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Centrifugal compressor is widely used in various engineering domains, and predicting the performance of a centrifugal
compressor is an essential task for its conceptual design, optimization, and system simulation. For years, researchers seek to
implement this mission through various kinds of methods, including interpolation, curve fitting, neural network, and other
statistics-based algorithms. However, these methods usually need a large amount of data, and obtaining data may cost con-
siderable computing or experimental resources. )is paper focuses on constructing the performance maps of pressure ratio and
isentropic efficiency using a limited number of sample data while maintaining accuracy. Firstly, sample data are generated from
simulation using Vista CCD. )en, corrected flow rate and corrected rotational speed are used as independent variables, and the
regression expressions with physical meaning of pressure ratio and isentropic efficiency are derived and simplified through
thermodynamic analysis and loss analysis of centrifugal compressor, resulting in two loss-analysis-based models. Meanwhile,
kriging models based on a second-order polynomial and neural network models are built. Results show that, when predicting
inside data boundary, the loss-analysis-based model and the kriging model produce higher accuracy prediction even in a small
data set, and the predicting result is stable, while the neural network model provides better results only in a more extensive data set
with more speed lines. For the prediction outside the data boundary, the loss-analysis-based model can provide relatively accurate
results. Besides, it takes less time to train and utilize a loss-analysis-based model than other models.

1. Introduction

Centrifugal compressor is a common type of turbomachine,
widely applied in various engineering domains. To design,
simulate, or optimize a centrifugal compressor, performance
on off-design point is often required, including pressure
ratio, efficiency, work, and other thermodynamic parame-
ters.)erefore, predicting the performance of the centrifugal
compressor is one of the critical steps in the calculation.

)e desired performance parameters in various working
status can be measured through a test bench.)e data is then
drawn into curves, called characteristic map or performance
map, and can be used to predict the performance of com-
pressors [1]. It is obvious that more test points lead to a more
reliable characteristic map, but also consume more time and

resource. Computational fluid dynamics (CFD) method is
another common way to obtain the performance of com-
pressors [2]. However, in many cases, due to the limitation of
time and computational cost, the result points are often too
loose to cover the whole working area densely. Conse-
quently, a suitable approach is needed to reconstruct the
characteristic map, using a limited number of sample data, to
provide high precision data at low cost efficiently.

)e most intuitive way of predicting the performance of
a compressor is to estimate by interpolation and fitting, but
the precision may suffer from insufficient sample points. To
improve the predicting quality, Kurzke and Riegler [3] in-
troduced reference points and lines to scale the compressor
maps, generating the most typical map topology. For fitting
approaches, there are also various ways to improve, such as
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data smoothing, rescaling, normalizing, and axes trans-
forming. Further, El-Gammal [4] provided a transformation
matrix of axes to preserve internal behaviour and cross-
coupling. Also, the regression structure, such as third-order
polynomial [5], logarithm [6], rotated elliptical curve [7, 8],
and Chebyshev polynomial [9] will affect the result of fitting,
which has been reported by many authors. However, these
structures mainly depend on the mathematical analysis and
the physical property in maps and can hardly be reflected.
)erefore, it provides poor estimation when the desired
point is far away from sample data.

Surrogate models, which mimic the behaviour of actual
objects while being computationally cheaper to evaluate, are
also used in forecasting the outcome of interest. Commonly
used surrogate models include responsive surface, moving
least squares, artificial neural network (ANN), and kriging
model. Recently, with the growth of computing resource and
development of theory, neural networks have beenmore and
more widely used. Lazzaretto and Toffolo [10] trained the
neural network using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) and Levenberg–Marquardt algorithm, with
different transfer functions, yielding small errors on the
thermodynamic parameters of compressors. Trained net-
works can be used for off-design performance prediction
inside the training data boundary [11]. However, it often
requires a large amount of sample data. Neural networks can
also be applied in extrapolation and multilayer perceptron
network can improve the quality of prediction [12]. Tian
et al. [13] introduced the hybrid ANN-partial least squared
(PLS) model into compressor performance prediction,
producing better results than other structures of ANNs
when enough data are provided [14]. However, reducing the
total number of samples could rapidly drop the grade of
prediction.

