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Abstract: While computers with tens of thou- 

sands of processors have successfully delivered high 

performance power for solving some of the so-called 

“grand-challenge” applications. the notion of scalahil- 

it,y is beconling an important nlet,ric in the evaluation 

of parallel nlachine architect,ures and algorithms. In 

t,his study. the prediction of scalability and its appli- 

cation are carefully investigated. A simple formula 

is presended to show the relation between scalability, 

single processor computing power. and degradation of 

parallelism. A case study is conducted on a multi-ring 

IiSR-1 shared virtual menlory machine. Experinlen- 

t,al and theoretical results show that the influence of 

t,opology variation of an architecture is predictable. 

Therefore. t,he performance of an algorithnl on a so- 

phisticated. hierarchical architecture can be predicted 

and a good al~orithni-machilie conlbination can be se- 

lected for a given application. 

1 Introduct ion 
\i:ith modern t,echnology. parallel processing seems 

to be the only way to achieve higher performance. In 

recent years. various architectures have been proposed 

to connect a large nunlber of processors into a single 

powerful machine; and Larious algorithms have been 

developed on t,hese proposed machines t,o explore the 

pot,ential of high computation power. However. each 

archit,ect,ure has some distinct properties. and each al- 

gorithm has its own inherent data structures. The per- 

formance of an algorit,hnl on a particular archit,ect,ure 

nlay vary significantly as the system and problem sizes 
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increase. Predicting the performance of an algorithm- 

machine conlbination is diflicult and elusive. 

Simply speaking. a scalable architecture is an archi- 

tecture capable of yielding very high raw of computa- 

tion power when the system size is large. However the 

high conlputation power may not be realized in solv- 

ing a given application. since the achievable efficiency 

of an application may drop quickly with the increase 

of system size. ‘To evaluate the ability of maintain- 

ing yerfonnance. several metrics have been proposed 

to measure the scalability of algorithm-machine com- 

binations [l. 2. 3. 4. 5. 61. Isospeed scalability [J] is 

one of the proposed metrics. It measures the abil- 

ity of an algorithm-machine combination to nmintain 

unit processor speed. ‘Through a case study in this pa- 

per. we investigate issues of performance prediction of 

shared virtual memory machines. Performance models 

are developed in terms of execution time and scalabil- 

ity. Experimental results on a &l-node Iiendall Square 

IiSR-1 show that. when performance information of 

snmll scale systems is available. the performance of 

large scale systems can be predicted. Machine archi- 

tectures and algorithms can be compared in terms of 

scalability without run-time information. Since a 64 

node IiSR-1 is a shared virtual nlenlory machine with 

multiple memory access times. the experience learned 

in this study is reasonably general and may extend to 

a class of applications. 

2 Definition and Analysis 
A main driving force of parallel processing is to 

solve large problems fast. Considering both execution 

time and problem size. Rhat we seek from parallel pro- 

cessing is speed which is defined as: work divided by 

time. In general. how should work be defined is con- 

troversial. For scientific applications. it is coninionl~ 

agreed that the floating point (flop) operation count 

is a good estimate of work (problem size). ‘The aver- 
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age unit speed (or average speed. in short) is a good 

measure of parallel processing in ternrs of speed. 

Definition 1 The average unit speed is the 
achieved speed of the given computing system divided 

by p. th.e number of processors. 

In the ideal situation. average speed remains con- 

stant when system size increases. Hardware peak per- 

fornlance provided by vendors: are usually based on the 

ideal assumption. If problenl size is fixed, the ideal 

situation is unlikely to happen in practice, since when 

problem size is fixed? the communication/computation 

ratio is likely to increase with the number of proces- 

sors. and therefore, the speed will decrease with the 

increase of systenr size. On the other hand, if sys- 

ten1 size is fixed? comnnrnication/computation ratio is 

likely to decrease with the increase of problem size for 

uiost practical algorithms. For these algorithnrs. in- 

creasing problem size with the system size niay keep 

the average speed constant. Based on this observa- 

tion. the isospeed scalability has been formally defined 

as the ability to nlaintain the average speed in [J]. 

to treasure the parallel processing gain over sequen- 

tial processing. Traditionally! parallel efficiency is de- 

fined as speedup divided by p! where p? the nunrber 

of processors: is the ideal speedup. The traditional 

parallel efficiency is the efficiency in ternrs of speedup. 

