Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

Performance Prediction of Scalable Computing: A Case Study *

Xian-He Sun

Dept. of Computer Science
Louisiana State University
Baton Rouge, LA 70803-4020

Abstract: While computers with tens of thou-
sands of processors have successfully delivered high
performance power for solving some of the so-called
*grand-challenge” applications. the notion of scalabil-
ity is becoming an important metric in the evaluation
of parallel machine architectures and algorithms. In
this study. the prediction of scalability and its appli-
cation are carefully investigated. A simple formula
is presented to show the relation between scalability,
single processor computing power, and degradation of
parallelism. A case study is conducted on a multi-ring
KSR-1 shared virtual memory machine. Experimen-
tal and theoretical results show that the influence of
topology variation of an architecture is predictable.
Therefore. the performance of an algorithm on a so-
phisticated. hierarchical architecture can be predicted
and a good algorithm-machine combination can be se-
lected for a given application.

1 Introduction

With modern technology, parallel processing seems
to be the only way to achieve higher performance. In
recent years, various architectures have been proposed
to connect a large number of processors into a single
powerful machine; and various algorithms have been
developed on these proposed machines to explore the
potential of high computation power. However, each
architecture has some distinct properties, and each al-
gorithm has its own inherent data structures. The per-
formance of an algorithm on a particular architecture
may vary significantly as the system and problem sizes

*This research was supported by the National Aero-
nautics and Space Administration under NASA contract
N'AS1-19480 while the first author was in residence at the
Institute for Computer Applications in Science and Engi-
neering (ICASE), NASA Langley Research Center, Hamp-
ton, VA 23681-0001.

1060-3425/95 $4.00 © 1995 IEEE

456

Jianping Zhu

NSF Engineering Research Center
Dept. of Math. and Stat.
Mississippi State University
Mississippi State, MS 39762

increase. Predicting the performance of an algorithm-
machine combination is difficult and elusive.

Simply speaking, a scalable architectureis an archi-
tecture capable of yielding very high raw of computa-
tion power when the system size is large. However the
high computation power may not be realized in solv-
ing a given application, since the achievable efficiency
of an application may drop quickly with the increase
of system size. To evaluate the ability of maintain-
ing performance, several metrics have been proposed
to measure the scalability of algorithm-machine com-
binations [1, 2, 3, 4. 5, 6]. Isospeed scalability [4] is
one of the proposed metrics. [t measures the abil-
ity of an algorithm-machine combination to maintain
unit processor speed. Through a case study in this pa-
per, we investigate issues of performance prediction of
shared virtual memory machines. Performance models
are developed in terms of execution time and scalabil-
ity. Experimental results on a 64-node Kendall Square
KSR-1 show that, when performance information of
small scale systems is available, the performance of
large scale systems can be predicted. Machine archi-
tectures and algorithms can be compared in terms of
scalability without run-time information. Since a 64-
node KSR-1 is a shared virtual memory machine with
multiple memory access times. the experience learned
in this study is reasonably general and may extend to
a class of applications.

2 Definition and Analysis

A main driving force of parallel processing is to
solve large problems fast. Considering both execution
time and problem size, what we seek from parallel pro-
cessing is speed which is defined as work divided by
time. In general, how should work be defined is con-
troversial. For scientific applications, it is commonly
agreed that the floating point (flop) operation count
is a good estimate of work (problem size). The aver-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

age unit speed (or average speed, in short) is a good
measure of parallel processing in terms of speed.

Definition 1 The average unit speed is the
achieved speed of the given computing system divided
by p, the number of processors.

In the ideal situation, average speed remains con-
stant when system size increases. Hardware peak per-
formance provided by vendors are usually based on the
ideal assumption. If problem size is fixed, the ideal
situation is unlikely to happen in practice, since when
problem size is fixed, the communication/computation
ratio is likely to increase with the number of proces-
sors, and therefore, the speed will decrease with the
increase of system size. On the other hand, if sys-
tem size is fixed, communication/computation ratio is
likely to decrease with the increase of problem size for
most practical algorithms. For these algorithms, in-
creasing problem size with the system size may keep
the average speed constant. Based on this observa-
tion. the isospeed scalability has been formally defined
as the ability to maintain the average speed in [4].

