. P. Zhu. W. H. Chen, and
RI. L. \17assernian. “GPST inversion algorithm
for history matching in 3-d 2-phase simulators,”
in IMACS Trans. on Scientific Computing I.
pp. X9-374. 1989.

13. A. N. Tikhnov and V. Arsenin. Solution of Ill-
posed Problenw. John Wiley and Sons? 1977.

14. A. Pothen and P. Raghavan. “Distributed orthog-
onal factorization: Giveus and Householder algo-
rithms.” SIAM J. of Sci. nd Stat. Computing.
vol. 10. pp. 11131135. 1989.

15. I!. Ramachandran. G. Shah. S. Ravikwnar. and
.J. h,luthukunlarasa:anl~, “Scalability st.udy of the
KSR-1.“ Technical R.eport,. GIT-CC 93/03. Col-
lege of Computing. Georgia Institute of ‘Technol-
ogy. 1993.

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