Contrary to speedup, average speed is an indicator of 

uniprocessor efficiency? where uniprocessor efficiency 

is defined as average unit speed over peak uniproces- 

sor speed. Maintaining average speed is equivalent to 

maintaining the uniprocessor efficiency. Under certain 

assumptions? nraintaining average speed is also equiva- 

lent to nraintaining the parallel efficiency [7]. However? 

in practice, these two approaches may lead to totally 

different results [il. Unlike parallel efficiency! average 

speed does not inherit any deficiency of speedup. It 

does not require solving large problenis on a single pro- 

cessor and does not give credits to slow computation. 

while parallel efficiency does. 

By the definition of scalability (l)! scalability can 

be predicted if and only if the scaled work size? W’? 

can be predicted. Proposition 1 provides a way to 

obtain IV’. 

Definition 2 A71 algorithm-machine combination 

is scalable if th.e ach.ierjed aver-aye speed of the algo- 

r&m 071. th.e yiven mach.ine can remain constant with 

increasing numbers of processors, provided th.e problem 

site can be increased ulith. th.e system size. 

Proposition 1 If parallel degradation exists, then for 

scalability (1) 

For a large class of algorithm-illachille combina- 

tions. the average speed can be nlaintained by in- 

creasing problenl size [4]. ‘The necessary increase of 

problenl size laries with algorithms. machines. and 

their conibinations. ‘This variation provides a quan- 

titative nleasurenlent for scalability. Let W’ be the 

anlount of work of an algorithni when p processors are 

employed in a machine. and let IV’ be the amount 

of work needed to maintain the average speed when 

p’ > p processors are enlployed. then we define the 

scnlnbility fTo778 system sire p to system size p’ of the 

algorithlil-lllachille conlbination as follows. 

- , 
pi,tr, _ a~‘To 

l-nA’ 
(‘3 

uhere a is th.e f?.xed average speed, A is the computiny 

rate of a single processor, TO is th.e parallel processing 

overh.ead. 

Proof: Sine W’ is the scaled work satisfying the 

isospeed requirement. 

The parallel execution time. r,, (IV’): can be divided 

into two parts: ideal parallel processing tinle and par- 

allel processing overhead. TO. 

Tp(W’) = 5 + To = 
WA 
- +T,? 

P’ 

The work WY’ is deternlined by the isospeed constraint. 
I 

\V’hen 11” = :lI-. that is when average speed is main- 

tained with work per processor unchanged. the scala- 

bility equals one. It is the ideal case. In general, work 

per processor may have to be increased to achieve the 

fixed average speed, and scalability is less than one. 

where Tl is the sequential execution tinle and Tl/p’ is 

the ideal parallel execution t&e. Thus, 

W’ 

Speedup is a widely used perfornlance nietric in 

parallel processing. It is defined as sequential exe- 

cution tinle over parallel execution tinle and is used 

and 

Cl = J+r’ A +Top,! 
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Note that in Equation (2): a. is the achieved aver- 

age speed considering the parallel processing overhead? 

and A is the computing rate without considering the 

overhead. When parallel degradation does exist (i.e. 

T,, > 0): A-’ > a and, therefore, equation (2) is trace- 

able. To > 0 is a necessary and sufficient condition of 

Prol>osition 1. 

Combining scalability (1) and equation (2)? we have 

Equation (3) is very useful. It not only gives a way to 

predict scalability! but more iml>ortant!y it shows the 

following three properties of isosyeed scalability. 

1. Scalability (1) increases with the decrease of the 

fixed average speed n. 

2. A. the con+uting rate of a single processor. is 

the inverse of single processor speed. Equation 

(3) shows that scalability increases with single 

processor speed. 

3. Scalability increases with the decrease of degra- 

dation of parallelism To. 

Property 1 is very reasonable. Scalability is the ability 

of a computing system to maintain yerforxnance when 

system size is scaled up. Property 1 shows that less 

eifort is needed to nmiutain lower efficiency. if we cou- 

sider (7A a3 the uuiyrocessor efficiency. Equation (3) 

gives the relation between the effort (scalability) and 

performance (the fixed average speed) of an algorithm- 

nlachine combination. Property 1 also shows that. 

by adjusting the average speed CI. isosyeed scalability 

can be applied to a large class of algorithm-machine 

coulbinations. from massively parallel systems with 

less yowerful processing elements to suyercomlmters 

with few powerful processors. Equation (3) also gives 

the relation between isospeed scalability. comlmting 

power of a single processor. aud degradation of par- 

allelisul. Properties 2 and 3 show that isospeed scal- 

ability does uot give credits to slow computing aud 

collllllllllicatioll. These two properties are very imyor- 

taut in evaluatiou of computing systems. They distin- 

guish isosyeed scalability with parallel metrics based 

on speedup. It is known that syeeduy is in favor of 

parallel systems with high communication/coluyuting 

ratio [8]. 