Definition 2 An algorithm-machine combination
1s scalable if the achieved average speed of the algo-
rithm on the given machine can remain constant with
increasing numbers of processors, provided the problem
s1ze can be increased with the system size.

For a large class of algorithm-machine combina-
tions. the average speed can be maintained by in-
creasing problem size {4]. The necessary increase of
problem size varies with algorithms. machines, and
their combinations. This variation provides a quan-
titative measurement for scalability. Let W be the
amount of work of an algorithm when p processors are
emploved in a machine, and let W' be the amount
of work needed to maintain the average speed when
p’ > p processors are employed, then we define the
scalability from system size p to system size p’ of the
algorithm-machine combination as follows.

vy = B

¢(p.p) = P (L
The work W’/ i,s determined by the isospeed constraint.
When W' = ILW'. that is when average speed is main-

tained with work per processor unchanged, the scala-
bility equals one. It is the ideal case. In general, work
per processor may have to be increased to achieve the
fixed average speed, and scalability is less than one.
Speedup is a widely used performance metric in
parallel processing. It is defined as sequential exe-
cution time over parallel execution time and is used

to measure the parallel processing gain over sequen-
tial processing. Traditionally, parallel efficiency is de-
fined as speedup divided by p, where p, the number
of processors, is the ideal speedup. The traditional
parallel efficiency is the efficiency in terms of speedup.
Contrary to speedup, average speed is an indicator of
uniprocessor efficiency, where uniprocessor efficiency
is defined as average unit speed over peak uniproces-
sor speed. Maintaining average speed is equivalent to
maintaining the uniprocessor efficiency. Under certain
assumptions, maintaining average speed is also equiva-
lent to maintaining the parallel efficiency [7]. However,
in practice, these two approaches may lead to totally
different results [7]. Unlike parallel efficiency, average
speed does not inherit any deficiency of speedup. It
does not require solving large problems on a single pro-
cessor and does not give credits to slow computation,
while parallel efficiency does.

By the definition of scalability (1), scalability can
be predicted if and only if the scaled work size, W,
can be predicted. Proposition 1 provides a way to
obtain W',

Proposition 1 If parallel degradation exists, then for
scalability (1)
’
. ap'T,
W= =2 2
oA (2)
where a is the fired average speed, A is the computing
rate of a single processor, T, is the parallel processing
overhead.

Proof:  Sine W’ is the scaled work satisfying the
isospeed requirement,

W
a= p,Tpv(W’.') :

The parallel execution time, Ty (W'), can be divided
into two parts: ideal parallel processing time and par-
allel processing overhead, T,.

I W'A

Tp,(W’)=F+T =T+T’

where T} is the sequential execution time and T3 /p’ is
the ideal parallel execution time. Thus,

w,'l
WA

and ,
ap'Ty

1—alN’

v"r/ _

457

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

m}
Note that in Equation (2), a is the achieved aver-
age speed considering the parallel processing overhead,
and A is the computing rate without considering the
overhead. When parallel degradation does exist (i.e.
T, > 0), A~! > a and, therefore, equation (2) is trace-
able. T, > 0 is a necessary and sufficient condition of
Proposition 1.
Cowmbining scalability (1) and equation (2), we have

W(l - ad)

T, (3)

¥(p.p') =

Equation (3) is very useful. It not only gives a way to
predict scalability, but more importantly, it shows the
following three properties of isospeed scalability.

1. Scalability (1) increases with the decrease of the
fixed average speed a.

2. A. the computing rate of a single processor, is
the inverse of single processor speed. Equation
(3) shows that scalability increases with single
processor speed.