)e kriging model is also commonly used in compressor
performance prediction. It provides the best linear unbiased
prediction of the intermediate values and reduces the
computation complexity significantly [15]. It can also
combine with different kinds of polynomial models to
construct a more accurate predicting model for compressor
characteristic [16].

Although the above-mentioned models are capable of
performance prediction of compressors, they are mostly
based on the mathematical or statistical analysis. )erefore,
the discussion of the internal mechanism is missing,
resulting in a limited ability on extrapolation. In order to
improve the prediction precision of the centrifugal com-
pressor performance using a limited number of data while
maintaining extrapolation ability, this paper provides a loss-
analysis-based regression model, which combines the clas-
sical curve fit method with compressor loss analysis.

In this paper, firstly, sample data are generated from
simulation using Vista CCD. Next, a general investigation of
centrifugal compressor thermodynamics is performed, fol-
lowed by the study of the loss analysis. )en, the structures
of loss-analysis-based regression models are determined by
approximation and sensitivity analysis. In the meantime,
kriging models based on the second-order polynomial and
neural network models are constructed. Finally, the loss-

analysis-based model will be applied to sample data, and
compared with the kriging model and the neural network
model, to examine the accuracy and calculation performance
under different conditions.

2. Simulation Data Sets

Simulation is an efficient way to generate a bunch of data in a
reasonable accuracy instead of time-consuming and high-
cost experiments. In this paper, the sample data are pro-
duced by Vista CCD, which is a simulation program for the
preliminary design of a centrifugal compressor with the
capability of predicting performance maps. Required input
settings for computing are listed in Table 1.

)e calculation result of the Vista CCD is saved as a data
table of efficiency, pressure ratio with mass flow rate, and
rotational speed. Each table is composed of 17 rotational
speed lines, and the speed is distributed evenly between
60,000 rpm and 140,000 rpm, numbered from 1 to 17. Each
rotational speed line contains 25 points at equal intervals of
flow rate, resulting in a total number of 425 data points. )e
characteristic map is shown in Figure 1. )e simulation data
are split into central set and extrapolation set, which will be
used for further testing in Section 4.

3. Modelling Method

In this section, a regression model based on loss analysis is
derived by examining the energy losses and simplification of
the expressions. )en, the kriging model and the BP neural
network are introduced for comparison.

3.1. Loss-Analysis-Based Regression Model. Loss analysis is
the theoretical analysis of energy loss on each part of the
compressor by investigating the thermodynamic process of
the gas inside the compressor, resulting in the approxi-
mation of the actual work of the compressor. In the fol-
lowing discussion, one more step, that is, simplification of
expressions is taken to address the relationship between
pressure ratio, efficiency, and compressor parameters in a
certain working status.

3.1.1. Representation of Characteristic Maps. Characteristic
curves are drawn to express the interrelation of the main
parameters of the compressor. Normally, it comprises two
sets of curves, which are pressure ratio and isentropic ef-
ficiency versus corrected mass flow rate and corrected ro-
tational speed, deriving from dimensional analysis and
similarity principle. )e curves contain most of the in-
formation we need to predict the performance of a certain
centrifugal compressor; therefore, we focus on recon-
structing the curves efficiently using a limited number of
sample data. )e curves of pressure ratio (πc) and isentropic
efficiency (ηcs) can be described as follows:

πc � Fπ Gc, nc( ,
ηcs � Fη Gc, nc( , (1)
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where Gc (corrected mass flow rate) and nc (corrected ro-
tational speed) are used to eliminate the influence of inlet
status, which are defined as follows [17]:

Gc � G ·
101.325[kPa]

pin

������
Tin

293[K]


,

nc � n ·
������
293[K]
Tin


,

(2)

where G denotes mass flow rate, n denotes rotational speed,
and pin and Tin are the pressure and temperature at the inlet
of compressor.

Generally, the characteristic curves are represented into
several constant speed lines, which starts from surge
boundary and end up with choke limit.

3.1.2. Structures of Loss-Analysis-Based Models. )e ther-
modynamic analysis of centrifugal compressor is performed

Table 1: Required input settings for centrifugal compressor.