Although equation (3) is very useful, using it in per- 

formance prediction may not be as sinlPle as it looks. 

The degradation of yarallelism. To. which contains 

both coluruunication and workload imbalance degra- 

dation, may be difficult to compute. Also, the single 

processor rate may \ary with algorithm and problem 

size, especially for shared virtual memory machines 

[7]. A detailed case study is given in next section to 

illustrate how the prediction formula could be used in 

practice, and how the predicted scalability could be 

used to evaluate machine architectures. 

3 The Case Study 
Our case study was performed on the KSR-1 par- 

allel comyuter. It has a distributed physical memory 

which makes large ensemble size yossible, and a shared 

address space which allows users to develop lxograms 

in a shared-memory-like environment. 

Ring1 

connecting up to 34 Ring:O’s 

Figure 1. Configuration of KSR-1 lmmllel coxnlmters. 

p: processor M: 32 Mbytes of local memory 

Figure 1 shows the architecture of the E;SR-1 yaral- 

lel computer [9]. Each I>rocessor on the KSR-1 has 32 

Mbytes of local memory. The CPU is a super-scalar 

processor with a peak performance of 40 hIflol>s in 

double precision. Processors are organized into differ- 

ent rings. The local ring (ring:O) can connect up to 

32 lxocessors! and a higher level ring of rings (ringl) 

can contain uy to 34 local rings with a nmxi~num of 

1088 yrocessors. 

Access to non-local data on IGR is provided by a 

hierarchy of Search Engines. The Search Engine SE:0 

locates data in the local ring, while the Search Engine 

SE:1 provides data access between local rings. These 

different Search Engines are connected in a fat-tree- 

like structure [9? lo]. Th e memory hierarchy of IiSR 

is shown in Figure 2. 

Each yrocessor has 512 Iibytes of fast aubcnche 

which is similar to the normal cache on other par- 

allel comyuters. This subcache is divided into two 

equal parts: an instruction subcache and a data sub- 

cache. ‘The 32 Mbytes of local memory on each yro- 
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1 Search Engine:0 

I Group:0 Cache 
1GB I 

r Search Engine: 1 

Figure 2. MemolT hierarchy of KSR-1. 

cessor is called a local cache. A local ring (ring:O) 

with up to 32 processors can have 1 Gbytes total of 

local cache which is called Group:0 m&e. Access to 

the Group:0 cache is provided by Search Engine:O. Fi- 

nally. a higher level ring of rings (ring:l) connects up 

to 34 local rings with 34 Gbytes of total local cache 

which is called Group:1 cc&e. Access to the Group:1 

cache is provided by Search Engine:l. The entire 

nlenlory hierarchy is called ALLCACHE nlelnory by 

the Kendall Square R.esearch. Access by a processor 

to the ALLCACHE memolT systeln is accomplished 

by going through different Search Engines as shown 

in Fig. 2. The latencies for different memos loca- 

tions (111 are: 2 cycles for subcachx. 20 cycles for local 

cc&e. 150 cycles for Group:0 cach.e. and 570 cycles 

for Group:1 cach.e. 

3.1 The Application 

The nunlerical algorit.hnl used in this case study 

is the Householder Transfornlat.ion algorithnl for the 

QR factorization of nlatrices. It is used for solving the 

nornial equation 

ATAx = ATb (4) 

without explicitly fornling AT A. 

In nlany cases. for instance the inverse problelu. of 

partial differential equations [12]. the norlnal equa- 

tion system resulting from the discretization is too 

ill-conditioned to be solved directly. Tikhnov’s reg- 

ularization nlethod [13] is frequently used in this case 

to increase nunlerical stability. The key step in solv- 

ing the R.egularized Lemt Squares Problem (RLSP) is 

to introduce a regularization factor ct’ > 0. Instead 

of solving (4) directly. we solve the following systenl 

(ATA+aI)x = ATb for x: which can also be written 

as 

(A=, 61) ( iI ) x = (-47 da) ( ; ) (-9 

or 

(f3 

so that the major task is to carry out the QR factor- 

ization for xnatrix l3 which has the structure 

where we usually have In 2 II. with m of the saxne 

order as 17.. Because of the special structure in (7), not 

all elements in the lnatrix are affected in a particular 

transfornlation step. In the first step. all elenlents 

within the franle in nlatrix (7) will be affected. In 

each new step, the fraxne in (7) will shift downwards 

one row with the left xnost column out of the game. 