3. Scalability increases with the decrease of degra-
dation of parallelism T,.

Property 1 is very reasonable. Scalability is the ability
of a computing system to maintain performance when
system size is scaled up. Property 1 shows that less
effort is needed to maintain lower efficiency, if we con-
sider aA as the uniprocessor efficiency. Equation (3)
gives the relation between the effort (scalability) and
performance (the fixed average speed) of an algorithm-
machine combination. Property 1 also shows that,
by adjusting the average speed a, isospeed scalability
can be applied to a large class of algorithm-machine
combinations, from massively parallel systems with
less powerful processing elements to supercomputers
with few powerful processors. Equation (3) also gives
the relation between isospeed scalability, computing
power of a single processor, and degradation of par-
allelism. Properties 2 and 3 show that isospeed scal-
ability does not give credits to slow computing and
communication. These two properties are very impor-
tant in evaluation of computing systems. They distin-
guish isospeed scalability with parallel metrics based
on speedup. It is known that speedup is in favor of
parallel systems with high communication/computing
ratio [8].

Although equation (3) is very useful, using it in per-
formance prediction may not be as simple as it looks.
The degradation of parallelism, T, which contains

458

both communication and workload imbalance degra-
dation, may be difficult to compute. Also, the single
processor rate may vary with algorithm and problem
size, especially for shared virtual memory machines
[7). A detailed case study is given in next section to
illustrate how the prediction formula could be used in
practice, and how the predicted scalability could be
used to evaluate machine architectures.

3 The Case Study

Our case study was performed on the KSR-1 par-
allel computer. It has a distributed physical memory
which makes large ensemble size possible, and a shared
address space which allows users to develop programs
in a shared-memory-like environment.

Ring:!
connecting up to 34 Ring:0’s

_— Search Engine:1
ing:0 connecting

up to 32 processors

JUPT T LR A Tl L P

Figure 1. Configuration of KSR-1 parallel computers.
p: processor M: 32 Mbytes of local memory

Figure 1 shows the architecture of the KSR-1 paral-
lel computer [9]. Each processor on the KSR-1 has 32
Mbytes of local memeory. The CPU is a super-scalar
processor with a peak performance of 40 Mflops in
double precision. Processors are organized into differ-
ent rings. The local ring (ring:0) can connect up to
32 processors, and a higher level ring of rings (ring:1)
can contain up to 34 local rings with a maximum of
1088 processors.

Access to non-local data on KSR is provided by a
hierarchy of Search Engines. The Search Engine SE:0
locates data in the local ring, while the Search Engine
SE:1 provides data access between local rings. These
different Search Engines are connected in a fat-tree-
like structure [9, 10]. The memory hierarchy of KSR
is shown in Figure 2.

Each processor has 512 Kbytes of fast subcache
which is similar to the normal cache on other par-
allel computers. This subcache is divided into two
equal parts: an instruction subcache and a data sub-
cache. The 32 Mbytes of local memory on each pro-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

Local Cache
32MB

Search Engine:0

Group:0 Cache
1GB

I Search

Engine:1

Group:1 Cache
34 GB

Figure 2. Memory hierarchy of KSR-1.

cessor is called a local cache. A local ring (ring:0)
with up to 32 processors can have 1 Gbytes total of
local cache which is called Group:0 cache. Access to
the Group:0 cache is provided by Search Engine:0. Fi-
nally. a higher level ring of rings (ring:1) connects up
to 34 local rings with 34 Gbytes of total local cache
which is called Group:I cache. Access to the Group:1
cache is provided by Search Engine:1. The entire
memory hierarchy is called ALLCACHE memory by
the Kendall Square Research. Access by a processor
to the ALLCACHE memory system is accomplished
by going through different Search Engines as shown
in Fig. 2. The latencies for different memory loca-
tions [11] are: 2 cycles for subcache, 20 cycles for local
cache, 150 cycles for Group:0 cache. and 570 cycles
for Group:1 cache.