Parameter names Values Unit

Design pressure ratio 1.86
Design mass flow rate 0.5 kg/s
Design rotational speed 10,000 rpm
Inlet stagnation temperature 428 K
Inlet stagnation pressure 600,000 Pa
Inlet angle 0 degree
Radial distribution Constant angle
Incidence at shroud 1.5 degree
Relative velocity ratio 0.52
Hub inlet diameter 30 mm
Stacking Radial
Main vanes 9
Intervanes 9
Back sweep angle 45 degree
Rake angle 30 degree

0.4 0.6 0.80.2

Mass flow rate (kg/s)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
ff

ic
ie

n
cy

0.4 0.6 0.80.2

Mass flow rate (kg/s)

1.0

1.5

2.0

2.5

3.0

3.5

P
re

ss
u

re
 r

at
io

No.1

(60,000rpm)

No.1

(60,000rpm)

No.17

(140,000rpm)

No.17

(140,000rpm)

Extrapolation set

Central set

Extrapolation set

Central set

Figure 1: Characteristic map of centrifugal compressor.
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as follows, in order to construct the fundamental structure of
the regression model.

)e isentropic efficiency of compressor ηcs can be written
as follows:

ηcs �
hcs
hc
. (3)

)e isentropic work, hcs, and the actual compress work,
hc, can be written as follows [18]:

hcs � cpT1 π(c− 1)/cc − 1 , (4)

hc �
cpT1 π

(c− 1)/c
c − 1 
ηcs

. (5)

From the aspect of energy loss, the isentropic work can
be expressed as the difference value of impeller work Δhimp
and internal loss Δhint, while the actual compress work can
be expressed as the sum of impeller work Δhimp and parasitic
loss Δhpar [19]:

hcs � Δhimp − Δhint, (6)

hc � Δhimp + Δhpar. (7)

Instead of directly using pressure ratio and efficiency as
targets of regression, we can transform these variables into
more suitable forms by substituting equations (6) and (7)
into (4) and (5), respectively. )e transformed variables π∗

and η∗ are defined as follows:

π∗ � π(c− 1)/cc � 1 +
Δhimp − Δhint

cpT1
, (8)

η∗ �
π
(c− 1)/c
c − 1 

ηcs
�
Δhimp + Δhpar 

cpT1
. (9)

When implementing regression, pressure ratio πc and
isentropic efficiency ηcs first transfer into π∗ and η∗ and then
transfer back into πc and ηcs after calculation.

3.1.3. Analysis of Loss Models. In order to obtain the detailed
expression of equations (8) and (9), the impeller work,
internal loss, and parasitic loss are discussed below.

(1) Impeller Work. Assume that the compressor contains a
radially bladed impeller and gas approaching the impeller
from axial direction; the specific enthalpy can be written as
follows:

Δhimp � σu22. (10)

For radial blades, the slip factor σ can be approximately
calculated by Stanitz’s correlation [19]:

σ � 1 − 0.63π
Z

. (11)

)erefore, the slip factor is mainly determined by the
physical structure of the compressor. From the discussion

above, it can be inferred that, the specific enthalpy of the
impeller is proportional to the square of rotational speed.

(2) Internal Loss and Parasitic Loss. )e loss in centrifugal
compressor contains internal losses and parasitic losses. )e
disk friction loss, recirculation loss, and leakage loss together
constitute the parasitic losses [20], as listed in the first three
rows in Table 2. )e internal loss consist of incidence loss,
blade loading loss, skin friction loss, clearance loss, mixing
loss, vaneless diffuser (VLD) loss, and vaned diffuser (VD)
loss [21], which are listed in the other rows in Table 2.

3.1.4. Simplification of Loss-Analysis-Based Models. To ob-
tain the final structure of the models, we have to replace
Δhimp, Δhimp, and Δhpar by the impeller work, internal loss,
and parasitic loss models. However, directly substituting the
comprehensive models into equations (8) and (9) will lead to
a complicated expression with too many parameters and
intermediate variables, which is hard to perform regression.
Hence, it is necessary to simplify the model.