‘Therefore, at the ith step. the subnlatrix B< affected 

in the transfornlation has the form: 

,!O . . . . . . 
I* 

(,) i ! i .: . (8) 
I 

a,,,+i-l,i a-. a.. 
li) 

%n+i-1.” 1 
If the colunlns of nlatrix Bi of (8) are denoted by 

bj. i.e. Bi = [bi bf,, ... bk]? then the Householder 

‘Transfornlation can be described ay: 

Householder Transformation 

Initialize iriatrix B 

for I = 1: n. 

2.wi=b]-o.J: 

1. ct’i = -~lgn,(a;: )(biTbi)“’ 

‘I 

3. gj = WTbi.(Ct’? - 
! 3 ' 

CViClif))> j = i+ l?*-*?R. 

4.bi=bJ-Bjwi. j=i+l. . . . ,I. 

end for 
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The calculation of Ljjj’s and updating of hi’s can be 

done in parallel for different index j. 

3.2 Scalability Analysis 

Based on the definition of isospeed scalability! the 

work W’ at processor number p’ should keep the sys- 

tem ensemble running at the same average speed a as 

with p processors, so that 

u- 
bp-t 

IL7 = jqiq = p/T,, (W’) * (9) 

where T,(W) and T,l (IV’) are the execution times us- 

ing p aud p’ processors respectively. 

For the particular problem discussed here, the run 

time model is 

T,(n) = [$ + 3?] T + n2,3, (lo) 

aud the work is 

W(n) = 2n3 + h”. (11) 

where tj, is the number of coluums in a 2r1. x II. matrix 

to be transformed. p is the number of processors. T 

is the rate of computing without conmlunication over- 

head. and LJ is the latency for access of remote data in 

Group:0 cache. We use T, instead of A. to represent 

the computing rate. because in practice the comput- 

ing rate may vary with algorithm. problem size. and 

system size. \I\:e reserve the notation A for theoreti- 

cal computing rate. Following the discussion given in 

Sect,ion 2, the run time T,(n) in (10) can apparently 

be represented as 

T&b) = Tc:(n.p) + T,,(mp). (12) 

where Tc(n.p) is the computing time of ideal paral- 

lelism and T,(n.,p) represents the degradation of yar- 

allelisul. \+?e then have 

Tc(rr. p) = 
2173 + 3rr2 

T. 
P 

T,(,l,.p) = (&I.’ - y)T + n2d. 

The first term of TO is due to the workload imbalance. 

The second term is due to the coumunication (remote 

memory access) delay. Using relation (2) we get 

bi” = 
n&-7 3n” j- + 3,1.‘2T + n*g) 

1- 11T 
(13) 

The matrix size n. is the parameter used to adjust the 

problem size. Substituting 

w’ = 2n13 + 3n12 

into (13), we have 

2n,,3 + 3n,,2 _ ap’(-FT + 3d2T + 7d2/q - 
1 - a?- 

which eventually leads to 

3a rp’ + a Pp’ 

n’= 2(1-a7) - 

3 

2(1- a7-)’ 
(11) 

Equation (14) is true for any work-processor pair 

which nmintains the fixed average speed? plus that T 

and if are unchanged. In particular. 

3a Tp + (7 By 3 

“= 2(1-UT) - 2(1-CIT)’ 

Combining equation (14) and (15). we have 

(15) 

Cl@ 

which shows that the lariation of 11. is in direct yropor- 

tion to the variation of ensemble size. provided that T 

and i3 are independent of the number of processors. 

Equation (16) indicates that the matrix size R.’ must 

increase at the same rate as the number of processors 

p’ does to maintain the pre-specified average speed n. 

If p’ = mp. then we will have n,’ = mu,. Assume n. 

is large so that the cubical term in equation (11) is 

dominant. we have the relation 

Therefore. the scalability of this algorithm-machixle 

combination can be estimated as 

t7Ip.W 1 
+!‘(p.p’) = qp. mp) M m = -. 

rn2 
(17) 

In particular. if JR = 2. which means the number of 

processors is doubled for each case. the scalability will 

be approximately f . 