3.1 The Application

The numerical algorithm used in this case study
is the Householder Transformation algorithm for the
QR factorization of matrices. It is used for solving the
normal equation

ATAx=aTp (4)
without explicitly forming ATA,

In many cases, for instance the inverse problem of
partial differential equations [12]. the normal equa-
tion system resulting from the discretization is too
ill-conditioned to be solved directly. Tikhnov’s reg-
ularization method [13] is frequently used in this case
to increase numerical stability. The key step in solv-
ing the Regularized Least Squares Problem (RLSP) is
to introduce a regularization factor &« > 0. Instead
of solving (4) directly, we solve the following system

459

(ATA+ch)x = ATb for x, which can also be written
as

wrvan( A )x=wrvan (o) ©

).

so that the major task is to carry out the QR factor-
ization for matrix B which has the structure

or

BTBx = BT ( (6)

[ 1) 1) 1
D ]
MU
B= Ja M

Va

_ IV

where we usually have m > n with m of the same
order as n. Because of the special structure in (7), not
all elements in the matrix are affected in a particular
transformation step. In the first step, all elements
within the frame in matrix (7) will be affected. In
each new step, the frame in (7) will shift downwards
one row with the left most column out of the game.
Therefore, at the ith step, the submatrix B; affected
in the transformation has the form:

ﬂ(i)

it

£)
afz

: 8
() ®
Amti—1,i

Ja. 0 0

If the columns of matrix B; of (8) are denoted by
bi. ie. B; = [b} bi,, --+bi], then the Householder
Transformation can be described as:

Householder Transformation

Initialize matrix B
fori=1,n
l.o; = —.?ign(ag:-.))(bgrb::)l/z
2. w; = b: - ;&)
3.3;= w,Tb;(a,2 —wdd?), j=i+l-n
4, b; = b; - ﬁjW,‘. _] = l+ L“-ﬂ
end for

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

The calculation of 3;’s and updating of bj.’s can be
done in parallel for different index j.
3.2 Scalability Analysis

Based on the definition of isospeed scalability, the
work W' at processor number p’ should keep the sys-
tem ensemble running at the same average speed a as
with p processors, so that

e W _ w,.'/
pT,(W)  p'T, (W)

(9)

where T,(W) and Ty, (W'} are the execution times us-
ing p and p’ processors respectively.

For the particular problem discussed here, the run
time model is

2n3 2 2,
Tp(n) = T + 3n?| 7+ n*3, (10)

and the work is

W(n) = 2n® + 3n%. (11)
where n is the number of columns in a 2n x n matrix
to be transformed, p is the number of processors, 7
is the rate of computing without communication over-
head. and /7 is the latency for access of remote datain
Group:0 cache. We use 7, instead of A, to represent
the computing rate, because in practice the comput-
ing rate may vary with algorithm, problem size, and
system size. We reserve the notation & for theoreti-
cal computing rate. Following the discussion given in
Section 2, the run time Tp(n) in (10) can apparently
be represented as

T,(n) = Te(n.p) + To(n, p). (12)
where T¢(n.p) is the computing time of ideal paral-
lelism and T,(n,p) represents the degradation of par-
allelism. We then have

2n3 4 3n®
o e

Te(n.p) = "

2
T,(n.p) = (3n* - 3—2—)7 +n?d.

The first term of T}, is due to the workload imbalance.
The second term is due to the communication (remote
memory access) delay. Using relation (2) we get

ap’(—"’;:—,,?r + 3021 + n23)

1—ar

v‘; ’ —

(13)

460

The matrix size n is the parameter used to adjust the
problem size. Substituting

W' = 2n" 4 3n?
into (13), we have

ap’(—:’;—:zr +3nr 4 n'?3)

2_"13 + 3_”12 -
l—ar
which eventually leads to
Jlakay 3 gy
2(1-ar) 2(1-ar)

Equation (14) is true for any work-processor pair
which maintains the fixed average speed, plus that 7
and 3 are unchanged. In particular,

atp+aldp 3
= . — . 1f
"T R0 —ar)  20-an) (15)
Combining equation (14) and (15), we have
;o\ _ Sat+ ai? , , )
(= m) = S0 D ()

which shows that the variation of n is in direct propor-
tion to the variation of ensemble size, provided that 7
and 3 are independent of the number of processors.

Equation (16) indicates that the matrix size n’ must
increase at the same rate as the number of processors
p’ does to maintain the pre-specified average speed a.
If p’ = mp, then we will have n’ = mn. Assume n
is large so that the cubical term in equation (11) is
dominant, we have the relation

W (n') = W (mn) = m*W(n).