(1) Simplification of the Isentropic Efficiency Model. One way
to implement the simplification is to separate the parameters
and variables that form the expression of loss models. )e
parameters are dominated by the physical structure of
compressors, which means they will not change once the
compressor is set. )erefore, parameters are considered as
constants during calculation. On the other hand, the vari-
ables are the status of gas in different stages of the com-
pressor, including velocity, temperature, and pressure. By
transforming some of these variables into forms regarding
corrected flow rate Gc and corrected rotational speed nc, the
appropriate expression should be acquired for regression.

One of the most essential terms is the tangential tip
velocity u2, which can be calculated as follows [30]:

u2 � πD2n, (12)

where D2 is the diameter at the outlet of the impeller. )at
means the tip velocity is proportional to the rotational speed
since π and D2 are constants.

)erefore, the expression of impeller work can be written
as follows:

Δhimp � σu22 � σ πD2( 2 · n2. (13)

By substituting u2 and G into nc and Gc, the parasitic
losses change into

Δhpar � Δhdf + Δhrc + Δhlk

� fdf′ ·
n3c
Gc

  + frc′ · n2c + flk′ · Δhimp. (14)

)e coefficient fx, in equations above, is hard to de-
termine since it contains complex calculation of parameters
and variables of the compressor, as shown in Table 2.
However, they vary in relatively small ranges, therefore can
be linearized into fx � f1 + f2Gc + f3nc. Accordingly, the
loss-analysis-based regression model of isentropic efficiency,
equation (9) can be replaced as follows:
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η∗ �
Δhimp + Δhpar 

cpT1

� fη0
+ fη1

n2c + fη2
n3c + fη3

n3c
Gc

  + fη4

n4c
Gc

  + fη5
n2cGc,

(15)
where fηi

is the coefficient.

(2) Simplification of the Pressure Ratio Model. )e loss-
analysis-based regression model of pressure ratio cannot
easily transform using the approach described in the pre-
vious section since the components of internal losses are too
complicated to reduce to simple forms. Nevertheless, some
approximation of these elements can be inferred. Here, some
terms derived from corrected rotational speed and corrected
flow rate are listed below:

Gc, Gcnc, Gcn
2
c , G

2
c , G

2
cnc, G

2
cn
2
C, nc, n

2
c , n

3
c , n

4
c ,
n3c
Gc
,
n4c
Gc
. (16)

Combining these terms will result in a very long ex-
pression. )erefore, analysis of variance (ANOVA), a pro-
cedure for determining whether variation in the response
variable rose within or among different population groups, is
performed to seek the most significant terms. )e result is
shown in Figure 2.

Higher F value indicates higher significance. Conse-
quently, the reduced expression for pressure ratio regression
can be derived by eliminating the low-value terms:

π∗ � fπ0
+ fπ1

Gcnc + fπ2
G2c + fπ3

G2cnc + fπ4
n2c + fπ5

n3c
Gc

 ,
(17)

where fπi
is the coefficient.

Equations (15) and (17) are the final forms for regression.
)ey will be applied to the sample data for further validation.

3.2. Kriging Model Based on Second-Order Polynomial.
)e kriging model estimates the unknown information of a
point by weighing a linear combination of neighbour in-
formation within a certain range.)e essence is to determine
the vector of weight coefficient by minimizing the error
variance of the estimated value.)erefore, the kriging model

is considered to be a linear unbiased estimation with the
smallest variance. )e kriging model assumes that the re-
lationship between the system response and the input
variable consists of a basic regression model and a non-
parametric part, that is,

y(x) � F(β, x) + Z(x), (18)

where F(β, x) is the basic regression model:

F(β, x) �k
j�1

βjfj(x). (19)

Usually, the order and coefficients of regression model
are constant.

Z(x) in equation (18) is a zero-mean stochastic process
with the following statistical properties:

Cov Z xi( , Z xj   � σ2R xi, xj , (20)

where σ2 is the process variance and R is the correlation
coefficient matrix.

)e elements in the matrix are functions of the distance
between the two sample points, which characterize the
spatial correlation between the input variables. Commonly
used correlation function models include linear models,
exponential models, Gaussian models, and spherical models.
For modelling the characteristics of the compressor, the
spherical model can obtain a smaller error [31], that is,

R(θ, d) � 1 − 1.5 + 0.5ξ3k, ξk � min 1, θ d{ }. (21)

By observing the characteristic map of the compressor,
we can find that the pressure ratio and efficiency curves are
approximately parabolic on every single rotational speed
line. Moreover, when the rotational speed is lower, the
interval of rotational speed lines is smaller, while the in-
terval of rotational speed lines is larger when the rotational
speed is higher. )erefore, a second-order polynomial can
be taken as the basic regression model of the kriging model
to express the characteristic curves of the compressor
better.

3.3. BP Neural Network Model. )e neural network model is
a computational model that mimics the structure and
function of biological nerves and can be used to estimate and
approximate functions.)e neural network is calculated by a

Table 2: A set of loss models of centrifugal compressors.

Loss mechanism Loss model

Disk friction loss [22] Δhdf � fdf(ρ1 + ρ2)r22u32/(8G)
Recirculation loss [23] Δhrc � 0.02

�����
tan α2

√
D2
f u
2
2

Leakage loss [24] Δhlk � (Gcl/G)Δhimp
Incidence loss [25] Δhinc � fincw21u/2
Blade loading loss [26] Δhbl � 0.05D2f u22
Skin friction loss [27] Δhsf � 5.6fsfLw22/Dhyd

Clearance loss [28] Δhcl � 2(s/b2)[(rh + rs)/2r2 − 0.275]u22
Mixing loss [29] Δhmix � (1 + tan2α2)− 1[(1 − εw − b∗)/(1 − εw)]2v22/2
Vaneless diffuser loss [21] Δhvld � cpT02[(p3/p03)(c− 1)/c − (p3/p02)(c− 1)/c]
Vaned diffuser loss [21] Δhvd � cpT03[(p4/p04)(c− 1)/c − (p4/p03)(c− 1)/c]
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large number of neuron nodes, usually including the input
layer, the hidden layer, and the output layer. In this paper, a
three-layer neural network is selected as the compressor
performance prediction model, which is an input layer, a
hidden layer, and an output layer. )e number of hidden
layer nodes has an important impact on the prediction
results. Very few numbers will result in inaccurate pre-
diction results. Too many samples will require more samples
for training and may lead to overfitting. In this paper, a
hidden neural network of 10 nodes is constructed to obtain
good prediction results with fewer training samples. )e
activation function of the hidden layer is a sigmoid function,
and its form is as follows:

S(t) � 1

1 − e− t.
(22)

)e structure of the neural network is shown in Figure 3.
In this paper, two neural networks are constructed for

the compressor pressure ratio and efficiency, respectively.
)e neural networks are trained by the backpropagation
algorithm, which calculates the gradient of the loss function
for all weights in the network and feeds back to the opti-
mization algorithm, in order to update weights to minimize
the loss function.

4. Results and Discussion

In this section, some typical schemes of training and test sets
are used to test the proposed loss-analysis-based model and
compare it with the kriging model and the neural network
model. )e training and test data are generated using Vista
CCD, as described in Section 2. First, the central set is used

to examine the loss-analysis-based model. )en, we expand
the data set to validate the model and compare with the
kriging model and the neural network model.

4.1. Result of Loss-Analysis-Based Model on Central Set.
In the following calculation, the division of training set and
test set is listed in Table 3. Five speed lines are chosen, that is,
No. 3, 6, 9, 12, and 15 (referring to Figure 1), and 10 points
on each speed line are evenly selected to form the whole
training set with 50 points in total. )en the speed lines
between these training lines, that is, No. 4, 5, 7, 8, 10, 11, 13,
and 14 are chosen to form the test set. Differently, all sample
points on each test lines are selected.

For each training result, the data is applied to validate by
root mean square error (RMSE) and coefficient of de-
termination (R2). )e RMSE is the standard deviation of the
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Figure 3: Structure of a neural network.
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residuals, and it can measure the average distance between
the regression result and the original data. )e R2 is the
proportion of explained variation to total variation, and it
denotes how close the data are to the fitted regression line.
)ese two statistical measures can be defined as follows:

RMSE �

������������
1

n
n
i�1

yi − yi( 2


,

R2 � 1 − ni�1 yi − yi( 2ni�1 yi − yi( 2.
(23)

)e results are plotted in Figure 4. For lower rotational
speed lines, the estimating results are almost coincided with
the simulation data points, meaning that the model can
provide very high accuracy predictions in relatively low
rotational speed. For higher rotational speed lines, the es-
timating results slightly deviate from the origin points, but
still remain very close estimations.

)e results of RMSE and R2 are listed in Table 4. )e low
value of RMSE indicates that the average difference of the
regression result and the original data are very small, and the
R2 implies that the regression model is well fitted. )e
prediction on pressure ratio is slightly better than the
prediction on efficiency. Overall, the results are good enough
for performance prediction.

In summary, both efficiency and pressure ratio pre-
dictions are close to the data generated by the simulation
program, and the trends of the characteristic maps are well
preserved. )erefore, the loss-analysis-based model can be
used to provide performance prediction for engineering
applications.

4.2. Comparison of Models

4.2.1. Generating Training Set and Test Set. In order to
examine the influence of the number of data points and the
number of rotational speed lines on the prediction results,
the data set is divided into several groups and tested sep-
arately, instead of using all sample points in every test.

From the characteristic map in Figure 1, we can find that,
in the same rotational speed line, that is, when the rotational
speed is constant, the pressure ratio and efficiency change
with the flow rate is approximated as a smooth second-order
curve. Also, each rotational speed line starts from a mini-
mum flow rate point (surge point) and end up with a
maximum flow rate point (choke point). )erefore, at least
three points need to be selected on each rotational speed line.
If more than three sample data point should be chosen from
a rotational speed line, it can be determined using uniform
distribution between the maximum flow rate and the
minimum flow rate.

Similarly, we can see from Figure 1 that the rotational
speed lines are denser in lower rotational speed, and sparser
in higher rotational speed; therefore, the pressure ratio and
the efficiency can also be seen in a second-order relationship
with the rotational speed, approximately. Hence, at least
three rotational speed lines are required for the sample data,
and it is preferable to select the minimum rotational speed,
the maximum rotational speed, and the designed rotational
speed. When more speed lines should be added, they can be
selected evenly between the minimum and maximum ro-
tational speed lines.

However, if three rotational speed lines are chosen and
three or four points on each line are selected, the total
number of sample points is too low to perform an effective
regression. Hence, we set the minimum number of total
sample points to 15, in order to avoid this situation.

)e detailed division criteria are shown in Table 5.
In Table 5, T3 to T7 represent the training data set, and

the digit after “T”denotes the number of rotational speed
lines in it. )e specific rotational speed lines selected are
shown in the table above.

IP indicates interpolation test set, which contains even
number of rotational speed lines from 4th to 14th, while EP
indicates extrapolation test set, which contains the 1st, 2nd,
16th, and 17th rotational speed lines.

In addition, for every training set, a certain number of
points are taken evenly from every selected rotational speed
line to construct a complete training set so that the total
number of sample points can roughly cover the interval from
15 to 70, which is also listed in the table above.)erefore, we
can study the influence of the number of rotational speed
line and the total number of sample points on the training
effect.

Before each training session, 5% Gaussian noise is added
into the current training set. To compare among the three
models, RMSE is used as the index. )e training process for
every set is repeated 50 times to obtain the average result for
the models.

4.2.2. Validation on Interpolation. In order to illustrate the
validity of the loss-analysis-based model, the training set is
used to build the models and the results on the test set are
calculated and compared with the results of the kriging
model and the neural network model.

In this section, T3 to T7 are used to train the loss-
analysis-based model, the kriging model, and the neural

Table 3: Scheme of training set and test set on central set.

No. rpm Training set Test set

3 70,000 •

4 75,000 •

5 80,000 •

6 85,000 •

7 90,000 •

8 95,000 •

9 100,000 •

10 105,000 •

11 110,000 •

12 115,000 •

13 120,000 •

14 125,000 •

15 130,000 •

No. of points on each line 10 25
Total no. of points 50 200

Mathematical Problems in Engineering 7



network, and the interpolation test results of the pressure
ratio and efficiency characteristics of the centrifugal com-
pressor are obtained using interpolation test set IP. )e
images are shown in Figures 5 and 6.

It can be seen that the loss-analysis-based model (a) and
the kriging model (b) are very stable and the error is small.
When predicting the pressure ratio of compressors, the
results of the two models are close, and the loss-analysis-
based model produces better results in predicting efficiency
of compressors.

For the loss-analysis-based model, the increase in the
number of rotational speed lines does not help to improve
the calculation results, while the increase in the total number
of sample points slightly reduces the prediction error when
predicting the efficiency of the compressor. It is not nec-
essary to use more than 30 points since the RMSE would not
decrease significantly.

For the kriging model, the result of predicting pressure
ratio is stable. For predicting the efficiency, increasing the
number of speed lines and the total number of sample points
can slightly reduce the error, but it is worse than the result of
the loss-analysis-based model.

For the neural network model (c), in the case of a small
number of speed lines, the model has an overfitting phe-
nomenon, as shown by the lines T3 and T4. When the
number of speed lines and the total number of sample points
are larger, the prediction error is significantly reduced. It
shows that the neural network model has better result when
the sample points are denser and the number of speed lines is
larger, and the prediction error is lower than that of the loss-
analysis-based model and the kriging model, as shown in
line T7. )erefore, the neural network model is only suitable
when the training data set is large enough.

4.2.3. Validation on Extrapolation. Similarly, T3 to T7 are
used to train the loss-analysis-based model, the kriging
model, and the neural network model respectively, and the
calculation results are examined by the extrapolation test set
EP, as shown in Figures 7 and 8.

In general, the loss-analysis-based model performs the
best in the extrapolation prediction, and the error is rela-
tively small. It has advantages compared with the kriging
model and the neural network model. )is is because the
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Figure 4: Results of loss-analysis-based model on central set.

Table 4: RMSE and R2 results on central set.

Parameter Training set Test set

Pressure ratio
RMSE 0.0208 0.0228
R2 0.9982 0.9966

Efficiency
RMSE 0.0153 0.0157
R2 0.9806 0.9751
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model is based on the loss analysis with simplification, which
includes physical meaning, and can reflect the general trend
of compressor characteristic. )erefore, it can rely on fewer
data to reconstruct the performance curves in extrapolation
calculation. When the total number of sample points or the
speed lines increases, the extrapolation error decreases
slightly. It means that to predict the performance outside the
training data boundary, it still needs more data to generate
the trend of characteristic maps.

)e kriging model fluctuates when predicting efficiency,
while the error is smaller in the pressure ratio prediction.

)e prediction of pressure ratio is close to that of the loss-
analysis-based model.

For the neural network model, when the number of
speed lines is large, the error decreases with the increase of
the number of sample points, but the predicting effect is still
not as good as the loss-analysis-based model or the kriging
model. )is result may be explained by the fact that the
neural network model contains little physical information,
thus it cannot provide a proper prediction for the points
outside the training data boundary. Generally, the neural
network model is not suitable for extrapolation prediction.

Table 5: Scheme of training set and test set on all data.

No. rpm T3 T4 T5 T6 T7 IP EP

1 60,000
2 65,000
3 70,000 • • • • •

4 75,000 •

5 80,000 • • •

6 85,000 •

7 90,000 • • •

8 95,000 •

9 100,000 • • •

10 105,000 •

11 110,000 • • •

12 115,000 •

13 120,000 • • •

14 125,000 •

15 130,000 • • • • •

16 135,000
17 140,000
No. of points on each line 5∼23 4∼17 3∼14 3∼11 3∼10 25 25
Total no. of points 15∼69 16∼68 15∼70 18∼66 21∼70 150 100
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Figure 5: Results of predicting pressure ratio on the interpolation test set. (a) )e loss-analysis-based regression model; (b) the kriging
model; (c) the BP neural network model.
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4.3. Running Time of Models. In the meantime, the whole
training and test process is also clocked, and the total time is
listed in Table 6. Each of the models is coded inMATLAB and
run on Windows 7 operation system and on a workstation
with Intel Xeon CPU E3-1230v5 3.4GHz and 8GB RAM.

It can be seen from the table that the neural network
takes the longest time, whether it is model training or model

prediction; the time of the loss-analysis-based model and the
kriging model is similar, and the time required to train the
loss-analysis-based model is shorter.

In summary, the loss-analysis-basedmodel consumes far
less computational resources than other models, and it is the
appropriate model to provide performance predicting for
both interpolation and extrapolation cases.
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Figure 6: Results of predicting efficiency on the interpolation test set. (a) )e loss-analysis-based regression model; (b) )e kriging model;
(c) )e BP neural network model.
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Figure 7: Results of predicting pressure ratio on the extrapolation test set. (a) )e loss-analysis-based regression model; (b) the kriging
model; (c) the BP neural network model.
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5. Conclusions

In this paper, analysis of energy loss of the centrifugal
compressor was performed. )en, simplification and sensi-
tivity analysis were carried out, and a loss-analysis-based
regression model was obtained combining with the loss
model of the compressor.)emodel contains certain physical
meaning and can be easily applied to the fitting calculation.
)is model was fed by sample data generated by Vista CCD
for testing. Results show that the loss-analysis-based model
preserves the trends of both efficiency and pressure ratio, and
the predicting result is very close to the original data.

On the other hand, the kriging model was constructed
based on the second-order polynomial and the spherical
correlation model, and the BP neural network model was also
built for comparison. )en, the models were validated using
simulation data with added noise. )e calculation results show
that the predicting results of the loss-analysis-based model and
the kriging model are relatively stable, and the error is very
small when the interpolation prediction is performed within a
given data range. )e predicting result of the neural network
model improves as the number of points increases.

In addition, the loss-analysis-based model maintains a
strong extrapolation predicting ability, which can be at-
tributed to the inherent physical meaning of the model. )e
basic part of the kriging model uses a second-order

polynomial, which is close to the trend of the compressor
characteristic curve; therefore, it also has extrapolation
ability.)e extrapolation ability of the neural networkmodel
is poor compared to these two models.

In terms of running time, since the loss-analysis-based
model structure is not complicated and the calculation
process is simple, it consumes minimal time. )e required
time for prediction using the kriging model is similar, but the
training time is longer. )e neural network model consumes
significantly more time than other models, and there is no
advantage under this condition. In general, the loss-analysis-
based model is suitable for engineering applications.

Although this paper mainly discussed the model for
centrifugal compressor, the method of constructing loss-
analysis-based regression model, containing loss analysis,
simplification, and sensitivity analysis, can be applied to
similar mechanical components, such as turbine, fan, and
pump. )e models can also be included in a system-level
simulation and optimization, providing accurate result while
saving computational resource and time.

Nomenclature

Variable
b: Impeller width
b∗: Ratio of vaneless diffuser inlet width to impeller exit

width
c: Absolute velocity
cp: Specific heat at constant pressure
D: Diameter
Df: Diffusion factor
f: Coefficient in correlations
G: Mass flow rate
Gc: Corrected mass flow rate
h: Specific enthalpy
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Figure 8: Results of predicting efficiency on the extrapolation test set. (a) )e loss-analysis-based regression model; (b) the kriging model;
(c) the BP neural network model.

Table 6: Running time of the models.

Loss-analysis-
based

model (s)

Kriging
model (s)

Neural network
model (s)

Training time 50.48 122.53 711.78
Predicting time 14.73 14.11 58.58
Total 65.21 136.64 770.36
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L: Length of impeller flow
n: Rotational speed
nc: Corrected rotational speed
p: Pressure
r: Radius
s: Clearance width
T: Temperature
u: Tangential impeller speed
w: Relative velocity
Z: Number of blades
α: Absolute flow angle
εw: Wake fraction of blade-to-blade space
ηc: Efficiency
c: Specific heat ratio
πc: Pressure ratio
ρ: Density
σ: Slip ratio.

Subscript
0: Total parameter
1: Inlet of impeller
2: Outlet of impeller/inlet of vaneless diffuser
3: Outlet of vaneless diffuser/inlet of vaned diffuser
4: Outlet of compressor
bl: Blade load
c: Compressor
cl: Clearance
cs: Isentropic process of compressor
df: Disk friction
h: Hub
hyd: Hydraulic diameter
in: Inlet of pressure
inc: Incidence
imp: Impeller
int: Internal
lk: Leakage
mix: Mixing
par: Parasitic
rc: Recirculation
s: Shroud
sf: Surface friction
u: Tangential component
vd: Vaned diffuser
vld: Vaneless diffuser.
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