It is clear from (16) that the parameters T and 

[j nlust first be determined before we can predict 

the execution time and scalability. With the run- 

time model given by (10). we can estimate T and 

$ in the model to fit the measured run times us- 

ing the least squares method. Assume that the ex- 
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ecutions times TpI (n.l), . . . ) TPr (n.k) are available on 

Pl. Pz?‘.* ? pk processors? with problem sizes being 

JI,~. 11.2 . -. n.k respectively: we will have 

where 

bi = F + 3nZ, Ci = n,:. 
t 

4 Scalability Prediction and Its Appli- 

cat ion 
The peak performance provided by vendors gives 

the hardware performance limit but can hardly be 

used to predict execution time accurately. For most 

application problems. the sustained speed is only a 

small percentage of the peak perforxnance. The same 

argument applies to coxuruunication latency. The ob- 

served latency can be significantly different from the 

machine specifications. The architecture specification 

[ll] for IiSR-1 gives 

T = 0.025 (t(M). ,I1 = 7.5 (ps). (19) 

‘To deteruliue the value of T and B for this particular 

algorithm-machine pair. we ran the code on p = 2 and 

4 processors and measured the total execution time 

T,(n) with n. = 302 and rr = 512 respectively. ‘Then T 

aud ij are calculated by using the ulodel in (18). The 

parameters obtained this way are 

T’ = 0.18 (P). A’ = 3.3; o((.s). (20) 

Comparing (19) and (20). we see that T' is significantly 

larger than T. The sustaiued coulputational speed is 

1 
- = 5.x (Mflops) 
T’ 

which is about 14% of the peak yerforiuauce of 40 

Flops. This speed includes all the effects of subcache 

misses and other overheads. On the other hand, the 

value of B’ in (20) is significantly sumller than ir of 

(19). which means the actual observed communication 

speed is faster. This can be attributed to two factoem: 

1. Overlapping of comulunications with computa- 

tions. In the Householder transformation. one 

processor calculates the pivoting column and 

then broadcasts it to all other processors. ‘This 

broadcasting process can be partly overlapped 

with the other computations. 

2. Automatic prefetch. The KSR-1 Fortran coxn- 

piler analyzes loops and, whenever possible, 

generates instructions to prefetch remote data 

needed for subsequent loops. thus saving data ac- 

cess time. 

t 

- measured execution time 
------- predicted execution time ELI 

175.0 

E 125.0 
i= 

75.0 

25.0 
2 

Figure 3. Measured and predicted execution time 

Problem sire l;s scaled up with. available memory 

Figure 3 shows both the measured execution tiuie 

and the predicted execution time in second. The pre- 

dicted execution time is based on equation (10) and 

(20). Th e ro p bl em size is scaled-up using the memory- 

bounded scale-up model [3]? i.e. when the number of 

processors increases. the matrix size also increases to 

fill up the available local memory. For the R.LSP ap- 

plication, iuexuory requirement is a square function of 

the parameter n.! and the computation count is a cu- 

bical function of n.. That explains why the run time 

goes up with more processors. 

It is clear froiu the figure that the predicted execu- 

tion time matches the measured execution time well 

until p = 22. After that. the error increases signif- 

icantly. This is due to the multi-ring structure of 

I&R-l. Each ring has 32 processors. Since several 

of the 32 processors are dedicated for I/O aud control 

processes and are usually not used in computation. 

umlti-ring communication is involved even for p less 

than (but close to) 32. ‘This multi-ring conmunication 

requires data access to Group:1 cache which slows the 

computations significantly. The listed access time for 
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Group:1 cache on KSR-1 is [ll] 

ij2 = 28.5 (P). (21) 

Again. the measured access time for our application is 

significantly different from the listed value. especially 

when most coummnications are within a single ring. 

‘To determine the conmlunication delay for nmltiyle 

rings. we ran the code on 36 processors and measured 

the execution time. Then the value of B ulafl calculated 

from (10) by fixing T = 0.18 (ps) as given in (20). The 

new ij value is 

j3” = 6.27 (ps) (22) 

which is about twice as large as that given in (20). 