Therefore, the scalability of this algorithm-machine
combination can be estimated as

mp-W

i N — i ~ _,1__ 7
i(p,p') = ¢{p.mp) = oIt (17)
In particular, if m = 2, which means the number of
processors is doubled for each case, the scalability will
be approximately %

It is clear from (16) that the parameters 7 and
3 must first be determined before we can predict
the execution time and scalability. With the run-
time model given by (10), we can estimate 7 and
3 in the model to fit the measured run times us-
ing the least squares method. Assume that the ex-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

ecutions times T (n1),--+,Tp, (ni) are available on
P1s P2.° -+ . Pr processors, with problem sizes being
ny, ng -+ 0y respectively, we will have

Ef—; biT)p, 2:‘-1 <l —E:"l Ty, zt;l bics

T =
T
3 = YF MY T -3t b DT BT,
2.=1 b i=1 <} -(2.:1 bies)?
(18)
where s
b; = -2-;—' + 3n?, ¢ = n,2

4 Scalability Prediction and Its Appli-

cation
The peak performance provided by vendors gives
the hardware performance limit but can hardly be
used to predict execution time accurately. For most
application problems, the sustained speed is only a
small percentage of the peak performance. The same
argument applies to communication latency. The ob-
served latency can be significantly different from the
machine specifications. The architecture specification
[11] for KSR-1 gives
7=0.025 (us). Hh =75 (us). (19)
To determine the value of 7 and 3 for this particular
algorithm-machine pair, we ran the code on p = 2 and
4 processors and measured the total execution time
Tp(n) with n = 362 and n = 512 respectively. Then 7
and 3 are calculated by using the model in (18). The
parameters obtained this way are

' =0.18 (us), A =337 (us). (20)
Comparing (19) and (20), we see that 7’ is significantly
larger than 7. The sustained computational speed is

== 5.56 (M flops)

which is about 14% of the peak performance of 40
Mflops. This speed includes all the effects of subcache
misses and other overheads. On the other hand, the
value of ' in (20) is significantly smaller than 3 of
(19), which means the actual observed communication
speed is faster. This can be attributed to two factoers:

1. Overlapping of communications with computa-
tions. In the Householder transformation, one
processor calculates the pivoting column and
then broadcasts it to all other processors. This
broadcasting process can be partly overlapped

Time

461

with the other computations.

2. Automatic prefetch. The KSR-1 Fortran com-
piler analyzes loops and, whenever possible,
generates instructions to prefetch remote data
needed for subsequent loops, thus saving data ac-

cess time.
225.0 - — -
measured execution time
------- predicted execution time B’
1750
1250 | _,.—“'_ B
750 | “ T
20, 12 22 2 KD 52
Number of processors
Figure 3. Measured and predicted execution time

Problem size is scaled up with available memory

Figure 3 shows both the measured execution time
and the predicted execution time in second. The pre-
dicted execution time is based on equation (10) and
(20). The problem size is scaled-up using the memory-
bounded scale-up model [3], i.e. when the number of
processors increases, the matrix size also increases to
fill up the available local memory. For the RLSP ap-
plication, memory requirement is a square function of
the parameter n, and the computation count is a cu-
bical function of n. That explains why the run time
goes up with more processors.

It is clear from the figure that the predicted execu-
tion time matches the measured execution time well
until p = 22. After that, the error increases signif-
icantly. This is due to the multi-ring structure of
KSR-1. Each ring has 32 processors. Since several
of the 32 processors are dedicated for I/O and control
processes and are usually not used in computation,
multi-ring communication is involved even for p less
than (but close to) 32. This multi-ring communication
requires data access to Group:1 cache which slows the
computations significantly. The listed access time for

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)

1060-3425/95 $10.00 © 1995 |IEEE



Time

Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

Group:1 cache on KSR-1 is [11]

B2 =285  (us). (21)
Again, the measured access time for our application is
significantly different from the listed value, especially
when most communications are within a single ring.
To determine the communication delay for multiple
rings, we ran the code on 36 processors and measured
the execution time. Then the value of 7 was calculated
from (10) by fixing 7 = 0.18 (us) as given in (20). The
new ;1 value is

3" =6.27

(pes) (22)

which is about twice as large as that given in (20).

225.0 -

175.0

1250 | ___. 1
780 }“ ——— measured execution time
------- predicted execution time using B"
————— predicted execution time using B’
25.0
36 52

40 44 48
Number of processors

Figure 4. Measured and predicted execution time us-
ing the adjusted parameters

Problem size is scaled up with available memory

Figure 4 shows the execution time for p > 32. We
see that with the new value of J”. the predicted run
time matches the measured execution time nicely.

Based on the test runs on p = 2. 4 and 36 pro-
cessors and equation (14), the matrix size n’ can be
predicted. Table 1 shows the predicted and measured
matrix sizes respectively. The average speed a main-
tained in this test is 3.25 Mflops which is about 58%
of the sustained speed in (20). From Table 1 we can
see that the predicted matrix size is very close to the
actual matrix size measured by running the code on 8.
16, 32, and 56 processors. The last column in Table 1
shows the predicted size n’ using 3”. If the 3’ given in
(20) is used in predicting the matrix size. then n’ will

462

T size T 2] 4] 8] 6] 327 56)
predicted || 54 | 115 [ 238 [ 4 976 | 2889
measured || 57 | 109 [ 230 | 461 | 1006 | 2773

Table 1. Predicted and measured matrix size

be 1715 at p = 56, which is significantly smaller than
the measured n’. The difference shows the influence
of slower remote memory access of Group:1 cache on
scalability.

With the matrix sizes given in Table 1 and the
parameters given in (20) and (22), we can compute
the scalability ¢(p,p’). Table 2 and 3 give the pre-
dicted and measured scalability respectively. We can
see that the predicted and measured scalabilities are
fairly close. The prediction at ensemble size of 56 is
based on the justified communication delay 3”. Figure
5 depicts the difference between the measured scala-
bility and the predicted scalability obtained by using
/. The curves in the figure represent measured and
predicted ¥(p.56) respectively with p varying from 1
to 56. Note that in order to see clearly the differ-
ence between the two curves in figure 5, we plotted
—log(¥:(p,56)). instead of ¥(p,56). Therefore, the
curve with lower — log(¥(p.56)) value actually rep-
resents higher scalability than the curve with higher
—log(¥(p,56)) value.

In order to build a scalable shared virtual mem-
ory machine, the architecture of KSR-1 is designed
as a combination of bus and fat-tree (see Section 3).
Theoretically, the computing system can be scaled up
to any number of processors by increasing the hier-
archy of the tree. Figure 5 shows the limitation of
the ring-tree approach. The scalability is severely re-
duced when inter-ring remote access is required. It
shows that, unless inter-ring communication can be
improved. uniprocessor efficiency will reduce quickly
with the increase of ensemble size and a high com-
puting power may not be achievable by increasing the
hierarchy of the fat-tree.

The scalability difference given in figure 5 is based
on the measured scalability and the measured 7 and
. Figure 6 shows the scalability difference with the
theoretical performance data A, 3y, and 3, where the
average speed is fixed at the 58% of the peak perfor-
mance. [t gives the theoretical difference of the RLSP
application when Group:1 communication is required.
Comparing the curves in figure 5 with those in figure
6, we can clearly see the similarity. Both figures show
that the scalability with remote cache access is much
lower than that without considering remote data ac-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

(vp) 8 16 32 56 |
I 0.01652 | 0.00397 | 0.00097 | 0.00007 |
2 —0.04971 [ 0.017193 | 0.00292 | 0.00020 |
4 0.23003 1 0.05520 [ 0.01352 T 0.00092
8 1.00000 | 0.23999 1 0.05879 | 0.0039
16 1.00000 T 0.24499 [70.01658
32 1.00000 | 0.0676
56 1.00000