225.0 

.E 
l- 

125.0 - _____ --------- 

------_ predicted execution time using 8” 
----- predicted execution time using e 

25.0 1 
36 40 

Number ci&ocessor~ 
52 

Figure 4. Measured and predicted execution time us- 
iug the adjusted parameters 

Problem size is scaled up with. available memory 

Figure 4 shows the execution time for p > 32. We 

see that wit,h the new value of 19”. the predicted ruu 

time matches the measured execution time nicely 

Ba3ed on the test runs on p = 2. 4 and 3G pro- 

cessors and equation (14). the matrix size IZ.’ can be 

predicted. ‘Table 1 shows the predicted and measured 

matrix sizes respectively. The average syeed a main- 

tained in this test is 3.25 hgfloys which is about 58% 

of the sustained speed in (20). From Table 1 we can 

see that the predicted matrix size is veiy close to the 

actual matrix size uleasured by running the code on 8. 

16. 32. and 56 processors. The last column in ‘Table 1 

shows the predicted size 18,’ using I?‘. If the i3’ given in 

(20) is used in predict,iug the matrix size. t,hen n.’ will 

size 11 2 1 4 8 16 J2I 56 

predicted [[ 54 ] 115 238 484 9,6 2889 
measured ]I 54 I 109 230 461 1006 1 2r 17 

Table 1. Predicted and measured matrix size 

be 1715 at p = 56, uhich is significantly sumller than 

the xueasured n.‘. The difference shows the influence 

of slower remote memory access of Group:1 cache on 

scalability. 

With the matrix sizes given in Table 1 and the 

Parameters given in (20) and (22)? we can conilmte 

the scalabiitg +(p.p’). Table 2 and 3 give the yre- 

dieted and measured scalability resyectively. We can 

see that the Predicted and measured scalabilities are 

fairly close. The prediction at enseulble size of 56 is 

based on the justified communication delay /?I. Figure 

5 depicts the difference between the measured scala- 

bility and the predicted scalability obtained by using 

ij’. The curves in the figure represent uleasured and 

predicted +(p. 56) resyectively with p tarying from 1 

to 56. Note that in order to see clearly the differ- 

ence between the two curves in figure 5: we plotted 

- log($(p? 56)). instead of “!(p! 56). Therefore. the 

curve with lower - log($(p.X)) value actually rey 

resents higher scalability than the curve with higher 

- log( $(p? 56)) value. 

In order to build a scalable shared virtual mew 

ory machine. the architecture of IiSR.-1 is designed 

as a combination of bus and fat-tree (see Section 3). 

Theoretically. the computing system can be scaled uy 

to any number of yrocessors by increasing the hier- 

archy of the tree. Figure 5 shows the limitation of 

the ring-tree approach. The scalabiity is severely re- 

duced when inter-ring remote access is required. It 

shows that. unless inter-ring cowuunication can be 

iulyroved. unilwocessor efllciency will reduce quickly 

with the increase of euseulble size and a high coul- 

yuting power may not be achievable by increasing the 

hierarchy of the fat-tree. 

The scalability difference given in figure 5 is based 

on the measured scalability and the measured T and 

ij’. Figure 9 shows the scalability difference with the 

theoretical I>erfornlance data A. 01, and ij2? where the 

average speed is fixed at the 58% of the peak perfor- 

mance. It gives the theoretical difference of the RLSP 

application when Group:1 coulmunication is required. 

Coml>aring the curves in figure 5 with those in figure 

6, we can clearly see the similarity. Both figures show 

that the scalability with remote cache access is much 

lower than that without considering remote data ac- 
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‘Table 2. Predicted scalability of RLSP-BSRl Coxnbi- 
nation 

Table 3. Meamred Scalability of R.LSP-KSR.1 combi- 
nation. 

cess. The geueral trends in both figures are very simi- 

lar. Siuce the curves in liigure G were plotted based on 

umchine specification, it. shows that. while machine 

specification does not provide good estimate of ex- 

ecut,iou time or speed. it does give a foundation to 

predict the influence of architecture lariation on per- 

formance. Equation (3) is an useful tool to predict 

performance of an algorithm-machine pair. even when 

the computing system is scaled up from one level of 

architecture hierarchy to another level. It provides the 

variation of performance with only hardware specifica- 

t,ion available. The influence of architecture variat,ion 

is differeut on differeut, algorithnls. When architec- 

ture scales up from one level of hierarchy to another. 

au algorithui that performed worse than another algo- 

rit,hui at a lower level of architecture hierarchy might 

become better at a higher level of hierarchy. Scal- 

ability formula (3) provides a guideline for chasing 

algorithrus when system size is scaled up. Figure 7 

shows the scalability curves for the Givens Rotation 

algorithm [14] which can also be used to solved the 

least squares problem. The same machine speciiica- 

tious as those used for figure G are used in figure 7. 

W:e can see that the scalability of the Givens rotation 

algorithm is worse than that of the Householder algo- 

rit,hm. However. the difference is iuiproving when the 

system scales up. This demonstrates that the scala- 

biity of the Givens algorithm is less affected by the 

hierarchical remote cache access than the Householder 

algorithm does. The Givens algorithm may provide a 

better scalability and, therefore, better execution time 

when the system size is large enough so that xnulti- 

level ring coumunication is required. Figure 6 and 

7 show how algorithms could be compared with the 

notion of scalability. 

------- predicted scalability using B 

0.00 ’ 
0 6 16 24 

number of processors p 

Figure 5. Measured and predicted scalability 
Equation (20) is used in prediction 

, 

- predicted scalability using B, 
------- predicted scalability using fI, & e, 

\ 
: 

: 
: 

‘..* 

-.., 

‘a._ 

---_. 
--.. 

--.. 

----- -______ 

-----____ 
----__ 

--mm 

\ 

2 

6 16 24 .D2 

number of processors p 

Figure 6. Predicted scalability using machine specifi- 
cations 

The average speed a nmintained in this study is 

about 58% of the sustained speed. The efficiency 

maintained is reasonably high. The scalability given 

iu Table 2 and 3 could be higher if a WLS lower, as 
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- predicted 
------- predicted scalability using f3, & 8, 

0.00 1 
0 6 16 24 32 

number of processors p 

Figure 7. Predicted scalability of Givens rotation us- 
ing xnachine specifications 

shown in equation (3). Al so. the coxnputing rate r in 

general laries with the nunrber of processors and prob- 

lexn size on any xnachine with memory hierarchy. For 

our inlplenlentation. since the initial problem size is 

large and it increases with the nunlber of processors. 

the conqnrting rate is quite stable. The scalability 

prediction will be nlore involved if the conlput,ing rate 

varies with the systexn size [IS]. 

5 Conclusion 
Recent trends in parallel processing suggest that 

the issue of performance prediction is becoxning nlore 

complex and diflicult. Massively parallel computing 

has been adopted as a cost-effective way to achieve 

high coxnputing power. Sophisticated architectures 

have been proposed to deliver yerfornlance scalabii- 

ity with a large nuxnber of processors. Shared virtual 

xnexnory and other systenl supports that hide the corn- 

nlunication and obher inlylenlentation details front the 

users are beconling xnore prevalent. At the saxne tinle. 

with various architectures and algorithnls available. 

perforxnance prediction is beconling the salvation of 

chasing an appropriate algorithxn-machine pair for an 

application. especially when the xnachine has a soyhis- 

ticated. hierarchical architecture. The study given in 

this paper is an attenlpt to conlbine sixnple forxnulas 

with run-tixne inforxnations to provide a reasonable 

prediction on xnodern parallel computers. A sinlyle 

prediction forxnula is presented. ‘Then. a cave study 

is conducted on a multi-ring I&R.-l virtual xnexnory 

nlachine to illust.rate how the forxnula could be used 

in practice. Four different aspects are discussed in 

the paper. First, a xnethod is proposed to meawre 

the needed run-time parameters. Second, when the 

systenr size is scaled up from one level of architec- 

ture hierarchy to another level of hierarchy? an adjust- 

nrent is proposed to catch the influence of the archi- 

tecture variation. Experimental results on the xnulti- 

ring KSR-1 machine shows our predicted yerfornlance 

xnatchs the xneasured perfornrance well, in both execu- 

tion tixne and scalability. Then, with this case study, 

we have shown that it is possible to predict the influ- 

ence of architecture hierarchy on scalability by sixn- 

ply using hardware specifications. Finally. we have 

discussed issues of chasing an appropriate algorithnr 

for a given application when the cornyuting system is 

scaled up front one level of hierarchy to another. 

While the numerical experiment was conducted on 

a KSR-1 machine, the result given in this study is not 

lixnited to KSR-1 architecture. It is a general result of 

scalability prediction and should be useful in evalua- 

tion of any scalable architecture and algorithm. 
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