Table 2. Predicted scalability of RLSP-KSR1 Combi-

nation

(vlp) 8 [ 16 [ 32 T 56 |
1 0.01830 T 0.00459 [ 0.00089 T 0.000!
2 [ 0.0644G | 0.0TGIG | 0.00313 T 0.00026
E} 21734 1 0.05449 | 0.01054 | 0.00088
8 1.00000 | 0.25070 | 0.04849 | 0.00406
16 1.00000 | 0.19343 { 0.01621
32 1.00000 | 0.08378
56 ~1.00000

Table 3. Measured Scalability of RLSP-KSR1 combi-

nation.

cess. The general trends in both figures are very simi-
lar. Since the curves in figure 6 were plotted based on
machine specification. it shows that. while machine
specification does not provide good estimate of ex-
ecution time or speed, it does give a foundation to
predict the influence of architecture variation on per-
formance. Equation (3) is an useful tool to predict
performance of an algorithm-machine pair, even when
the computing system is scaled up from one level of
architecture hierarchy to another level. It provides the
variation of performance with only hardware specifica-
" tion available. The influence of architecture variation
is different on different algorithms. When architec-
ture scales up from one level of hierarchy to another,
an algorithm that performed worse than another algo-
rithm at a lower level of architecture hierarchy might
become better at a higher level of hierarchy. Scal-
ability formula (3) provides a guideline for chosing
algorithms when system size is scaled up. Figure 7
shows the scalability curves for the Givens Rotation
algorithm [14] which can also be used to solved the
least squares problem. The same machine specifica-
tions as those used for figure 6 are used in figure 7.
We can see that the scalability of the Givens rotation
algorithm is worse than that of the Householder algo-
rithm. However, the difference is improving when the
system scales up. This demonstrates that the scala-

463

bility of the Givens algorithm is less affected by the
hierarchical remote cache access than the Householder
algorithm does. The Givens algorithm may provide a
better scalability and, therefore, better execution time
when the system size is large enough so that multi-
level ring communication is required. Figure 6 and
7 show how algorithms could be compared with the
notion of scalability.

6.00 . .

measured scalability
predicted scalability using B’

-log(v(p.56))

0.00 .

16 24

number of processors p

Figure 5. Measured and predicted scalability
Equation (20) is used in prediction

o] 32

8.00
—— predicted scalability using B,
------- predicted scalability using B, & B,
\‘\
8
a
‘s 3.00
g
0.00 ~ . —
o] 8 16 24 32

number of processors p
Figure 6. Predicted scalability using machine specifi-
cations

The average speed ¢ maintained in this study is
about 58% of the sustained speed. The efficiency
maintained is reasonably high. The scalability given
in Table 2 and 3 could be higher if a was lower, as

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

6.00 < T ™
8
‘;. 3.00
k-4
predicted scalability using B,
------- predicted scalability using B, & B,
0.00

o 8 16 24
number of processors p

Figure 7. Predicted scalability of Givens rotation us-
ing machine specifications

32

shown in equation (3). Also. the computing rate 7 in
general varies with the number of processors and prob-
lem size on any machine with memory hierarchy. For
our implementation, since the initial problem size is
large and it increases with the number of processors,
the computing rate is quite stable. The scalability
prediction will be more involved if the computing rate
varies with the system size [15].

5 Conclusion

Recent trends in parallel processing suggest that
the issue of performance prediction is becoming more
complex and difficult. Massively parallel computing
has been adopted as a cost-effective way to achieve
high computing power. Sophisticated architectures
have been proposed to deliver performance scalabil-
ity with a large number of processors. Shared virtual
memnory and other system supports that hide the com-
munication and other implementation details from the
users are becoming more prevalent. At the same time,
with various architectures and algorithms available.
performance prediction is becoming the salvation of
chosing an appropriate algorithm-machine pair for an
application, especially when the machine has a sophis-
ticated. hierarchical architecture. The study given in
this paper is an attempt to combine simple formulas
with run-time informations to provide a reasonable
prediction on modern parallel computers. A simple
prediction formula is presented. Then. a case study
is conducted on a multi-ring KSR-1 virtual memory
machine to illustrate how the formula could be used
in practice. Four different aspects are discussed in
the paper. First, a method is proposed to measure

464

the needed run-time parameters. Second, when the
system size is scaled up from one level of architec-
ture hierarchy to another level of hierarchy, an adjust-
ment is proposed to catch the influence of the archi-
tecture variation. Experimental results on the multi-
ring KSR-1 machine shows our predicted performance
matchs the measured performance well, in both execu-
tion time and scalability. Then, with this case study,
we have shown that it is possible to predict the influ-
ence of architecture hierarchy on scalability by sim-
ply using hardware specifications. Finally, we have
discussed issues of chosing an appropriate algorithm
for a given application when the computing system is
scaled up from one level of hierarchy to another.

While the numerical experiment was conducted on
a KSR-1 machine, the result given in this study is not
limited to KSR-1 architecture. It is a general result of
scalability prediction and should be useful in evalua-
tion of any scalable architecture and algorithm.

Acknowledgment

The authors are grateful to the Cornell Theory Cen-
ter for providing us access to the KSR parallel com-
puter.

References
1. A. Y. Grama, A. Gupta, and V. Kumar, “Isoeffi-
ciency: Measuring the scalability of parallel algo-
rithms and architectures,” [EEE Parallel & Dis-
tributed Technoloty, vol. 1, pp. 12-21, Aug. 1993.

2. J. Gustafson, G. Montry, and R. Benner, “Devel-
opment of parallel methods for a 1024-processor
hypercube,” SIAM J. of Sci. and Stat. Comput-
ing, vol. 9, pp. 609-638, July 1988.

3. X.-H. Sun and L. Ni, “Scalable problems and
memory-bounded speedup,” J. of Parallel and
Distributed Computing, vol. 19, pp. 27-37, Sept.
1993.

4. X.-H. Sun and D. Rover, “Scalability of parallel
algorithm-machine combinations,” IEEE Trans-
actions on Parallel and Distributed Systems,
pp- 599-613, June 1994.

5. P. T. Worley, “The effect of time constraints on
scaled speedup.” SIAM J. of Sci. and Stat. Com-
puting, vol. 11, pp. 838-858, Sept. 1990.

6. X. Zhang, Y. Yan, and K. He, “Latency matric:
An experimental method for measuring and eval-
uating parallel program and architecture scala-
bility,” J. of Parallel and Distributed Computing,
Oct. 1994.

. X.-H. Sun and J. Zhu, “Shared virtual mem-
ory and generalized speedup.” in Proc. of the
Ewghth International Parallel Processing Sympo-
swum, pp. 637-643, April 1994.

-

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 |IEEE



Proceedings of the 28th Annual Hawaii International Conference on System Sciences — 1995

8. X.-H. Sun and J. Gustafson, “Toward a better
parallel performance metric,” Parallel Computing,
vol. 17. pp. 1093-1109, Dec 1991.

9. Kendall Square Research, “KSR parallel program-
ming.” Waltham, USA, 1991.

10. C. Leiserson, “Fat-trees: Universal networks for
hardware-efficient supercomputing,” IJEEE Trans-
actions on Computers, vol. 34, no. 10, pp. 892-
901, 1985.

11. Kendall Square Research, “KSR technical sum-
mary.” Waltham, USA. 1991.

12. Y. M. Chen, J. P. Zhu, W. H. Chen, and
M. L. Wasserman, “GPST inversion algorithm
for history matching in 3-d 2-phase simulators,”
in IMACS Trans. on Scientific Computing I,
pp- 369-374. 1989.

13. A. N. Tikhnov and V. Arsenin, Solution of Ill-
posed Problems. John Wiley and Sons, 1977.

14. A. Pothen and P. Raghavan, “Distributed orthog-
onal factorization: Givens and Householder algo-
rithms,” SIAM J. of Sci. and Stat. Computing,
vol. 10, pp. 1113-1135, 1989.

15. U. Ramachandran., G. Shah. S. Ravikumar. and
J. Muthukumarasamy. “Scalability study of the
ISR-1." Technical Report, GIT-CC 93/03, Col-
lege of Computing. Georgia Institute of Technol-
ogy. 1993.

465

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE



