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Summary

This PhD project was part of the ADOPT-project funded by the Dutch Technology
Foundation STW. ADOPT is a joint effort of research activities at the Eindhoven Uni-
versity of Technology and the Delft University of Technology. The ADOPT-project
aims to develop numerical optimization techniques for engineering design prob-
lems with a computationally expensive analysis model in the loop. The acronym
ADOPT stands for Approximate Design OPTimization referring to the optimization
approach followed in the project. A sequence of approximate optimization subprob-
lems is generated and solved. This Sequential Approximate Optimization (SAO)
approach avoids a direct coupling between the computationally expensive analysis
model and the evaluation intensive optimizer. Through the approximations specific
problem properties observed in certain application domains can be taken into ac-
count. In this regard, the ADOPT-project considers the treatment of stochastic and
noisy responses, discontinuities in responses, uncertain design variables, and inte-
ger design variables, as well as the application to a range of mechanical engineering
design problems.

The contribution of the thesis is threefold. First, a software framework for se-
quential approximate optimization has been developed in the scope of the ADOPT-
project. The framework provides an open environment for the specification and im-
plementation of SAO strategies. This enables one to re-define the SAO strategy and
to tailor the approximations such that theymatchwell with the problemproperties at
hand. Secondly, approximation methods are developed specifically for simulation-
based optimization of manufacturing flow lines. The analysis model involved in
this type of problems is a discrete-event simulation model. Optimization properties
that arise relate to the stochastic responses from the simulation model and the inte-
ger design variables, such as the numbers of machines and batch sizes. Thirdly, the
thesis contributes on the development of the so-called Effective Process Time (EPT)
approach. EPT is a means to characterize flow time performance from a queueing
physics point of view. The new metric gives the opportunity to arrive at simple
but accurate simulation models since it avoids the detailed modeling of all kinds of
processing disturbances present at the shop floor.

The framework for sequential approximate optimization has been developed us-
ing an object-oriented class structure and contains a toolbox of methods, (external)
numerical routines, and interfaces to other software. The framework enables to spec-
ify (i) the optimization problem, including the simulation model for the evaluation
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vi Summary

of the objective function and constraints, (ii) the SAO sequence defining the order
of computational steps, and (iii) the numerical routines used in each step. A typ-
ical SAO sequence consists of a number of computational steps, regarding to, e.g.,
the design of experiments, the approximation building, and the approximate opti-
mization solving. The numerical routines used in the SAO steps are represented as
‘black-box’ functions, e.g. from external software libraries. The framework enables
the user to (re-) specify or extend the SAO sequence and computational steps, which
is generally not possible in most available SAO implementations. A ten-bar truss
design problem with fixed loads and uncertain loads demonstrates the flexibility of
the framework. Within the ADOPT-project, the SAO framework has been applied
to a broader range of optimization problems, including optimization of Microelec-
tromechanical Systems (MEMS) and manufacturing systems, and optimization for
robustness and reliability.
The Effective Process Time (EPT) approach is a means to characterize capacity

and variability in workstations of manufacturing systems. The concept of EPT has
already been formulated in work of others, but no method has been proposed to ac-
tually measure EPT in operating factories or simulation models. EPT is an overall
measure that includes process time of a product and process disturbances, such as
machine failure, setup times, and operator availability. The aim is to develop algo-
rithmswhich compute the EPT capacity and variabilitymeasures based on data from
the manufacturing system. The computed EPT values can be used as performance
measure that relate to the queueing physics of workstations and indicate the flow
time performance of a manufacturing system. Algorithms have been developed for
workstations that manufacture single products and workstations that manufacture
products in batches. Both types of workstations are commonly used in semicon-
ductor manufacturing. The EPT algorithms have been tested using small examples
of simulation models and have been applied on operational data of a Philips Semi-
conductor wafer fab. This application resulted in simulation meta models of each
workstation, which may be combined into a meta model of the complete factory.
Sequential approximate optimization of manufacturing systems requires good

quality approximation models. In this thesis manufacturing systems are optimized
for flow time performance. Queueing theory shows that flow time behaves highly
non-linear for capacity-related design variables. The newly proposed approxima-
tion functions developed for the SAO method are able to characterize these non-
linearities. In earlier work the use of linear regression models was suggested. In this
thesis, the method is extended and generalized using the concept of EPT. With the
proposed EPT parameters available, the flow time performance of a workstation can
be characterized. The idea is to use the EPT parameters in the flow time approxima-
tion model and include queueing physics in the response surfaces. The parameters
of the response surface model are estimated based on simulation responses of the
discrete-event model. This new type of approximation has been implemented in the
SAO framework. The proposed optimization approach has been successfully tested
on two simulation-based design problems: a four-station flow line and a twelve-
station re-entrant flow line. Both pure integer and mixed-integer cases were consid-
ered and the optimization problems included up to twelve design variables.
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Chapter 1

Introduction

Manufacturing systems are becoming increasingly complex. Especially in technolog-
ically advanced industries, manufacturing is characterized among others by many
process steps, various products types, and advanced process equipment. An exam-
ple of one of the world’s most complex manufacturing systems is found in semicon-
ductor industry. The production of Integrated Circuits (ICs) is a large-scale operation
and consists of hundreds of process steps. The IC production facility as discussed
in Van Campen (2001) is a multi-process multi-product wafer fab producing about
10 different main IC product types (technologies). Due to the high cost of equip-
ment, it is not possible to build one long manufacturing flow line with a machine for
each process step. Instead, a re-entrant flow line is used for the production of ICs,
gathering equipment of the same functionality into workstations. Each workstation
is typically related to one of the process operations, such as lithography, implanta-
tion, etching, oxidation, and deposition. The wafers with ICs revisit the workstations
multiple times during their flow through the production facility.

Semiconductor Manufacturing

An IC consists of millions of microscopic electronic components, mainly transis-
tors, as well as passive components like resistors. An IC is built up from several
layers produced on a silicon wafer. Each separate layer has different electrical
properties and a different geometric pattern representing the circuit design infor-
mation. Each layer itself is created by a sequence of operations. A number of
these (more or less the same) sequences is needed to complete a working IC. The
electrical properties and patterns are created by adding, altering, and removing
material in each layer. The basic operation that transfers the geometric pattern
information to the wafer surface is lithography.

The manufacturing system design aims at maximizing output, yield, delivery
performance, and flexibility and at minimizing flow time to obtain maximal rev-
enues. This thesis focuses on optimization for flow time performance. Understand-
ing the factory physics of the discrete-event manufacturing system plays a key role
here. Helpful tools for the analysis and the (re-) design of manufacturing systems
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2 Introduction

B M

Figure 1.1: A workstation with one buffer B and one machine M.

are analytical models as well as simulation models. These models are used to pre-
dict manufacturing system performance regarding operational or design decisions.
Much effort is done to reduce flow times in manufacturing systems, especially in

make-to-order environments. Flow time is the total amount of time from release of
the product at the beginning of the flow until the product reaches the end of the flow.
In a real-world factory, flow time of a product can be identified by measuring the
time that the product enters the line and the time the product departs (is finished).
This product flow time is the sum of flow times accumulated at each (re-entrant) visit
of a workstation. The workstation flow time includes waiting time to be processed
and process time.
Two other important measures are throughput and work-in-progress. Throughput

is the amount of products produced per time unit and work-in-progress is the to-
tal amount of products in the factory. Together with flow time, these measures are
related to factory physics following Little’s law (Little, 1961):

w = ϕ · δ (1.1)

where w is the mean work-in-progress, ϕ is the mean flow time, and δ is the mean
throughput. This equation relies on the precondition of product conservation, that
is, the amount of non-manufactured products that enter the factory should on the
long run be equal to the amount of manufactured products that leave the factory
(steady-state).

1.1 Why do queues arise?

“Variability causes congestion.” This statement from the textbook of Hopp and
Spearman (2001) represents another issue of factory physics. We will illustrate this
statement by a very simple example of a workstation with one infinite buffer B re-
presenting the queue and one machine M representing the server (see Figure 1.1).
The buffer is the waiting line where arriving parts have to wait before they can be
manufactured by the machine. It is assumed that the parts are served on first-come-
first-served basis. We will now discuss the deterministic case in which there is no
variability, followed by the stochastic case in which there is variability.
Suppose parts arrive at a pace of 12 parts/hour, i.e. the interarrival time of the

parts is 5 minutes. Suppose that the maximum capacity of the machine is 15 parts/
hour, which means that the machine is able to complete one part in 4 minutes. As-
sume that exactly every 5 minutes a part arrives, and that each part is processed for
exactly 4 minutes. As soon as a part arrives at the queue (which is empty), the part
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will immediately be processed for 4 minutes. The machine now has to wait for one
more minute for the next part to arrive. That part, again, arrives at an empty queue.
In the end, none of the arriving parts has to wait in line for an other part that is still
being processed and the average waiting time is 0 minutes.
Now suppose variable process times, for example, 50% of the parts needs pro-

cessing for exactly 1 minute (product type A), and the other 50% needs processing
for exactly 7minutes (product type B). The average process time is still 4 minutes, but
now it has become stochastic. Assume the same arrival pace of exactly 12 parts/hour,
but the arrival stream is a randommix of product type A and product type B. Due to
this random arrival mix, it might happen that two or more parts of product type A
arrive successively. In that case none of the parts has to wait, since the process time is
just 1 minute and each product has finished processing before the next part arrives.
It might also happen that two or more parts of product type B arrive successively. In
this case a queue arises, because process time takes 7 minutes. Thus after 5 minutes,
the next arrived part of type B has to wait for 2 minutes. The waiting time further
increases when the following part is again of type B. As a consequence, the average
waiting time is always larger than 0 minutes, i.e. a queue arises.
Variability in the example relates to the processing times at the machine. Gen-

erally, also variability regarding interarrival times is present. Thus we have both an
interarrival time distribution and a process time distribution. Considering the first two
moments, the interarrival time distribution can be represented by mean interarrival
time ta and standard variance σa. The same holds for the process times; the process
times are distributed with mean effective process time te and standard deviation σe.
A dimensionless measure of variability c can be defined to interpret the amount of
variability: ca = σa/ta for the interarrival time distribution and ce = σe/te for the
process time distribution. In the manufacturing system context Hopp and Spearman
(2001) identify the following three categories:

• c < 0.75: low variability

• 0.75 < c < 1.33: moderate variability

• c > 1.33: high variability

Exponential distributed process times or Poisson arrivals correspond with a coef-
ficient of variation of 1.0, an assumption that is frequently made in mathematical
queueing models (Kleinrock, 1975).
With te, ce, ta, and ca available, queueing theory can be used to determine the

expectedmeanwaiting time over the long run. Themeanwaiting timeϕq in a single-
server workstation with generally distributed arrival times and process times (i.e. no
assumption is made regarding the shape of the distribution) can be approximated by
(see, e.g., Hopp and Spearman, 2001):,

ϕq =
c2a + c2e
2

u

1− u te (1.2)

where u = te/ta is the utilization. Utilization is a measure to indicate how busy the
machine is, i.e. the fraction of time a machine is busy processing. Utilization u is
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bounded by the range 0.0 ≤ u < 1.0. If u ≥ 1.0 the workstation is not stable and
the queue length and waiting time will go to infinity. From (1.2) we can learn that
for high levels of variability and high levels of utilization, the system will show long
queue times. For systems with low variability and low utilization, queueing time is
short. Furthermore, mean flow time increases in a non-linear fashion for increasing
utilization towards the asymptote at u = 1.0.

1.2 Analysis of flow time performance

Variability and utilization are the main drivers for flow time. In fact, in real-world
factories there are lots of reasons why variability in arrivals and processing occur.
Typically, variability in processing is due to disturbances such as:

• failure of machines,

• operator availability,

• setup times,

• maintenance,

• starvation of material, and

• different product types.

All these disturbances are events that happen in reality at the shop floor. The distur-
bances cause loss of capacity, i.e. affect utilization, and cause variability in process
times. Variability in processing implies variability in interdeparture times which
causes variability in arrivals at the next workstation.
To understand flow time performance of an operating factory, both capacity losses

and variability should be quantified at each of the workstations. In industry it is
therefore common practice to measure important disturbances such as time to fail-
ure and corresponding time to repair. A typical performancemeasure used in indus-
try to quantify capacity losses is the Operational Equipment Effectiveness (OEE),
which relates to the time a machine is effectively processing products (Nakajima,
1988; SEMI, 2000). It is however remarkable to observe that no measure for variabil-
ity is available. Adding up the contributing sources of variability at a workstation
is not straightforward, since it requires the identification of all sources of variability.
Unfortunately, this means that all, or at least themost important disturbances have to
be measured separately. This is a difficult task, since the number of different distur-
bances can be large and some disturbances may even be unknown. By only focusing
on utilization one may overlook the opportunities for performance improvement by
reducing variability.
When considering changes in the manufacturing system design or designing a

new one, methods for flow time prediction are needed. Two main fields of analysis
methods can be identified: analytical models and simulation models. In queueing
theory many analytical models of queueing networks have been developed for the
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Figure 1.2: Real-life flow times vs. simulation flow times.

analysis of manufacturing systems. Examples of such models are queueing models,
such as (1.2), that predict mean flow time. These models are well designed to de-
scribe the physics of manufacturing systems. However, the scope of these models
is restricted by assumptions that have to be made in the development of the model.
Furthermore, the variety of shop floor realities that can be covered is limited. For ex-
ample, no mathematical equations are available to describe the flow time behavior
of batching equipment with recipe-dependent batch forming rules.
This thesis focuses on the second option to use a discrete-event simulation model

to predict flow time inmanufacturing systems. Themethod of discrete-event simula-
tion is much more suited to incorporate all kinds of shop floor realities in the model.
The simulation simply mimics the flow of parts through the manufacturing system
and may include all sorts of events related to disturbances the modeler deems im-
portant. Here again, the difficulty arises that it is impossible to include all shop floor
realities. Although a lot of shop floor detail can be included, it may still be difficult
to get all the appropriate factory data, to fit appropriate distributions to the data, and
to validate the simulation models. This was also observed by Van Campen (2001) as
described in the example below.

Modeling of MOS4YOU wafer fabrication

During the study of Van Campen (2001) discrete-event simulation studies in the
context of the design and the operation of the Philips Semiconductor factory
MOS4YOU were carried out. One simulation study dealt with the modeling of
the flow of wafers. A bottom-up approach was used such that all individual pro-
cesses and the most important sources of process disturbances were modeled.
The discrete-event simulation model included (i) 161 production machines, (ii)
the routings of all important production types, (iii) normal production lots and
priority lots, (iv) failure of equipment, and (v) hold lots. All parameters in the
model were determined using available historical data from the manufacturing
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execution system. Although the model was detailed and the product flow was
a good representation of MOS4YOU, the estimated mean flow time by the sim-
ulation was only half of the real flow time of the MOS4YOU wafer fabrication
facility as shown in Figure 1.2. Van Campen concluded that the amount of vari-
ability present in the model was not sufficient. He suggested to further identify
and include other disturbances.

1.3 Optimization with a discrete-event simulation mo-

del

With a simulation model available, it is possible to pose what-if questions related to
relevant design decisions. This can be done by performing simulations for various
settings of the design parameters. For a small number of design variables, this search
for the best possible parameter setting can be done rigorously by exhaustive search
and simulating a grid of design points. For a larger set of design variables, this
cannot be applied especially when the simulation model is needed for flow time
prediction. A simulation model typically requires a considerable amount of time
(may range in the order of minutes to hours), which limits the number of simulation
evaluations that can be carried out.
Simulation optimization is a means to find an optimal set of parameters for com-

putationally expensive simulation models. The design of manufacturing systems
can be formulated as an optimization problem. The following constrained optimiza-
tion problem is considered:

minimize f (r(x), x),
subject to g(r(x), x) ≤ 0, and

xℓ ≤ x ≤ xu
(1.3)

with x the vector of design variables, f (r(x), x) the objective function, and g(r(x), x)
the vector of constraint functions. Design variable xi belongs to the vector of design
variables x, with i = 1, . . . , n and n the number of design variables. Vectors xℓ and
xu represent the lower and upper bounds of the design space for each of the design
variables in x. Constraint g j belongs to the set of constraint functions g, with j =
1, . . . , q and q the number of constraint functions.
In this thesis it is assumed that a discrete-event simulation model is used to com-

pute responses r for certain design variable values x. The responses of the simula-
tion model are used to evaluate objective function f (r(x), x) and constraint functions
g(r(x), x). Objective f and constraints g are functions of the simulation responses
and/or the design variables itself. Some functions may be fully explicit relations
that can be calculated without using the computationally expensive simulation mo-
del. But as long as the simulation model is in the loop for response computation for
at least one objective or one constraint, optimization of manufacturing systems is a
computationally expensive task in which the number of simulation evaluations has
to be limited. A decision support tool for the (re-) design of manufacturing systems
would be helpful here.
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Figure 1.3: Simulation-based optimization.

In operations research, optimization problem (1.3) is called a simulation opti-
mization problem. Simulation optimization approaches can be visualized as shown
in Figure 1.3 (Gosavi, 2003): a simulation model is connected to an appropriate opti-
mization algorithm. In reviews on simulation optimization, see, e.g., Fu (1994) and
Carson and Maria (1997), a number of different approaches can be distinguished.
The major techniques are: (i) gradient based search methods, (ii) stochastic methods,
and (iii) Response Surface Methodology (RSM).

Gradient based methods estimate the response function gradient. This estimated
gradient is used to compute a new search direction iteratively. For discrete-event
simulation, gradients can be obtained using two different approaches: (i) single-
path methods, e.g., perturbation analysis (Glasserman, 1991) and the likelihood ra-
tio method (also called the score function method) (Rubinstein, 1986), or (ii) finite-
difference schemes. The single-path methods obtain gradient information based on
one single run of the discrete-event simulation model. However, single-path meth-
ods are not suited to determine gradient information for ‘structural’ parameters in
the discrete-eventmodel such as number of machines or number of operators, which
are strict integer variables. The idea of, for instance, perturbation analysis is that it
applies small perturbations on distributional parameters. Furthermore, single-path
methods cannot be applied to black-box models, since it requires the incorporation
of some additional features in the simulation model. Gradients for black-box simula-
tion models, can only be computed through finite-differences. The computationally
expensive finite-difference method is however also not able to compute gradients
for ‘structural’ type of parameters, which can usually only be simulated at integer
levels (e.g. number of machines, buffer sizes, and batch sizes). Moreover, due to the
stochastic simulation responses, gradients via finite-differences may be inaccurate
which slows down the convergence rate of the optimization algorithm that is used.

Stochastic optimization methods represent a second group of methods for sim-
ulation optimization. Examples are genetic algorithms and simulated annealing.
These stochastic methods can be more generally applied, since these methods have
no requirements on the design variables and can be used for black-box models. Ma-
jor drawback is however that these methods require a large number of simulation
evaluations, especially for an increasing number of design variables. Due to the
random nature of these methods it is generally impossible to predict the required
number of simulations beforehand.

Thirdly, RSM techniques are employed for simulation optimization. Basic RSM
is a means to obtain an approximation of the objective function for the entire design
space. RSM is explained in detail in textbooks such as of Myers and Montgomery
(2002). For optimization purposes sequential RSM is used. A pure linear approxima-
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tion is built in a subdomain of the design space based on a design of experiments
of simulation evaluations. This local linear approximation is used to determine the
steepest-descent direction. In this direction a line searchmethod is carried out which
delivers an improved design. This design is starting point for the next iteration in
which a new local approximation is built that determines a new steepest-descent di-
rection. When the optimal solution is approached, sequential RSM typically switches
to quadratic approximations to catch the location of the optimal solution. Within
the operations research field, optimization with a discrete-event simulation model is
usually considered for unconstrained optimization problems. Recently, a constraint
version of sequential RSM for simulation optimization has been proposed by Angün
et al. (2003). Activity of constraints is accounted for in the determination of the search
direction.

1.4 Sequential approximate optimization

Simulation-based optimization problems are encountered in various research fields,
such as mechanics, thermodynamics, fluids, acoustics, and electrodynamics. In each
of these research fields a computationally expensive simulation model is employed
for analysis purpose. This implies that the optimization has to be carried out with a
computationally expensive simulation model in the loop. The term simulation refers
here to any analysis model that takes a considerable amount of computing time.
Examples of simulation models other than discrete-event simulation are, e.g., finite
element method analysis in a linear or non-linear setting, and numerical integration
of a large set of ordinary differential equations or differential-algebraic equations.
In the field of structural optimization simulation-based optimization problems

are studied with a computationally expensive Finite Element Method (FEM) calcu-
lation included in the optimization loop. The FEM calculation is in most cases how-
ever deterministic, contrary to the stochastic discrete-event simulation. In the jour-
nal issues of Structural and Multidisciplinary Optimization and International Journal for
Numerical Methods in Engineering many different techniques can be found to solve
structural optimization problems. Structural optimization problems are defined for,
e.g., truss design problems of towers and bridges, and vehicle design problems, such
as minimizing vibrations in cars and airplanes.
Sequential Approximate Optimization (SAO) is a well-known technique in the

structural optimization field. SAO is similar to sequential RSM, with two major dif-
ferences: (i) SAO builds approximationmodels for objective and constraint functions,
and (ii) SAO does not apply a line search method in each iteration to obtain a bet-
ter design. For each iteration, SAO builds new local approximations for objective
and constraints in a search subregion of the design space. Within this subdomain,
a mathematical programming solver is used to solve the approximate optimization
problem with respect to the approximate objective function and the approximate
constraint functions. This results in a new approximate optimal solution within the
subdomain, without applying line search. If the newly obtained optimal solution
of the approximate optimization problem has improved compared to the earlier ob-
tained solutions, this new approximate optimal solution is starting point for the next
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Figure 1.4: Sequential approximate optimization in structural optimization.

iteration. The search subregion is moved in this direction. This concept of SAO is de-
picted in Figure 1.4 and shows that the mathematical optimizer always applies to the
explicit approximation model and never directly to the computationally expensive
simulation model.

In structural optimization, two major SAO methods can be distinguished: (i)
single-point methods and (ii) multiple-point methods. The single-point methods
build approximationmodels based on function evaluations and gradient evaluations
in one single point of the subdomain. In many FEM calculations, gradients can be
calculated at only little extra computational cost. Then, the single-point method can
be applied efficiently. Whenever gradients are not available or cannot be easily com-
puted by finite differences, multi-point SAO can be applied.

Toropov et al. (1993) introduced a well-known multi-point SAO strategy within
the structural optimization field. In each iteration, this method builds response sur-
face models using a restricted number of simulation evaluations at carefully selected
design points within each search subregion. A move limit strategy is used to de-
fine the sequence of search subregions. Relocation of the search subregion is often
done in the direction of the last accepted approximate optimal design. Toropov et al.
(1993) take the last cycle optimal design as corner point in the next search subre-
gion. One may also move the search subregion such that the last accepted design is
in the center of the subdomain of the next iteration. Several other rules for resizing
and moving the search subregion are possible (see, e.g., Wujek and Renaud, 1998).
Typically, these move limit strategies are heuristic in nature and may differ for the
various application domains.

SAO methods are useful in many application domains. A challenge for each do-
main is the development and use of good quality approximation models. In struc-
tural optimization, linear and reciprocal approximation models are used to describe
the underlying physics of stress and displacement functions. Reciprocal approx-
imations were introduced by Schmit and Farshi (1974) to describe stress and dis-
placement constraints more accurately. Fleury and Braibant (1986) developed the
convex linearization approach (CONLIN) combining linear and reciprocal approxi-
mation functions. Another example is the use of reciprocal intervening variables in
the method of moving asymptotes of Svanberg (1987). These approximation models
match well with the monotonically decreasing or increasing stress and displacement
constraints.

In the field of simulation optimization, flow time responses also have asymp-
totes (for utilization near one), but the underlying physics of the flow time is differ-
ent compared to the physics of stresses and displacements. This means that for each
application domain, different approximationmodels have to be developed. Unfortu-
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nately, SAO strategies are usually offered as some (black-box) code that call external
user routines. Changes of the approximation function or the SAOmethod cannot be
easily realized.

1.5 ADOPT-project

The ADOPT-project is a joint effort of three research groups at Eindhoven Univer-
sity of Technology and Delft University of Technology. The project is financed by the
Dutch technology foundation STW. The research project starts from SAO as method
for simulation-based optimization that can be successfully applied to a wide range
of engineering application domains. Aim of the project is to further develop exist-
ing SAOmethodologies, with the focus on applications that deal with the following
characteristics: uncertainties, discontinuities, and discrete design variables. In the
context of mechanical engineering, these characteristics are common for simulation-
based optimization.
The idea is to develop methods for SAO which should be included in one SAO

software tool. The use of good quality approximation models in the SAO method is
essential. Each application domain may require application specific approximation
models. Besides the development of new approximations models, each application
domain may also require the development of new SAO strategies. The SAO strategy
defines, e.g., how the subdomains are moved through the design space or which
(and how many) design points are evaluated that built the approximation model in
each iteration.
Within the ADOPT-project three different research fields are involved: the Dy-

namics and Control group and the Systems Engineering group at the Eindhoven
University of Technology and the Structural Optimization and Computational Me-
chanics group at the Delft University of Technology. Four PhD students are involved
for each of the following application domains:

• (multi-body) dynamical systems,

• composite structures,

• Microelectromechanical Systems (MEMS), and

• manufacturing systems.

Each of these four application domains deals with optimization including a com-
putationally expensive simulation model in the loop. The simulation models in-
volved are: numerical integration of a set of differential equations (multi-body sys-
tems), FEM analysis (composites structures and MEMS), and discrete-event simula-
tion (manufacturing systems).
Furthermore, each application domain deals with one or more of the character-

istics mentioned before. Focus of the multi-body dynamical systems PhD research
project is on uncertainties with known distributions, specifically related to reliability-
based optimization, and optimization for robustness. More specifically, this research
field deals with uncertain design variables with known distribution functions. The
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MEMS research project considers bounded-but-unknown uncertainties, i.e. uncer-
tainties for which upper and lower bounds are given, but the distribution functions
are not known. Variation of length-scale parameters of 10% in a MEMS structure
is very common. The focus of the composite structures research project is on the
inclusion of FEM gradient information in the response surface model building, and
the treatment of discontinuities. Typical design variables are, e.g., fiber angles. Some
fiber angle combinationsmay lead to impossible solutions (incomplete function eval-
uations) and small deviations in fiber angles may lead to large jumps in response
functions (discontinuities).
The research field of this thesis focuses on manufacturing systems. The use of

discrete-event simulation models implies the following characteristics: design vari-
ables may have integer restrictions, simulation responses are stochastic, and some
design points may lead to non-analyzable simulations. Typical integer design vari-
ables are, e.g., number of machines, number of operators, number of buffer sizes, and
number of batch sizes. The simulation model can only be evaluated at the integer
levels of these design variables. The underlying physics, however, is continuous.
Therefore, the approximation models may still be continuous functions. The inte-
ger restriction influences, however, the implementation of: the move limit strategy,
i.e. how the subregions are placed in the design space, the design of experiments, and
the approximate optimization solver. Typical discrete-event simulation responses,
such as flow time and throughput, are stochastic. This is caused by the stochastic
nature of discrete-event simulation models itself. Certain design points may lead to
non-valid simulations. This is the case whenever the required throughput exceeds
the bottleneck capacity of the system. Such a system does not deliver a steady-state
solution and cannot be analyzed. Such non-analyzable regions in the design space
lead to discontinuities in response functions.

1.6 Research questions

Within the context of the ADOPT-project, this thesis concentrates on the following
two main research questions:

(i) Can approximate optimization concepts be employed for simulation optimiza-
tion of discrete-eventmanufacturing systems regardingflow time performance,
and which methods and tools are required for this purpose?

(ii) Can operational time variability be quantified in a single performancemeasure
using shop floor data without identifying the individual contributing distur-
bances, and can such a method also be employed to obtain simple but accurate
simulation models of manufacturing flow lines?

The first research question studies the use of RSM techniques in a multi-point se-
quential approximate optimization approach for the optimization of flow time per-
formance in discrete-event manufacturing systems, taking into account the proper-
ties as mentioned before. In order to reduce computational time of simulation-based
optimization of manufacturing systems, it is suggested to build computationally
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fast approximation models based on a small number of carefully selected simula-
tion runs of the simulation model. The SAO concepts from structural optimization
will be used for this purpose. The approximation models can be used iteratively by
the optimizer to search for an approximate optimal design. The main challenge is to
develop good quality approximations that are suited to model the typical flow time
responses in manufacturing systems.

Recently, Abspoel et al. (2001) developed a multi-point SAO technique for simu-
lation-based optimization of manufacturing systems. Abspoel et al. (2001) approxi-
mated the objective and constraint functions using pure linear approximation mod-
els. Only integer design variables, such as number of machines and batch sizes, were
considered. The pure linear approximations are not able to represent the curvature
in the flow time response functions. Abspoel et al. (2001) observed that, as a result,
optimization runs often ended in neighbors of the known discrete optimal solution.

Gijsbers (2002) extended the method of Abspoel et al. (2001) to more general lin-
ear regression models. The regression model he proposed is able to approximate
more accurately the flow time responses of discrete-event manufacturing systems.
The flow time was approximated by a linear regression model in which the number
of machines per workstation is treated as a design variable. This regression model
included one asymptote for each workstation which is typical for the flow time re-
sponse. This idea significantly improved the convergence behavior of the test prob-
lems presented in Abspoel et al. (2001). However, design variables other than the
integer number of machines and machine types other than single-lot machines were
not considered.

The second research question is motivated as follows. Simulation-based opti-
mization of manufacturing systems requires good quality and valid discrete-event
simulation models. Such simulation models have to reflect the capacity and vari-
ability effects in order to predict flow times accurately. To build accurate models, it
is required that the model includes all important shop floor realities. Examples of
shop floor realities are processing, setups, failure of machines, operator availability,
and dispatching rules. For the process times as well as the processing disturbances
the distribution function has to be taken into account. These distribution functions
may be estimated frommeasured data of the operating factory. In practice, however,
it is difficult to measure all individual process disturbances. Some process distur-
bances cannot be measured at all and others may even be unknown. This is also the
reason why the measure for variability as mentioned in Section 1.2 is still missing.

In the book of Hopp and Spearman (2001) variability is estimated from the indi-
vidual contribution of each of the process disturbances. This requires knowledge of
all (or the most important) contributing disturbances, which is often not available.
The idea followed in this thesis is to quantify variability of an operating factory, with-
out measuring each individual processing disturbance. Hopp and Spearman use the
concept of effective process time to include all variability effects into a single mea-
sure. Basically, the effective process time includes processing time and all process
disturbances. However, a method that can be used to measure effective process time
in an operating factory without identifying the individual disturbances is not avail-
able. Such a measure would be highly valuable to understand factory physics and
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may also provide new opportunities to build simple but accurate simulation models
of manufacturing flow lines.

1.7 Objectives and approach

Based on the two research questions posed in the previous section, this thesis focuses
on the following three research objectives:

• development of a framework for sequential approximate optimization that can
be used in various application domains, including simulation-based optimiza-
tion of manufacturing systems,

• development of variability measures based on the concept of effective process
time that can be used in flow time performance analysis, and

• development of good quality flow time approximationmodels based on queue-
ing physics for use in sequential approximate optimization of manufacturing
systems modeled by discrete-event simulation.

The first objective is motivated by one of the main goals of the ADOPT-project.
The aim is to develop an open environment for the development and use of SAO ap-
proaches in various application domains. This thesis proposes an SAO framework
that gives access to the different computational steps of the SAO strategy. This re-
sults in a flexible software tool in which computational steps for SAO can easily be
changed, added, and rearranged. The developed framework has a different purpose
than existing software packages. Most available packages have a more general mul-
tidisciplinary optimization scope of application and are not specifically designed for
the development of sequential approximate optimization strategies.
Regarding the second objective, flow time performance relies mainly on the two

important factory physics entities: utilization and variability. To understand the fac-
tory physics of a manufacturing system, a performance measure that quantifies both
utilization and variability is needed. Unfortunately, available performancemeasures
that can actually be measured in an operating factory, like OEE, are only related to
utilization. The concept of effective process time introduced by Hopp and Spear-
man (2001) is promising to measure both utilization and variability in an operating
factory. However, definitions to actually measure effective process times based on
operating factory data are missing. But the basic idea of the effective process time to
include time losses does give a starting point. The idea is to compute effective pro-
cess time realizations of individual parts based on a list of events with arrival and
departure times of parts at each workstation. We propose a new method to compute
effective process times from such a data set. This approach enables one to estimate
the mean and variance of the effective process time of a workstation. This gives the
desired quantification of mean and variance of effective process time.
The third objective focuses on the development of good quality flow time ap-

proximation models. In order to build high quality approximation models that de-
scribe flow time performance, the factory physics of manufacturing systems has to
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be analyzed. The idea is to take as starting point the observation that utilization and
variability are the main drivers for flow time performance. The regression approx-
imation model of Gijsbers (2002) already included the utilization effects when the
number of machines is treated as a design variable, but did not include variability.
This regression model is further improved and generalized to include the effect de-
sign variables may have on both utilization and variability. This allows to include
various types of design variables. For instance, variables that affect disturbances
may be treated as a design variable. The new flow time regression model will be
used to define the approximate optimization problems in which the design variables
can be continuous or integer. Since capacity and variability are the main drivers for
flow time, the use of effective process time in the flow time approximations is essen-
tial here. The good quality approximation model for flow time performance is now
based on utilization and variability measures.

1.8 Outline

This thesis consists of four research chapters, Chapter 2 till Chapter 5. Chapters 2
and 3 have been published as journal articles in Structural and Multidisciplinary Op-
timization and IEEE Transactions on Semiconductor Manufacturing, respectively. Chap-
ter 4 has been submitted for publication in IEEE Transactions on Semiconductor Man-
ufacturing. This paper was written together with P. P. van Bakel for which he is
gratefully acknowledged. Chapter 5 has yet to be submitted. The original text of
each journal article is presented here. Each chapter is self-contained. Finally, the
main conclusions of this work and recommendations for further research are given
in Chapter 6.
Chapter 2 describes the newly developed software framework for sequential ap-

proximate optimization. This framework has been developed within the ADOPT-
project. Chapter 3 introduces the concept of effective process time. This chapter
proposes algorithms that can be used to measure Effective Process Time (EPT) real-
izations for single-machine workstations andmultiple-machine workstations. Chap-
ter 4 continues on the EPT concept and proposes EPT algorithms for batching equip-
ment. This type of equipment processes a collection of products at once. Batching
equipment is common in semiconductor industry. Chapter 5 merges the ideas of
SAO simulation-based optimization with the EPT concept. The main contribution is
the development of a high quality flow time approximation model. This flow time
approximation uses the EPT algorithms developed in Chapters 3 and 4. These flow
time approximations are embedded in an SAO strategy that has been developed us-
ing the SAO framework described in Chapter 2.



Chapter 2

Framework for Sequential
Approximate Optimization

An object-oriented framework for Sequential Approximate Optimization (SAO)
is proposed. The framework aims to provide an open environment for the spec-
ification and implementation of SAO strategies. The framework is based on the
Python programming language and contains a toolbox of Python classes, meth-
ods, and interfaces to external software. The framework distinguishes modules
related to the optimization problem, the SAO sequence, and the numerical rou-
tines used in the SAO approach. The problem-related modules specify the opti-
mization problem, including the simulation model for the evaluation of the ob-
jective function and constraints. The sequence-related modules specify the se-
quence of SAO steps. The routine-related modules represent numerical routines
used in the SAO steps as ‘black-box’ functions with predefined input and out-
put, e.g. from external software libraries. The framework enables the user to (re-)
specify or extend the SAO dependent modules, which is generally not possible
in most available SAO implementations. This is highly advantageous since many
SAO approaches are application-domain specific due to the type of approxima-
tion functions used. A ten-bar truss design problem with fixed loads as well as
uncertain loads is used as an illustration and demonstrates the flexibility of the
framework.

2.1 Introduction

Approximations often play a key role in the efficient solution ofmultidisciplinary de-
sign optimization problems. Several different approximation approaches have been
proposed (see for an overview, e.g., Barthelemy and Haftka, 1993) and have been

Reproduced from: Jacobs, J. H., Etman, L. F. P., VanKeulen, F., and Rooda, J. E. (2004).
Framework for sequential approximate optimization. Structural andMultidisciplinary
Optimization, 27(5):384–400
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successfully used in various optimal design applications. Many approaches follow
a Sequential Approximate Optimization (SAO) approach to build and solve a series
of approximate optimization subproblems. An introduction to SAO techniques can
be found in Haftka and Gürdal (1991).

SAO methods are used especially when a computationally expensive and/or
noisy simulation model is part of the optimization loop. In order to assure a rea-
sonably fast optimization, the number of calls to the simulation model, i.e. the num-
ber of evaluations of objective function f (x) and constraint functions g(x), has to
stay small. Therefore, SAOmethods build computationally inexpensive (explicit) ap-
proximations for f (x) and g(x) using a restricted number of simulation evaluations
in a subregion of the total design space. The resulting approximate optimization sub-
problem can be easily solved within the search subregion using any suitable mathe-
matical programming algorithm. A move limit strategy (or trust region strategy) is
used to successively define the sequence of search subregions in which approximate
optimization subproblems are built and solved. Generally, each approximate opti-
mal design is evaluated using the simulation model. The SAO process is stopped
whenever certain stopping criteria are met, e.g., when no further improvement is
observed or the maximum number of iterations is reached.

SAO techniques do not necessarily require gradient information. Many simula-
tion models do not provide gradient information. If gradient information is avail-
able, gradients can be incorporated in the approximation building. In this way, com-
putational time can be reduced or more design variables can be included.

Two basic types of SAO techniques are commonly employed: (i) single-point ap-
proximations, and (ii) multi-point approximations. A single-point approximation is
based on simulation results in just a single design point of the design space. Typ-
ically, function value and gradient information is used for this purpose. Various
single-point approximation methods have been proposed. The simplest one is to
build linear approximations of objective function and constraints, which yields a
sequential linear programming (SLP) approach (Pedersen, 1981). For structural op-
timization, reciprocal approximations were introduced by Schmit and Farshi (1974)
to describe stress and displacement constraints more accurately. Fleury and Braibant
(1986) developed the convex linearization approach (CONLIN) combining linear
and reciprocal approximation functions. TheMethod ofMovingAsymptotes (MMA)
presented by Svanberg (1987, 1995, 1999) generalizes the convex linearization ap-
proach by allowing the (convex) curvature in the approximation to change. An
overview of move limit strategies for single-point approximations can be found in
Wujek and Renaud (1998). Alexandrov et al. (1998) give a mathematical foundation
of the use of trust regions in the single-point SAO context.

Multi-point approximations require simulation data in more than one design
point to build the approximation. Several different approaches can be found. Van-
derplaats (1979) introduced a sequential approximate optimization strategy, which
in each cycle adds one simulation of a design point to the total set of evaluated de-
signs. The complete set of evaluated designs is used to create an approximation
using the best possible Taylor series expansion, until a full quadratic approximation
is possible. In each cycle, the CONMIN optimizer was used by Vanderplaats (1976)
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to solve the approximate optimization problem within the search subregion. The ap-
proximate optimum is simulated and then added to the set of evaluated designs. The
updated set is used to create a new approximation. The search subregion is moved
such that the last added design becomes the new center, while keeping the subregion
size constant. Brekelmans et al. (2004) also add one simulation evaluation at a time
in their sequential approach, but they chose between the objective improving point
(i.e. the last obtained approximate optimal design) and a geometry improving point.
The latter point aims to improve the approximation.

Toropov et al. (1993, 1996) proposed a multi-point approximation method that
adds more than one design point in every new search subregion. They used linear
or posynomial function relations to approximate objective and constraint functions.
Rectangular search subregions are used. The size of the search subregion is reduced
if (i) the approximations are inaccurate or (ii) the newest approximate optimum is
found within the search subregion (no active move limit). The search subregion is
moved in the direction of the newest approximate optimum. Similar multi-point
approaches have been presented in Etman et al. (1996), Stander et al. (2003), and
Craig and Stander (2003); Craig et al. (2003).

Haftka et al. (1987) followed by Fadel et al. (1990), Wang and Grandhi (1995),
and others, aim to improve the local approximation by using function values and
gradient data in two points of the design space. Fadel and Cimtalay (1993) used
the exponents from the two-point exponential approximations as a measure for the
curvature which determines the move limit. Another example is the method of Sny-
man and Hay (2002), who build spherically quadratic approximations on the basis
of function values and gradient information in the current design point and func-
tion values in the previous point. Instead of a rectangular shaped search subregion,
they use spherical search subregions. Bruyneel et al. (2002) recently developed a
two-point generalization of MMA.

Solution of the approximate optimization subproblem is usually carried out by
means of a suitable optimization algorithm. Various algorithms are available vary-
ing from gradient-based mathematical programming solvers to heuristic optimiza-
tion solvers. Quite a number of software implementations of these algorithms are
available (commercially or public domain). See, e.g., OTC (2003) for an overview.
Optimization functionality may also be provided through an optimization language
environment such as AMPL (Fourer et al., 1993), AIMMS (Bisschop and Roelofs,
2002), or GAMS (Brooke et al., 1998), or through more general computing languages
such asMatlab (Mathworks, 2002). Typically, the mathematical programming imple-
mentations aim to be good quality (accurate) and robust general purpose minimizers
without a designation to a specific application domain. These solvers are generally
not designed to minimize the number of function evaluations in the first place.

Implementations of SAO strategies are usually offered in a similar fashion as
standard mathematical programming algorithms. That is, the SAO strategy is im-
plemented in some (black-box) code which calls external user routines. The SAO
strategy, as opposed to the abovementioned mathematical minimizers, assumes that
objective and constraint evaluations are expensive and that in general they cannot
be evaluated separately. From a user-perspective, these SAO implementations can
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be seen as a special class of optimization algorithms with specific simulation ‘reduc-
tion’ features. The price to pay is that they may not converge equally well for various
types of problems. MMA has proved to work well in structural type of applications,
since the reciprocal intervening variables in the approximations matches well with
the monotonically decreasing or increasing stress and displacement constraints (Pa-
palambros and Wilde, 2000). In other application domains different approximation
functions (or intervening variables) may be needed to take advantage of the SAO ap-
proach compared to general purpose line search or trust region based mathematical
programming algorithms.
We have developed a framework for the development and use of SAOapproaches

in simulation-based optimization applications. The framework enables the user to
(re-) specify or adapt an SAO strategy easily, which is generally not possible in most
available SAO implementations. The developed framework has a different purpose
than existing software packages such as iSIGHT (Koch et al., 2002), ModelCenter
(Phoenix, 2004), DAKOTA (Eldred et al., 2002), and others. These packages facilitate
easy integration of various simulation analysis software and offer a range of opti-
mization algorithms and design of experiments routines. They have a more general
MDO scope of application and are not specifically designed for the development of
sequential approximate optimization strategies. DAKOTA, for example, offers the
SAO strategy described in Giunta and Eldred (2000) as one of the various optimiza-
tion algorithm options.
This paper describes the framework and focuses on the layout and data struc-

ture of the framework, as well as the implementation in the programming language
Python (Van Rossum and Drake, 2003a). Section 2.2 gives the optimization problem
formulation. Section 2.3 describes the basic elements of the sequential approximate
optimization method. Section 2.4 elaborates these elements by providing a layout of
the framework. These elements are explained in an object-oriented way by means of
class diagrams. Section 2.5 presents the accompanying data structure. Section 2.6 de-
scribes the implementation of the framework in Python and explains the advantage
of using Python. In Section 2.7, the framework is illustrated by means of a ten-bar
truss design example for two design cases: (i) fixed deterministic loading, and (ii)
bounded uncertain loading. Section 2.8 concludes the paper.

2.2 Optimization problem formulation

The following non-linear inequality-constrained optimization problem P is consid-
ered:

minimize f (x),
subject to g(x) ≤ 0, and

xℓ ≤ x ≤ xu
(2.1)

with x the set of design variables, f (x) the objective function, and g(x) the set of
constraint functions. Design variable xi belongs to the set of design variables x, with
i = 1, . . . , n and n the number of design variables. Three types of design variables
are considered: continuous, integer, and discrete. In (2.1) the set of design variables
x can be a mix of these types. The parameter sets xℓ and xu represent the lower and
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upper bounds of the design space for each of the design variables in x. Constraint
g j belongs to the set of constraint functions g, with j = 1, . . . , q and q the number of
constraint functions.
Simulation models are used to compute responses r for certain design variable

values x and parameter values p. Examples of such models are (non-linear) FEM
models, discrete-event simulation models, or multi-body dynamical models. The
responses of the simulation model are used to evaluate objective function f (x) and
constraint functions g(x). Part of the objective and constraint functions may also be
explicit (or computationally inexpensive) functions, i.e. not determined by the sim-
ulation models. Objective function f (x) can either be a simulation-based objective
function fs(r(x, p)), or an explicit objective function fe(x). The same holds for each
of the constraints: constraint g j can be either simulation-based: gs, j(r(x, p)), or ex-
plicit: ge, j(x). The explicit (or computationally inexpensive) functions do not need
to be approximated in each iteration of the SAO process.
The response of a simulation model can be deterministic or stochastic. Stochastic

responses can be caused by stochastic design variables X, stochastic parameters P,
stochasticity in the simulation model itself denoted by ω, or a combination. FEM-
calculations with deterministic input x and p generally give deterministic output
r(x, p). In analysis for reliability or robustness, stochastic design variables X or
stochastic parameters P may occur, which results in stochastic simulation responses
R(X, p) and R(x, P), respectively. The estimated distribution of these responses is
possibly needed to determine the measure of reliability or robustness. In discrete-
event simulation, the stochastic responses R(x, p,ω) are due to internal stochastic
behavior in the simulation itself represented by variable ω; in this field objective
function and constraints are usually formulated as expected values using determin-
istic design variables x and deterministic parameters p (see, e.g., Law and Kelton,
2000). The expected values and variances are estimated from a finite number of
simulations for each design point. On the basis of these estimates and possibly cor-
responding confidence intervals, deterministic objective and constraint values that
match (2.1) must be obtained.

2.3 Sequential approximate optimization method

A typical SAO method decomposes the optimization process into a sequence of cy-
cles. In each cycle, an approximate optimization subproblem is defined within a
search subregion, and solved. At the end of a cycle, certain stopping criteria deter-
mine whether the sequence is stopped or not. If the sequence is not stopped, the
search subregion is moved and/or resized, and a new cycle is started.

2.3.1 Optimization sequence

A cycle in the SAO process is denoted by c(k) with k the running number of the cycle.
Within one cycle, a number of steps can be distinguished. A common basic sequence

is as follows. Cycle c(k) starts with initial design point x
(k)
0 in search subregion r

(k).
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Figure 2.1: Example of a commonly used SAO sequence.

For this search subregion, an approximate optimization problem is formulated. Solv-
ing this approximate subproblem within search subregion r(k) gives an approximate

optimum x
(k)
∗ . Based on the optimization history during the cycles, the SAOmethod

determines the new search subregion r(k+1) for the next cycle c(k+1) until the SAO
process is stopped.

In the above mentioned SAO sequence, typically the following steps can be dis-
tinguished during cycle k:

1. compute the true responses in initial design point x
(k)
0 ,

2. construct search subregion r(k) based on a move limit strategy,

3. plan a design of experiments in search subregion r(k),
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4. compute the response values in the plan points using the extensive simulation
model,

5. construct an approximation model based on the computed responses,

6. solve the approximate optimization problem within search subregion r(k),

7. compute the true responses in the approximate optimum x
(k)
∗ ,

8. stop if stopping criteria aremet, otherwise start cycle k+ 1 and return to Step 2.

A graphical representation of these steps can be found in Figure 2.1. The rectangu-
lar boxes represent the modules that perform the independent computational steps.
The arrows between the different modules represent the algorithm flow with corre-
sponding data exchange. Step 2 refers to the move limit strategy. Steps 3–7 refer to
the approximate optimization problem. Step 8 refers to the stopping criteria. The
basic sequence shown in this figure is often used and can be found for example in
Giunta and Eldred (2000), but other types of SAO sequences are possible as well (see,
e.g., Pérez et al., 2002).
The approximate optimization problem, the stopping criteria, and the move limit

strategy are further explained below.

2.3.2 Approximate optimization problem

In each cycle c(k) of the SAO method, an optimization subproblem is created. This
subproblem is denoted by P (k) which is defined within the bounds of search subre-
gion r(k). Search subregion r(k) can be a region of any shape, but typically spherical
or rectangular regions are used. For convenience of our discussion, rectangular re-

gions are assumed. Such a rectangular region is defined by lower bounds x
(k)
ℓ
and

upper bounds x
(k)
u . Approximate optimization subproblem P (k) can then be stated

as:
minimize f

(k)
a (x), or
fe(x),

subject to g
(k)
a (x) ≤ 0, and/or
ge(x) ≤ 0, and
xℓ ≤ x(k)ℓ

≤ x ≤ x(k)u ≤ xu

(2.2)

Herein, simulation-based objective function fs(x) and constraint functions gs(x) have
been replaced by approximations fa(x) and ga(x), respectively. These approximate
relations are referred to as surrogate functions. The complete set of surrogate func-
tions is called a surrogate denoted by a. For example, if we have one simulation-
based objective function fs(x) and one simulation-based constraint function gs(x),
and we approximate these functions by reciprocal linear regression relations, then
for two design variables surrogate a becomes:

fa(x) = α0 +α1 · 1/x1 +α2 · 1/x2 (2.3)

ga(x) = β0 + β1 · 1/x1 + β2 · 1/x2 (2.4)
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In each cycle the unknown surrogate parameters (αi and βi in our example) have to
be determined on the basis of simulation evaluations in the plan points of the present
cycle and possibly previous cycles. The type of surrogate function (e.g. linear regres-
sion, Kriging, or radial basis), the amount of data points used, and the number of
parameters to be estimated determine the parameter estimation approach. The aim
is to obtain an approximation model a(k) that approximates the simulation response
behavior within the search subregion as well as possible.
Approximation model a(k) together with explicit functions fe(x) and ge(x) build

approximate optimization problem P (k)
a . A mathematical programming solver is ap-

plied to this approximate problem in search subregion r(k). The type of solver used
strongly depends on the type of approximation functions and the type of design vari-
ables. E.g. solving a non-linear approximate optimization problem with continuous
and integer design variables requires a mixed-integer NLP solver.

2.3.3 Stopping criteria

The subproblem optimization solver returns an approximate optimal design, de-

noted by x
(k)
∗ . Simulation of approximate optimum x

(k)
∗ results in the objective value

f
(k)
s∗ and constraint values g

(k)
s∗ at the simulation level. Then, at the end of this cycle,

it has to be decided if the sequence proceeds or stops. There may be various dif-
ferent reasons to stop, for instance: when during the last few cycles no significant
reduction of the objective function is observed and the constraint violations satisfy
the accuracy requirements. The stopping criteria are tied to the type of SAO ap-
proach, e.g. multi-point versus single-point. After the sequence has been completed,
finally, the best design has to be selected. The final optimal design is often, but not
necessarily, the last cycle optimal design found. This again relates to objective func-
tion value and constraint violations. In the case of stochastic functions confidence
intervals may play a role as well.

2.3.4 Move limit strategy

If at the end of a cycle the stopping criteria have not been met, a new cycle is ini-
tiated. At the start of this new cycle c(k), the location and size of the new search
subregion has to be determined. The move limit strategy takes care of this subre-
gion placement. Assuming a rectangular subregion, for each of the design variables

search subregion lower bound x
(k)
ℓ,i and search subregion upper bound x

(k)
u,i have to

be defined. The size of the search subregion then becomes ∆
(k)
i = x

(k)
u,i − x

(k)
ℓ,i . The

move limit strategy should be able to resize and move the search subregion. The

move limit strategy determines new values for parameters ∆
(k+1)
i , at the end of each

cycle c(k).
Relocation of the search subregion is often done in the direction of the last cycle

optimal design. One can, for example, place the search subregion around this cycle
optimal design, taking the cycle optimal design as the center point of the new search
subregion. This is usually done in single-point-path SAO approaches. On the other
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hand, several multi-point strategies also take the last cycle optimal design as corner
point in the next search subregion (see, e.g., Toropov et al., 1993; Thomas et al., 1992).
Several other rules for resizing and moving the search subregion are possible

(see, e.g., Wujek and Renaud, 1998). The move limit strategy comprises the complete
set of rules regarding resizing and moving. Typically, these strategies are heuristic
in nature and may differ for the various approximation methods.

2.4 Framework

The aim of the framework is to provide an open environment to specify and solve se-
quential approximate optimization problems. We first give a global overview of the
layout of the developed framework. The layout shows how the framework can be
divided into several modules with specific functionality. Next we discuss the class
structure of the layout. The class structure is formalized in Unified Modeling Lan-
guage (UML). UML diagrams show the relationship between the different modules.
UML is explained in detail by Rumbaugh et al. (1999).

2.4.1 Layout

The layout of the proposed framework is designed such that it allows one to spec-
ify the optimization problem, the sequential approximate optimization sequence, as
well as individual optimization steps. The framework consists of three basic lay-
ers: the problem layer, the sequence layer, and the routine layer. This is graphically
represented in Figure 2.2. The three layers correspond with the optimization prob-
lem (problem layer), the SAO sequence (sequence layer), and the SAO steps (routine
layer), respectively. The open environment is created by explicitly separating the
SAO sequence from the individual SAO steps. Running the SAO sequence is repre-
sented by data, gathered during the cycles of the approximate optimization, whereas
the SAO steps are ‘simple’ input-output functions (numerical routines) that carry out
a computational task. These numerical routines are often Fortran, C, or Matlab im-
plementations, either from an existing library or user-developed.
The problem layer of the framework holds the specification of the optimization

problem and the simulation models. The specification of the optimization problem
consists of (i) the formulation of the optimization problem and (ii) the specification
how the objective and constraint functions have to be calculated. The formulation of
the optimization problem is mathematically represented by (2.1). Objective function
and constraints are computed through explicit relations, simulation responses, or
a combination of those. Simulation responses r(x) are defined by the simulation
model.
The second layer in the framework, the SAO sequence layer, has three functions:

(i) it defines and controls the sequence of steps, (ii) it connects the problem layer
and the routine layer, and (iii) it takes care of storing, transferring, and rearranging
data. The sequence layer connects all the different modules by passing the data
between the different numerical routines and the optimization problem. The SAO
sequence defines the sequence of steps and specifies which routines are used in each
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Figure 2.2: Framework layout consisting of three layers. Each layer has a specific task: (i)
describe the problem formulation, (ii) describe the sequential approximate optimization se-
quence, and (iii) describe the individual computational routines.

of the steps, e.g. which design of experiments is used, which surrogate functions,
which optimizer, etcetera. The framework enables one to specify different sequences
using selected routines that perform the computational tasks. The sequence layer
stores all relevant data generated during the optimization process. This data may
be needed throughout the optimization process and is available for post-processing
after the optimization process has ended. The SAO sequence itself does not perform
computational tasks, except for simple calculations related to, e.g., stopping criteria.
However, it may happen that more extensive calculations are needed to determine
the next step in a particular sequence. In that case, a newmodule that performs these
specific calculations may be added to the routine layer of the framework.
The third layer, the routine layer, includes all the routines which are used in the

SAO steps specified by the optimization sequence. The routines are subdivided in
separatemodules. For each basic SAO step in the SAO sequence onemodule is avail-
able. The routines are treated as black-box input-output relations and do not contain
any data of the optimization process itself. In Figure 2.2 each step is represented by
a rectangular box with two parts. The upper part of the box is the interface between
the routines and the sequence layer. The lower part of the box represents the routine
that performs the specific task. When a number of different routines are available in
a single module, the framework enables one to select one of these routines for the
SAO approach.
For each of the modules, a collection of several different numerical routines is

available. For example, a number of different routines for the design of experiments,
such as full-factorial, Latin-hypercube, D-optimal, and random design of experi-
ments is available. The user can add extra functionality by adding numerical rou-
tines to the framework, either in one of the existing modules or in newly developed
modules. Adding a numerical routine to an existing module requires this routine to
matchwith the input-output requirement as specified by the interface of the module.
New modules should match with the input and output data structure as defined by
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Figure 2.3: UML class diagram of the framework. Class Sequence aggregates all other classes.

the corresponding step in the SAO sequence.

2.4.2 Classes

The framework has been developed using an object-oriented class structure to create
an extensible and well-structured environment, i.e. an open environment into which
new functionality can easily be added. Each module of the framework has an equiv-
alent class in the class structure. At least one instance of each of the classes of the
framework is needed for an SAO run.
The UML diagram of the framework is shown in Figure 2.3. Each class in the

diagram is represented by a box consisting of three compartments specifying the
name, attributes, and methods of the class, respectively. Attributes are the object-
oriented equivalent of data. Methods are the object-oriented equivalent of functions.
The methods of the classes correspond to the functional relationships as shown in
Figure 2.2.
The optimization sequence is represented by its equivalent class Sequence. Since

the optimization sequence uses the modules, class Sequence is the main class of the
framework. Five classes which all correspond to modules of the framework are ag-
gregated1: OptimizationProblem, DoE, Surrogate, OptimizationSolver, and MoveLimit-

Strategy. The aggregated classes are also shown as attributes.
Class OptimizationProblem holds all the data required to specify the optimization

problem. Besides the design, objective, and constraint variables, class Optimization-

Problem also contains all the relations to evaluate the objective and constraint func-

1Aggregation is a means to express the “has a” relationship. A diamond-shaped connector is used in
the UML diagram. An instantiation of the parent class contains an instantiation of the child class.
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Figure 2.4: UML inheritance diagram of EvaluationModel.

tions. These relations can be represented by a computationally-expensive simulation
model or explicit relations. All these type of relations are combined into class Evalu-

ationModel.

The framework is able to specify different types of simulation models, design of
experiments, surrogates, solvers, and move limit strategies. Below, the UML repre-
sentations of the respective modules is explained. The inheritance2 relationship is
used to express that different type of modules can be selected within the framework.

Evaluation model

Figure 2.4 shows the inheritance diagram of class EvaluationModel. It shows three
types of evaluation models: simulation models (SimModel), explicit models (Explicit-

Model), and approximationmodels (ApprModel). All three types of evaluationmodels
are able to determine one or a set of responses for a given design point. Attribute
output vars represents which responses the model is able to compute and attribute
input vars represents the design variables that are needed for this purpose. A sim-
ulation model, represented by class SimModel, is aggregated by class Optimization-

Problem for determining the computational expensive responses r(x) in the ‘true’
optimization problem P of (2.1). The explicit functions fe(x) and ge(x) defined in P
are represented by class ExplicitModel, which are also aggregated by class Optimiza-

tionProblem. To solve the approximate optimization problem P (k)
a , class ExplicitModel

is used together with the approximation functions represented by class ApprModel.
In each cycle of the optimization process, new instances of class ApprModel are cre-
ated by the surrogate functions. For this reason, class ApprModel is in fact a data
entity instead of a framework entity and will be discussed in more detail in the next
section.

The evaluation models are used to evaluate a design point in optimization prob-
lem P (using classes SimModel and ExplicitModel), as well as in approximate opti-

mization problem P (k)
a (using classes ApprModel and ExplicitModel). The result is an

evaluation of the design point itself. This is represented by the evaluate() method,
inherited by all three child classes. This means that the method is overloaded such

2Inheritance is a means to express the “is a” relationship. Arrow-shaped connectors are used in the
UML diagram. The child class is a new version of the parent class.



Chapter 2 27

DoE

determine_plan_points()

FullFactorialDoE OptimalDoE RandomDoE

Figure 2.5: UML inheritance diagram of DoE.
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Figure 2.6: UML inheritance diagram of Surrogate.

that the functionality of each of the methods may be specified differently for each of
the three model types.

DoE

Figure 2.5 shows an example of three inherited DoE classes: a full factorial design
of experiments, a D-optimal design of experiments, and a random design of exper-
iments. All three DoE classes inherit the method to determine the plan points in a
specific search subregion. For each of the inherited DoE classes, the input-output
relation of the method is the same, but the functionality differs.

Surrogate

In approximate optimization many types of surrogates are used. All these types of
surrogates are inherited classes of class Surrogate. An example of a UML inheri-
tance diagram of Surrogate is shown in Figure 2.6 which shows an example of two
inherited classes: a surrogate based on regression functions and a surrogate based
on radial basis functions. Class Surrogate has a method called build approximation()

to build approximation models based on evaluations of the simulation model. The
attributes input vars and output vars are needed to link the evaluated plan points and
responses of the simulation model to the approximation models. Furthermore, these
attributes are needed during the approximate optimization step to determine which
approximation model is needed to calculate a certain response and which design
variables have to be provided.
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Figure 2.7: UML inheritance diagram of OptimizationSolver.

Optimization Solver

The framework enables the use of different types of optimization solvers. All opti-
mization solvers inherit from the classOptimizationSolver. The solver has onemethod:
solve problem(). This method is used to find the optimal solution for a given approx-
imate optimization problem. In Figure 2.7 an example of two inherited optimization
solvers is shown which both have been implemented in the current framework. The
MatlabFminconSolver class is an SQP solver for the minimization of nonlinear con-
strained optimization problems with continuous design variables in Matlab (Math-
works, 2002). The FsqpSolver class is an external SQP solver implemented in C++
(also available in Fortran) developed by Lawrence et al. (1997). The solve problem()

method provides an interface to optimization solvers in general from the framework
side. To add another solver, one should create an interface on the solver side. In Sec-
tion 2.6 we discuss in more detail such interfaces to external optimization solvers.

Move limit strategy

In sequential approximate optimization various move limit strategies are used. The
move limit strategy determines at the start of each cycle the size and position of the
new search subregion. In Figure 2.3 classMoveLimitStrategy represents themove limit
strategy. Method determine search region() is used to determine the search subregion
based on data of previous cycles of the optimization process. In Section 2.3 some
move limit strategies were discussed. Each of these move limit strategies may be
added to the framework by inheriting from class MoveLimitStrategy.

2.5 Data

The framework entities use data entities for the input/output relations of the mod-
ules. This section describes the structure of the data using UML representations.

2.5.1 Structure

At the start of the optimization sequence, the data of the optimization problem is
passed to the sequence layer of the framework. This data includes: the design vari-
ables, the objective variables, the constraint variables, and the evaluation models.
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Throughout the optimization process, new data is generated by the different
modules of the routine layer. These modules are presented again in Figure 2.8, now
illustrating the data that is passed from and to the sequence layer assuming the stan-
dard sequence of Figure 2.1. The data is addressed in italics. The following list
discusses each of the relations.

• Themove limit strategy determines a new search subregion based on data from
previous cycles in the optimization process.

• A design of experiments is determined in a specific search subregion which
results in a number of plan points.

• The simulation model yields response output by evaluating the plan points.

• The surrogate builds up an approximationmodel based on the simulation eval-
uations.

• The solver finds the optimal design point of an approximate optimization sub-
problem. The sequence layer generates this approximate optimization sub-
problem based on: the approximation models built in the previous step, the
explicit functions, and the search subregion bounds.

Notice, this is just an example, as more data entities may be required for alternative
sequences and/or alternative routines.
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2.5.2 Classes

The UML diagram of the data is shown in Figure 2.9. Objects of the classes in this di-
agram are generated during one approximate optimization cycle c(k) and are stored
in top-level class Cycle. An object of class Cycle is generated by the sequence layer
at the start of a new cycle. During one cycle the following data is added to the object
Cycle: search subregion r(k), plan points p(k), evaluations of the simulation model

in the plan points, approximate optimization problem P (k)
a , and the approximate

optimal design represented by x
(k)
∗ , f

(k)
∗ , and g

(k)
∗ . During one cycle, approximate op-

timization problem P (k)
a is created by the sequence layer and solved by the approx-

imate optimization solver. Class ApproximateOptimizationProblem is a representation

of approximate optimization problem P (k)
a . It contains design variables x, objective

variable f , and constraint variables g, search subregion r(k), and approximation mo-
del a(k). For example, in the sequence presented in Figure 2.1, the following data
objects are created during one cycle:

• First, an object of class Cycle is created. This object will store all data of the
current cycle described below.

• An object of class Design is created that includes the cycle initial design point
and the corresponding objective and constraint values.

• An object of classRegion is created by classMoveLimit and represents the search
subregion.

• A number of objects of class Point are created by class DoE and represent the
plan points.

• A number of objects of class Evaluation are created by class SimModel and rep-
resent the simulation evaluations in the plan points. Besides objective and
constraint values, the evaluations may include additional information, such
as gradient information or other responses that can be used.

• An object of class ApprModel is created by class Surrogate and represents the
approximations.

• An object of class ApproximateOptimizationProblem is created by class Sequence

and represents the approximate optimization problem in the search subregion.

• An object of class Point is created by class Solver and represents the approxi-
mate optimal design in the search subregion.

• One or more objects of class Evaluation are created by class SimModel and rep-
resent the simulation evaluation of the approximate optimal design. These in-
clude optional simulation replications, which are needed in case of stochastic
responses.

• An object of class Design is created that includes the approximate optimal de-
sign point and the corresponding objective and constraint values based on the
evaluations in the approximate optimal design point.



Chapter 2 31

Design

design_values

objective_values

constraint_values

Evaluation

design_values

response_values

Point

design_values

Value

variable

value

ApprModel

input_vars

output_vars

evaluate()

Cycle

region

design_points

evaluations

problem

optimal_design

Region

lower_bounds

upper_bounds

Var

denotation

ApprOptimizationProblem

design_vars

objective_vars

constraint_vars

region

evaluation_models

Figure 2.9: UML class diagram of the data. Objects of these classes are created during a cycle
of the optimization sequence and stored in the corresponding object of class Cycle.
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An important issue is how the data is presented in terms of the variables. The
framework can handle design variables, responses variables, objective variables,
and constraint variables. For the classes Design, Evaluation, Point, and Region the
attributes are a set of values. Each of these values is the representation of a value
of a certain variable. For example, class Region has two sets of values: the lower
bound values and the upper bound values of each of the design variables xi. This
implies that each value representation is linked to a certain variable of the optimiza-
tion problem. This is taken care of by class Value by defining two attributes contain-
ing: (i) the variable the value is linked to and (ii) the actual value represented by
an array of one or more numbers. If additional information has to be stored, like
gradients, additional attributes may be needed. For example, gradient information
can be handled by class GradientValue, which is a new version of (or inherited from)
class Value. Class GradientValue has an extra attribute that stores the gradient values
for each design variable direction.
Figure 2.10 shows the inheritance diagram of the variables. For the design vari-

ables four different inherited variables are distinguished: the stochastic, continuous,
integer, and discrete design variable. The stochastic design variable has an attribute
which represents the stochastic distribution from which realizations of this design
variable can be generated. For the response variables, two types are distinguished:
deterministic and stochastic response variables. Each type of response variable can
be subdivided into objective and constraint variables. In the formulation of the op-
timization problem three types of variables are defined: design, objective, and con-
straint variables. For design variables x the following information is available in the
problem formulation: type of design variable (continuous, integer, discrete, uncer-
tain), upper bounds xu, lower bounds xℓ, initial design values x0, and initial move
limit width ∆0. For objective variable f and for each of the constraint variables gi
one has to specify whether the variable is deterministic or stochastic. Response vari-
ables are needed whenever a simulation response has to be stored. Such a response
may not be part of the optimization problem formulation, but can be used, e.g., for
response surface building.

2.5.3 Approximation model

As discussed in Section 2.4, in each cycle, class Surrogate creates the approximation
models represented by class ApprModel. Figure 2.11 shows an example of the inher-
itance diagram for the approximation model. This diagram shows the inheritance
relationship of an approximation model based on response surfaces (regression) and
an approximationmodel based on radial basis functions. These approximationmod-
els are created by the corresponding surrogates shown in Figure 2.6.

2.6 Framework implementation

To obtain an open and flexible environment, we adopted the dynamic program-
ming language Python (Van Rossum and Drake, 2003a) for the implementation of
the framework, as well as for the input specification of optimization problem and
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Figure 2.11: Example of UML inheritance diagram of ApprModel.

SAO approach. The developed framework contains a collection of Python classes,
methods, and interfaces to external software to support a compact specification of
the optimization problem and SAO approach. We selected Python because of its
dynamic and highly expressive nature allowing full object-oriented programming
with a clear syntax, and its excellent capabilities to extend with other software. Van
Rossum and Drake (2003b) describe how external non-Python libraries can be con-
nected to Python code by means of the Python Application Programming Interface
(API).
Examples of extensions to the framework are the Matlab Fmincon optimization

solver and the FSQP optimization solver. The Fmincon solver is part of Matlab
(Mathworks, 2002). The solver is embedded in Python using the PyMat interface
(Sterian, 1999). The FSQP solver has been developed by Lawrence et al. (1997) in
C++. This solver is embedded in Python by writing an interface to the C++ code.
Both the Fmincon and FSQP interface have a method to solve the approximate op-
timization problem. Another example of an extension is the use of Abaqus (HKS,
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Figure 2.12: Example of a GUI showing the 10-bar truss optimization progress. The GUI is
created using the Qt GUI widget-set.

2002) as FEM simulation software. In the next section Abaqus has been used to eval-
uate the response functions of a ten-bar truss.

For the FSQP solver, we used Python callback functions to specify the objective
and constraint functions of the approximate optimization problem that FSQP has to
solve. Callback enables the C++ FSQP implementation to call the objective and con-
straint functions specified in Python code. The objective and constraint functions do
not need to be provided or translated into C++ code. The FSQP solver now uses the
Python code directly for determining the objective and constraint values. Callback
may be used for other optimization solvers as well, possibly also for other external
routines, e.g. DoE or fitting routines. Through callback functions, Python specifica-
tions of functional relations in the (approximate) optimization problem can be used
directly, with only little performance impact. Conversion of user-specified Python
code into a different language (e.g. C++) is then not needed.

One can show the progress of the optimization via a graphical user interface
(GUI). An example of such a GUI is shown in Figure 2.12. This GUI is created using
the Python Qt GUI widget-set of Trolltech (2001). The figure shows three plots. The
plots represent for each cycle optimal design: the value of the objective function, the
value of the maximum constraint, and the values of each of the design variables,
respectively. The results shown in these plots are from the ten-bar truss example
discussed in the next section.

2.7 Illustration

Consider the optimization problem presented in Elishakoff et al. (1994). This optimal
design problem is presented here to show the flexibility of the framework. We solve
the optimization problem by means of a multi-point SAO strategy that combines
several different routines, e.g. an external simulation code, a non-linear approxi-
mation model, and an external approximate optimization solver. Below follows a
short description of the optimal design problem. In Subsection 2.7.1 and 2.7.2 this
optimization problem is solved under deterministic loading and uncertain loading,
respectively.
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Figure 2.13: 10-bar truss structure (Elishakoff et al., 1994).

The optimal design problem concerns the ten-bar truss structure as shown in
Figure 2.13, with a bay length L of 360 inch. The optimization problem is defined
to find the cross-sectional areas that will minimize the mass of the structure subject
to ten stress constraints (one for each bar) and one displacement constraint (vertical
displacement of node 2). For stress constraint in bar i holds: |σi| ≤ 25 ksi, except
for bar 9, where |σ9| ≤ 75 ksi. The vertical displacement in node 2 is restricted to
5 inch. The lower bounds on the cross-sectional areas are 0.1 inch2 for all bars. The
material characteristics of the truss elements are: modulus of elasticity E = 104 ksi
and material density ρ = 0.10 lb/inch3. Stresses and displacements are computed
here using the FEM package Abaqus (HKS, 2002). Gradients are not computed. The
mass of the structure is represented by an explicit relation:

f = ρL

[
6

∑
i=1

xi +
√
2
10

∑
i=7

xi

]

(2.5)

The ten-bar truss is subject to three uncertain loads p1, p2, and p3. The nominal
values of the loads are 100, 100, and 400 kips, respectively. The uncertain loads are
bounded by ±10% of the nominal values. Elishakoff et al. (1994) considered the
following optimization problems: (A) optimal truss under fixed nominal loads, (B)
optimal truss under fixed highest load combination, and (C) optimal truss under
uncertainty. For the highest load combination the upper bounds for each uncertain
load were taken: 110, 110, and 440 kips, respectively.

2.7.1 Fixed loads

Fixed load problems (A) and (B) can be solved using the standard SAO sequence
of Figure 2.1. The ten stress constraints and the single displacement constraint are
approximated using response surface models with first order linear and reciprocal
regression terms without interaction:

g̃ j(x) = β0, j+
n

∑
i=1

βi, jxi +
n

∑
i=1

βi+n, j
1

xi
(2.6)
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Each response surface consists of 21 linear regression terms. The response surfaces
are built using a star design of experiments evaluating points on three levels on the
main axes. The experimental design includes the center point and the ‘star’ points
at the center of each face of the design region.

The specification used to solve optimization problem (A) is shown in Figure 2.14.
The definition of the simulation model starts on line 2. Simulation model class Con-
straints is used to calculate the stress and displacement constraints. The evaluate()
method needs design values X as an input for which responses R have to be calcu-
lated. Both X and R are dictionaries containing the values of the design variables
and constraint variables, respectively. Function abaqus nominal () is a representa-
tion of the true Abaqus model (not presented here) used to calculate stresses S and
displacements U based on design values X. This function also needs a second pa-
rameter, which is assigned on line 4 as a vector containing the fixed loads. The return
values S and U are vector arrays. Array S contains 10 stresses (10 bars) and array U
contains 1 displacement. These arrays are used to calculate responses R in lines 5–8.
The objective function, the mass of the structure, is calculated by explicit model class
Mass on lines 10–18.

The specification of the optimization problem formulation starts on line 19. All
variables are instantiated and collected in list of design variables x, list of objective
variable f , and list of constraint variables g. The design variables need additional ar-
guments in the following order: name, initial design value, lower bound on design
variable, upper bound on design variable, initial move limit width, lower bound on
move limit width, and upper bound of move limit width. The models are instanti-
ated and collected in list of models m on lines 26–28. The first model (m1) calculates
all the constraints by means of the Abaqus FEM model, whereas the second model
(m2) calculates the objective function by means of an explicit relation. Optimization
problem p is instantiated on line 29.

On lines 31–41, the classes design of experiments doe, regression surrogate surro-

gate, optimization solver solver, and move limit strategy mvl are instantiated. These
instances all refer to classes in the routine layer. Regression surrogate surrogate

represents the approximate constraint functions. For this purpose, 11 different ap-
proximate relations are instantiated (for each constraint one relation) on lines 32–36,
following (2.6). Here, terms matlab and terms python are used for the Matlab and
Python representations, respectively, of the pure linear and reciprocal terms. The
instantiations use linear regression terms specified as lists. For each design vari-
able, the Python constructs on lines 35 and 36 add two linear regression terms each
represented by a string. Iterator i is included in the strings by means of string for-
matting expression %. The Matlab representations are needed for the regression of
the surrogate functions in Matlab. The Python representations are needed for the
PyFsqpSolver to evaluate the corresponding approximation models.

In this example we used the standard sequence of the framework which required
12 cycles and 274 function evaluations for both optimization problem (A) and (B) to
obtain the same results as reported by Elishakoff et al. (1994).
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Problem layer

2 class ConstraintsModel (SimModel): # simulation model for evaluation of constraints
3 def evaluate (self, g,X,R):
4 S,U = abaqus nominal (X, [100.0, 100.0, 400.0]) # Abaqus FEMmodel
5 for i ∈ range (8): R[g[i]] = abs (S[i]/25.0)− 1 # stress constraints 1–8
6 R[g[8]] = abs (S[8]/75.0)− 1 # stress constraint 9
7 R[g[9]] = abs (S[9]/25.0)− 1 # stress constraint 10
8 R[g[10]] = abs (U[0]/5.0)− 1 # displacement constraint
9 return R
10 classMassModel (ExplicitModel): # explicit model of mass objective following (2.5)
11 def evaluate (self, f ,X,R):
12 rho = 0.1
13 L = 360
14 W = 0.0
15 for i ∈ [0, 1, 2, 3, 4, 5]:W = W + X[x[i]]
16 for i ∈ [6, 7, 8, 9]:W = W + sqrt (2) · X[x[i]]
17 R[ f ] = rho · L ·W
18 return R
19 n = 10 # number of design variables
20 m = 11 # number of constraint functions
21 x = [ ] # design variables with corresponding attributes
22 for i ∈ range (n): x.append (DesignVar (‘area’, 15.0, 0.1, 20.0, 10.0, 0.1, 10.0)
23 f = [DetObjectiveVar (‘mass’)] # objective variable
24 g = [ ] # constraint variables
25 for i ∈ range (m): g.append (DetConstraintVar (‘constraint’))
26 m1 = ConstraintsModel (x, g) # simulation model
27 m2 = MassModel (x, f ) # explicit model
28 m = [m1,m2]
29 p = OptimizationProblem (x, f , g,m) # optimization problem

Routine layer

31 doe = StarDoe () # design of experiments
32 terms matlab = [‘1’] # linear regression terms in Matlab syntax following (2.6)
33 terms python = [‘1’] # linear regression terms in Python syntax following (2.6)
34 for i ∈ range (n):
35 terms matlab = terms matlab + [‘x(:,%i)’ % (i+ 1),‘1./x(:,%i)’ % (i + 1)]
36 terms python = terms python + [‘x[%i]’ % i,‘1/x[%i]’ % i]
37 rel = [ ] # linear regression relations
38 for i ∈ range (m): rel.append (LinRegRelation (x, g[i], terms matlab, terms python)
39 surrogate = [RegressionSurrogate (x, g, rel)] # surrogate
40 solver = PyFsqpSolver () # approximate optimization solver
41 mvl = StandardMoveLimitStrategy () # move limit strategy

Sequence layer

43 sequence = StandardSequence (p, surrogate, doe, solver,mvl) # sequence following Fig. 2.1
44 sequence.start sequence () # starting sequence

Figure 2.14: Example of the Python specification of the ten-bar truss optimal design prob-
lem (A). This code can also be used to specify optimal design problem (B) by changing the
load vector on line 4.
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2.7.2 Uncertain loads

Optimization case (C) with uncertain loads is defined as an anti-optimization prob-
lem according to Elishakoff et al. (1994):

minimize
x

f (x),

subject to max
p
g j(x, p) ≤ 0, j = 1, . . . , q,

xℓ ≤ x ≤ xu, and
pℓ ≤ p ≤ pu

(2.7)

which finds the optimal x values with minimum value for f such that the constraints
g j are satisfied for all values of p. The anti-optimization basically consists of finding
the worst value of p for each constraint g j.
Several anti-optimization schemes for SAO are available (see Gurav et al., 2003).

We apply the cycle based alternating method that performs an anti-optimization to
determine the worst uncertainty settings. This class has a similar flow as the stan-
dard sequence of Figure 2.1, but performs an anti-optimization for the initial design
and each cycle optimal design (in step 1 and 7). At the start of a new cycle the set
of worst uncertainty values for each constraint is known. In step 4, evaluation of
a plan point in the experimental design then requires that each constraint is evalu-
ated for its corresponding worst uncertainty setting. Consequently, the approximate
optimization step also accounts for the worst uncertainty setting for each constraint.
Finally, the anti-optimization again computes new values for uncertainties p(k) at the
end of the cycle.

For the specification of optimization problem (C) we need some adaption of
the Python specification of Section 2.7.1 to implement the cycle-based alternating
method. Figure 2.15 shows the code that was added to the original code in Fig-
ure 2.14. In the problem layer the simulation model has been slightly changed. Since
the loads are not fixed anymore, function abaqus uncertain is used and the param-
eter that defined the loads on line 4 is omitted. Input parameter X now holds both
the values of the design variables and the uncertainty variables. Uncertainties u are
instantiated as three extra design variables. On line 26 the instantiation of the simu-
lation model is slightly changed such that the input variables now includes both the
design variables x and the uncertainty variables u.
For this example we developed a new anti-optimization sequence. This new se-

quence follows the cycle based alternating anti-optimization method as explained
before and is represented by class AntiOptimizationSequence. The Python speci-
fication of this new anti-optimization sequence is not presented here. To use the
anti-optimization sequence, the routine layer has been extended with instantiations
needed for the anti-optimization. The anti-optimization itself is performed bymeans
of the SAOmethod of Figure 2.1, using the following specified routines in the routine
layer: two-level full-factorial design of experiments, pure linear regression approx-
imations for each constraint, the Matlab linear programming algorithm to solve the
linear approximate optimization problem, and the standard move limit strategy.
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Problem layer

2 class UncConstraintsModel (SimModel): # simulation model for evaluation of constraints
3 def evaluate (self, g,X,R):
4 S,U = abaqus uncertain (X) # Abaqus FEMmodel

...
u = [ ] # uncertainties and corresponding attributes
u.append (DesignVar (‘load p1’, 100.0, 90.0, 110.0, 20.0, 1.0, 20.0))
u.append (DesignVar (‘load p2’, 100.0, 90.0, 110.0, 20.0, 1.0, 20.0))
u.append (DesignVar (‘load p3’, 400.0, 360.0, 440.0, 40.0, 2.0, 40.0))

26 m1 = UncConstraintsModel (x+ u, g) # simulation model
...

Routine layer

...
doe anti = FullDoe (2) # design of experiments used in anti-optimization
rel anti = [ ] # relations used in anti-optimization
for i ∈ range (11): rel anti.append (PureLinearRelation (u, g[i])
surrogate anti = [RegressionSurrogate (u, g, rel anti)] # surrogate used in anti-optimization
solver anti = MatlabLinprogSolver () # optimization solver for anti-optimization
mvl anti = StandardMoveLimitStrategy () # move limit strategy in anti-optimization

Sequence layer

43 sequence = AntiOptimizationSequence (p, u, surrogate, doe, solver,mvl, surrogate anti,
doe anti, solver anti,mvl anti)

44 sequence.start sequence ()

Figure 2.15: Example of the Python specification of the ten-bar truss optimal design prob-
lem (C) using the cycle-based alternating method with anti-optimization.

To reduce the computational effort in the anti-optimization step, Elishakoff et al.
(1994) showed that for this example the solution of the anti-optimization is given
by one of the eight vertices in the uncertainty domain. The eight vertices are the 8
different combinations of minimal andmaximal uncertainty parameters for the three
uncertain load vectors. It is sufficient for the anti-optimization to simulate these eight
uncertainty combinations for fixed x and select for each constraint g j the uncertainty
set that maximizes its constraint value.

We have also implemented this method of Elishakoff et al. (1994). Class AntiOp-
timizationSequence needs a new method that searches for the worst uncertainties
without the full anti-optimization. Method anti sequence() is specified for this pur-
pose. We developed classAntiTenBarTrussSequence shown in Figure 2.16. The eight
vertices are evaluated using a two-level full-factorial design for fixed design point X
coming from the outer optimization loop. The worst uncertainties are stored in dic-
tionary U which represents the worst uncertainty for each of the constraints.

The two anti-optimization sequences required both 15 cycles to obtain the same
results reported by Elishakoff et al. (1994). The number of function evaluations
equals 9163 FEM analyses for the full anti-optimization and 1766 FEM analyses for
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Problem layer

# Elishakoff’s anti-optimization method
class AntiTenBarTrussSequence (AntiOptimizationSequence):
# user-defined method to determine the worst uncertainties
def anti sequence (self, pa,X,U):
# determining the eight vertices
pl = FullDoe (2).generate planpoints (pa.design region ())
# the simulation model of the approximate optimization problem
e = pa.evaluator ()
# the constraints of the approximate optimization problem
g = pa.constraints ()
for j ∈ pl:
# evaluate vertice j for fixed value X
R = e. evaluate ( j,X)
for i ∈ g:
# if a simulation results in a worse constraint value, this
# constraint value and corresponding uncertainty is saved
if R[i] > U[i].value ():
U[i] = ( j,R[i])

return U
...

Sequence layer

43 sequence = AntiTenBarTrussSequence (p, u, doe, solver,mvl)
44 sequence.start sequence ()

Figure 2.16: Example of the Python specification of the ten-bar truss optimal design prob-
lem (C) using the method of Elishakoff et al. (1994).

Elishakoff’s method. The optimization progress of problem (C) using Elishakoff’s
method is shown in Figure 2.12.

2.8 Conclusion

The sequential approximate optimization framework is an open environment for the
specification and implementation of SAO techniques. The structure of the frame-
work distinguishes three basic layers: an optimization problem layer, an SAO se-
quence layer, and a numerical routines layer. The framework starts from some pre-
defined SAO sequence classes as well as a toolbox of numerical routines to carry out
basic steps in the SAO sequence, e.g. related to design of experiments, approxima-
tion building, and optimization solvers. The framework gives an easy access to the
contents of each three layers. On this basis, the framework enables one to redefine or
implement new SAO sequences, and allows the use of other (third-party) numerical
routines currently not available from the framework toolbox.
The framework has been implemented in Python. The Python language is com-

pact and highly expressive, which is advantageous for the specification of the opti-
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mization problem, the SAO sequence, as well as for user modifications in the frame-
work. The specification directly results in an implementation due to the fact that
Python is used for both the specification of optimization problem and sequence as
well as the implementation of the framework itself. We can use Python language
constructs in the specification of optimization problem and optimization approach,
e.g. higher data types, such as lists, tuples, arrays, classes, as well as, iterators, file
parsing capabilities, and functions. We also take advantage of Python in interfacing
the framework with external numerical routines and simulation software.
We followed an object-oriented approach to obtain a flexible and extensible frame-

work. The key feature of the framework is the ability to add new functionality by
adding user-defined routines. The only requirement is that the new routine has to
meet the input and output requirements of the module. Within the new routine,
the functionality of the base classes of the framework and more general Python con-
structs can be used. New modules can also be introduced based on the existing base
classes of the framework.
At present, the tool holds basic numerical functionality for standard SAO ap-

proaches, e.g. design of experiments and linear regression. Several Matlab routines
have been included. The ten-bar structure optimal design problem illustrated the
flexibility of the framework. Two design cases were considered: deterministic and
uncertain loading. The latter resulted in a nested optimization scheme. In both cases
the optimization problem and the SAO approach could be completely specified. The
second case required only small modifications on the basis of the specification of
the first case. The optimization process itself showed good results by finding the
same optimum as reported in the literature. In this example, the framework was
connected to three external software packages, being Matlab, Abaqus, and the FSQP
solver written in C++.
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Chapter 3

Characterization of Operational
Time Variability

Operational time variability is one of the key parameters determining the average
cycle time of lots. Many different sources of variability can be identified such as
machine breakdowns, setup, and operator availability. However, an appropriate
measure to quantify variability is missing. Measures such as Overall Equipment
Effectiveness (OEE) used in the semiconductor industry are entirely based on
mean value analysis and do not include variances.

The main contribution of this paper is the development of a new algorithm that
enables estimation of the mean effective process time te and the squared coeffi-
cient of variation c2e of a multiple machine workstation from real fab data. The
algorithm formalizes the effective process time definitions as known in the lit-
erature. The algorithm quantifies the claims of machine capacity by lots, which
include time losses due to down time, setup time, and other irregularities. The
estimated te and c

2
e values can be interpreted in accordance with the well-known

G/G/m queueing relations. Some test examples as well as an elaborate case from
the semiconductor industry show the potential of the new effective process time
algorithm for cycle time reduction programs.

3.1 Introduction

Equipment in semiconductor manufacturing is subject to many sources of variabil-
ity. An important source is machine down time, which occurs due to highly complex
and technologically advanced semiconductor manufacturing processes (Uzsoy et al.,
1992). Many other corrupting operational influences are also present, such as batch-

Reproduced from: Jacobs, J. H., Etman, L. F. P., Van Campen, E. J. J., and Rooda, J. E.
(2003). Characterization of flow time variability using effective process times. IEEE
Transactions on Semiconductor Manufacturing, 16(3):511–520.
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ing, hot lots, rework, setup, and operator availability. All together, they introduce a
substantial amount of variability in the interarrival and operational times of the lots
during their flow through the fab.

Queue times are mainly influenced by variability and utilization. High utiliza-
tion is necessary in the semiconductor industry in order to maximize productivity
and minimize costs. In combination with large variability, high utilization leads to
large cycle times for the lots. IC manufacturers are under high pressure nowadays
to reduce cycle times and improve delivery performance. Lu et al. (1994) developed
scheduling policies that attempt to reduce various fluctuations in the flow of the lots
in order to reduce mean and variance of cycle time. Park et al. (2001) describe the
operating curve as a means to evaluate the trade-off between cycle time, through-
put, and work-in-progress. Variability plays a central role in this trade-off. Schömig
(1999) stated that the corrupting influence of variability on the cycle time is often
overlooked, and semiconductor industry should aim at reducing variability to pro-
vide low cycle times. Therefore, identification and reduction of the main sources
of variability are key actions to improve upon the compromise between throughput
and cycle time.

Unfortunately, in the semiconductor industry no measures for operational time
variability are used. The Overall Equipment Effectiveness (OEE) has been intro-
duced by SEMI (Ames et al., 1995). This measure is based on mean values with
respect to availability, productivity, and yield. It includes for example mean time be-
tween failure and mean time to repair to characterizemachine down time, but it fails
to include variances. Hopp and Spearman (2001, Section 8.4) show with a simple ex-
ample that, besides the average capacity, the fluctuations of capacity in time should
also be included to make the correct conclusion on how well a machine is perform-
ing. Taking into account only average capacity may lead to the wrong conclusion.

A suitable measure that quantifies the total process time variability is still miss-
ing. Such a measure would be highly valuable in variability reduction programs.
Sturm et al. (1999) observed that it is impossible to measure each individual source
of variability. Instead, they measured cycle time distributions at workstations, and
used these in their simulation model. However, in these distributions the effects of
utilization and variability are combined. Another approach is proposed by Hopp
and Spearman (2001). They introduce the so-called effective process time, and de-
scribe it as the time seen by lots from a logistical point of view. Basically, the effective
process time includes all time losses due to failure, setup, and any other source of
variability. A similar description is given by Sattler (1996) who defined the effective
process time as all cycle time except waiting for another lot. It includes waiting for
machine down time and operator availability and a variety of other activities.

Sattler (1996) noticed that her definition of effective process time is difficult to
measure. The same difficulty holds for the description given by Hopp and Spear-
man (2001). But the basic idea of the effective process time to include time losses
does give a starting point for computing effective process time realizations of lots
when a list of events is available with arrival and departure times of lots. Since
the semiconductor industry is highly automated, this track-in and track-out data is
generally available. We propose a new method to actually compute effective process
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times from such a data set. In this waywe are able to estimate the mean and variance
of the effective process time of a workstation. This gives the desired quantification
of operational time variability. The approach is illustrated using real fab data from a
Philips Semiconductors wafer fabrication facility.

3.2 Performance measurement

Wafer fabs combine uncertain yields and unreliable machines in a re-entrant process
flow. In order to improve machine productivity, SEMI (Ames et al., 1995) defined the
Overall Equipment Effectiveness (OEE). OEE separates machines productivity into
three basic corrective action categories: availability, performance, and quality. Avail-
ability efficiency is the fraction of time that a machine is in a condition to perform
its intended function. Performance efficiency is the fraction of machine uptime that
a machine is processing actual units at theoretically efficient rates. Finally, quality
efficiency is the theoretical production time for effective units divided by the theo-
retical production time of actual units. Typically, OEE includes several sources of
variability such as down times and monitoring times. However, OEE is only based
on mean values.
Besides mean process time, the average queue time is determined by utilization

and variability. Hopp and Spearman (2001) use the following approximation for
average queue time of wafers in a G/G/m queueing system, where m denotes the
number of identical machines:

tq =
c2a + c

2
e

2
· u

(
√
2(m+1)−1)

m(1− u) · te (3.1)

with the utilization defined as:

u =
te
tam

(3.2)

The first term of (3.1) represents the variability which is the sum of the squared coef-
ficients of variation of the interarrival times c2a and the process times c

2
e. The squared

coefficient of variation is defined as the quotient of variance and the mean squared.
Thus, c2a = σ2a/t

2
a, and c

2
e = σ2e /t

2
e, where ta and te are the mean interarrival time

and mean process time, respectively. Hopp and Spearman (2001) use the effective
process time paradigm: te and c2e include the effects of operational time losses due
to machine down time, setup, rework, and other irregularities. Compared to the
theoretical process time t0, this typically means te > t0 and c2e > c20. In accordance
with Hopp and Spearman (2001) we call c2e < 0.5 lowly variable, 0.5 < c2e < 1.75
moderately variable, and c2e > 1.75 highly variable.
Equation (3.1) clearly identifies the contribution of utilization and variability. Cy-

cle time increases linearly with the squared coefficients of variation of interarrival
times and effective process times, and increases nonlinearly with utilization. To re-
duce the mean waiting time, there are two possible courses of action. The first is to
reduce the loss of capacity due to irregularities. This gives a smaller mean effective
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process time te, which also means a lower utilization. This part is covered by perfor-
mance measures such as OEE, and focuses on the improvement of bottleneck work-
stations with high utilizations. If the mean capacity loss cannot be further reduced,
the second action is to reduce the variation of the irregularities, giving a smaller vari-
ability term, c2e. The OEE fails to cover this term. Equipment with large operational
variability can have large effect on cycle time even if they are not bottlenecks.
An important property is that variability propagates through the fab. The depar-

ture flow of a workstation determines the arrival flow to the next workstation in the
flow line. Variability in the departure flow of a workstation is determined by uti-
lization, variability in arrivals, and variability in processing. The following linking
equation gives an approximation of this relation. The squared departure coefficient
of variation c2d can be estimated by (Hopp and Spearman, 2001; Buzacott and Shan-
thikumar, 1993):

c2d = 1+ (1− u2)(c2a − 1) +
u2√
m

(c2e − 1) (3.3)

This means that for low utilizations, the flow variability of the departing wafers
equals the variability of the arriving flow to the workstation, while for high utiliza-
tions, the flow variability of the departing wafers is proportional to the effective
process time variability. To be cost effective, wafer fabs operate at high machine
utilizations. Thus, reducing operational time variability at one workstation will pos-
itively influence the arriving wafer flow to its successors.
Equation (3.1) implies that the mean effective process time and the correspond-

ing squared coefficient of variation are two fundamental process parameters with re-
spect to cycle time performance. To use these parameters as performance measures,
te and c2e have to be determined from actual fab data. However, the description as
given by Hopp and Spearman (2001) that the effective process time is the time seen by
lots from a logistical point of view does not define how effective process times should
actually be measured from such a data set.

3.3 How to measure effective process time?

We have formalized the Effective Process Time (EPT) definition and propose a new
algorithm to compute EPTs of machines in a workstation from real-time fab data. By
workstation we mean one or more machines that perform a similar operation and
that share a single queue. The EPT definitions of Hopp and Spearman (2001), and
Sattler (1996) include the theoretical process time as well as setup time, breakdown,
operator availability, and all other operational times due to variability effects. For the
cycle time of a lot it is of no importance whether the lot is waiting for an operator or
waiting for a machine that is being monitored. Generally stated, EPT can be defined
as the total amount of time a lot could have been, or actually was, processed on a
machine. So, the EPT is the total amount of time a lot claims capacity of a machine,
even if it is not yet being processed.
The new algorithm is developed such that it enables calculation of EPT from a

list of events. This list of events consists of the arrival and departure times of the
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time lot event

0 1 Arrival
1 2 A
2 1 Depart
3 3 A
5 2 D
6 3 D
7 4 A
9 4 D

0 1 2 3 4 5 6 7 8 9

lot 1

lot 2

lot 3

lot 4

ept 1 ept 2 3 ept 4

Figure 3.1: Single machine: FIFO dispatching.

lots at a certain workstation, and the machine identification number the lot has been
processed on. We start with investigating the EPT definition for a single-machine
workstation with First-In-First-Out (FIFO) dispatching. This EPT definition is ex-
tended to include other dispatching policies as well. Finally, the EPT definition is
generalized to a multiple machine workstation.

3.3.1 Single machine, FIFO dispatching

Consider a workstation with FIFO dispatching that consists of a single queue and
a single machine. This single machine setup is used to formalize the conceptual
idea that the EPT is the total amount of time a lot could have been or actually was
processed on a machine. The event history with respect to arrival and departure can
be visualized by a Gantt chart. An example is presented in Figure 3.1. The Gantt
chart shows four lots which were processed in FIFO order on a single machine. The
first lot arrived at t = 0 and departed at t = 2. The arrival and departure times of
the other lots are depicted in the same way. Actual process times are not needed for
determining the EPTs, and are therefore not depicted. The resulting EPTs are shown
in the gray box at the bottom of Figure 3.1. The following paragraph explains how
these EPTs have been determined.
Initially, no lots are present in the workstation, i.e. no lots are queued and no lot is

in process. Since at t = 0 the first lot arrives at the workstation, this lot immediately
claims capacity of the machine, independent of whether it is queued for a while or
processed immediately. Before the first lot departs, a second lot arrives at t = 1.
Since a FIFO dispatch policy is used, the first arrived lot still claims capacity of the
machine. When the first lot has finished processing, and departs from the machine,
the total amount of time this first lot has claimed capacity is called a realization of
effective process time. From this point of time (t = 2), the second lot now claims
capacity of the machine until the lot departs. It does not make a difference if new
lots are arriving, like the third lot at t = 3. Therefore, the second EPT realization is
the time between the departure of the first lot and the second lot.
In general, for each lot that is processed next on the machine it holds that a real-

ization of effective process time is calculated as follows: EPT is the total amount of
time the lot was queued or processed between the departure of the previous lot and
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time lot event

0 1 Arrival
1 2 A
2 1 Depart
3 3 A
5 3 D
6 2 D
7 4 A
9 4 D

0 1 2 3 4 5 6 7 8 9

lot 1
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lot 3

lot 4

ept 1 ept 2 3 ept 4

Figure 3.2: Single machine: general dispatching.

its own departure. When enough individual EPTs have been determined, a complete
EPT distribution arises. For the machine, an estimate of mean effective process time
te and coefficient of variation c2e can be calculated from the complete set of individual
EPTs.

3.3.2 Single machine, general dispatching

If a single machine is considered, the lots in the system claim capacity of this partic-
ular machine. From the machine’s point of view it does not matter which lot claims
its capacity. If two lots are queued, capacity of the machine is claimed from the time
point the first lot has arrived in the queue. No matter when the second lot arrives,
capacity of the machine is claimed until one of the two lots departs. We assume that
the order in which the lots are processed does not affect the EPT calculation. As a
consequence, the EPT does not depend on the schedule, but only on the arrival and
departure times of the lots. Thus, during the period that at least one lot is present
in the workstation, the capacity of the machine is claimed until a lot departs from
the workstation. The EPT calculation does not take into account which lot arrives
or departs. This corresponds with observations that dispatch rules that do not use
information on the individual process times of lots have no influence on the mean
cycle time (see Buzacott and Shanthikumar, 1993, Section 3.6).
In Figure 3.2 an event history and Gantt chart of a non-FIFO schedule is shown

to illustrate how the above mentioned rationale for general dispatching affects the
EPT definition. When lot 1 leaves, lot 2 is already available in the queue, but does
not start processing immediately. Lot 2 is kept in queue, but already starts claiming
capacity of the machine, since the machine is kept idle. Assume that lot 3 is a hot
lot and arrives while lot 2 is still kept in queue. Due to the priority of lot 3, this lot
is processed first on the machine. For this reason, at the arrival of lot 3, this hot lot
claims capacity of the machine. But, for the machine it does not make any difference
which lot is processed next. During the complete time period between the departure
of lot 1 and the departure of lot 3, capacity of the machine was continuously claimed
by any lot. Therefore, the complete time period is a single EPT realization. It is of no
concern whether this realization is based on the presence of a single lot or multiple
lots. Notice that the Gantt chart of Figure 3.2 has equal arrival and departure times
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n := 0
loop

read τ , ev
if ev = “A” then

if n = 0 then s := τ (i)
elseif n > 0 then skip (ii)
endif

n := n+ 1
elseif ev = “D” then

write τ − s
n := n− 1
if n = 0 then skip (iii)
elseif n > 0 then s := τ (iv)
endif

endif

endloop

Figure 3.3: Algorithm SM – single machine.

compared to Figure 3.1. Although the schedules produce the lots in different orders,
the EPT calculation delivers equal EPT realizations.

Summarizing, the machine does not need to know which lot is claiming capacity.
The EPT is the total amount of time a single lot or different lots are claiming capacity
of the machine until a lot departs. Thus, whenever there is no lot in the workstation
(queue empty and machine idle), capacity of the machine is not claimed. These time
periods do not belong to EPT. But as soon as a new lot arrives, the next EPT real-
ization will be the time between this arrival and the next departure of any lot, not
necessarily the first newly arrived. With lots present in the single machine worksta-
tion, the EPT is the time between two departures of two lots. This holds until no
more lots are present in the workstation.

Algorithm SM – single machine workstation

An algorithm to calculate EPTs is proposed in Figure 3.3. The algorithm considers
a single machine workstation and a general dispatch rule. It is assumed that at the
start of the period the workstation is empty. When an event occurs, the algorithm
reads the current time of the event τ and the type of the event ev. An event ev can
be either an arrival of a lot (“A”) or a departure of a lot (“D”). The number of lots
present in the workstation is denoted by n.

If a lot arrives, the workstation can be in two different states: (i) the workstation
is empty; that means the number of lots n present in the system equals 0, or (ii) the
workstation is not empty, and thus n > 0. In the first case (n = 0), capacity of the
machine is not claimed until the lot arrives at time τ . From this point the capacity
of the machine is claimed until a lot departs. Therefore, the start of EPT is set at
s := τ . In the second case, if a lot arrives and the workstation is not empty (n > 0),
the start of EPT calculation has already been set by a lot that arrived earlier. In this
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case, nothing has to be done, represented by the skip statement. Finally, the number
of lots present in the system has to be updated to the new value: n := n+ 1.
If a lot departs, a realization of EPT can be calculated which equals the time be-

tween the departure time τ and the time the start of EPT was set: s. Thus, the re-
alization of EPT equals τ − s. This value is written. Afterwards, the number of lots
present in the system has to be updated: n := n− 1. Now again two different states
can occur: (iii) the workstation is empty, or (iv) the workstation is not empty. If the
workstation is empty, capacity of the machine is not claimed by a new lot and the
start of the EPT is not set. If the workstation is not empty, capacity of the machine is
immediately claimed by one of the lots still left in the system and s is set to the event
time τ .
In the practical case that lots are already present in the workstation when the al-

gorithm is started, then the first departure of a lot cannot result in an EPT realization,
since s has not been properly set. But, after this first departure, s can be properly set,
and the algorithm can continue with all the other lots.

3.3.3 Multiple machines

The EPT algorithm is generalized to cover multiple machines with general dispatch-
ing. The workstation now consists of a single queue which feeds a number of paral-
lel machines. Again we follow the concept that a departure of a lot from a machine
yields a new EPT realization. It holds for each of the machines in the workstation.
The number of machines for which capacity is claimed (me) should be equal to the
minimum of the number of machines (m) and the number of lots (n) present in the
workstation:

me = min(m, n) (3.4)

Usually if two lots are present in the workstation they will be processed by two
different machines. Then it is clear that capacity of both machines is claimed (me =
2). But there are some other possibilities where it is less clear from which machine
capacity is claimed. Imagine, for example, the following situation of a workstation
with 2 machines. A lot is processed on the first machine and another lot is waiting
to be processed on this first machine too. Capacity of this first machine can not be
claimed twice, but according to (3.4) capacity is still claimed for two machines. One
could say that the second lot claims capacity of the second machine now, since it is
the only availablemachine left. However, the actual value of the next EPT realization
depends on whether or not a third lot will arrive before the first lot has finished and
on which machine this third lot will be processed. This is explained in the following
two paragraphs.
Consider the scenario that either no new lot arrives before the first one is finished,

or that a new lot arrives that will also be processed on the first machine. In both of
these situations, where the second machine stays idle, we follow (3.4) and assume
that the capacity of the second machine is claimed as long as at least two lots are
present in the system. So, upon departure of a lot, wewant themultiple machine EPT
algorithm to compute the EPT realization according to the time this lot has claimed
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Figure 3.4: Multiple machines.

capacity on some machine, either the first one, or the second one, or both, as long
as the claim is a continuous one. Consequently, an EPT realization in the multiple
machine case cannot always be assigned to one particular machine.

We need the assumption of a continuous claim of capacity. This is explained by
slightly changing the previous example. Consider again the two machines. One
machine is processing a lot and capacity of this machine is claimed. Another lot is
queued and will be processed in the future on the first machine too. As in the pre-
vious example, this second lot claims capacity of the second machine. Now imagine
that the next lot that arrives will not be processed on the first machine, but will be
processed on the second machine which has been idle so far. This third lot may ar-
rive either before or after the first lot departs from the first machine, as shown in
Figure 3.4(a) and 3.4(b), respectively. If it arrives before the first lot is finished but
after the second lot has arrived (Figure 3.4(a)), then you might end up with a dis-
continuous claim of capacity and discontinuous EPTs if start and end times are not
properly chosen: at time t = 2 lot 2 claims capacity from idle machine 2; then at
t = 3 lot 3 arrives and takes over this claim of capacity of machine 2; for lot 2 the
claimwould end, and be resumed at t = 4 when machine 1 becomes available again.
Instead, we describe it as: at time t = 2 a lot claims capacity from idle machine 2; at
t = 3 another lot arrives and capacity of machine 2 is still being claimed; at t = 4 lot 1
departs which means the start of a new claim on machine 1; the respective EPTs run
as long as the claims continue without interruption. The same consideration holds
for the Gantt chart in Figure 3.4(b) with the difference that directly after the arrival
of lot 2, this lot continuously claims capacity of the machines until it departs. In
that case, the total time lot 2 is present in the workstation is a single EPT realization.
Figure 3.4 illustrates the EPT realizations we obtain in this way at times t = 7 and
t = 9 for both situations. Consequently, an EPT realization in the multiple machine
situation cannot always be assigned to one particular lot. We already observed that
for the single machine workstation.

Summarizing, for multiple machines capacity can be claimed in two different
ways: (i) capacity is claimed by presence of a lot that will be processed on a certain
machine. This means that it is clear which lot claims which machine, (ii) capacity is
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claimed but it cannot be assigned to one specific lot or machine. In case of multi-
ple idle machines it is even impossible to determine which machine is claimed and
which not.

Algorithm MM – multiple machine workstation

The proposed EPT algorithm for multiple machine workstations is presented in Fig-
ure 3.5. It is a generalization of Algorithm SM. Algorithm MM uses list ts, which is
initially empty (a list is a vector of variable length). The algorithm uses ts to tem-
porarily store all start values of new EPT realizations. From the time points in ts,
capacity of machines is claimed. Besides list ts array s is also used to store start val-
ues of EPT realizations (an array is a vector of fixed length). The start values stored
in s belong to capacity claims that can be assigned to specific machines. Thus, ele-
ment s[i] is the start time that capacity of the i-th machine is claimed. From a certain
time point when a value for s[i] can be set, its value is taken from list ts. In list ts all
start values remain that cannot yet be assigned to a particular machine. This ensures
continuous capacity claims. Finally, a third variable is used in Algorithm MM: array
nt. Element nt[i] of array nt equals the number of lots present in the workstation that
are or will be dispatched into the i-th machine. The sum of nt[i] over all machines
equals the number of lots n present in the workstation.

AlgorithmMMagain triggers on an event and determines besides the actual time
τ and the event ev also the machine number i. In case of an arrival event, i is the
number of the machine that the arrived lot will be processed on in the future. In case
of a departure, i is the machine the lot was processed on.

At an arrival, AlgorithmMMdistinguishes four cases by combining two boolean
expressions, n⊗m and nt[i]⊗ 0, where ⊗ denotes a relational operator:

• n⊗m: If the number of lots is below the number of machines (n < m), a new
EPT realization has to be started and the start time is added to the rear of list
ts (cases (i) and (ii)). If the number of present lots is larger than or equal to the
number of machines in the workstation (n ≥ m), capacity of all machines is
claimed already (cases (iii) and (iv)). Therefore, no new EPT realization has to
be started.

• nt[i] ⊗ 0: When a lot arrives for processing on machine i, an EPT start value
can only be assigned to this specific machine if no other lot is already waiting
for this machine or being processed on this machine (cases (i) and (iii)). So, if
nt[i] = 0 is true, then s[i] is set to the head value of list ts, and the head of list
ts is removed.

At a departure, the opposite holds:

• n⊗m: a new EPT realization has to start directly only if n ≥ m to claim the ma-
chine that has become available (cases (vii) and (viii)). Then, the corresponding
start value (τ) is added to list ts or set in s[i].
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n := 0; nt := zeros(m); ts := emptylist()
loop

read τ , ev, i
if ev = “A” then

if n < m ∧ nt[i] = 0 then (i)
ts := append(ts,τ)
s[i] := head(ts); ts := tail(ts)

elseif n < m ∧ nt[i] > 0 then (ii)
ts := append(ts,τ)

elseif n ≥ m ∧ nt[i] = 0 then (iii)
s[i] := head(ts); ts := tail(ts)

elseif n ≥ m ∧ nt[i] > 0 then (iv)
skip

endif

n := n+ 1; nt[i] := nt[i] + 1
elseif ev = “D” then

write τ − s[i]
n := n− 1; nt[i] := nt[i]− 1
if n < m ∧ nt[i] = 0 then (v)

skip

elseif n < m ∧ nt[i] > 0 then (vi)
s[i] := head(ts); ts := tail(ts)

elseif n ≥ m ∧ nt[i] = 0 then (vii)
ts := append(ts,τ)

elseif n ≥ m ∧ nt[i] > 0 then (viii)
s[i] := τ

endif

endif

endloop

Figure 3.5: AlgorithmMM – multiple machines.

• nt[i] ⊗ 0: when a lot departs from machine i, a new EPT start value has to
be assigned to this machine, only if other lots are waiting for this machine
(nt[i] > 0). This new EPT start value s[i] depends on n: if n < m, s[i] becomes
the head of ts (case (vi)), but if n ≥ m, all idle machines are already claimed
and s[i] can be directly set to the actual time τ leaving ts in its original state
(case (viii)).

Summarizing, if an event occurs, the algorithm distinguishes eight different cases
as denoted between parenthesis in Figure 3.5. In general, if a new EPT realization
has to be started, the corresponding time is added to the rear of list ts. When it
becomes possible to assign a new EPT start value to one specific machine, this value
is obtained from list ts by taking the oldest element of ts and updating ts. The only
exception is case (viii) when all capacity has already been claimed. Then the EPT
start value of the corresponding machine is set equal to the current event time τ to
express that only for this machine a new EPT realization starts whereas for all the
other machines capacity is still continuously claimed.
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3.4 Examples

The examples presented in this section are used to validate the EPT definition and
to show how the EPT can be interpreted. The first example shows two Gantt charts
that illustrate the eight cases of Algorithm MM. The other examples are based on a
discrete-event simulation model of a workstation with multiple machines that suffer
from one or more different sources of variability. The discrete-event model is im-
plemented using the specification and simulation software χ (Rooda and Vervoort,
2003), and explicitly includes each different source of variability. Running the mo-
del gives an estimate of the expected cycle time CT (sum of waiting and processing
time) and generates a list of arrival and departure events. Fifty simulation replica-
tions of 200,000 lots each are carried out for each experiment in the examples. The
EPT realizations are calculated from the list of events using Algorithm MM. This
gives estimates for the mean effective process time te and coefficient of variation c2e.
These te and c

2
e values are used to replace the original machine processing specifica-

tions in the discrete-event model by an “EPT-based” Gamma distribution. Running
this EPT-based meta model gives another estimate of the expected cycle time CT∗.
The original CT and meta model CT∗ should have a similar behavior to ensure that
te and c2e are good measures for capacity loss and variability. That is, reduction of
process time variability in the original model should be represented by a reduced
c2e value with an accordingly decreased CT

∗ value in the meta model. The exam-
ples show that CT and CT∗ have approximately equal values if the original discrete-
event model generates EPT realizations that can always be assigned to one of the
machines. The original model then has an effective process time behavior that cor-
responds with a G/G/m queueing system. If lots are not always processed on the
first available machine, the G/G/m representation by the meta model still appears
sufficiently accurate to correctly interpret the te and c2e values.

3.4.1 Two Gantt charts

The Gantt charts in Figure 3.6 show two different processing schedules of four lots.
The corresponding EPT realizations as computed by Algorithm MM are shown in
the gray boxes. In the Gantt chart of Figure 3.6(a) a lot always claims the machine
it will be processed on. Algorithm MM can directly assign the EPT to a particular
machine implying that only cases (i), (iv), (v), and (viii) occur and that list ts stays
empty. In this way, all EPT realizations can be assigned to one of the machines.

In the Gantt chart of Figure 3.6(b) for some reason lots are not processed on the
first available machine. These lots start capacity claims on machines they will not
be processed on. For example, machine 2 is idle from time t = 1 till time t = 3.
Lot 2 could have been processed by this idle machine, but this does not happen. A
similar situation occurs from t = 7 till t = 8: Lot 4 is available for processing on
machine 1, but machine 1 is held idle. This forces Algorithm MM to go through all
eight different cases. Cases (ii), (iii), (vi), and (vii) arise whenever capacity of an idle
machine is claimed by a queued lot which will however not be processed on this
particular machine.
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Figure 3.6: Multiple machines.

Table 3.1: Unreliable machines: down time during processing.

tf/tr ra te c2e CT CT∗

0.8/0.2 1.0 1.000 0.330 1.229 1.229
1.4 1.000 0.330 1.649 1.649
1.8 1.000 0.330 3.856 3.887

8.0/2.0 1.0 1.000 1.050 1.319 1.341
1.4 1.000 1.052 1.954 1.988
1.8 1.000 1.050 5.368 5.381

16.0/4.0 1.0 1.000 1.846 1.401 1.465
1.4 0.999 1.845 2.261 2.338
1.8 1.000 1.850 6.930 7.026

3.4.2 Unreliable machines

Consider a workstation with two identical unreliable machines, a single infinite
buffer, and Poisson arrival of lots. The mean theoretical process time of the machines
is t0 = 0.8 with a coefficient of variation c20 = 0.25. However, a machine may break
down and be temporarily unavailable for further processing. Two different cases are
distinguished: (i) a machine only breaks down during processing, and (ii) a machine
may break down at any time – called general down – even if the machine is idle. The
down behavior is modeled by exponential failure and repair time distributions, with
a mean time between failure tf and a mean time to repair tr. It is assumed that if a
down occurs during processing of a lot, the lot is finished after repair and takes the
remaining process time. In the simulation experiments tf and tr are varied in such a
way that the availability always has a constant value of A = tf/(tf + tr) = 0.8.
Table 3.1 shows the simulation results of the workstation with machines that only

fail during processing. The EPT realizations that result correspond with the Gantt
chart of Figure 3.6(a). The workstation is simulated at different mean time between
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Table 3.2: Unreliable machines: general down time.

tf/tr ra te c2e CT CT∗

0.8/0.2 1.0 1.013 0.326 1.251 1.252
1.4 1.008 0.327 1.675 1.685
1.8 1.003 0.329 3.895 3.957

8.0/2.0 1.0 1.063 1.073 1.485 1.494
1.4 1.038 1.079 2.158 2.247
1.8 1.013 1.065 5.583 6.183

16.0/4.0 1.0 1.082 1.920 1.689 1.724
1.4 1.038 1.945 2.624 2.836
1.8 1.014 1.895 7.365 8.560

failure tf and mean time to repair tr levels and at various throughput levels (arrival
rates ra). The three selected tf and tr combinations give a low, moderate, and high
variability workstation. The arrival rates of 1.0, 1.4, and 1.8 lots per time unit yield
workstation utilizations of 0.5, 0.7, and 0.9, respectively. The te and c2e values are
obtained from Algorithm MM. For each throughput level the mean effective process
time is estimated to be 1.0. This is correct since te = t0/A. The squared coefficient of
variation c2e increases for increasing values of tf and tr. This reflects the previously
mentioned statement of Hopp and Spearman (2001) that, for equal availability, ma-
chines with frequent but short outages are to be preferred to machines with infre-
quent but long outages. The estimated mean cycle time of the original model, CT,
and the cycle time of the EPT based meta model, CT∗, are approximately equal for
all throughput levels and tf and tr values. The inaccuracies of the computed mean
cycle time values for the highest utilization levels are at most 1.5% based on a 95%
confidence interval.
Table 3.2 shows the simulation results of the second case with general down time

machines. Now a schedule such as in Figure 3.6(b) may arise. The workstation is
simulated at the same tf, tr, and ra levels as before. The difference with the first
case is that the mean effective process time is not constant anymore as function of
the throughput level. For small throughput levels the mean effective process time
becomes larger than 1.0. This is caused by the effect that all the machines in an empty
workstation can be down when a new lot enters the queue. Then this lot cannot start
processing immediately (Adan and Resing, 2001). The c2e values are not constant
either. The effective process time behavior of the original workstation model does
not resemble a G/G/m queueing system anymore, and, as a consequence, the mean
cycle time time of the original model, CT, shows larger deviations from the cycle
time of the meta model, CT∗. The meta model approximation is however accurate
enough to correctly interpret te and c2e using G/G/m queueing relation (3.1).

3.4.3 Unequal machines

In many practical cases, machines in a workstation are not completely identical and
may differ in the mean or variance of the process times. Therefore consider a work-
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Table 3.3: Unequal machines: a fast and a slow machine.

t0(1)/t0(2) ra te c2e CT CT∗

0.9/1.125 1.0 1.004 0.266 1.222 1.227
1.4 1.002 0.266 1.616 1.628
1.8 1.001 0.266 3.711 3.705

0.75/1.5 1.0 1.038 0.404 1.262 1.314
1.4 1.020 0.406 1.642 1.775
1.8 1.006 0.406 3.689 4.245

0.60/3.0 1.0 1.171 1.202 1.424 1.840
1.4 1.084 1.236 1.747 2.724
1.8 1.024 1.250 3.797 7.434

Table 3.4: Unequal machines: machines with difference in variability of the process times.

c20(1)/c
2
0(2) ra te c2e CT CT∗

0.25/1.00 1.0 1.001 0.620 1.271 1.275
1.4 1.000 0.620 1.780 1.785
1.8 1.000 0.623 4.435 4.441

1.00/2.00 1.0 1.000 1.493 1.403 1.408
1.4 1.001 1.494 2.188 2.193
1.8 1.000 1.500 6.221 6.277

stationwith two unequal machines. Bothmachines have Gamma distributed process
times with means t0(1) and t0(2), and squared coefficients of variation c20(1) and
c20(2). Two cases are studied: (i) the machines have equal coefficients of variation
c20(1) = c20(2) = 0.25, but different mean process times, and (ii) the machines have
equal mean process times t0(1) = t0(2) = 1.0 but different coefficients of variation.
The FIFO dispatch rule that is used in the simulation study does not account for the
difference in capacity or variability. If the two machines are both idle, they have an
equal probability to start processing a lot.

The first case considers a fast and a slow machine in parallel. Different values
are assigned to t0(1) and t0(2), but the mean capacity of the machines is kept at 2.0
lots/hour. Table 3.3 shows the results of three different settings for the process time
of the fast machine t0(1) and the slow machine t0(2). For increasing difference in ca-
pacity of the machines, the variability of the effective process time of the workstation
increases. However, the increase of cycle time CT is much less compared with the
increase of c2e. The reason is that EPT realizations are measured for the workstation
as a unit without distinction between the machines. The difference in process times
is included as variability and causes c2e to increase, while for a correct interpretation
c2e should stay 0.25. As a consequence, the meta model overestimates the effect of
unequal capacity on the cycle time. This means that we should be careful with the
interpretation of the c2e if there is a large capacity difference in the machines of a
workstation. Also a second effect can be observed; for larger capacity differences,
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the estimated mean effective process time tends to rise above the 1.0 value for de-
creasing throughput. This is due to the absence of a suitable dispatching rule in the
model to account for the fact that the first machine is faster than the second. For low
throughput capacity is actually lost due to unnecessary idle time of the fast machine.
This is reflected in an increase of te.
The second case considers a workstation with two machines with equal capacity

rates set at 1.0 lot/hour, but with different variability in the process times. Table 3.4
shows the results for two settings of the variability, machines with low and moder-
ate variability, and machines with moderate and high variability. The estimated c2e
values equal the averages of the two squared coefficients of variability of the pro-
cess time of the machines. For both the original and the EPT based meta model
the estimated cycle times are approximately equal. The c2e correctly represents the
variability in the workstation.

3.5 Case study

A case study from Philips Semiconductors is used to illustrate the potential of the
EPT as a performance measure for cycle time reduction. The Philips wafer fabrica-
tion facility is a multi-product multi-process fab with more than 400 machines. Over
1.5 million track-in and track-out events were extracted from the Manufacturing Ex-
ecution System (MES), covering a period of half a year in 1998. A track-in is the start
of a process step of a lot on a machine. The track-out is the end of this process step.
The track-out data was converted to arrival and departure events, assuming that a
track-out of a lot implies an arrival at the next process step. This includes transport
time due to material handling in the effective process time realizations. The data was
filtered and checked for inconsistency, e.g. the track-in of a lot should always have
a corresponding track-out. Using this data, the mean effective process time te and
the squared coefficient of variation c2e were computed for fourteen workstations each
consisting of single-lot machines that process just one lot at at time.
The computed te and c2e values are presented in Figure 3.7(a) and 3.7(b) and com-

pared with the nominal process time t0 and its variation c20. The nominal process
time only includes the time a lot has been actually in process. If the te of a worksta-
tion is larger than t0 this means that a considerable amount of capacity is lost due to
irregularities. Similarly, the c2e can be compared with c

2
0, revealing how much addi-

tional variability is present. For most workstations the natural variability c20 is very
small due to the highly automated and controlled processes in semiconductor manu-
facturing. Figure 3.7(b) shows that there is one workstation, workstation N, with a c20
larger than 1.0. This workstation performs process capability measurements. Mea-
surement time depends on the maturity of the process flow and can vary between
4 hours and 40 hours. For all other workstations, the c2e is significantly larger than
c20, showing how much variability is due to irregularities such as down time, setups,
and operator availability.
Figures 3.7(c) and 3.7(d) show respectively the arrival coefficients of variation

and the utilizations of these workstations, respectively. Figure 3.7(e) shows the cycle
time factors of the workstations as retrieved from the MES represented by the solid
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Figure 3.7: Case study MOS4YOU. (a) Mean process times. (b) Process time coefficients of
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bars in the figure. The cycle time factor is defined as the quotient of cycle time and
nominal process time. It is an often used indicator in the semiconductor industry
to measure the contribution of waiting time to the cycle time. From Figure 3.7(e)
we can observe that workstation C, H, and N have a cycle time factor, CTF, larger
than 4.0, indicating a very bad cycle time performance. Figure 3.7(a), (b), (c), and
(d) can be interpreted using (3.1) and give more detailed information about this bad
performance. In Figure 3.7(e) the cycle time factor estimations using (3.1) based on
te, c2e, c

2
a, and u are represented by the white bars. On the basis of the data presented

in the figures, (3.1) yields for most of the workstations cycle time estimations that lie
within 15% of the real mean cycle time values observed in the fab (obtained from the
MES). This confirms that the interpretation using (3.1) is indeed valid.
Workstation C has a te value almost three times as large as t0, and a large c2e

of almost 4.0. The arrival coefficient of variation has a reasonable value of c2a =
1.3. The combination of a high te and c2e value causes the large cycle time, even
though the utilization is only 50%! So the problem is not shortage of capacity, but
capacity loss and variability due to irregularities. Closer examination reveals that
workstation C consists of a single machine that is not used very frequently. Lots are
queued until the queue length has reached a considerable length. Then all queued
lots are processed in succession. This way of processing causes a substantial amount
of variability in the operational times, and the c2e rises. The problem of workstation
Hmainly lies with a combination of a significant capacity loss (te/t0 ≈ 2) and a high
c2e value. This is caused by the long down periods that occurred at this workstation
during the period of data collection. In addition, workstation H has a highly variable
arrival flow of lots (c2a ≈ 2). Finally, workstation N combines a very high te with a
utilization near one. We already mentioned that workstation N is an exceptional
station where the time of measurement is highly variable and the process time may
be shortened in busy periods. This implies that the process times and queue length
are correlated. As a result, the CTF observed in practice is significantly lower than
predicted through (3.1) using the estimated te and c2e values.
Variability can be reduced in a number of ways. Examination of the production

processes has to reveal the possible causes for irregularities. These causes may differ
for each of the workstations. In general, the capacity loss and process time variabil-
ity due to irregularities has to be minimized. One always has to try to arrive at short
and frequent irregularities instead of long and infrequent irregularities to minimize
variability in the effective process times. For example, one long period of mainte-
nance should be divided in more and shorter periods of maintenance. Furthermore,
lots should be processed in a steady working pace, and should be processed at an
idle machine without accumulation.

3.6 Conclusion

A new algorithm is proposed that enables estimation of the mean effective process
time and the corresponding squared coefficient of variation from manufacturing ex-
ecution system data. The required data includes arrival and departure times of lots
at the workstations, and corresponding identification numbers of the machines on
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which the lots have been processed. For our case study we were able to obtain this
information from track-in and track-out data of the machines.
With this algorithm available, all four key parameters determining the cycle time

of a workstation can be measured: mean effective process time te, squared coeffi-
cient of variation of the effective process time c2e, the squared arrival coefficient of
variation c2a, and the utilization u (see (3.1) and (3.2)). The case study shows how,
using these four parameters, the main causes of large cycle times can be identified,
and appropriate actions defined. Without estimates for te and c2e this reasoning is
not possible, and one can only rely on a cycle time based measure for each machine,
such as the cycle time factor, which however does not give a clue on the true cause
of any large cycle time observed.
The examples show that the EPT algorithm correctly computes the mean effective

process time te and squared coefficient of variation c
2
e if the workstation yields EPT

realizations that can always be assigned to one particular machine in the worksta-
tion. The mean cycle time of the EPT-based discrete-event meta model corresponds
with the cycle time observed at the workstation. The G/G/m cycle time queueing
equation (3.1) can be used as an explicit relation to interpret te and c2e. In many
practical cases, lots are not always processed on the first available machine. Upon
arrival these lots have to start capacity claims on other machines than they will be
processed on to represent the loss of capacity. The proposed algorithm accounts for
this. The EPT-based meta model then becomes less accurate. As a consequence, the
computed te and c2e values are difficult to validate with respect to the estimated cycle
times. The workstation example with general down times shows, however, that the
G/G/m representation is still sufficiently accurate to correctly interpret the te and c2e
values.
In this paper the EPT algorithm has been specifically developed for single-lot ma-

chine workstations: only machines that process one lot at a time are considered. It
is furthermore assumed that the machines in a workstation do not have large differ-
ences in processing times since this troubles the interpretation of the c2e. The single-
lot assumption is a serious restriction: many machines in semiconductor manufac-
turing process more than one lot at a time, such as lithography machines or furnaces.
A generalization of the EPT algorithm to include these types of machines is being in-
vestigated. For the moment, EPT promises to be a very powerful tool in cycle time
monitoring and improvement for semiconductor manufacturing.
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Chapter 4

Quantifying Variability of
Batching Equipment

Process time variability is one of the main elements that determine the cycle time
of a lot. Several sources of variability can be distinguished, for example machine
breakdowns, setup times, and operator availability. However, identification and
measurement of all individual sources is almost impossible. Therefore, in previ-
ous work a new method has been developed to measure Effective Process Times
(EPT) for single-lot machines. The EPT includes the various sources of variabil-
ity. Typical parameters of a workstation that can be computed from the mea-
sured EPT realizations are the mean effective process time and the corresponding
squared coefficient of variation. With actual values of the mean and variation
coefficient of the EPT available, a useful tool for cycle time reduction programs
arises. In this paper the EPT quantification approach is further generalized to-
wards batching equipment, which are commonly present in semiconductor in-
dustry. The proposed method adds a new transformation algorithm that enables
one to use the previously developed single-lot algorithm also for batch machine
workstations. Discrete-event simulation examples are used to validate the gen-
eralized EPT approach. A case study from semiconductor industry is used to
illustrate its application on an operational data set of furnace workstations.

4.1 Introduction

Semiconductor wafer fabs are complex manufacturing systems containing various
types of equipment in which numerous sources of variability occur. These sources
of variability have a negative influence on the cycle time performance. Variability

Reproduced from: Van Bakel, P. P., Jacobs, J. H., Etman, L. F. P., and Rooda, J. E.:
Quantifying Variability of Batching Equipment using Effective Process Times, IEEE
Transactions on Semiconductor Manufacturing, submitted.
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is caused by stochastic process times and process disturbances such as machine fail-
ures, maintenance, setup times, and operator availability.

Given a certain installed production capacity, increasing the throughput of the
fab causes a non-linear increase of the mean cycle time. To improve the compro-
mise between throughput and cycle time, variability must be reduced. The effect of
variability on the cycle time performance can be described by means of the effective
process time concept, as introduced by Hopp and Spearman (2001). They define the
Effective Process Time (EPT) as a single ‘replacement’ process time distribution for
a workstation, in which all process disturbances are included. A similar idea is pro-
posed by Sattler (1996). The mean effective process time, denoted by te, relates to
the effective capacity of a machine. The squared coefficient of variation of effective
process time c2e, which equals variance σ2e divided by t

2
e, corresponds to the effec-

tive variability. These two parameters can be interpreted using a G/G/m queueing
equation to approximate the mean cycle time ϕ, for instance (Hopp and Spearman,
2001):

ϕ =
c2a + c2e
2

· u
(
√
2(m+1)−1)

m(1− u) · te + te (4.1)

Equation (4.1) clearly identifies the contribution of utilization and variability to the
mean cycle time. The first term contains the squared coefficients of variation of inter
arrival times c2a and effective process times c

2
e, respectively. The second term contains

the utilization u, which is defined as the quotient of the mean arrival rate ra and the
effective installed capacity:

u =
rate
m

(4.2)

where m represents the number of machines in the workstation.

In practice, it is difficult to calculate workstation EPT parameters te and c2e by
means of analytical relations such as presented in Hopp and Spearman (2001). These
relations require that all contributing disturbances are known and have been quan-
tified. Sturm et al. (1999) observed that it is almost impossible to measure each indi-
vidual source of variability. Furthermore, the analytical relations are subject to rather
restrictive assumptions, which may not always be valid in practical situations. To
circumvent these difficulties, in Chapter 3 a new method has been proposed to com-
pute the EPT parameters from actual fab data on arrival and departure events of
lots at the workstation. This method does not require the identification of the indi-
vidual sources of variability. The effective process time definition is formalized by
computing so-called EPT-realizations from the arrival and departure events: each
departing lot results in a single EPT realization. These EPT realizations yield an EPT
distribution, from which parameters te and c2e are computed.

Several types of equipment can be found within a semiconductor manufacturing
environment. For instance, we can distinguish single-lot equipment, i.e. machines
that process a single-lot at a time, batching equipment, machines processing multi-
ple lots simultaneously, and conveyor-like machines, e.g. track-scanner lithography
equipment. The effective process time algorithm as proposed in Chapter 3 has been
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specifically developed for workstations containing single-lot machines. The objec-
tive of this paper is to generalize the EPT quantification method to include batching
equipment, such as furnaces.
The paper is organized as follows. First, the single-lot method to measure effec-

tive process times as proposed in Chapter 3 is revisited in Section 4.2. We distin-
guish between workstations obeying the so-called non-idling assumption andwork-
stations violating this assumption from an effective-process-time perspective. This
distinction based on the EPT non-idling assumption is then used to make the gen-
eralization towards batching equipment in Section 4.3. The new EPT batching algo-
rithm is validated in Section 4.4, by means of discrete-event simulation examples. A
case study from Philips Semiconductors is presented in Section 4.5 to illustrate the
use of the EPT batching algorithm. Section 4.6 concludes the work.

4.2 EPT calculation for single-lot machines

Hopp and Spearman (2001) describe the effective process time as “the time seen by
lots from a logistical point of view”. EPT therefore includes all time losses due to
any source of variability. This EPT concept is similar to a description given by Sattler
(1996): “all cycle time except waiting for an other lot”.
In Chapter 3 a new method has been proposed to actually measure the effective

process time. They use data from the fab, containing arrival and departure events of
lots at a workstation. This data is generally available in highly automated industries
such as the semiconductor industry. They consider a single-lot workstation, which
contains one or more machines that perform a similar operation and that share a
single queue with an unlimited storage capacity. The arrival of a lot in the queue
and the departure of a lot from a machine are taken as input data to determine EPT
realizations. An EPT realization is defined as “the time a lot was in process plus the
time a lot, not necessarily the same one, could have been in process on one of the
machines” (see Chapter 3). Thus, each lot delivers an EPT realization. All together,
these realizations form an EPT distribution from which mean effective process time
te and squared coefficient of variation c

2
e are computed.

In the present paperwe show that the single-lot EPTmethod of Chapter 3 can also
be used to compute EPT realizations of batching equipment. The extension towards
batching starts from the observation that for multi-machine workstations satisfying
the so-called EPT non-idling assumption, each EPT realization can be designated to
one specific lot and to one specific machine in the workstation. This is explained
below.

4.2.1 EPT non-idling

Consider a single-lot machine workstation. Equation (4.1) can be used for interpre-
tation of EPT parameters te and c2e. This equation describes how several key param-
eters of a workstation affect the mean cycle time of a lot. The equation is based on
a set of assumptions, one of these is the non-idling assumption (Buzacott and Shan-
thikumar, 1993). This assumption states that a machine cannot be held idle while a
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time lot event
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Figure 4.1: One single-lot machine: EPT non-idling schedule.

lot is waiting to be processed. Since (4.1) is expressed in terms of EPT parameters te
and c2e, the non-idling assumption has to be obeyed in terms of the effective process
time. This means that the EPT realizations have to obey the non-idling assumption.
Note that this is a less strict assumption than the assumption that the workstation
itself may not be kept idle while a lot is queued.

Single machine

Figure 4.1 presents an example of a list of arrival events in the buffer (“A”) and depar-
ture events from the machine (“D”), which occur at event time τ in a single machine
workstation. These events are depicted in a Gantt chart. In the Gantt chart, details
are drawn regarding the actual process time (shaded part, pt) and the waiting time
(unshaded part, wt). The EPT realizations that follow from these arrival and depar-
ture events according to Chapter 3 are drawn at the bottom of the Gantt chart. Both
lots have a certain amount of waiting time before they are processed, while the ma-
chine is idle. Thus, the machine itself disobeys the non-idling assumption. However,
from an EPT point of view, theworkstation does obey the non-idling assumption: for
both lots holds that a new EPT capacity claim, i.e., an EPT realization, is started (i)
whenever the arriving lot arrives at an empty workstation or (ii) the departing lot
leaves a non-empty workstation.

If the workstation obeys the EPT non-idling assumption, the definition of an EPT
realization can be written as: the time a lot was in process plus the time this lot could
have been in process. In accordance with Chapter 3, this definition is formalized by
algorithm 1SLM-n in Figure 4.2.

In algorithm 1SLM-n, initially, the number of lots in the workstation n equals 0
(n := 0). The algorithm reads events containing the event time τ and event value
ev. The algorithm starts an EPT realization after the arrival of a lot (“A”) in case of
an empty workstation (i), or after the departure of a lot (“D”) if the workstation still
contains at least one lot (iv). This is done by assigning the EPT start time s to the
event time τ . An EPT realization ends at the departure of a lot and equals τ − s,
which is written as output. Since the workstation contains a single machine, only
one lot can claim capacity at a time. Note, that for the EPT calculation the start times
of actual processing are not needed. Therefore, the actual time of processing is not
plotted anymore in the Gantt charts that will follow.
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n := 0
loop

read τ , ev
if ev = “A” then

if n = 0 then s := τ (i)
elseif n > 0 then skip (ii)
endif

n := n+ 1
elseif ev = “D” then

write τ − s
n := n− 1
if n = 0 then skip (iii)
elseif n > 0 then s := τ (iv)
endif

endif

endloop

Figure 4.2: EPT algorithm 1SLM-n: one single-lot machine, EPT non-idling.
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Figure 4.3: Multiple single-lot machines: EPT non-idling schedule.

Multiple machines

Consider a multiple machine workstation that still satisfies the EPT non-idling as-
sumption. In Figure 4.3 such a workstation is illustrated by an example of a small
schedule of four lots processed by a two-machine workstation. From an EPT point
of view, the machines are never held idle while lots are waiting to be processed. The
workstation obeys the EPT non-idling assumption: after a lot departure, the next lot
waiting in the queue immediately starts a new capacity claim on the machine that
has just finished processing. The lot that starts the new claim will also be processed
on this particular machine.

Similar to the single machine case, for a multiple machine workstation obeying
the EPT non-idling assumption holds that an EPT realization equals the process time
of a lot plus the time this lot could have been in process. The corresponding EPT
realization can be assigned to the machine the lot has been processed on, which
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n := zeros(m)
loop

read τ , ev, i
if ev = “A” then

if nt[i] = 0 then st[i] := τ (i)
elseif nt[i] > 0 then skip (ii)
endif

nt[i] := nt[i] + 1
elseif ev = “D” then

write τ − st[i]
nt[i] := nt[i]− 1
if nt[i] = 0 then skip (iii)
elseif nt[i] > 0 then st[i] := τ (vi)
endif

endif

endloop

Figure 4.4: EPT algorithm mSLM-n: multiple single-lot machines, EPT non-idling.

implies that, in the EPT non-idling case, EPT realizations can be determined for each
machine individually. This observation is used to derive the multi-machine EPT non-
idling algorithmmSLM-n from the single-machine algorithm presented in Figure 4.2.
Algorithm mSLM-n is shown in Figure 4.4 and applies the single machine algo-

rithm 1SLM-n for each of the m machines. This is done by adding machine number
i to the arrival and departure event data: the machine a lot has been or will be pro-
cessed on. The number of lots is counted per machine using array nt. The EPT start
times are also set for each machine individually using array st.

Example

Consider a workstation with two identical unreliable machines, a single infinite
First-In-First-Out (FIFO) buffer, and Poisson arrival of lots (c2a = 1.0). The machines
have a Gamma distributed natural process timewith t0 = 0.8 and squared coefficient
of variation c20 = 0.25. It is assumed that a machine may breakdown only when a lot
is in process, which implies that the EPT non-idling assumption is obeyed. The time
between breakdowns of a machine is modeled by an exponential distribution, with
mean process time between failure tf. Repair of the machine is also represented by
an exponential distribution, with mean time to repair tr. After repair, the remaining
process time of the lot in process is finished. The two machines in the workstation
have equal tf and tr values, and their distributions are independent of each other.
Three combinations of equal availability A = tf/(tf+ tr) = 0.8 are selected, corre-

sponding to three levels of variability in the range of frequent and short breakdowns
to infrequent and long breakdowns. The following two equations can be used to
compute EPT parameters te and c2e in this example (Hopp and Spearman, 2001):

te =
t0
A

(4.3)
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Table 4.1: Two unreliable single-lot machines, EPT non-idling.

analytical Alg. mSLM-n exp. approx.
tf/tr te c2e te c2e ϕs ϕqe ϕm

0.8/0.2 1.000 0.330 0.999 0.330 1.642 1.658 1.650
8.0/2.0 1.000 1.050 0.998 1.037 1.928 1.999 1.960
16.0/4.0 1.000 1.850 0.999 1.838 2.242 2.399 2.338

and

c2e = c20 + (1+ c2r )A(1− A)
tr
t0

(4.4)

To demonstrate algorithm mSLM-n, discrete-event simulation experiments are
performed using an arrival rate of ra = 1.4 (which corresponds to a utilization of u =
0.7). For each combination of tf and tr, a simulation run of 20,000 lots is repeatedwith
a minimum of 30 replications until the 95% confidence intervals on the estimated
values for te, c2e, and cycle time ϕs are smaller than ±1% of the estimated mean
values. Table 4.1 shows that the measured values from algorithm mSLM-n for te
and c2e correspond with the values analytically obtained from (4.3) and (4.4). The
long but infrequent breakdowns yield a high c2e value while the short but frequent
outages give a small c2e. The te is not affected here.
The measured EPT values can be used to estimate mean cycle time ϕs using ei-

ther queueing approximation (4.1) or a so-called discrete-event meta model repre-
sentation of the original workstation. The cycle time estimates are also included in
Table 4.1: ϕqe from the queueing approximation, ϕm from the discrete-event simu-
lation meta model, and ϕs from the original simulation model. The discrete-event
meta model has a similar model structure of a buffer and machines, compared to
the original discrete-event model. However, the processing of lots, thus the natu-
ral process time and breakdowns, is replaced by an EPT-based Gamma distributed
process time. Table 4.1 shows thatϕqe andϕm correspond well toϕs. The small de-
viations inϕqe are explained by queueing approximation (4.1), which is not exact for
an M/G/2 workstation (Buzacott and Shanthikumar, 1993). The small deviations in
ϕm are explained by the representation of the EPTs by a Gamma distribution in the
discrete-event meta model.

4.2.2 EPT general situation

The example in Section 4.2.1 shows that, if the EPT non-idling assumption is obeyed,
algorithmmSLM-n determines valid values for te and c2e. With these values available
it is possible to estimate the mean cycle time by means of (4.1) or by an EPT-based
discrete-event meta model. However, in practical situations the EPT non-idling as-
sumption may not always be satisfied. This may occur when, for example, the first
machine of a two-machine workstation is kept idle while the queued lots are pro-
cessed by the second machine. According to the definition of an EPT realization,
the capacity of the first machine should be claimed by a queued lot. By making this
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claim, the time a lot could have been in process on one of the machines is added to an EPT
realization. However, the lot that should start this claim for the first machine will
not be processed by that machine. Therefore, the EPT non-idling assumption is not
obeyed.
Recall our definition of an EPT realization being the time a lot was in process plus

the time a lot, not necessarily the same one, could have been in process on one of the
machines. Thus whenever a lot could have been in process, a claim for capacity has
to be made and added to an EPT realization. In Chapter 3 is proposed to start EPT
realizations in two cases: (i) when new lots arrive in a workstation with less work
than installed machine capacity, and (ii) when lots depart from a workstation which
has still sufficient work to keep all machines busy. Such a start of an EPT realization
is assigned to a particular machine as soon as a lot (not necessarily the same lot that
started the claim) is processed on that machine. This idea has been implemented in
algorithm MM of Chapter 3. This algorithm starts EPT realizations in a temporary
list ts, which are assigned to amachine directly or upon later arrival or departure of a
lot. However, if the EPT non-idling assumption is obeyed, then this list ts is not used
and algorithm MM reduces to the EPT non-idling algorithm mSLM-n presented in
Figure 4.4.

4.3 EPT calculation for batch machines

In this section the method to measure the effective process time is generalized to-
wards batching equipment. In semiconductor industry several types of equipment
can be found with batching characteristics, for example furnaces. A batch machine
processes multiple lots in a single batch simultaneously. The number of lots in a sin-
gle batch is denoted with batch size k. The size of a batch has a certain maximum
due to machine limitations: the upper bound ku. Several loading policies can be fol-
lowed, for example a fixed-batch policy (batches of equal size) or a variable-batch
policy (batch sizes in a certain range [kℓ, ku] with kℓ the lower bound and ku the up-
per bound on the batch size). Chang et al. (1998) use a “greedy” loading policy for a
variable-batch machine. This policy implies that a batch is formed as soon as a ma-
chine becomes available if the number of queued lots l, not yet assigned to a batch,
is at least kℓ. As many lots as possible are accumulated in a batch, which results in a
batch size equal to:

k =

{
l if kℓ ≤ l ≤ ku,
ku if l > ku.

(4.5)

A batch machine is capable of processing different product classes, i.e. each lot may
have its own recipe according to which it has to be processed. The loading policy
has to account for these differences in recipes: only lots of the same recipe can be
grouped in a batch. In case of multiple recipes, the greedy loading policy groups as
many lots of the same recipe as possible in a batch.
Tomeasure effective process times of batchmachines, the observation is used that

a single-lot machine is in fact a special case of a batch machine. In a batch machine
workstation batches of a certain size are queued in the buffer and processed on a
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machine. In case of a fixed-batch size of 1, the batch machine workstation equals
the single-lot machine workstation. The only difference between the cycle time of
a batch machine workstation and the cycle time a single-lot machine workstation is
the waiting time to form a batch, for batch sizes larger than 1. The waiting time to
form a batch should not be included in the definition of an EPT realization: an EPT
realization equals the time a batch was in process plus the time a batch could have
been in process on one of the machines. This definition results in an EPT realization
for each batch. From these realizations an EPT distribution is obtained, with a mean
effective process time te and corresponding squared coefficient of variation c2e.

The measured EPT batch parameters te and c
2
e can be interpreted using the fol-

lowing G/Gk/1 queueing approximation for the mean cycle time of a lot in a single
fixed-batch machine, single recipe workstation (Hopp and Spearman, 2001):

ϕ =
k− 1
2ku

· te +
c2a/k+ c

2
e

2
· u

1− u · te + te (4.6)

In this equation the utilization is defined as u = (ra · te)/k. The fixed batch size is
denoted with k. The first term of (4.6) equals the mean waiting time to form a batch.
The remainder of the equation is similar to (4.1) for a single-lot machine, except for
the c2a/k term. This part describes thewaiting time in the queue of the formed batches
and the batch processing on the machine, including the revised arrival pattern of
batches corresponding to c2a/k. Thus, the cycle time of a lot is divided into two parts:
waiting time to form a batch, andwaiting time and process time of the formed batch.

The forming of batches is modeled as a transformation of the arrival stream of
lots into an arrival stream of batches. This concept of transformation is used to mea-
sure the effective process time. This paper proposes a transformation algorithm that
transforms the arrival events of lots into arrival events of batches. Subsequently, the
single-lot EPT algorithm MM of Chapter 3 is used to determine the EPT realizations
from the batch arrivals and departures. These realizations build an EPT distribution,
from which batch parameters te and c

2
e are computed.

Again, the distinction is made between workstations that obey the batch non-
idling assumption andworkstations that do not, the general batching situation. Batch
non-idling implies that if a batch can be formed, i.e. enough lots of a certain recipe
are available, this batch will be processed on the next available idle machine. This
is a similar assumption as the EPT non-idling assumption, but now for batches. The
batch non-idling assumption implies that if a batch has been formed, a capacity claim
starts if at least one machine isn’t already claimed. The batch that starts the new
claim will also be processed on this particular machine. For the forming of batches
the batch non-idling assumption implies that the greedy loading policy is followed,
accounting for the difference in recipes. Thus a batch of lots of similar recipe is
formed as soon as possible of a size according to (4.5).

In this paper only batchmachines are consideredwhich obey the batch non-idling
assumption with respect to the forming of batches. This assumption relates to the
transformation algorithm. The batch machines though may violate the EPT non-
idling assumption regarding the capacity claims by formed batches; this is covered by
the single-lot EPT algorithm presented in the previous section. Thus, capacity loss
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Figure 4.5: One-machine single-recipe schedules. (a) Fixed-batch. (b) Variable-batch.

due to holding machines idle while batches are queued, is included in the EPT by
the single-lot algorithm. Capacity loss due to disobeying the greedy loading policy
to form the batches is not taken into account by the transformation algorithm and
therefore not included in the EPT calculation.

4.3.1 Single machine, single recipe

In this subsection the transformation from lot arrival events into batch arrival events
is illustrated and formalized for single-machine single-recipe workstations. Such
a workstation is considered to be the most elementary batch machine workstation.
First, such a workstation is illustrated using two small schedules. Then the transfor-
mation is formalized by a transformation algorithm.
In Figure 4.5 two schedules are depicted: (a) a fixed-batch machine schedule and

(b) a variable-batch machine schedule. Both schedules show the arrival events of
lots and departure events of batches, as well as the transformed schedule: arrival
and departures of batches. The EPT realizations are determined from these batch
events.
The events of schedule 4.5(a) are presented in Table 4.2. The transformed events

are determined as follows: each time the number of lots l in the queue not yet as-
signed to a batch equals the fixed batch size k, a batch arrival event is generated.
Since there is only one recipe, no distinction has to bemade between these lots. Batch
departure events in the transformed schedule are equal to the departure events in the
original schedule.
The variable-batch machine processes batches of size 1 and 2, as depicted in

schedule 4.5(b). The batch arrival events are now generated when the number of
unassigned lots l equals the batch size that is processed first on this machine. Thus,
first the arrival event of a batch of size 1 is determined, then the arrival event of a
batch of size 2, see Table 4.3.
For both schedules it holds that the EPT realizations are determined by single-lot
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Table 4.2: List of events for fixed-batch schedule in Figure 4.5

original events transformed events

τ ev k lot(s) τ ev batch

0 A 1
1 A 2 1 A 1
2 A 3
3 A 4 3 A 2
4 D 2 1, 2 4 D 1
5 D 2 3, 4 5 D 2

Table 4.3: List of events for variable-batch schedule in Figure 4.5.

original events transformed events
τ ev k lot(s) τ ev batch

0 A 1 0 A 1
1 A 2
2 A 3 2 A 2
3 D 1 1 3 D 1
5 D 2 2, 3 5 D 2

l := 0
read ks
loop

read τ , ev
if ev = “A” then

l := l + 1
if l < head(ks) then skip

elseif l = head(ks) then

write τ , “A”
l := 0
ks := tail(ks)

endif

elseif ev = “D” then

write τ , “D”
endif

endloop

Figure 4.6: Transformation algorithm 1VBM: one batch machine, single recipe.
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Figure 4.7: One-batch-machine multiple-recipe schedule.

algorithm 1SLM-n, for which the transformed batch events are taken as input. These
realizations satisfy the definition that an EPT realization equals the time a batch was
in process plus the time this batch could have been in process.
The transformation for a single variable-batchmachine workstation is formalized

by algorithm 1VBM, as depicted in Figure 4.6. Initially, the number of lots l which
are unassigned to a batch is set to 0 and list ks is read. List ks contains all batch sizes
that will be processed on the machine, in time order. For schedule 4.5(b) list ks is
equal to: [1, 2 ], which implies that first a batch of size 1 and second a batch of size 2
is processed.
Algorithm 1VBM reads events, which contain event time τ and event value ev.

After the arrival of a lot, l is raised by 1 (l := l + 1). Variable l is compared with
the next batch size that will be processed on the machine, which corresponds to the
head element of list ks. If l is less than the head element of list ks, the skip statement
is executed: the next batch has not been formed yet. If l equals the head element of
list ks, a batch arrival event is written, using the current event time τ . After a batch
has arrived, the number of unassigned lots is set to 0 and list ks is updated: the head
element is removed from ks by assigning the tail of ks. After the departure of a batch,
a departure event is written immediately.

4.3.2 Single machine, multiple recipes

The method to measure the effective process time for single-machine single-recipe
batching workstations as presented in the previous subsection, is extended to single-
machine multiple-recipe workstations. It is assumed that the greedy loading policy
accounts for the differences in recipes. Thus, only lots with equal recipes are grouped
together in a batch. Therefore, a batch of a certain recipe is formed as soon as enough
lots of that recipe have arrived. Using the non-idling property, algorithm 1VBM for
single-machine single-recipe workstations can be applied to each recipe separately
in single-machine multiple-recipe workstations.
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lt := zeros(r)
read kst
loop

read τ , ev, j
if ev = “A” then

lt[ j] := lt[ j] + 1
if lt[ j] < head(kst[ j]) then skip

elseif lt[ j] = head(kst[ j]) then

write τ , “A” j
lt[ j] := 0
kst[ j] := tail(kst[ j])

endif

elseif ev = “D” then

write τ , “D”, j
endif

endloop

Figure 4.8: Transformation algorithm 1VBM-r: one batch machine, multiple recipes.

This is illustrated using a single-machine two-recipes schedule in Figure 4.7. The
Gantt chart presents a single-machine schedule where two batches of fixed size 2 are
processed. Arriving lots can either be of recipe 0 or recipe 1, and can only be grouped
together per recipe. The transformation of lot-based events into batch-based events
should account for this difference in recipe: the transformed events have to be deter-
mined per recipe separately. The EPT realizations are subsequently determined by
applying single-lot algorithm 1SLM to the transformed events.

Applying algorithm 1VBM for each recipe results in algorithm 1VBM-r, presented
in Figure 4.8. In algorithm 1VBM-r, array lt stores the number of unassigned lots per
recipe, which is initially set to 0 for each recipe. The number of recipes is equal to r.
Array kst contains for each recipe a list of batch sizes that will be processed of that
particular recipe in the original time order. Index j is used in the arrays to obtain
an element corresponding to recipe j. After an event is read, the recipe number j
corresponding to the lot arrival or batch departure is known. Then, for this recipe,
it is subsequently checked if a batch-arrival event or batch-departure event can be
generated.

4.3.3 Multiple machines, multiple recipes

With algorithm 1VBM-r available, the effective process time can be measured for
a single-machine multiple-recipe batching workstation. This transformation algo-
rithm determines the time a batch arrives, i.e. the event time that a batch of a certain
recipe can be formed. In this subsection the transformation algorithm is generalized
towards a multiple-machine multiple-recipe workstation. The new transformation
algorithm is called mVBM-r, and is depicted in Figure 4.9.

Multiple machine algorithm mVBM-r is obtained by applying algorithm 1VBM-r
(Figure 4.8) to each machine, using the non-idling assumption again. This is simi-
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ltt := zeros(m, r)
read kstt
loop

read τ , ev, i, j
if ev = “A” then

ltt[i, j] := ltt[i, j] + 1
if ltt[i, j] < head(kstt[i, j]) then skip

elseif ltt[i, j] = head(kstt[i, j]) then

write τ , “A”, i, j
ltt[i, j] := 0
kstt[i, j] := tail(kstt[i, j])

endif

elseif ev = “D” then

write τ , “D”, i, j
endif

endloop

Figure 4.9: Transformation algorithm mVBM-r: multiple batch machines, multiple recipes.

lar as described in Section 4.2: applying single-machine algorithm 1SLM-n to each
machine results in multiple-machine algorithm mSLM-n.
To apply algorithm 1VBM-r to each of the m machines in a workstation, the fol-

lowing variables have to be changed or added. Array lt is replaced by matrix ltt,
array of lists kst is replaced by matrix of lists kstt, and index i is added denoting
the corresponding machine. Variable ltt contains the numbers of unassigned lots for
each machine, for each recipe. Variable kstt contains the lists of batch sizes for each
machine, for each recipe. Elements of these variables are denoted by a double index:
i representing the i-th machine and j representing the j-th recipe.
Algorithm mVBM-r requires that variable kstt is known in advance. This means

that variable kstt must be obtained from the available event data before the EPT
realizations can be computed. Element kstt[i, j] represents the list of batch sizes that
will be processed on machine i for recipe j, sorted in time order.

4.4 Simulation study

In this section a simulation study is performed, to validate the proposed algorithms
and approach to measure the effective process times of batch machines. A similar
discrete-event simulation experiment is performed as in the example of Section 4.2,
but now for workstations with batch machines. A discrete-event simulation model
of a certain workstation is implemented using the χ language (Rooda and Vervoort,
2003). Simulation runs of 20,000 batches are carried out until the accuracy of the
estimated values for te, c2e, and ϕs has reached a certain level. This level is defined
as the 95% confidence interval on the estimated parameter, which has to be smaller
than ±1% of the estimated value. Again, the minimum number of repetitions is set
to 30.
The modeled workstation contains explicitly different sources of variability, for
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Table 4.4: Single machine, single recipe, downs during processing, fixed-batch size k = 4.

t f /tr ra te c2e ϕs ϕqe ϕm

0.8/0.2 2.0 1.001 0.331 1.912 2.041 1.910
2.8 1.000 0.330 2.052 2.211 2.054
3.6 1.000 0.330 3.847 4.025 3.858

8.0/2.0 2.0 1.002 1.058 2.257 2.407 2.219
2.8 0.999 1.046 2.879 3.043 2.821
3.6 1.000 1.048 7.089 7.268 7.075

16.0/4.0 2.0 1.001 1.856 2.657 2.807 2.576
2.8 1.000 1.843 3.806 3.978 3.730
3.6 1.000 1.849 10.614 10.872 10.505

example the natural process time and breakdowns. In a simulation experiment mean

cycle timeϕs and mean batch size k are estimated, and arrival events of lots and de-
parture events of batches are generated. Algorithm mVBM-r (Figure 4.9) is used to
transform the events into single-lot events. Subsequently, algorithm MM of Chap-
ter 3 is used to determine the EPT realizations, fromwhich the EPT parameters te and
c2e are computed. In the examples of this simulation study we assume non-idling,
which means that algorithmMM can be replaced by algorithmmSLM-n (Figure 4.4).
After the EPT calculation, a simulation experiment is performed using a so-called

meta model. Themeta model is obtained by replacing the process time specifications
in the original discrete-eventmodel by a Gamma distributed process time with mean
te and squared coefficient of variation c2e, thus an EPT-based process time distribu-
tion. From the meta model, responseϕm is determined in a simulation experiment.
The meta model value for the mean cycle time is compared with the value from the
original model. Ideally, the estimate for ϕm should be comparable to the estimate
for ϕs. Also, both values should show the same behavior, according to queueing
approximations (4.1) and (4.6). This means that if, for example, the variability in the
original model is increased,ϕs and c2e should increase, and thus also the meta model
value ϕm should increase. This validation of the EPT parameters te and c

2
e deter-

mines if te and c2e are accurate measures for the effective capacity and variability in a
batch machine workstation.

4.4.1 Single-machine single-recipe workstation

Consider a single batch machine workstation, which has a fixed-batch policy of k =
4. All batches are processed according to the same recipe. Breakdowns occur similar
to the example in Section 4.2.1: the machine can breakdown during processing, with
a mean process time between failure t f ; then a repair is needed, with a mean time
to repair tr. After a repair the remaining process time of a batch is finished. The
three combinations for t f/tr (from Section 4.2.1) all yield an availability of 80%, but
different variability: the breakdowns vary from frequent and short to infrequent and
long. Both t f and tr are exponentially distributed. Also the natural process time
is a source of variability: a Gamma distribution is implemented with t0 = 0.8 and
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c20 = 0.25.
In Table 4.4 the results are presented. For each variability level three arrival rates:

ra = 2.0, 2.8, and 3.6 are considered, resulting in utilizations u = 0.5, 0.7, and 0.9,
respectively, since te equals 1.0. The measured values for te and c2e equal those for
the single-lot case in Example 4.2.1 in Section 4.2. Again, longer and less frequent
breakdowns result in a higher c2e. Table 4.4 presents three values for the mean cycle
time: the experimental value ϕs and two approximations: analytic approximation
ϕqe from (4.6) and meta model approximateϕm. The values forϕqe deviate between
2.4% and 7.8% from the experimental values ϕs. The meta model values ϕm show
a smaller deviation: between 0.1% and 3.0%. From this experiment it is concluded
that parameters te and c2e are accurate measures to represent the effective capacity
and variability of the single batch machine, single recipe workstation.

4.4.2 Single-machine multiple-recipes workstation

The influence of multiple recipes is considered for a single batch machine worksta-
tion. Recipes are added to one specific experiment from the previous subsection:
breakdowns during processing with t f/tr equal to 8.0/2.0 and arrival rate ra equal
to 2.8. Considering the number of recipes, three situations are tested: 2, 3, and 4
recipes. In each case lots arrive in a Poisson arrival stream with arrival rate ra, and
with an equal chance a lot has one of the possible recipes. The natural process time
is equal for each recipe, and is Gamma distributed with t0 = 0.8 and c20 = 0.25.
Thus, the introduction of recipes influences only the forming of batches in this ex-
periment. The number of recipes r are varied for a fixed-batch policy (k = 4) and a
variable-batch policy ([kℓ, ku] = [2, 4]). The results are depicted in Table 4.5.
The measured values for EPT parameters te and c2e confirm our expectations: the

EPT values are the same for each recipe and equal to the single recipe case (Table 4.4,
t f/tr = 8.0/2.0). The batching policy does not affect the parameters te and c2e, al-
though the batching policy does influence the mean cycle time. The variable-batch
policy gives lower mean cycle time values than the fixed batch policy. Furthermore,
increasing cycle time is seen due to an increasing number of recipes: more lots are
queued before a batch of a certain recipe can be formed. The mean cycle time is
accurately estimated by the meta model: compared to ϕs of the original model, the
meta model approximate ϕm shows a maximum deviation of 1.4% for the fixed-
batch cases and 3.6% for the variable-batch cases. The meta model has the same
arrival stream of lots with the same recipes as in the experiment. The greedy loading
policy is applied in the meta model.

Next consider the case where each recipe has a completely different natural pro-
cess time distribution. In Table 4.6 the mean process times t0r for each recipe are
depicted, for experiments with 2, 3, and 4 recipes. The squared coefficient of varia-
tion c20 is equal to 0.25 for all process times. Similar to the case of “multiple recipes
with equal process times”, the lots arrive in a Poisson arrival stream with a certain
arrival rate ra, and with an equal chance a lot needs one of the possible recipes. Thus,
this distribution is not influenced by the difference in process times.

The measured effective process time parameters te and c2e are depicted for each
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Table 4.5: Single machine, multiple recipes, equal process times, downs during processing.

k r te c2e k ϕs ϕm

[4] 2 1.002 1.053 4.0 3.510 3.472
3 0.999 1.055 4.0 4.098 4.043
4 1.000 1.045 4.0 4.684 4.619

[2, 4] 2 0.999 1.048 3.08 3.458 3.366
3 1.001 1.052 3.04 3.790 3.663
4 1.001 1.052 3.01 4.116 3.967

Table 4.6: Multiple recipes, unequal process times.

t0A t0B t0C t0D

r = 2 0.5 1.5
r = 3 0.5 1.0 1.5
r = 4 0.5 0.5 0.5 2.5

Table 4.7: Single machine, multiple recipes, unequal process times, downs during processing.

rA rB rC rD
k r te c2e te c2e te c2e te c2e k ϕs ϕm

[4] 2 0.626 1.540 1.874 0.676 4.00 7.815 7.719
3 0.625 1.530 1.250 0.887 1.875 0.675 4.00 8.279 8.217
4 0.625 1.530 0.626 1.531 0.626 1.535 3.122 0.507 4.00 10.376 10.378

[2,4] 2 0.625 1.529 1.874 0.675 3.63 8.160 7.963
3 0.626 1.528 1.249 0.890 1.875 0.678 3.61 8.378 8.261
4 0.625 1.524 0.625 1.530 0.626 1.542 3.124 0.506 3.66 10.688 10.558

recipe in Table 4.7. They all correspond to the analytical values that can be computed
using (4.3) and (4.4) with t f/tr = 8.0/2.0. Again we see that the batching policy has

no influence on the computed te and c2e values.

Table 4.7 shows the mean batch size k and themean cycle timeϕsmeasured in the
experiments. An increase in cycle time is seen for an increasing number of recipes,
and in this particular case the fixed-batch policy results in a slightly lower cycle time
than the variable batch policy. The mean cycle time ϕm obtained from the meta
model is also presented in Table 4.7. All EPT parameters in Table 4.7 are used in the
meta model: each recipe has an EPT-based Gamma distributed process time, and the
arrival stream of lots is equal to the arrival stream in the experiments. The results
show only small deviations between the mean cycle time from the meta model and
the original model: a maximum deviation of 2.4%.

This experiment shows the possibility to create an EPT-based meta model which
estimates the mean cycle time accurately for a single batchmachineworkstation with
multiple recipes with unequal process times. In the next subsection the step is made
to a multiple machine workstation.
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Table 4.8: Multiple machines, multiple recipes, downs during processing, variable-
batch size: [kℓ, ku] = [2, 4].

m ra r k ϕs ϕm

equal 2 5.6 2 3.03 2.115 2.158
process 3 2.99 2.265 2.288
times 3 8.4 2 2.99 1.689 1.737

3 2.96 1.793 1.839

different 2 5.6 2 3.60 4.609 4.629
process 3 3.59 4.725 4.726
times 3 8.4 2 3.58 3.395 3.468

3 3.57 3.490 3.518

4.4.3 Multiple machines, multiple-recipes

The single-machinemultiple-recipes experimentswith variable-batchpolicy [kℓ, ku] =
[2, 4] and number of recipes r = 2 and r = 3 are repeated for a workstation with two
and three identical, parallel batch machines. Again, in case of equal process times,
each recipe has a Gamma distributed process time with t0 = 0.8 and c20 = 0.25. For
the cases with unequal process times, Table 4.6 gives the mean natural process time
for each recipe, each with c20 = 0.25. The arrival rate of the Poisson arrival stream is
raised to 5.6 and 8.4 for the 2 and 3 machine workstation, respectively. The exponen-
tial failure and repair behavior is now implemented for each machine individually,
independent of the other machine.

In Table 4.8 the results for the average batch size k and the mean cycle time ϕs
from the experiments and themetamodel approximateϕm are presented. The values
for te and c

2
e for each recipe are omitted in this table, since these are equal to the

values in Table 4.7, measured in the single machine experiment. The conclusions are
the same for this multiple batch machine workstation experiment as for the single
batch machine workstation experiment: parameters te and c2e correctly quantify the
effective process time and these parameters can be used to estimate the mean cycle
time by means of a discrete-event meta model. The mean cycle time estimated by
this meta model (ϕm) has a maximum deviation of 2.8% in case of equal process
times and 2.2% in case of unequal process times.

4.5 Case

The case study is taken from Philips Semiconductors MOS4YOU wafer fabrication
facility. We discuss nine workstations consisting of furnaces, which in the follow-
ing text and figures are referred to as capitals A through I. The number of furnaces
in each of the workstations are: 2, 6, 6, 2, 6, 5, 6, 2, and 1, respectively. The fur-
naces of MOS4YOU are typically batching equipment. Each furnace has a maximum
capacity of 6 lots that can be processed in one batch. Track-in and track-out data
were observed for a time period of six months from January 1st, 2000 until July 1st,
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2000. This resulted in 3.6 million track-in and track-out events for all workstations.
These track-in and track-out events are used for the analysis of the effective process
times, natural process times, variation coefficient of arrival times, utilization, and
cycle time factors of the batch machines. A track-out of a lot is assumed to be the ar-
rival at the next process step. This includes transport time due to material handling
in the effective process time realizations.

For all nine workstations the following parameters are determined based on the
track-in and track-out data set: mean cycle time ϕ, mean natural process time t0,
natural squared coefficient of variation c20, mean effective process time te, effective
squared coefficient of variation c2e, mean inter arrival time ta, and squared arrival
coefficient of variation c2a. The effective process time realizations are determined us-
ing transformation algorithm mVBM-r and EPT algorithm MM of Chapter 3. Mean

batch size k is determined as well as the proportion of processed recipes for each
of the workstations. Some workstations just process three different recipes, while
others more than ten.

Figure 4.10 shows all the results derived from the analysis of the track-in and
track-out data. Figure 4.10(a) shows natural process time t0 and effective process
time te for each of the workstations. In all cases the effective process times are higher
than the natural process times due to capacity losses. The highest ratio te/t0 is ob-
served for workstation F. In Figure 4.10(b) the natural process time squared coeffi-
cient of variation c20 and effective process time squared coefficient of variation c

2
e are

shown. The furnaces have a very low c20 value due to the automated production pro-
cess. The variation in natural process times is caused completely by small variations
in process times among the different recipes. The c2e is quite a bit higher, but for al-
most all workstations c2e is below 0.35 which is still lowly variable. One exception
is workstation D. One single EPT realization of 298 hours resulted in a very high c2e
for workstation D. If this outlyer is removed from the data set, te becomes 7.60 hours
and c2e becomes 0.21. This long EPT realization is caused by a long down period of
one of the machines, which consumed most of the time of the EPT realization.

Inter arrival time coefficient of variation c2a is very high for all of the furnace
workstations as shown in Figure 4.10(c). This is caused by the wet benches which are
the main supplier of the furnaces. The wet benches produce lots in batches of size 2,
which results in high c2a values for the inter arrival times of the lots. In Figure 4.10(d)
the utilization of the furnaces are shown. The utilization of almost all furnaces is
between 60% and 80%. Workstations A and D have a utilization close to 90%. The
utilization is defined here as the fraction of time the furnace is effectively processing

a batch, even if this batch consists of a single lot: u = te/(ta · k) with k the average
batch size of production lots processed by the furnace.

The cycle time factor (CTF) for each of the workstations is shown in Figure 4.10(e)
as obtained from the MES. The CTF is defined as the quotient of cycle time and
natural process time. The CTFs are all moderately low (below 3.0). A simulation
meta model is used to approximate the CTFs. The meta model consists of one buffer
and given number of identical batch machines each with a maximum capacity of 6
lots. The buffer follows a FIFO dispatching policy and uses a greedy batch loading
policy with a minimum batch size of 1. The process times are Gamma distributed
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Figure 4.10: Case study MOS4YOU. (a) Mean process times. (b) Process time coefficients of
variation. (c) Arrival coefficients of variation. (d) Utilization. (e) Cycle time factors.

with parameters te and c2e. The lots arrive at the buffer in batches of 2 lots each with
the same recipe to be processed. This arrival pattern is according to the measured
departure pattern of the wet benches with parameters ta and c

2
a. The recipe of the

arriving lot is determined by a Bernoulli chance equal to the proportion of each of
the processed recipes. The mean cycle times in the meta models are determined by
running a χ discrete-event simulation model (Rooda and Vervoort, 2003) with 50
runs of 20,000 lots each. The 95% confidence intervals on the estimated mean cycle
times are smaller than ±0.2% of the estimated mean values. The simulation meta
model mean cycle time estimates are close to the real fab’s cycle time. For most
workstations the CTF value estimated from the meta model is slightly larger than
the CTF values measured from the fab.

Finally, we replaced EPT algorithm MM of Chapter 3 by EPT non-idling algo-
rithm mSLM-n (Figure 4.4) and recalculated the EPT realizations. For each worksta-
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tion the new te and c2e value is shown in Figure 4.10(a) and 4.10(b) as a small dot in
the white bar of the original EPT values. The new te values decreased between 7.5 to
17.5%, except for workstation I, as shown in Figure 4.10(a). This implies that some
capacity is lost by holding batch machines idle while formed batches are queued.
Station I is a single-machine workstation which by definition does not violate the
EPT non-idling assumption and therefore gives an equal te value. For c2e larger dif-
ferenceswere observed for some workstations, see Figure 4.10(b); the ‘non-idling’ c2e-
values of workstations C, E, and H are 30% to 40% smaller than the ones computed
using algorithmMM. The c2e-value of station D decreased to 0.19, which corresponds
with the previous observation on the long machine down. EPT algorithm MM cor-
rects for this capacity loss, while algorithm mSLM-n does not account for violations
of the EPT non-idling assumption. We also recalculated the corresponding CTFmeta
model estimates and observed that for most workstations they are below instead of
above the measured CTFs from the fab (shown as small dots in the white bars of
Figure 4.10(e)). For stations A, C, D, E, and F the CTF estimates based on algorithm
mSLM-n are even slightly more accurate than the CTF estimates based on algorithm
MM. This suggests that violations of the EPT non-idling assumption (such as long
machine downs) should be accounted for if they occur frequently, but the correction
proposed in algorithm MM may in some cases overestimate its contribution to the
effective capacity and variability.

4.6 Conclusion

An algorithm is proposed for the calculation of effective process time realizations
for batching equipment. The required data includes the arrival and departure times
of the lots processed at the workstation for the considered time period, the corre-
sponding machine identifications the lots have been processed on, as well as lists of
batch sizes sorted in time order for each machine and for each recipe. The EPT batch
algorithm is a combination of a new transformation algorithm and the single-lot
EPT algorithm. The transformation algorithm is used to transform lot arrivals into
‘batch arrivals’. Subsequently, the algorithm of Chapter 3 is used to calculate the
EPT realizations for the batches. The transformation starts from the concept of EPT
non-idling to calculate the batch arrivals for each individual machine and recipe.
A discrete-event simulation study was setup to validate the proposed EPT quan-

tification approach for batch machine workstations. The simulation experiments
obey the EPT non-idling assumption in both batch forming and batch processing.
The simulation study showed that the batch effective process times were correctly
measured. For the single-machine single-recipe case both the analytical queueing ap-
proximation and the discrete-event simulation meta model provided accurate mean
cycle time estimations compared to the mean cycle time obtained from the origi-
nal discrete-event model. Also in the multi-recipe and multi-machine cases accurate
cycle time estimations were obtained using the discrete-event meta model both for
fixed and variable batch sizes.
The developed batching EPT algorithm has been applied in a case study at the

Philips MOS4YOU wafer fab in Nijmegen, The Netherlands. The furnace worksta-
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tions were considered. Using the new algorithm, all key parameters determining the
cycle time performance could be calculated: the mean effective process time te, the
corresponding squared coefficient of variation c2e, the squared coefficient of variation
of lot arrivals c2a, and the effective utilization u. The observed variability in the batch
processing was low; c2e values lower than 0.35 were found for almost all worksta-
tions. For one workstation a larger value was found due to one long down period
of the station. The computed workstation te values were at most 1.5 times the cor-
responding raw processing times, which resulted in utilizations between 60% and
90%. The measured c2a values appeared to be relatively high (values of 2 or more).
This is due to the batch arrivals from the precedingwet benches. However, the batch
forming at the furnaces reduces the effect of these irregular arrivals on the cycle time
performance, i.e. c2a is divided by batch size k according to (4.6).
The proposed approach clearly separates the batch forming policy from the effec-

tive process times at the workstation. The simulation experiments showed that for
fixed and variable batch sizes exactly the same te and c2e values are obtained. A bad
batching policy can still spoil the cycle performance even if the capacity losses and
effective variability are low. For cycle time analysis the batching policy, the work-
station utilization, and the variability should be taken into account. From the case
study we observed that this rationale could possibly also provide new insights for
the single-lot algorithm: replacing EPT algorithm MM of Chapter 3 by EPT non-
idling algorithm mSLM-n of Figure 4.4 excludes all violations of the EPT non-idling
assumption, for example caused by long machine downs, from the EPT realizations.
All capacity losses due to these violations then have to be modeled as being part of
the dispatching policy at the workstation.



Chapter 5

Flow Time Approximation
Method for Simulation

Optimization

This paper proposes a new approximationmethod to describe product flow times
in simulation optimization problems of open queueing networks with fixed rout-
ings. Semiconductor wafer fabrication is an example of such a queueing network.
The approximations are built from the outcome of simulation runs according to
a design of experiments in search subregions. The proposed approximations will
be used in a Sequential Approximate Optimization (SAO) approach and provide
accurate approximations of flow time performance in each iteration of the opti-
mization process. The idea of the newly developed approximation method is the
incorporation of queueing physics of each individual station in the approxima-
tion model of the total product flow time. The approximation requires station
utilization and variability as response output from the simulation model. These
responses are determined using the concept of effective process time. Effective
process time was proposed in previous work to quantify utilization and variabil-
ity of stations in an operating factory. Here, the idea is used in the simulation
environment. The newly developed flow time approximationmodel has been in-
corporated in a multi-point sequential approximate optimization approach. Test
examples considered optimization problems of a four-station flow line and a
twelve-station re-entrant flow line, subject to the number of machines as (inte-
ger) design variables. For the twelve-station flow line also time to repair and
setup time are treated as (continuous) design variables.

5.1 Introduction

This paper presents a new method for simulation-based optimization of discrete-
event manufacturing systems regarding the flow time performance. The paper as-
sumes that the manufacturing system can be modeled as an open queueing network

85
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of coupled stations and is represented by a discrete-event simulation model. Each
station consists of a number of parallel machines that share a single infinite queue.

Simulation optimization is a means to find optimal settings for parameters in
a computationally expensive simulation model. Optimization is performed to find
the parameter values that minimize (or maximize) a performance criterion subject
to constraints. Simulation optimization is reviewed in journal papers of Fu (1994),
Carson and Maria (1997), and Azadivar (1999), and is covered in text books of, e.g.,
Law and Kelton (2000) and Gosavi (2003). Three major classes of techniques for sim-
ulation optimization can be distinguished: (i) gradient based search methods, (ii)
Response Surface Methodology (RSM), and (iii) stochastic methods. The gradient
based methods determine the response function gradient. This gradient is used to
compute a new search direction iteratively. RSM based methods use a sequence of
approximation models, that are built in a subdomain of the design space. Stochas-
tic methods, such as genetic algorithms and simulated annealing, combine design
exploration with random search strategies.

The proposed method relates to the RSM (see, e.g., Myers and Montgomery,
2002). Basic RSM is a means to obtain an approximation of the objective function
for the entire design space. For optimization purposes sequential RSM is used to ob-
tain a local approximation in a smaller subdomain of the design space. This local
approximation is used to determine the steepest-descent direction. In this direction
a line search method is applied to find the optimal design in this direction. This de-
sign is starting point for a new local approximation that determines a new steepest-
descent direction. Within the discrete-event simulation optimization literature, RSM
is usually considered for unconstrained problems. Recent work of Angün et al. (2003)
introduced RSM for constrained problems for simulation-based optimization.

RSM is also commonly applied in structural optimization. See, e.g., Barthelemy
and Haftka (1993). Structural optimization considers optimization with a Finite-
Element-Method (FEM) model in the loop. In this field, RSM relates to the ap-
proximation building of the FEM-based objective and constraint functions. RSM is
used in two different ways: (i) to build global approximations of the objective func-
tion and constraints, replacing the original optimization problem by an approximate
one, and (ii) to generate a sequence of approximate optimization subproblems in
smaller subregions. Following the second approach, Toropov et al. (1993, 1996) in-
troduced a multi-point Sequential Approximation Optimization (SAO) strategy. In
each iteration, this method builds response surface approximations of objective and
constraints using a restricted number of simulation evaluations in a smaller search
subregion of the design space. The resulting approximate optimization subproblems
are explicit and can be easily solved using a suitable mathematical programming al-
gorithm. A move limit strategy is used to successively adjust the location and size
of the search subregions. Multi-point strategies were further developed and success-
fully applied in work of others (see the overview in Chapter 2).

Abspoel et al. (2001) developed a multi-point SAO technique for simulation op-
timization of manufacturing systems. The objective and constraint functions were
approximated using pure linear approximation models based on D-optimal design
of experiments. Integer design variables are considered. Integer design variables
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are very typical for manufacturing systems: think of the number of machines, the
number of operators, and batch sizes. Abspoel et al. (2001) observed that the non-
linearity of the flow time response plays an important role in the approximation. The
proposed pure linear approximations are not very well suited in larger search sub-
regions. Due to the integer design variables, the search subregion cannot be reduced
beyond the integer restrictions, which can lead to inaccurate approximations in the
smallest possible search subregion. Gijsbers (2002) extended this method towards
more general linear regression models. These regression models are advantageous
in approximating the physics that exists in manufacturing system responses. He
proposed a linear regression model for approximating the flow time in which the
number of machines per station is treated as a design variable. The regression mo-
del terms included one asymptote resembling the station utilization asymptote.

The aim of this paper is to develop a regression approximation model that relates
both to utilization and to variability. The regression approximation model of Gijs-
bers (2002) already included the utilization effects when the number of machines is
treated as a design variable, but did not include variability. It furthermore assumes
that between stations no correlation exists. The newly developed approximation
method defines regression models for utilization and variability for each station sep-
arately taking into account design variables of other stations too. The flow time
approximation is a pure linear regression model with one extra regression term that
is based on both the utilization and variability approximations. The utilization and
variability approximations account for the effect design variables may have on the
flow time. This allows to include various types of integer and continuous design
variables, such as: the number of machines, the number of operators, the mean time
to repair, and setup times.

The key feature of the approximation method is the use of Effective Process Time
(EPT) in the approximation building. EPT is a measure to quantify capacity and vari-
ability in stations of an operating factory (see Chapter 3). Here, the idea is used to
determine EPT parameters from the simulation model. The approximations for uti-
lization and variability are built on the computed EPT parameters from simulation
evaluations. Since capacity and variability are the main drivers for flow time, the
use of effective process time in the flow time approximations is essential here.

This paper is organized as follows. Section 5.2 defines the optimization prob-
lem. Section 5.3 discusses the sequential approximate optimization approach. In Sec-
tion 5.4 the approximation for a single station is discussed. Section 5.5 explains how
utilization and variability approximations can be obtained for each separate station
in the network using effective process times. Section 5.6 describes how the approx-
imate optimization problem can be built for a single station and shows how these
approximations can be combined into a response surface for the complete product
flow. Section 5.7 shows which optimization sequence is followed and Section 5.8 dis-
cusses some additional implementation issues. The method is tested in Section 5.9
using two optimization examples of a four-station flow line and a twelve-station
flow line. This paper concludes in Section 5.10.
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5.2 Optimization problem

Consider a manufacturing system that produces discrete products. We assume that
the manufacturing system is modeled as an open queueing network of p stations
represented by a discrete-event simulation model. Each station, denoted with j, con-
sists of a number of machines, denoted with m j. All machines within one station
share a single queue. The queue has infinite storage capacity, i.e. blocking does not
occur. The manufacturing system produces q different product types. Each product
flow, denoted with k, has fixed routing and fixed flow rate.
The optimal design problem for a manufacturing system is defined such that

some explicit cost function is minimized subject to flow time constraints. The flow
time of each product flow is determined by means of a discrete-event simulation
model (see Figure 5.1). The stochastics that occur in the discrete-event simulation
are represented by variable ω. The flow time estimate Φk(x,ω) for each product
flow k is a stochastic response.
The optimization problem is defined as follows:

Minimize f (x)
subject to: E[Φk(x,ω)] ≤ Φc,k, k = 1, . . . , q

xℓ,i ≤ xi ≤ xu,i, i = 1, . . . , n
(5.1)

where x = [x1, x2, . . . , xn]T is the vector of n design variables, and xℓ,i and xu,i are
the lower bounds and upper bounds on the design variables, respectively. Objec-
tive function f (x) represents the (explicit) cost function. The constraints relate to
the expected value of the mean flow time of each product flow. Flow time Φk(x,ω)
represents the sample mean flow time of product flow k determined by a single sim-
ulation run. The expected value of the mean flow time for all products is estimated
by a given number of simulation replications. The expected value of the mean flow
time for product k is bounded by Φc,k.
The mean product flow time Φk(x,ω) is the sum of individual station flow times

in the simulation model, determined by the product routing. This is illustrated in
Figure 5.2 which contains four stations and two different product flows. Denote the
flow time of station j by ϕ j, with j = 1, . . . , p. The total flow times of the product
flows in the example of Figure 5.2 become:

[
Φ1

Φ2

]

=

[
1 2 2 1
1 1 1 0

]

︸ ︷︷ ︸

R







ϕ1
ϕ2
ϕ3
ϕ4







(5.2)

or in the general case:

Φk(x) =
p

∑
j=1

Rk jϕ j(x) (5.3)

where R is the routingmatrix. Element Rk j contains the number of re-entrant arrivals
of product flow k for station j. In this paper it is assumed that R is a given fixed
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Figure 5.1: Discrete-event simulation model.
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Figure 5.2: Re-entrant flow line with two product flows.

matrix. Following the optimization problem of (5.1), the flow time constraints in
Figure 5.2 relate to product flow 1 and product flow 2, bounded by Φc,1 and Φc,2,
respectively.

The mean flow rate (or throughput) of the manufacturing system is known, since
the routing of the products and the flow rate of each product flow are given. For
each station j the mean arrival rate ra, j is given by:

ra, j =
q

∑
k=1

Rk jrA,k (5.4)

where rA,k is the mean interarrival rate of product flow k into the queueing network.
The interarrival time of product flow k is distributed with mean tA,k = 1/rA,k and
Squared Coefficient of Variation (SCV) c2A,k = σ2A,k/t

2
A,k where σ2A,k is the variance of

the interarrival times.

Design variables can be continuous or integer. Examples of continuous variables
are: arrival distribution parameters tA,k and c

2
A,k for each product flow k, process time

distribution parameters te, j and c
2
e, j for each station j where c

2
e, j is the SCV of the

process time distribution. Other continuous design variables could be parameters
related to process disturbances such as time to failure and time to repair. Integer
design variables may be the number of machines m j for each station j, or the number
of operators. For batching equipment, the batch size may also be an integer design
variable. In this paper operational rules included in the simulation model, such
as scheduling and dispatching, are assumed to be fixed and are not considered as
design variables.

The objective function of the optimization problem is mostly related to cost of
investment, like the cost of equipment or the cost of operators. It is assumed that the
objective function is explicitly known.
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5.3 Optimization approach

For solving the optimization problem of (5.1), a multi-point Sequential Approximate
Optimization (SAO) approach is followed. An introduction to SAO techniques can
be found in Haftka and Gürdal (1991). The basic principle of an SAO approach is
that a sequence of approximate optimization problems is formulated and solved,
iteratively. The SAO approach carries out several cycles (or iterations). In each cy-
cle, a number of carefully selected designs is simulated in a search subregion of the
design space. Based on the simulation responses, approximations for objective and
constraint functions are built. These explicit approximations replace the simulation
responses in a so-called approximate optimization problem. This approximate op-
timization problem is solved within the search subregion by a mathematical opti-
mization solver to find an approximate optimum. This new optimum is the basis for
determining a new search subregion in the next cycle. The sequence stops whenever
certain stopping criteria related to the improvement during the last few cycles are
met.
The simulations that determine flow time Φk(x,ω) are computationally expen-

sive. Therefore, within the SAO approach, approximations are needed for these flow
time constraint functions to define the approximate optimization problem in each
cycle. The approximate optimization problem in cycle (r) is defined as follows:

Minimize f (x)

subject to: Φ̃
(r)
k (x) ≤ Φc,k, k = 1, . . . , q

xℓ,i ≤ x(r)ℓ,i ≤ xi ≤ x
(r)
u,i ≤ xu,i, i = 1, . . . , n

(5.5)

In each cycle, constraint approximation functions Φ̃
(r)
k (x,ω) are used to find an op-

timum in the search subregion. The constraints Φ̃
(r)
k (x) are tightened compared to

(5.1) to account for the uncertainty from stochastic constraint evaluations. This is
further explained in Section 5.6. The rectangular search subregion is represented

by lower bounds x
(r)
ℓ,i and upper bounds x

(r)
u,i, also called move limits. The width of

the search subregion in design variable direction i is given by: ∆
(r)
i = x

(r)
u,i − x

(r)
ℓ,i .

The search subregion is moved and resized at the end of each cycle by changing the
values for the move limits.
Each cycle (r) in the SAO approach starts with defining a rectangular search sub-

region. Rectangular search subregions are placed around iterate x
(r)
0 . This iterate

is the accepted optimal design of the previous cycle (r− 1) and is used as starting
design in cycle (r). At the start of the SAO sequence the initial iterate x(0)

0 is given.

Each iterate x
(r)
0 (r = 0, 1, 2, etcetera) is simulated M times to evaluate the point

regarding feasibility of the flow time constraints. Afterwards, a number of N care-
fully selected design points is included in the design of experiments in the search
subregion. The simulations of the N design points in the experimental design and
the M simulation replications in the center point are the basis for the flow time ap-
proximation building. The simulation results are used to approximate the flow time
constraint functions which build the approximate optimization problem of cycle (r).
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This approximate optimization problem is solved by a mathematical optimization

solver to find approximate optimal design x
(r)
∗ in the search subregion. The approxi-

mate optimal design is also simulated M times to check objective improvement and

feasibility of x
(r)
∗ compared to x

(r)
0 and prior iterates. If the new approximate optimal

design indeed shows improvement, this design is selected to be the new iterate of
the next cycle.

The check whether a new approximate optimum x
(r)
∗ is feasible or not is based on

M simulation replications. Let α be the significance level of the hypothesis tests to
reject a design. Based on the original optimization problem of (5.1), we have one (ex-
plicit) objective function and q stochastic flow time constraint functions. For stochas-
tic constraints, the upper bound of the 100(1− 2α)%confidence interval on the mean
product flow time is used to determine feasibility (Montgomery and Runger, 2003),
which replaces the flow time constraints in (5.1) by:

Φk(x,M) + tα,M−1

√

S2k(x,M)

M
≤ Φc,k (5.6)

for all k = 1, . . . , q, where Φk(x,M) is the sample mean and S2k(x,M) the sample
variance of the flow time of product flow k based on M replications. In this paper it
is assumed that a design is feasible if all constraints are feasible separately, i.e. for all
k = 1, . . . , q holds that Φk(x,M) ≤ Φc,k. This is further explained in Section 5.6.

5.4 Flow time approximation for single station

For fast convergence and robustness of the SAOmethod, this paper introduces good
quality response surfaces to approximate the flow time constraints. The newly pro-
posed response surfaces are able to approximate the non-linearities present in the
flow time responses with high accuracy. The new response surfaces should be able
to approximate the flow time constraints for a mix of the continuous and integer
design variables mentioned in Section 5.2.
The basis for the new approximation method comes from queueing theory. Sev-

eral analytical relations of the mean flow time ϕ are known (see for an overview
Buzacott and Shanthikumar, 1993). The mean flow time of a G/G/m station can
for instance be given by the following explicit (but not completely exact) expression
(Hopp and Spearman, 2001):

ϕ =
c2a + c2e
2

· u
(
√
2(m+1)−1)

m(1− u) · te + te (5.7)

where utilization u is defined as:

u =
te
tam

(5.8)

with te the mean effective process time, c2e the SCV of the effective process times,
ta the mean interarrival time, c2a the SCV of the arrival times, and m the number of
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parallel machines in the station. Note that in (5.7) parameters te and c2e represent the
mean and SCV of the effective process time distribution of the station, respectively.
Effective Process Time (EPT) includes process times as well as all irregularities that
affect the station capacity.
All quantities in (5.7) may relate to one or more design variables x. The number

of machines m can be a design variable. Other design variables, such as mean time
to repair, may affect te, c2e, and c

2
a. This means that if x changes, parameters te, c

2
e,

and c2a will also change. The number of machines m is often a design variable itself.
Parameter ta is a given value, since the flow rate for each product flow is fixed. Al-
though (5.7) holds specifically for G/G/m queueing stations, it shows the following
main properties, which hold for many other types of stations, e.g. batching stations,
as well:

(i) The flow time increases in a non-linear fashion for increasing utilization u(x).

(ii) The flow time rises to infinity for u(x) close to one:

lim
u(x)↑1

ϕ(x) = ∞ (5.9)

This is referred to as the utilization asymptote.

(iii) The flow time behaves linear with squared coefficient of variation c2(x). The
variability of the station is presented here by c2(x), which equals the variability
term in (5.7):

c2(x) =
c2a(x) + c2e(x)

2
(5.10)

Based on the above mentioned flow time characteristics, we suggest a linear re-
gressionmodel to approximate the flow time of a single station. The new approxima-
tion extends the pure linear regression model with one additional linear regression
term that contains the queueing physics:

ϕ̃(x) = β0 +
n

∑
i=1

βixi + βn+1
c̃2(x)

1− ũ(x) (5.11)

The pure linear model part consists of a constant term β0, and one linear term βixi
for each design variable, i = 1, . . . , n. The additional linear regression term

βn+1
c̃2(x)

1− ũ(x)

has to describe the main utilization and variability effects as mentioned above. This
new term relates to the MMA type of approximation presented by Svanberg (1987).
Main difference is that we will insert expressions approximating the variability as a
function of x and utilization as a function of x. This is further explained in the next
section.
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5.5 Utilization and variability

The flow time approximation of (5.11) depends on design variables x, utilization
u(x), and variability c2(x):

ϕ̃ = ϕ̃(x, u(x), c2(x))

In order to build the approximations in (5.11), surrogate functions (approximations)
for utilization u(x) and variability c2(x) have to be defined in terms of design vari-
ables x, since u(x) and c2(x) may not be explicitly known or difficult to obtain. In
some cases, the utilization and variability can be determined by means of analytical
relations as explained in Hopp et al. (2002). However, these analytical expressions
for te and c

2
e are based on rather restrictive assumptions, which may not always

hold to obtain accurate u(x) and c2(x) expressions for the stations in the simulation
model. If u(x) and c2(x) cannot be computed analytically, they have to be approxi-
mated based on simulation responses from the discrete-event model. An approach
to do this is suggested below.
In general, a discrete-event simulation model does not return u and c2 as a re-

sponse output. Equations (5.8) and (5.10) have to be used. These equations show
that, for a certain station, u and c2 depend on five quantities. Utilization function
u(x) depends on (i) mean effective process time te(x), (ii) mean interarrival time
ta(x), and (iii) number of machines m. Variability function c2(x) depends on (iv)
SCV of the interarrival times c2a and (v) SCV of the effective process times c

2
e. These

five quantities determine the utilization and variability of the station for a given de-
sign x. The next paragraphs of this section discuss how the five quantities can be
obtained as a response from discrete-event simulations.
The interarrival time ta can easily be calculated, since for each product flow the

flow rate is given. Given a fixed routing matrix, ta can be calculated analytically us-
ing (5.4). The same holds for the number of machines m, which is a given number
for each simulation run (and which is often a design variable itself). The variation
of interarrival times ca can also be obtained easily by sampling the interarrival times
during the simulation run (which also provides an estimate for ta that can be com-
pared with the known analytical value).
The main difficulty lies with te and ce. Values for te and ce cannot be simply mea-

sured during the discrete-event simulation. The idea is to use the effective process
time approach proposed in Chapter 3 for estimating te and ce during a simulation
run. The EPT quantification approach enables to compute te and ce values for sta-
tions from arrival and departure data in an operational factory. Here we use this
approach within the simulation environment instead of the real-life factory.
Consider the station depicted in Figure 5.3. This figure shows a G/G/1 station.

Products arrive in the buffer B∞ with infinite capacity. The arrival times are dis-
tributed with mean ta and coefficient of variation ca. If products are queued in the
buffer, machine Mwill process them one by one. After being processed the products
leave the station.
The Effective Process Time (EPT) of a single product is defined as the time the

product was in process plus the time this product could have been in process (see
Chapter 3). The EPT is in general larger than the raw process time, because the
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Figure 5.3: Effective process time approach: measuring EPT realizations from a discrete-event
manufacturing system.

machine doesn’t necessarily start processing immediately when products are avail-
able in the queue. This can happen due to process disturbances arising from vari-
ous sources, such as: machine downs, operator availability, and setups. If for every
departing product the individual EPT realization is measured, an EPT distribution
emerges for this station. With this EPT distribution available, the sample mean and
sample variance can be used to estimate te and c2e.
In Chapter 3 a method has been introduced that can be used to measure EPT re-

alizations at a station. The basis for the EPTmeasurements are the actual interarrival
and interdeparture times of the products. Assume a station with a single machine
that processes one product at a time based on First-Come-First-Serve (FCFS). That
is, products arriving at the station, are processed based on FCFS dispatching, and
depart from the station without overtaking. The arrival time of the i-th product is
denoted by ai and the departure time of the i-th product is denoted by di (see also
Figure 5.3). The effective process time ei of the i-th product can now be calculated by
(Kock et al., 2004):

ei = di −max(ai, di−1) (5.12)

which equals the total time product i was in the station (either waiting in queue
or being processed on the machine) after product i − 1 left the station. For other
stations with overtaking of products, the more general EPT algorithm as proposed
in Chapter 3 can be used. The idea of the EPTmeasurements is the same: an external
observer at the station, E in Figure 5.3, calculates EPT realizations ei based on arrival
times ai and departure times di.
Using the above described EPT approach in a simulation based setting, response

values for u and c2 for each station can be obtained for each design point evaluated
during the SAO sequence. These response values are used to build the flow time
approximations in (5.11). This approximation requires functions for utilization and
variability, denoted herewith: ũ(x) and c̃2(x). For each SAO cycle the utilization and
variability approximations are built from the available M simulation replications in

x
(r)
0 and N additional design of experiments points in the search subregion. So, be-
sides mean flow time responseϕ j, the discrete-event simulation model also delivers
estimates for te, c2e, and c

2
a for each simulation run. Based on these three quantities
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and values for ta and m, the corresponding u and c2 values can be obtained using
(5.8) and (5.10).
Linear regression approximations are built for u and c2. For a given design of

experiments (representing the N design points for which simulation runs are carried

out in addition to the M replications available for the current iterate x
(r)
0 ), a response

surface model can than be fitted through the utilization and variability data result-
ing in approximation functions ũ(x) and c̃2(x) which are valid in the corresponding
search subregion. Typical response surface models that are often used are linear or
polynomial functions. In this paper we approximate the utilization and variability
functions by the following linear regression models:

ũ(x) = α0 +
n

∑
i=1

αixi +
n

∑
i=1

αi+n
1

xi
(5.13)

c̃2(x) = γ0 + ∑
i=1

γixi +
n

∑
i=1

γi+n
1

xi
(5.14)

Besides the constant regression termsα0 and γ0, for each design variable xi we intro-
duced just one pure linear term (αixi and γixi) and one pure reciprocal term (αi+n/xi
and γi+n/xi). The use of both linear regression terms is motivated as follows. Capac-
ity related design variables, such as number of machines and number of operators,
have a reciprocal effect on utilization, while operational time related design vari-
ables, such as setup times and mean time to repair, behave linear with utilization.
The same rationale can be used for variability. The proposed linear regression mod-
els (5.13) and (5.14) are able to catch both the linear and reciprocal behavior.

5.6 Building the approximate optimization problem

Consider the approximate optimization problem of (5.5). The approximate product
flow time Φ̃k(x) is bounded by Φ̃c,k(x). The approximate product flow time Φ̃k(x) is
a sum of flow times of the individual stations ϕ̃ j(x) given by (5.3). The flow time ap-
proximation of station j is represented by a linear regression model which is based
on the approximation functions for utilization ũ j(x) and variability c̃2j (x). To con-

struct the approximate optimization problem in each cycle the following procedure
is used:

(i) For each station j, with j = 1, . . . , p:

(a) construct approximation functions for utilization ũ j(x) and variability c2j (x)

introduced in Section 5.5, and

(b) construct flow time approximation ϕ̃ j(x) introduced in Section 5.4.

(ii) For each product flow k, with k = 1, . . . , q:

(c) derive product flow time approximation Φ̃k(x) from the station flow times
ϕ̃ j(x) following (5.3) in Section 5.2, and
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(d) determine approximate constraint bound Φ̃c,k.

The two main steps in this procedure are explained in further detail below.

5.6.1 Workstation flow time approximation

First step (a) is to construct approximation ũ(x) and c̃2(x) for each station in the net-
work (subscript j is omitted here for brevity). Parametersαi and γi (i = 1, . . . , 2n) in
(5.13) and (5.14) are determined through linear regression based on the N simulation
evaluations of the design of experiments in the search subregion. The M simulation
replications at the center point are used to determine (and fix) the constant terms in
the regression models (α0 and γ0). That is, for x = x0 the approximations will equal
the mean of the M simulated responses u and c2 obtained through the procedure
described in Section 5.5. For the utilization and variability models this gives for the
constant terms:

α0 = u(x0,M) −
n

∑
i=1

αix0,i−
n

∑
i=1

αi+n
1

x0,i
(5.15)

γ0 = c2(x0,M)−
n

∑
i=1

γix0,i−
n

∑
i=1

γi+n
1

x0,i
(5.16)

and for the regression models:

ũ(x) = u(x0,M) +
n

∑
i=1

αi(xi − x0,i) +
n

∑
i=1

αi+n(
1

xi
− 1

x0,i
) (5.17)

c̃2(x) = c2(x0,M) +
n

∑
i=1

γi(xi − x0,i) +
n

∑
i=1

γi+n(
1

xi
− 1

x0,i
) (5.18)

Representing in regression native form:

y = Xb+ǫ (5.19)

where y is the column of N observations for the utilization or the variability, b is the
column of parameters, and ǫ the errors. A row h(x) in design matrix X can for both
utilization and variability be represented by:

h(x) =

[

x1 − x0,1 x2 − x0,2 · · · xn − x0,n
1

x1
− 1

x0,1
· · · 1

xn
− 1

x0,n

]

(5.20)

For the N observations in vector y holds that each element yz, z = 1, . . . ,N, equals
for the utilization

yz = uz(xz) − u(x0,M)

and for the variability
yz = c2z(xz)− c2(x0,M)

The unknown parameters can be estimated using least squares:

b̂ = (XTX)−1XTy (5.21)
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Second step (b) is to build the station flow time approximation model. We start
from the model given in (5.11). The regression term

c̃2(x)

1− ũ(x) (5.22)

is composed of the models ũ(x) and c̃2(x) obtained in previous step (a). To estimate
parameters β of flow time approximation (5.11), the same procedure is followed.
Fixing the constant term such that ϕ̃(x0) equals the mean observed flow timeϕ(x0)
at the center point gives:

β0 = ϕ(x0,M) −
n

∑
i=1

βix0,i−βn+1
c̃2(x0)

1− ũ(x0)
(5.23)

and for the flow time regression model:

ϕ̃(x) = ϕ(x0,M) +
n

∑
i=1

βi(xi − x0,i) + βn+1

(
c̃2(x)

1− ũ(x) −
c̃2(x0)

1− ũ(x0)

)

(5.24)

which is again of the form of (5.19). Given N flow time observations in the design of
experiments parametersβ can be estimated using (5.21), with the elements of vector
y equal to yz = ϕ(xz) − y(x0,M), z = 1, . . . ,N. Design matrix X consists of N rows
and each row h(x) is of the following form:

h(x) =

[

x1 − x0,1 x2 − x0,2 · · · xn − x0,n
c2(x)

1− u(x) −
c2(x0)

1− u(x0)

]

(5.25)

Approximations functions (5.17), (5.18), and (5.24) are regression models for each
station in design variables x. In principle, each design variable xi, i = 1, . . . , n, may
have influence on the utilization, variability, and flow time response of each individ-
ual station. But in most cases, only a subset of all design variables will have an effect
on the response of a particular station. The utilization, variability, and flow time re-
sponses of a station will be mainly related to the design variables of the station itself.
Design variables of other stations will have a minor effect on the responses of the
considered station. For instance, the number of machines of the last station in a flow
line will have no influence on the response of the first station in the flow line. On the
other hand, the response of a particular station may be influenced by design vari-
ables of preceding stations. For instance, the variability of a station depends on the
departure pattern of the preceding station. In order to minimize the computational
effort needed for the design of experiments, it is assumed in the remainder of this
paper that the regression models of each station rely on the design variables related
to that particular station.

5.6.2 Product flow time constraint approximation

To approximate the total product flow time Φ̃k(x) of product flow k, all the individ-
ual station flow time approximations ϕ̃ j(x) for each station j have to be combined.
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Each station is denoted by j = 1, . . . , p with p the total number of stations. For
each station j, the approximated flow time ϕ̃ j(x) can be determined separately fol-
lowing Section 5.6.1. This results in parameters β j for the flow time approximation
in station j. Each flow time approximation is based on the utilization approximate
function ũ j(x) and variability approximate function c̃

2
j (x) with parameters α j and

γ j. Using routing matrix Rk j of (5.3) and the approximation relation for each station
j of (5.11), the approximation of the total flow time of product flow k now becomes:

Φ̃nc,k(x) =
p

∑
j=1

Rk j · ϕ̃ j(x) (5.26)

The subscript “nc” (no correction) is added here, since this approximation does not
correct for stochastic responses. The constraint correction is described below.
Since the responses are based on stochastic simulations, for each approximate

optimization problem, the product flow time constraint bounds have to be tightened
due to model based errors and because only a limited number of simulation repli-
cations is used to estimate the mean flow time responses. It is assumed that the
corrected constraint Φ̃k(x) in the approximate optimization problem of (5.5) is based
on the same rationale as used in (5.6). The sample variance of the flow time of prod-
uct flow k in iterate x0, S2k(x0,M), is determined at the start of each cycle based on
M replications. Determining the sample variance of the flow time in each of the N
points in the experimental design is computationally too expensive. Nevertheless,
from queueing theory it is known that the variance of the flow time in a queueing
network depends on the mean flow time, i.e. a system that is simulated at a high
utilization level, results in a high flow time, but also in a high flow time variance.
Similarly, low utilization (low mean flow time) gives rise to low flow time variance.
In the approximate optimization problemwe assume that the variance in a design

point is proportional with the mean flow time. The following constraint correction
is proposed which is an approximation of the upper bound of the 100(1 − 2α)%
confidence interval on the mean response in any particular point x:

Φ̃k(x) =



Φ̃nc,k(x) + tα,M−1

√

S2k(x0,M)

M
· Φ̃nc,k(x)

Φk(x0,M)



 ·w(x) (5.27)

This approximate constraint function Φ̃k(x) is now used in the approximate opti-
mization problem of (5.5). Besides the correction for stochastic responses, an extra
correction w(x) is used to account for errors in the fitted linear regression models.
This correction is denoted with w(x) and adds more correction for points away from
x0 and less correction for points close to x0. In x0 itself, w(x) equals 1.0, which corre-
sponds with no extra correction. The correction w(x) is defined as:

w(x) = 1+ξ
1

n

n

∑
i=1

(xi − x0,i)2 (5.28)

with ξ the user-defined parameter that can be used to add more or less correction
for design points far away from x0. Basically, the correction is proportional with the
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squared distance to x0. This correction function requires that each design variable is
appropriately scaled having the same order of magnitude.

5.7 Sequential approximate optimization sequence

The SAO approach is summarized by the sequence presented in Figure 5.4. The
approach follows a more or less standard SAO sequence (see Chapter 1). We have
extended the sequence such that it can handle non-analyzable or non-valid simu-
lations. A simulation is non-analyzable whenever the pre-defined throughput of
a station is above the station capacity, i.e. this station has a utilization above 1.0.
Discrete-event simulation of such a non-analyzable design point results in a simula-
tion run in which no stable mean response output is obtained and the average work-
in-progress keeps on growing. For the SAO sequence this implies that we need one
extra step that checks whether or not all simulations were analyzable in the design
of experiments (step 5). If this check fails, the design of experiments has to be re-
vised excluding the non-valid design points and including some new design points.
If a design turns out to be non-analyzable in step 8, the evaluated design cannot be
accepted as the next optimal design. The sequence now becomes as follows:

0. Define the optimization problem including the design variables x, objective
function f , constraint functions g, and routing matrix R. Also define which
design variables will be included in the regression models for each station.

1. Set r := 0. Evaluate initial design x0 using M replications of the simulation
model. If all simulations are valid, initial design x0 becomes the initial iterate

of the first cycle x
(0)
0 . It can happen that one, more, or all simulation replications

of the initial design seem to be non-analyzable. If this is the case, the sequence
stops and the user has to provide a better starting point.

2. Define a rectangular search subregion around iterate x
(r)
0 such that x

(r)
0 is in the

center of the search subregion. If this is not possible, because one of the search
subregion bounds violates the corresponding design space bounds, then repo-
sition the search subregion such that the associated boundaries of the search
subregion and the design space coincide, while maintaining the size of the
search subregion.

3. Determine the Design of Experiments (DoE) in the search subregion. The DoE

starts from the M simulation replications at iterate x
(r)
0 and adds N additional

plan points. The DoE may in principle be of any type as long as N ≥ 2n+ 1
and each included design variable is evaluated at least at three levels (includ-

ing x
(r)
0 ). The DoE may not include design points that (i) already have been

simulated in this cycle and proved to be non-valid in step 5, and (ii) have an
approximate utilization above 1.0 for one or more stations based on the uti-

lization approximations ũ
(r−1)
j (x) of the previous cycle (not possible in the first

cycle).
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Figure 5.4: Sequence of the SAO approach.
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4. Simulate the N additional plan points of the DoE.

5. Check if all simulations of the plan points are valid. If some plan points turned
out to be non-analyzable, return to step 3 which defines a new DoE excluding
these non-analyzable plan points.

6. Generate p station flow time approximations and combine them into q different
product flow time approximations.

7. Solve the approximate optimization problem including the product flow time
constraints Φ̃k(x), k = 1, . . . , q, and the explicit objective function.

8. Simulate the approximate optimal design M times. If one or more simulations
seem to be non-analyzable, this design will always be rejected in the next step.

9. Check acceptance and stopping criteria. If not converged, update x
(r+1)
0 , set

r := r+ 1, and return to step 2.

Step 3, 4, and 5 are repeated sequentially, until all plan point simulations in the DoE
are valid.

5.8 Implementation

The optimization approach has been implemented in the sequential approximate
optimization framework described in Chapter 2. The design of experiments, the
solution of the approximate optimization problem, move limit strategy, acceptance
and stopping criteria are explained in further detail below.

5.8.1 Design of experiments

As mentioned before, a station flow time approximation may be based on all design
variables or on a smaller subset. The latter is advantageous to reduce the required
number of simulation evaluations in the experimental design. By taking only the
station design variables into account, the design of experiments can be applied for
each station separately.
For the station approximation building, we propose a two-level full-factorial de-

sign of experiments. Generally, iterate x0 is the center point. If iterate x0 is not the
center point, an additional center point is added to the experimental design. By these
means, each design is evaluated at least at three levels in each design variable direc-
tion. This enables to estimate parameters α and γ of the utilization and variability
regression model, respectively. In the design of experiments, iterate x0 is replicated
M times. The two-level full-factorial design includes 2n designs points in the ex-
perimental design. Here, n equals the number of design variables associated to the
particular station. Each of these points is replicated v times. Whenever iterate x0 is
not the center point, this center point is added to the experimental design and also
replicated v times. Examples of the experimental design are shown in Figures 5.5(a)
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x1
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x1

x2

x1

x2
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Figure 5.5: Examples of the two-level full-factorial design of experiments: (a) the basic design,
(b) design with iterate x0 on one of the design variable bounds and including one additional
design point in the center, and (c) design near the approximate utilization constraint. The
small dots represent the candidate points. The filled dots represent the actual experimental
design that have been selected. The open dot corresponds with iterate x0. Criterion (5.29) is
used to add the non-corner point in example (c).

and 5.5(b). In the examples presented in Section 5.9 we will only consider the de-
sign variables associated to the station itself. But any other design variable may be
included as well.

Whenever a design in the experimental design is simulated, the simulation may
be non-analyzable and a steady-state solution is not obtained. If this is the case,
the non-analyzable design point is removed and a new design point is added to
the experimental design, while all analyzable design points remain. The new design
point is placed such that the distance between this design point and all design points
currently in the experimental design is maximized. This procedure may be repeated
in case of multiple non-analyzable design points. Furthermore, to avoid simulation

of non-analyzable design points, the utilization approximations ũ
(r−1)
j ( j = 1, . . . , p)

of the previous cycle are used to exclude design points on beforehand. A design
point may only be added to the experimental design, when the utilization value,
determined by the utilization approximation of the previous cycle, in this particular
design point is below 1.0.

Whenever a design point has to be repositioned, the following procedure is used.
For each design variable direction we define a number of (integer) candidate levels
equidistant in the search subregion as shown in Figure 5.5(c) (in the figure five candi-
date levels are used; in the examples of Section 5.9 we used seven candidate levels).
It may be the case that, for integer design variables, the number of integer candidate
levels are not possible (due to a smaller search subregion). Then, the method will
select all integer candidate levels available in the search subregion (with a minimum
of three levels; smaller search subregions are not possible). To maximize the dis-
tance between the new candidate point xa and the current design points xb,z with z
the running number of all current design points. To maximize the overall distance
between all design points, for each candidate design point the following criterion d



Chapter 5 103

is calculated:

d = ∑
z

n

∑
i=1

1

(xa,i− xb,zi)2
(5.29)

The candidate point with the lowest value for criterion d is added to the experimental
design. In Figure 5.5(c) such an experimental design is shown. This experimental
design is in the neighborhood of an approximate utilization constraint that excludes
some points from the basic experimental design.

5.8.2 Solving the approximate optimization problem

In each cycle of the SAO sequence, the approximate optimization problem is defined
according to (5.5). The objective and constraint functions in this approximate opti-
mization problem are known analytically and can be solved using a mathematical
optimization solver. Since design variables may have integer restrictions, a mixed-
integer optimization solver is needed. We used a branch-and-bound algorithm that
iteratively calls the SQP algorithm of Lawrence et al. (1997). The branch-and-bound
is based on depth-first and creates two branches for each relaxed optimization prob-
lem.
The starting point of the optimization solver in each search subregion is set to

iterate x0. The approximation function value for the utilization in this starting point
is always smaller than 1.0 and the flow time responses can be predicted. However,
it might happen that in some parts of the search subregion, the utilization approxi-
mation is equal to or above 1.0. If this is the case, the flow time response cannot be
predicted because the denominator of (5.22) is equal to or smaller than 0.0. To avoid
the solver getting stuck in this part of the design space, a penalty factor is used. This
penalty factor is linear with the utilization constraint violation. The penalty is added
to all flow time evaluations with corresponding utilization close to or larger than 1.0,
i.e. larger than 1.0-ǫ (we used ǫ = 0.05 in the examples of Section 5.9).

5.8.3 Move limit strategy, acceptance, and stopping criteria

At the end of each cycle, the SAO strategy has a new cycle optimal design x
(r)
∗ avail-

able. A filter method is used to determine if this new cycle optimal design is ac-

cepted to be the iterate of the next cycle x
(r+1)
0 . The filter method was introduced

by Fletcher and Leyffer (1998) and was suggested for use in SAO by Brekelmans
et al. (2004). Gijsbers (2003) and Vijfvinkel (2004) considered SAO in the context of
simulation-optimization, and adapted the filter to account for stochasticity in the
simulation runs. The filter idea is that the filter consists of a list of accepted designs.
A new cycle optimal design may only be added to this filter if it is not dominated
by any other cycle optimal design in the filter. A design is dominated if there exists
another design in the filter with both a lower objective value and a lower constraint
violation (we consider the maximum constraint violation here). If the new design
is accepted and included in the filter, any design in the filter that is dominated by
the newly accepted design is removed from the filter. Since in our type of problems
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the cycle time constraints are stochastic responses, the maximum constraint viola-
tion is determined on the basis of the upper bounds of the 100(1− 2α)% confidence
interval of the constraints of (5.6).
The stopping criteria are quite straightforward. The SAO sequence is stopped if

the search subregion cannot be further reduced when the minimum search subre-
gion size has been reached and the new cycle optimal design has been previously
found or has not been accepted. The optimal design now becomes the design in the
filter which has the lowest objective value and for which the upper bound of the
100(1− 2α)% confidence interval for each constraint is smaller than the correspond-
ing constraint bound.
The move limit strategy defines the position and size of the search subregion

at the start of each new cycle. The search subregion is placed such that the new
cycle optimal design x(r+1) becomes the center of the new search subregion. If this is
not possible, because one of the search subregion bounds violates the design space
bounds, the search subregion is repositioned such that the associated boundaries
of the search subregion and the design space coincide, while maintaining the size
of the search subregion. The search subregion is reduced whenever a design is not
accepted in the filter. The reduction factor for each design variable direction is two.
If for an integer design variable the width of the search subregion is an odd or non-
integer number, the is increased to the nearest even (integer) value. If a design is
accepted, the search subregion width is maintained. An exception are those design
variables that do not change much, i.e. change less than 25% of the search subregion
width. For these design variables the width of the search subregion is reduced by a
factor two.

5.9 Test examples

This section presents two examples of optimization problems with a discrete-event
simulation model in the loop. The χ discrete-event specification language (Rooda
and Vervoort, 2003) is used for the modeling and simulation of the manufacturing
systems. Determination of u(x) and c2(x) is based on the multi-machine EPT algo-
rithm presented in Chapter 3. The second example contains batching machines. For
these stations, the batching EPT algorithm of Chapter 4 is used. In the examples the
significance level is set atα = 0.05.

5.9.1 Four-station flow line

Consider the four-station manufacturing system of Figure 5.6 (Hopp and Spearman,
2001). This flow line produces a single product type with mean product flow time
Φ1. The mean station flow times are denoted withϕ1, . . . ,ϕ4. Each station j consists
of m j identical machines. The corresponding data for each station is given in Ta-
ble 5.1. This table presents the fixed cost FC j, unit cost UC j, mean effective process
time te, j, and squared CV of effective process time c

2
e, j for each station j. Products

arrive following a Poisson process (arrival coefficient of variation c2A = 1.0) at an
arrival rate of rA = 2.5 products/hour.



Chapter 5 105

station
1

station
2

station
3

station
4

ϕ1 ϕ2 ϕ3 ϕ4

Φ1

Figure 5.6: Four station flow line with one product flow.

Table 5.1: Data for four-station flow line.
station fixed cost unit cost te c2e

[k$] [k$] [hrs] [-]

1 225 100 1.50 1.00
2 150 155 0.78 1.00
3 200 90 1.10 3.14
4 250 130 1.60 0.10

The optimal design problem is defined following (5.1):

Minimize f (x) =
4

∑
j=1

FC j +
4

∑
j=1

UC jx j

subject to: E[Φ1(x,ω)] ≤ 6.0,
x1 ≥ 4, x2 ≥ 2, x3 ≥ 3, and x4 ≥ 5

(5.30)

The objective is to find the minimum cost solution depending on fixed and unit cost
such that the mean product flow time does not exceed 6.0 hours. The design vari-
ables relate to the number of machines in each station, vector x = [m1,m2,m3,m4]T.
The cost f (x) is defined as a function of fixed cost FC j and unit cost UC j for each
station j.
In order to obtain an analyzable simulation model, the utilization of each station

may not exceed one. The utilization of each station can be calculated using (5.8). The
Minimum-Cost-Capacity-Feasible solution (MCCF) that satisfies the utilization re-
striction equals vector xMCCF = [4, 2, 3, 5]T resulting in the following utilization lev-
els for each station: uMCCF = [0.94, 0.98, 0.92, 0.80]T. This minimum-cost-capacity-
feasible solution is taken as lower bounds on the design variables of the optimization
problem.
The number of simulation replications of the center point in each search sub-

region, i.e. the starting point and each cycle approximate optimum, is evaluated
M = 15 times. The design of experiments corresponds with a star-design of ex-
periments: each station j has one associated design variable m j, and each variable
is evaluated at a high and a low level. This gives eight points in the experimen-
tal design in addition to the center point x0. The eight points are evaluated twice.
The simulation run length of each simulation evaluation equals the production of
65,000 products. The flow time estimation is based on the last 50,000 products which
discards the first 15,000 products to overcome the transient initial phase of each sim-
ulation.
In the previous work of Abspoel et al. (2001) and Gijsbers (2002) this optimal de-

sign problem has also been considered. They used a similar SAO approach, but with
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different approximation models. Abspoel et al. (2001) used a pure linear approxima-
tion given by:

Φ̃(x) = β0 +
n

∑
i=1

βixi

They did not manage to find the optimum in 50 independent starts of the optimiza-
tion approach (starting point was equal to the MCCF solution), but they found 9
different solutions of the optimal solution (most of them neighbor points). Gijsbers
(2002) used

Φ̃(x) = β0 +
n

∑
i=1

βi
1

xi(xi − te,i/ta,i)

to approximate the total product flow time and found the true optimum in 90% of
the cases of the individual optimization runs. Again, the other reported solutions are
neighbor points. Using our newly developedmethod, we found the true optimal de-
sign x∗ = [6, 3, 5, 6]T for all 50 optimization runs using starting point x0 = [4, 2, 3, 5]T

as well as for starting point x0 = [6, 6, 6, 6]T. The cost of this design equals 3,120 k$.
The initial width of the search subregion was ∆i = 8 in all design variable direc-
tions i = 1, . . . , n. The correction parameter was set at ξ = 0.0 in this example. The
optimal design was found within 3 to 7 cycles.

5.9.2 Re-entrant flow line

This example is developed based on the twelve-station example as presented by
Hopp et al. (2002, Section 4.2). This example considers a re-entrant flow line of
twelve stations. Each station consists of a queue and a number of identical paral-
lel machines. Table 5.2 shows the parameters of the machines for each station. The
following symbols are used: bs is the batch size, ts is the mean setup time, tf is the
mean time between failures, and tr is the mean time to repair. Six stations consist
of single-lot machines (bs = 1) and six stations consist of batch machines (bs > 1).
In this example a single-lot machines are referred to as batch machines with a batch
size of one. It is assumed that the batch machines may only process full batches with
equal recipes for all the products in the batch.
This example considers two product flows: product A and product B. Table 5.3

shows the process recipes for each product type. Flow A has 20 steps and flow B
has 24 steps. Flow A is released to the line in batches of two lots with mean time
between batch arrivals tA = 60 minutes and flow B is released in batches of five-lots
with mean time between batch arrivals tA = 120 minutes. Both arrival streams of
batches are Poisson, and thus c2A = 1.0.
Only full batches are allowed for processing. Each machine in the station pro-

cesses batches of the same batch size. A batch may only be accumulated if enough
lots are queued from the same type (A or B) and are in the same process step (same
recipe). It is not allowed to mix different sort of recipes in a process batch. The pro-
cess times are deterministic, i.e. the SCV of the natural process time c20 = 0.0. If a
machine is ready processing a batch, all the products of this batch are immediately
transfered to the next queue in the flow and the machine is ready to process the next
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Table 5.2: Machine parameters.

station process yield bs ts tf tr fixed cost unit cost
[min] [hrs] [hrs] [k$] [k$]

1 preclean 1.00 1 15 200 2.0 100 130
2 laser 1.00 1 30 200 1.5 100 220
3 alignment 0.99 1 10 50 5.0 100 70
4 clean 1.00 5 0 200 5.0 100 110
5 photo 1.00 1 25 200 8.0 100 350
6 etch 0.98 5 5 200 8.0 100 30
7 strip 1.00 5 15 150 2.0 100 80
8 oxide 1.00 8 10 100 2.0 100 70
9 mask 1.00 5 45 250 2.0 100 65
10 nitride 0.97 8 0 200 2.0 100 55
11 poly 1.00 1 0 100 4.0 100 45
12 probe 0.94 1 0 200 1.0 100 20

batch. Possibly, a product may not be processed correctly. The yield of each process
is also shown in Table 5.2. In the simulation model, when a batch finishes processing,
for each product in the batch it is determined, using a Bernoulli chance distribution,
whether it may proceed in the flow (and the product is immediately transported to
the next queue), or has to leave the flow immediately.

A setup is required only if a machine starts processing a batch with a different
recipe as the previous batch. If two batches with equal recipes are processed on one
machine, a setup is not needed at the start of the processing of the second batch.
This is referred to as ‘recipe-dedication’. If a machine is not dedicated for the next
recipe to be processed, the setup may start whenever all the products of the next
batch are waiting in the queue. If multiple batches are waiting in the queue, the next
available machine that is ready to process a batch, selects a batch for which it has
already been dedicated. If multiple batches are waiting in the queue, and multiple
machines are available to start processing, each machine selects a batch for which
it already has been dedicated. If still batches remain in the queue and a machine
is available, but the machine is dedicated for none of the batches in the queue, this
machine performs a setup and is dedicated to the first available batch in the queue
(FCFS). After the setup, the batch is processed by the machine. Each setup has a
mean setup time ts and is exponentially distributed, i.e. SCV of setup times c

2
s = 1.0.

The failure of machines is modeled as follows. A machine can only fail during
processing of a batch. The mean time to failure is denoted with tf. The SCV of the
time to failure equals c2f = 1.0, i.e. time to failure is exponentially distributed. Since
the machine only fails during processing, the time to failure is actually a processing
time to failure. The simulation model accumulates all the time that the machine was
in process. If this total processing time equals the time to failure, the machine fails
during the processing of a batch. The machine is repaired with a mean repair time
of tr and corresponding c2r = 1.0 (exponentially again). After the repair time, the
remaining processing time is needed to finish the batch that is still in process.
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Table 5.3: Process recipes.

Product A Product B
step station t0 [min] station t0 [min]

1 1 10.0 1 12.0
2 2 20.0 2 22.0
3 3 25.0 3 30.0
4 4 20.0 4 20.0
5 5 15.0 5 12.0
6 6 10.0 6 8.0
7 7 5.0 7 5.0
8 8 25.0 8 20.0
9 9 15.0 9 20.0
10 5 25.0 5 20.0
11 6 15.0 6 10.0
12 7 10.0 7 15.0
13 4 25.0 4 20.0
14 10 20.0 10 15.0
15 9 15.0 9 15.0
16 5 15.0 5 15.0
17 6 20.0 6 25.0
18 7 5.0 6 5.0
19 11 20.0 4 25.0
20 12 45.0 9 10.0
21 5 20.0
22 6 15.0
23 7 5.0
24 12 40.0

The utilization of a station is calculated using:

u =
te

ta ·m · bs

with te the mean effective process time of batches which refers to the mean time per
batch that the machines were busy with: processing, setups, and repairing.

Two optimization problems are considered. The first optimization problem treats
the number of machines of all 12 stations as design variables. The second optimiza-
tion problem focuses on three stations and optimizes regarding the number of ma-
chines, mean time to repair, and mean setup time.
The first optimization problem is defined as follows:

Minimize f (x) =
12

∑
j=1

FC j +
12

∑
j=1

UC jx j

subject to: E[Φ1(x,ω)] ≤ 24.0,
E[Φ2(x,ω)] ≤ 24.0, and
xi ≥ 1, i = 1, . . . , 12

(5.31)
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Table 5.4: Final optimal designs for three optimization runs with differentξ parameter values.

ξ x f [k$] max (g) [hrs]

0.0000 2 3 5 2 10 4 4 2 10 1 1 9 7,700 23.968
0.0025 2 3 4 2 10 4 5 2 9 1 1 8 7,625 23.954
0.0100 2 3 4 2 10 5 5 1 9 1 1 9 7,605 23.981

with xi the design variable equal to the number of machines in station i, i.e. x =
[m1, . . . ,m12]T. The initial design point equals xi = 10 for all stations and the width
of the initial search subregion equals ∆i = 8 in each design variable direction. Each
simulation replication equals the production of 150,000 products. The first 15,000
products are discarded to overcome the transient initial phase of each replication.

The optimization history of three different optimization runs are shown in Fig-
ure 5.7, 5.8, and 5.9. The figures show the objective value f and the maximum upper
bound of the 100(1−α)%confidence interval of the constraints, denoted bymax(g),
of each cycle optimal design. Each optimization run had a different value for correc-
tion parameter ξ = 0.0, 0.0025, and 0.01, respectively, see (5.28). For a correction
parameter ξ = 0.0 and 0.0025, the optimization yields statistically infeasible solu-
tions during the optimization process. For ξ = 0.01, the optimization process shows
fast convergence and intermediate feasible solutions. In each figure the minimum
p-value is also given, which is a measure for statistical feasibility of a design. Vector
p represents for each constraint the chance that this constraint is satisfied. The value
for min(p) represents the chance that the most dominating constraint is satisfied.
Since we use significance level α = 0.95, a design with min(p) > 0.95 corresponds
with a feasible design and min(p) < 0.95 corresponds with an infeasible design.
In Figure 5.10 the design variables values and move limit values for each cycle are
shown for the optimization run with ξ = 0.01. In Table 5.4 the optimal solution x∗
obtained by each of the three optimization runs is summarized. The optimal design
x∗ obtained in the optimization run with ξ = 0.01 has the lowest objective value.
This design results in utilization levels u = [0.56, 0.74, 0.60, 0.41, 0.84, 0.17, 0.12, 0.25,
0.07, 0.16, 0.63, 0.32]T.
Each cycle required about 24 simulation runs for the design of experiments and

15 simulation replications to determine the feasibility of the cycle optimal design.
One simulation run takes about 30 minutes. Simulations were carried out in parallel
on a cluster of Linux computers using the Python Batchlib software developed by
Hofkamp (2004).

It is difficult to compare our obtained optimal solution with the results obtained
by Hopp et al. (2002) since they used an analytical queueing network approximation
for their optimization. Our simulation model gives a somewhat different represen-
tation. The optimal solution reported by Hopp et al. (2002) appeared to be infeasible
when run with our simulation model (mean flow time is about 40 hours and 44 hours
for product flow A and B, respectively).

The second optimization problem considers design variables at three stations: 5,
9, and 12. These stations had the largest number of machines in the optimal solution
of the first optimization problem. Three types of design variables are used: (i) the
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Figure 5.7: Optimization history of objective and constraint violation with ξ = 0.0.
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Figure 5.8: Optimization history of objective and constraint violation with ξ = 0.0025.

5000

10000

15000

0 1 2 3 4 5 6 7

-0.05

0.05

0 1 2 3 4 5 6 7

0.99

1.00

1.01

0 1 2 3 4 5 6 7

f

m
a
x

(
)

g

m
in

(
)

p

-0.10

0.00

Figure 5.9: Optimization history of objective and constraint violation with ξ = 0.01.
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Figure 5.10: Optimization history of design variables and move limit width with ξ = 0.01.
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number of machines of stations 5, 9, and 12, (ii) the mean setup time of stations 5
and 9 (station 12, probe, does not require setup), and (iii) the mean time to repair of
stations 5, 9, and 12. This gives a total of eight design variables: three integer and five
continuous. For all other stations, the number of machines was equal to the optimal
design reported in Table 5.4, with ξ = 0.01. The setup time and time to repair were
unchanged for these stations. The total vector of design variables now becomes:

x = [m5,m9,m12, ts,5, ts,9, ts,5, ts,9, ts,12]
T

The objective function is defined according to (5.31), but with different unit cost
for the machines in stations j = 5, 9, and 12:

UC j =

[

0.7+ 0.1
t∗s, j

ts, j
+ 0.2

t∗r, j

tr, j

]

·UC∗j (5.32)

with UC∗j , t
∗
r, j, and t

∗
s, j the original cost, the original mean repair time, and original

setup time of the machines, respectively. Using (5.32), the mean repair time is ac-
counted for 20% in the cost of each machine and the setup time is accounted for 10%
in the cost of the machine. Reducing the mean repair time and reducing the setup
time results in an increase of the cost of the machines. Since station 12 (probe) does
not require any setup, this is also omitted from the objective function.
The optimization history of an optimization run of the second optimization prob-

lem is shown in Figure 5.11 and Figure 5.12. The initial design equals x
(0)
0 = [10, 10,

10, 25.0, 45.0, 300.0, 300.0, 60.0]T and the initial move limit width equals ∆ (0) = [6,
6, 6, 40.0, 40.0, 400.0, 400.0, 40.0]T. The correction parameter equals ξ = 0.03. In
the correction function w(x) each design variable was scaled according to the initial
move limit width. Again, the simulation run length was equal to 150,000 products.
The optimization run stopped at cycle 20, which was the given maximum number
of cycles. The optimal solution was obtained in cycle 18 and is equal to x∗ = [8,
2, 8, 12.47, 7.09, 1015.6, 677.8, 84.6]T. The objective function f = 6, 362 k$ which is
significantly lower than the solution found in the first optimization problem. The
utilization of stations 5, 9, and 12 is equal to 0.82, 0.37, and 0.35, respectively. For
station 9, the utilization increased from 0.07 to 0.37. This is caused by a decrease of
setup time ts,9 which allowed a decrease of the number of machines m9.

5.10 Conclusion

The proposed linear regression models result in good quality approximations for
the flow time in manufacturing systems. These approximations can be used in a
Sequential Approximate Optimization approach (SAO) to solve simulation based
optimization problems of manufacturing systems. The focus was on optimization
problems with an explicit and deterministic objective function, subject to stochastic
flow time constraints. The flow time constraints related to the various product types
are determined via simulation. The method can be used for a black-box discrete-
event simulation model of a manufacturing system. An open queueing network
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Figure 5.11: Optimization history of objective and constraint violation with ξ = 0.01.
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Figure 5.12: Optimization history of design variables with ξ = 0.03.

with a fixed routing for each product type is assumed. The design variables may
be a mix of continuous and integer parameters. The approximation method needs
three simulation responses for each station in the simulation model: mean flow time,
utilization, and variability. These responses are used to build approximation models
for each individual station.

The approximation model of the mean flow time relies on queueing physics of
the individual stations. The main properties that exist in almost all types of stations
are related to utilization and variability. The mean flow time of a station depends
on the utilization in a non-linear fashion with an asymptote at u = 1.0. For a uti-
lization near 1.0, the flow time increases to infinity. The mean flow time depends
on variability in a linear fashion. The proposed linear regression model consists of a
pure model in the design variables and one additional regression term that accounts
for the queueing physics: c2(x)/(1− u(x)). For the approximate functions u(x) and
c2(x), linear regressionmodels are suggested. Each station may rely on a separate set
of design variables, i.e. not all design variables influence the flow time of a station.
For this reason, each station is subject to a separate design of experiments.

Key contribution of the proposed approximation model is that Effective Process
Time (EPT) is used to describe the utilization and variability approximation mod-
els. EPT is a means to quantify effective capacity and variability of stations. The
use of queueing physics with accompanying EPT parameters in the approximations
increases the accuracy of the approximations. Even more important is that the EPT-
based approach allows to include several types of design variables. All design vari-
ables that affect the effective process time at the stations can be included. These types
of variables have to be related to capacity or operational time measures and may be
integer or continuous.

The flow time approximation models have been implemented in an existing SAO
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framework (see Chapter 2). For this purpose we developed a new SAO sequence.
The approximate optimization problems are corrected for the stochastic simulation
flow time responses. In each new cycle, the variance of the flow time response in
the iterate (center point) is known based on M replications. We assumed that the
variance of the flow time response is proportional with the mean flow time response
within each search subregion. Furthermore, an extra correction is applied to account
for errors in the fitted linear regression models. This correction has one extra user
parameter to tighten or loosen the constraint function. A tight constraint (high cor-
rection) may show slow convergence, but most of the approximate optimal designs
are feasible solutions. A loose constraint (low correction) may show faster conver-
gence, but the chance that approximate optimal designs are infeasible, including the
final cycle optimal design, is much higher.
The design of experiments has been extended such that our method can deal with

non-analyzable regions in the design space. A simulation experiment is called non-
analyzable if a steady-state solution is not reached because the required throughput
exceeds the capacity of (at least) one of the stations. The plan points in the design
of experiments are placed such that the chance that a design appears to be non-
analyzable is as small as possible. For this purpose the utilization approximations
for each station are used that were built in the previous cycle. The utilization ap-
proximations give an estimate whether or not intended plan points in the new de-
sign of experiments will be non-analyzable. This is highly advantageous, especially
regarding design variables for which the contribution to the utilization is not known
beforehand.
The method has been tested on two simulation based optimization applications:

(i) a four-station flow line example, and (ii) a twelve-station re-entrant flow line ex-
ample. For the four-station flow line example, the proposed method was able to find
the optimal solution in 100% of all individual optimization runs, which improved
the results presented in previous work of Abspoel et al. (2001) and Gijsbers (2002).
For the twelve-station flow line, two optimization problems have been applied. The
first optimization problem treated the number of machines in each station as a design
variable (all integer design variables). The second optimization problem considered
the number of machines, mean time to repair, and setup time of three selected sta-
tions (mixed integer-continuous design variables). In the first optimization problem,
different settings for the constraint correction parameter ξ were used. By increasing
this parameter the convergence rate was still sufficient and all cycle optimal designs
were feasible. In the second optimization problem not all cycle optimal designs were
feasible, but showed that decreasing mean setup times may lead to a more optimal
design with lower cost that still satisfies the flow time constraints.
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Chapter 6

Conclusions and
Recommendations

This thesis focuses on three objectives as mentioned in the introduction. In the next
three sections for each objective the main conclusions are drawn and recommenda-
tions for further research are given.
Summarizing, this thesis contributes by proposing:

• a sequential approximate optimization framework for engineering optimiza-
tion problems with a simulation model in the loop,

• definitions for effective process time to quantify variability, and

• a linear regression function that can be used to approximate flow time perfor-
mance in manufacturing systems.

These three research objectives followed from the twomain research questions posed
in the introduction. The answer to the first question is yes: approximate optimization
concepts that have proved to be successful in the structural optimization field can in-
deed be employed for simulation optimization of discrete-event manufacturing sys-
tems regarding flow time performance. The second question can only be partially
answered at this stage: variability can indeed be quantified in a single performance
measure on the basis of shop floor data that relates to factory physics without identi-
fying the individual contributing disturbances. Building simulation meta models of
complete networks using the developed EPT approach is recommended for further
research.

6.1 Framework for sequential approximate optimization

A framework has been developed to provide an open and flexible environment
for the development and implementation of Sequential Approximate Optimization
(SAO) strategies. The framework consists of three basic layers: (i) the optimization
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problem layer, (ii) the SAO sequence layer, and (iii) the numerical routines layer.
The framework starts from a collection of optimization sequences and a collection
of numerical routines. A typical SAO sequence consists of a number of steps that
are carried out iteratively. Each step is represented by one numerical routine. The
numerical routines are available from the numerical routines layer and are grouped
into a number of modules. Each module consists of routines that perform the same
computational task in an SAO sequence. Modules are available regarding, e.g. de-
sign of experiments, approximation models, and move limit strategies. The module-
based structure of the framework facilitates easy exchange of numerical routines in
an SAO sequence and furthermore allows one to (re-) design the SAO strategy for
the application at hand.

The framework has been implemented in the object-oriented programming lan-
guage Python. The optimization problem is specified in the problem layer using
Python constructs and pre-defined objects available in the framework. Addition-
ally, Python code representing the SAO sequence has to be provided. One may use
‘built-in’ sequences or build a new one using predefined classes from the framework
library. For both the problem layer and the sequence layer Python is used as the
specification language, and one may take advantage of all the functionality of this
language. The numerical routines can be provided in Python or in any other (com-
piled) code, such as Matlab or C++. The interfaces to the various computational
languages can be created easily within Python.

The framework has been successfully used so far in various application domains.
In particular, optimization problems from the ADOPT-project in the field of struc-
tural optimization, optimization of dynamic mechanical systems, and discrete-event
simulation-based optimization have been considered. One optimization example
is the design optimization of a ten-bar truss structure under deterministic loading
conditions and under bounded-but-unknown loading conditions. The framework
has been applied likewise to two-bar and seventy-two-bar truss examples. Further-
more, the framework has been applied on optimization problems regarding micro-
electromechanical systems (Gurav et al., 2004) and design for robustness and relia-
bility (Van Rooij, 2004).

The use of the framework in other application domains is promising. The basic
optimization data objects have been implemented, such as variables, values, designs,
and points. These data objects were sufficient to describe the optimization problems
and optimization strategies of the above mentioned application domains. For other
application domains it may be necessary to extend the framework with new objects.
Since the framework is object-oriented, these new objects may (re-) use existing func-
tionality of existing objects. In reliability-based optimization, for instance, specific
distributions may be needed to properly describe the reliability measures. These
new distribution functions can be included by defining new classes that are based
on existing classes.

The framework has been specifically designed for implementing SAO strategies.
An SAO strategy can be referred to as a single-point approximation method or a
multi-point approximation method. For single-point approximation methods func-
tion evaluation and gradient information is used to build approximations in each
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search subregion. Multi-point approximation methods are often based on function
evaluations alone, but gradient information may be included as well. The evalua-
tion of a design point requires evaluation of a computationally expensive simulation
model. We have had good experience with adding new SAO sequences to the frame-
work. In Chapter 2 a more or less standard SAO sequence has been presented. This
sequence has been extended towards anti-optimization schemes that require nested
optimizations for each design point evaluation. In Chapter 5, the standard SAO se-
quence is extended to deal with non-analyzable design points.
The ADOPT framework assumes that there is one simulation model involved in

the optimization problem. An interesting future extension of the framework would
be the possibility to develop SAO strategies for multiple coupled simulation models
in the context of decomposition-based Multidisciplinary Optimization (MDO).

6.2 Variabilitymeasures based on effective process time

The concept of Effective Process Time (EPT) is a means to represent process time and
all process disturbances by one distribution with mean te and coefficient of varia-
tion ce. Since EPT relates to basic factory physics, parameters te and ce can be used
as a fundamental performance measure. In this thesis new algorithms have been
developed to compute EPT parameters from operational factory data.
Effective process time algorithms have been proposed in Chapters 3 and 4. These

algorithms can be used to measure effective process time realizations in a real-world
factory based on arrival-event and departure-event data. In Chapter 3, EPT algo-
rithms are proposed for workstations consisting of single-lot machines, i.e. machines
that process one product at a time. The required data for these EPT algorithms is a
list of arrival and departure events containing the lot identification number and the
number of the machine the lot will be processed on (in case of arrival) or was pro-
cessed on (in case of departure). The idea is that this data is used to compute the time
that each lot claims capacity of a machine. A lot claims capacity of a machine when-
ever it is actually processed on the machine or whenever it is waiting for processing
while the machine is not processing another lot.
For batching machines, algorithms are introduced that transform arrival events

and departure events of individual lots into arrival events and departure events of
batches. On the basis of these arrival and departure events of batches, the single-
lot machine EPT algorithm can be used to compute the EPT parameter of processed
batches. The transformation algorithms can account for the recipes of the individual
lots. That is, the EPT calculation accounts for lots with different recipes that may
not be processed together in one batch. Besides measuring the arrival and depar-
ture events of individual lots, these batch transformation algorithms also require the
identification of the recipe for each lot.
Chapter 3 distinguishes two cases: EPT non-idling and EPT general. In the EPT

non-idling case a lot that starts a capacity claim will in the future also be processed
on that particular machine. In the EPT general case, this may be violated, e.g. when
a lot is not dispatched on an available idle machine, but will be processed in the
future on a machine that is currently busy. In the latter example capacity is lost due
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to keeping a machine (effectively) idle for some reason. The EPT algorithm proposed
in Chapter 3 accounts for this loss of capacity.

Chapter 4 shows that when the EPT non-idling assumption is obeyed, the EPT
algorithm can be simplified and that EPT realizations can be computed for each ma-
chine separately. This observation allowed the extension of the algorithm towards
batching equipment and recipe-dependent processing. Any violation of the EPT
non-idling assumption is viewed to be part of the workstation dispatching. That
is, it is due to the dispatching policy that a machine is kept idle from an EPT point of
view. This is similar to the case that a recipe-based batch forming rule cannot gener-
ate a new batch for the idle batch machine since not sufficient lots of the same recipe
are available.

The EPT algorithm for single-lot machines (Chapter 3) was validated using test
examples of discrete-event simulation models of workstations. The test examples
considered workstations with disturbances caused by failure of equipment and dis-
turbances caused by unequal process times among the machines. The EPT algorithm
was used to obtain the te and ce parameters. The obtained EPT parameters were val-
idated using an analytical queueing equation as well as simulation to confirm that
te and ce are correct representations of the effective capacity and effective variability,
and to check whether te and ce can be used to accurately predict flow time of the
original simulation model. For the test examples that included unreliable machines
(equipment downs), parameters te and ce were able to accurately predict flow time.
The computed te and ce values are independent of the utilization. For a special case
of equipment failures (equipment independent failures), we observed that EPT pa-
rameters te and ce depend on utilization. This caused a small deviation in predicted
flow times by the queueing equation with respect to the original simulation model.
The EPT algorithm of Chapter 3 was, however, not able to correctly predict flow time
in case of a large deviation in capacity among machines in one workstation.

The EPT algorithms for batch machines were validated using test examples that
included unreliable machines and multiple recipes with different processing times.
In these examples, the EPT non-idling assumption was obeyed and each machine
in the workstation had equal capacity. The EPT-based simulation models were able
to correctly predict the flow time of the original simulation model. Therefore, EPT
parameters te and ce correctly quantified effective capacity and effective variability
in these examples.

Two case studies were performed based on data obtained from the Philips Semi-
conductor wafer fab MOS4YOU. The first case study considered all single-lot ma-
chine workstations and the second case study considered all batchmachine worksta-
tions. In both case studies the te and ce values were computed for each workstation
based on data obtained from the Manufacturing Execution System (MES) which in-
cluded arrival-event and departure-event data of lots. The calculated te and ce for the
single-lot machines were used in the G/G/m queueing equation to estimate the flow
time of the lots. The estimated flow time values were close to the real flow times ob-
tained from the MES. A similar case study was carried out for batching equipment.
Instead of using a queueing equation, herewe used a simulation model that included
the EPT parameters and the batch dispatching policy. Again, this simulation model
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was able to generate similar results as obtained from the MES.
EPT can also be used in simulation models to predict flow time of lots. In the ex-

amples and the case study such simulation models of workstations were introduced.
The individual machines in these workstation models are subject to process times
that are distributed regarding the computed EPT parameters. The individual pro-
cess times of the lots were distributed following a Gamma distribution with mean
te and coefficient of variation ce. Such a simulation model in which capacity and
variability is based on EPT distributions alone is called a meta model in this the-
sis. An EPT-based meta model is a simulation model in which disturbances are not
modeled separately, but EPT distributions are used instead. This idea of EPT-based
simulation meta modeling gives good prospects to create simulation meta models of
the complete manufacturing system, i.e. by linking all the meta models of the indi-
vidual workstations. This meta model would be a valuable tool to predict flow time
performance of a complete (re-entrant) flow line. The meta model could provide an
accurate simulation model that can be used in the optimization. One may optimize
using the simulation meta model for structural changes related to, e.g., batch sizes,
buffer sizes, and number of machines in a workstation.
A further question for research is: what should be included in EPT? The initial

concept of EPT started with the idea that processing and all disturbances should be
included in EPT. From Chapters 3 and 4 can be concluded that this might not al-
ways be the best approach. The EPT algorithm presented in Chapter 3 is based on
the underlying G/G/m queueing physics. If a workstation operates more or less like
such a G/G/m queueing system, the proposed EPT algorithm can be used satisfac-
tory. In Chapter 4 the G/Gk/1 queueing equation is used to understand the physics
of a workstation with batch machines that obeys the non-idling assumption. For
cases that strongly violate the queueing assumptions, the underlying physics have
to be described with an appropriate queueing equation or simulation model. This
might be the case for specific shop floor realities, such as dispatching policies and
batching rules. These shop floor realities cannot be accounted for in EPT realiza-
tions and should be modeled explicitly in the (simulation) meta model. For types
of equipment other than single-lot and batching equipment the EPT algorithms and
meta models may be adapted to account for specific process capabilities. This also
holds for specific process disturbances that violate the G/G/m queueing assump-
tions, such as large capacity differences among machines in one workstation, utiliza-
tion dependent EPT realizations, or non-idling due to infrequent but long machine
interruptions (see for a detailed example, e.g., Wullems, 2003).

6.3 Approximation method for flow time performance

Chapter 5 proposes a new approximation method to describe product flow time of
an open queueing network with a fixed routing. Semiconductor wafer fabrication is
an example of such a queueing network. Starting point is that the proposed approx-
imations will be used in a Sequential Approximate Optimization (SAO) approach
and are able to provide good quality approximations of flow time performance in
the search subregion of each SAO cycle.
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The idea of the newly developed approximation method is the incorporation of
queueing physics of each individual workstation in the approximation model of the
total product flow time. The approximation method builds flow time approxima-
tions in each cycle for each workstation separately. Since the routing of each product
flow is fixed, the product flow time is the sum of flow time accumulated at each
(re-) visited workstation. Two basic queueing physics principles are incorporated
for each workstation: (i) for an utilization close to 1.0, the workstation flow time in-
creases non-linearly to infinity, and (ii) the variability has a proportional effect on
the workstation flow time. As a consequence, the flow time approximation of each
workstation should depend on: the design variables itself, the utilization response,
and the variability response, i.e.ϕ = ϕ(x, u(x), c2(x)).

For the workstation flow time approximation, Chapter 5 proposed a new linear
regression model which consists of a pure linear model in the design variables and
one additional linear regression term that accounts for the queueing physics. The ad-
ditional linear regression term includes the two above-mentioned queueing physics
principles by means of the following regression term: c2(x)/(1− u(x)). For the ap-
proximate functions u(x) and c2(x) we suggest linear regression models including
linear and reciprocal terms that match well with typical design variables for man-
ufacturing systems. The linear regression parameters in each of the three approxi-
mation models are estimated using simulation responses of utilization, variability,
and flow time. From a simulation run the individual workstation flow time can be
obtained directly. However, the workstation utilization and variability responses
cannot be determined directly. The idea is to determine utilization and variability
from simulation events on the basis of EPT.

Key contribution of the proposed approximation model is that EPT is used to de-
scribe the utilization and variability approximation models. Based on the G/G/m
queueing equation we suggest to describe utilization and variability by u(x) =
te/(ta · m) and c2(x) = (c2a + c2e)/2, respectively. The utilization and variability re-
sponses are determined on the basis of the developed EPT algorithms. These EPT
algorithms determine the te and c2e values for each workstation based on arrival and
departure events of the lots.

The newly developed flow time approximation model has been incorporated in a
multi-point sequential approximate optimization approach. The presented sequen-
tial approximate optimization approach is used for the optimization of flow time
performance in discrete-event manufacturing systems. In particular, the presented
optimization problem aims to minimize a deterministic cost function with respect to
a number of stochastic flow time constraints. The flow time constraints are related to
the total flow time of each product type, where each product type has a fixed routing.
The proposed flow time approximations are used to approximate the constraints in
each iteration of the SAO sequence.

An SAO sequence for simulation-based optimization has been developed for
solving the above-mentioned optimization problem. The SAO sequence builds flow
time approximations in each iteration. The sequence can handle non-analyzable sim-
ulations. A simulation is non-analyzable, if the utilization of one of the workstations
is equal to or above 100%. This occurs whenever the throughput of the product flows
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exceeds the capacity of the workstation. For such a system, a steady-state flow time
response is never obtained. Whether a design point is analyzable or not, cannot be
determined on beforehand. It might happen that a plan point in the design of exper-
iments step of the SAO sequence is non-analyzable. After simulating all plan points,
the non-analyzable design point is repositioned in the design of experiments and
simulated again. The proposed SAO sequence is able to perform this task.
The newly developed SAO sequence that included the new approximation func-

tion has been tested on two simulation-based optimization problems. The optimiza-
tion problems considered a four-station flow line and a twelve-station re-entrant
flow line, respectively. The optimization problems are defined to minimize cost
subject to flow time constraints. For the four-station flow line, all machines in the
discrete-event simulation model are single-lot machines with distributed processing
times and no process disturbances. The number of machines in each workstation
are treated as integer design variables. The dispatching policy was first-come-first-
served for all workstations. These workstations match very well with the G/G/m
queueing behavior. The SAO approach was able to find the correct optimum in
100% of the optimization runs. The twelve-station flow line consists of single-lot
machine workstations and batch machine workstations. The machines are subject
to process times, machine failure, and recipe-dependent setup times. Furthermore,
the dispatching policies are also based on the recipes of the individual lots. For this
reason, the workstation behavior may deviate from the G/G/m queueing equation.
However, the SAO approach was still able to generate good quality approximations.
Two optimization problemswere considered. The first optimization problem consid-
ered the number of machines in each of the twelve workstations as design variable.
The cost of the optimal solution was equal to 7,605 k$. The second optimization
problem considered three integer design variables: the number of machines at three
stations, and five continuous design variables: the mean setup time of two stations
and the mean repair time of three stations. Since an increase of mean setup time was
allowed, less machines were needed and the cost of the optimal solution was equal
to 6,362 k$.
Approximation models based on factory physics result in good quality flow time

approximations. The approximations presented here are based on G/G/m flow time
performance. For workstations that behave similarly to a G/G/m system, the pre-
sented method proved to work well. If other types of manufacturing systems are
considered, it might be beneficial to develop case-specific approximation models.
These case-specific approximation models should be able to accurately approximate
the flow time performance in relation to the existing shop floor realities. Specific
shop floor realities are, for example, batching equipment, dispatch rules, control
strategies, and blocking.



122 Conclusions and Recommendations



Bibliography

Abspoel, S. J., Etman, L. F. P., Vervoort, J., van Rooij, R. A., Schoofs, A. J. G., and
Rooda, J. E. (2001). Simulation based optimization of stochastic systems with inte-
ger design variables by sequential multipoint linear approximation. Structural and
Multidisciplinary Optimization, 22(2):125–138.

Adan, I. J. B. F. and Resing, J. A. C. (2001). Queueing theory. Lecture notes,
Eindhoven University of Technology, ftp://ftp.win.tue.nl/pub/stoch-or/

queueing.pdf.

Alexandrov, N. M., Dennis, J. E., Lewis, R. M., and Torczon, V. (1998). A trust region
framework for managing use of approximation models in optimization. Structural
Optimization, 15(1):16–23.

Ames, V. A., Gililland, J., Konopka, A., and Barber, H. (1995). Semiconductor
manufacturing productivity; overall equipment effectiveness (OEE) guidelines.
Technology transfer #950327443 A-GEN, Revision 1.0, Sematech, http://www.
sematech.org/.

Angün, E., Gürkan, G., Den Hertog, D., and Kleijnen, J. (2003). Response surface
methodology with stochastic constraints for expensive simulation. submitted.

Azadivar, F. (1999). Simulation optimization methodologies. In Farrington, P. A.,
Nemhard, H. B., Evans, G. W., and Sturrock, D., editors, Proceedings of the 1999
Winter Simulation Conference, pages 93–100, Piscataway, NJ.

Barthelemy, J. F. M. and Haftka, R. T. (1993). Approximation concepts for optimum
structural design: a review. Structural Optimization, 5(3):129–144.

Bisschop, J. and Roelofs, M. (2002). AIMMS – The User’s Guide. Paragon Decision
Technology, Haarlem, The Netherlands, http://www.aimms.com/.

Brekelmans, R., Driessen, L., Hamers, H., and Den Hertog, D. (2004). Constrained
optimization involving expensive function evaluations: a sequential approach.
European Journal of Operational Research, to be published.

Brooke, A., Kendrick, D., Meeraus, A., and Raman, R. (1998). GAMS –AUser’s Guide.
Washington, http://www.gams.com/.

123



124 Bibliography

Bruyneel, M., Duysinx, P., and Fleury, C. (2002). A family of MMA approximations
for structural optimization. Structural andMultidisciplinary Optimization, 24(4):263–
276.

Buzacott, J. A. and Shanthikumar, J. G. (1993). Stochastic Models of Manufacturing
Systems. Prentice Hall, Englewood Cliffs.

Carson, Y. and Maria, A. (1997). Simulation optimization: methods and applica-
tions. In Andradottir, S., Healy, K. J., Withers, D. H., and Nelson, B. L., editors,
Proceedings of the 1997 Winter Simulation Conference, pages 118–126, Piscataway, NJ.

Chang, P. L., Huang, M. G., and Chou, Y. C. (1998). Evaluating system performances
for semiconductor fabrication using open general queueing networks. Interna-
tional Journal of Operations & Quantitative Management, 4(3):327–342.

Craig, K. J. and Stander, N. (2003). An improved version of DYNAMIC-Q for
simulation-based optimization using response surface gradients and an adaptive
trust region. Communications in Numerical Methods in Engineering, 19(11):887–896.

Craig, K. J., Stander, N., and Balasubramanyam, S. (2003). Worst-case design in head
impact crashworthiness optimization. International Journal for Numerical Methods
in Engineering, 57(6):795–817.

Eldred, M. S., Giunta, A. A., van Bloemen Waanders, B. G., S. F. Wojtkiewicz,
J., Hart, W. E., and Alleva, M. P. (2002). DAKOTA, a Multilevel Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quan-
tification, and Sensitivity Analysis. Sandia, Albuquerque, NM, version 3.0, http:
//endo.sandia.gov/DAKOTA/software.html.

Elishakoff, I., Haftka, R. T., and Fang, J. (1994). Structural design under bounded
uncertainty – optimization with anti-optimization. Computers and Structures,
53(6):1401–1405.

Etman, L. F. P., Adriaens, J. M. T. A., van Slagmaat, M. T. P., and Schoofs, A. J. G.
(1996). Crash worthiness design optimization using multipoint sequential linear
programming. Structural Optimization, 12:222–228.

Fadel, G. M., Riley, M. F., and Barthelemy, J. F. M. (1990). Two point exponential
approximation method for structural optimization. Structural Optimization, 2:117–
129.

Fadel, G. M. and Cimtalay, S. (1993). Automatic evaluation of move-limits in struc-
tural optimization. Structural Optimization, 6:233–237.

Fletcher, R. and Leyffer, S. (1998). Nonlinear programming without a penalty func-
tion. Numerical analysis reportNA/171, University of Dundee, Dundee, Scotland.

Fleury, C. and Braibant, V. (1986). Structural optimization: a new dual method us-
ing mixed variables. International Journal for Numerical Methods in Engineering,
23(3):409–428.



Bibliography 125

Fourer, R., Gay, D. M., and Kernighan, B. W. (1993). AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press.

Fu, M. C. (1994). Optimization via simulation: A review. Annals of the Operations
Research, 53:199–247.

Gijsbers, J. A. A. (2002). A sequence of linear regression approximations for
simulation-based optimization of manufacturing systems. Master’s thesis, Eind-
hoven University of Technology, Systems engineering report SE-420314.

Gijsbers, J. A. A. (2003). Integer simulation-based optimization: a new multipoint
approximation approach with probabilistic filter acceptance and intermediate de-
sign variables. Systems engineering report SE-420398, Eindhoven University of
Technology.

Giunta, A. A. and Eldred, M. S. (2000). Implementation of a trust region model
management strategy in the DAKOTA optimization toolkit. In Proceedings of the
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimiza-
tion, Long Beach, CA.

Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis. Kluwer Aca-
demic, Boston.

Gosavi, A. (2003). Simulation-based Optimization: Parametric Optimization Techniques
and Reinforcement Learning. Kluwer Academic, Boston.

Gurav, S. P., Langelaar, M., Goosen, J. F. L., and van Keulen, F. (2003). Different ap-
proaches to deal with bounded-but-unknown uncertainty-based design optimiza-
tion: Application to mems. In Proceedings of The Fifth World Conference for Structural
and Multidisciplinary Optimization, Venice, Italy.

Gurav, S. P., Kasyap, A., Sheplak, M., Cattafesta, L., Haftka, R. T., Goosen, J. F. L., and
Van Keulen, F. (2004). Uncertainty-based design optimization of a micro piezo-
electric composite energy reclamation device. In Proceedings of 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Washington, DC.

Haftka, R. T., Nachlas, J. A., Watson, L. A., Rizzo, T., and Desai, R. (1987). Two point
constraint approximation in structural optimization. Computer Methods in Applied
Mechanics and Engineering, 60(3):289–301.
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Samenvatting

Dit promotieonderzoek maakt deel uit van het ADOPT-project, dat gefinancierd
wordt door de Technologiestichting STW. ADOPT is een samenwerkingsverband
tussen de technische universiteiten van Eindhoven en Delft. Doel van het ADOPT-
project is om gezamenlijk te komen tot de ontwikkeling van een optimaliserings-
gereedschapwaarin optimaliseringsproblemen op basis van rekenintensieve model-
len kunnen worden beschreven en opgelost. De herhaald benaderende optimali-
seringsstrategie zal gebruikt worden om een directe koppeling tussen het reken-
intensieve model en een wiskundig optimaliseringsalgoritme overbodig te maken.
Dit wordt bereikt door het opeenvolgend genereren en oplossen van benaderende
optimaliseringsproblemen. In deze benaderingen kunnen probleemspecifieke ken-
merken worden vastgelegd. Kenmerken die binnen het ADOPT-project worden
beschouwd zijn: stochastische en ruisgevoelige responsies, discontinuı̈teiten in res-
ponsies en integer ontwerpvariabelen.

De bijdrage van dit proefschrift is drieledig. Allereerst is er voor het ADOPT-
project een framewerk ontwikkeld waarin herhaald benaderende optimaliserings-
strategieën kunnen worden geı̈mplementeerd. Dit framewerk levert een open struc-
tuur waarin de optimaliseringsstrategie en de benaderingen kunnen worden aan-
gepast naar de kenmerken van het beschouwde optimaliseringsprobleem. Op de
tweede plaats is er specifiek voor de optimalisatie van productielijnen een nieuw be-
naderingsconcept ontwikkeld. Deze productielijnen worden verondersteld gemod-
elleerd te zijn met behulp van discrete-event simulatie. Kenmerkend voor deze si-
mulatie zijn de stochastische responsies en integer ontwerp variabelen. Typische
integer ontwerpvariabelen zijn het aantal gebruikte machines en de grootte van de
geproduceerde batches. Tot slot wordt in dit proefschrift de zogenaamde effectieve-
procestijd-methode (EPT) beschreven. Deze methode is gebaseerd op wachtrijtheo-
rie en levert EPT als nieuwe prestatie-indicator voor de doorlooptijd. Verder kan het
EPT concept als basis dienen voor eenvoudige maar realistische simulatiemodellen,
omdat details op de werkvloer aangaande productieonderbrekingen niet afzonder-
lijk worden meegenomen.

Het framewerk voor herhaald benaderend optimaliseren is gebaseerd op een ob-
jectgeoriënteerde structuur en bestaat uit methoden, (externe) numerieke routines en
interfaces naar andere softwarepakketten. In het framewerk is het mogelijk om (i)
het optimaliseringsprobleem te specificeren dat o.a. het simulatie model bevat, (ii)
de optimaliseringssequentie te specificeren die de volgorde van numerieke stappen
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bepaalt en (iii) de numerieke routines te specificeren die gebruikt worden in iedere
numeriek stap. Een typische optimaliseringssequentie bestaat uit een aantal stappen
die bedoeld zijn voor o.a. het uitvoeren van een proefopzet, het opbouwen van de
benaderingen en het oplossen van de benaderende optimalisatieproblemen. Iedere
afzonderlijke numerieke stap kan beschouwd worden als een ‘black-box’ functie
zoals bijvoorbeeld verkregen via een externe software bibliotheek. De gebruiker van
het framewerk kan de optimalisatiesequentie en de gebruikte numerieke routines
aanpassen. In beschikbare herhaald benaderende optimalisatie-implementaties is
dit over het algemeen niet mogelijk. Het framewerk is toegepast op het ontwerp-
probleem van een vakwerk met tien staven waarbij de belasting zowel bekend als-
ook onzeker is. Het framewerk is daarnaast gebruikt voor ontwerpproblemen bin-
nen het ADOPT-project waaronder de optimalisatie van Microelectromechnical Sys-
tems (MEMS) en productielijnen, en de optimalisatie voor robuustheid en betrouw-
baarheid.
De effectieve-procestijd-methode (EPT) bepaalt de capaciteit en variabiliteit van

machines en werkstations van productielijnen. Het concept van EPT is bekend van-
uit de literatuur, maar er is nog geenmethode beschikbaar om daadwerkelijk de EPT
te meten in operationele fabrieken of simulatiemodellen. EPT voegt productietijden
en productieverstoringen samen tot één enkele prestatie-indicator. Typische voor-
beelden van productieverstoringen zijn het faalgedrag van machines, insteltijden,
en operator-beschikbaarheid. Het doel is om te komen tot algoritmes die EPT para-
meters kunnen bepalen op basis van gegevens uit de productielijn. Deze parameters
worden in combinatie met overeenstemmende wachtrijfysica worden gebruikt als
prestatie-indicator voor de doorlooptijd. Algoritmes zijn ontwikkeld voor de be-
paling van EPT voor machines die gebruikt worden in de semiconductorindustrie.
De algoritmes zijn getest op simulatievoorbeelden en op operationele data uit een
fabriek van Philips Semiconductors. Dit resulteerde in simulatie-metamodellen van
de afzonderlijke werkstations, die vervolgens gecombineerd kunnen worden tot een
metamodel van de complete fabriek.
De optimalisatie van productielijnen vereist benaderingsmodellen met een hoge

nauwkeurigheid. In dit proefschrift wordt de prestatie van doorlooptijden in pro-
ductielijnen geoptimaliseerd. Vanuit de wachtrijtheorie is bekend dat de doorloop-
tijd zich voor bepaalde ontwerpvariabelen sterk niet-lineair gedraagt. De ontwik-
kelde benaderingsmodellen houden rekening met dit fysisch niet-lineaire gedrag.
In voorgaand onderzoek is het gebruik van lineaire regressie modellen voorgesteld.
Er wordt hierop voortgebouwd en een nieuwe meer generieke lineaire regressiebe-
nadering voorgesteld uitgaande van het concept van de EPT. De gedachte is om
EPT te gebruiken in de benaderingsmodellen voor de doorlooptijd. Deze benader-
ingsmodellen hebben dan een directe relatie met wachtrijtheorie. De te schatten pa-
rameters in de benaderingsmodellen worden bepaald met simulatieresponsies van
een discrete-event model. Dit nieuwe type benaderingsmodel is toegevoegd aan het
ontwikkelde framewerk voor herhaald benaderend optimaliseren. Dit heeft geleidt
tot een nieuwe methode voor optimalisatie van productielijnen. Deze methode is
succesvol getest op ontwerpproblemen voor productielijnen met vier werkstations
en twaalf werkstations.
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Stellingen

behorende bij het proefschrift

Performance Quantification and Simulation
Optimization of Manufacturing Flow Lines

1. Het opnemen van zo veel mogelijk detail in een simulatiemodel van een fa-
briek leidt niet tot nauwkeurigere voorspellingen.
Dit proefschrift, hoofdstuk 1

2. Een correct algoritme voor de berekening van effectieve procestijden maakt
slechts gebruikt van aankomst- en vertrekgebeurtenissen van producten.
Dit proefschrift, hoofdstuk 3

3. Het toevoegen van fysische kennis aan benaderingsmodellen is voor een suc-
cesvolle optimalisering noodzakelijk.
Dit proefschrift, hoofdstuk 5

4. Hoewel een machine niet meer dan 100% beladen kan zijn, kan een utilisatie
van meer dan 100% wel een betekenis hebben.
Dit proefschrift, hoofdstuk 5

5. Het effect van variabiliteit in fabricagesystemen wordt ten onrechte niet mee-
genomen in operationele beslissingen.

6. Een analyse model kan alleen als simulatiemodel worden betiteld als er sto-
chastische gebeurtenissen aan ten grondslag liggen.

7. MATLAB is geen object-georiënteerde programmeertaal.

8. Hoewel in het basisonderwijs veel didactische methodes bestaan om zwakkere
leerlingen te helpen, is het minstens zo belangrijk om betere leerlingen uitda-
gingen te bieden.
Centrum voor ErvaringsGericht Onderwijs, http://www.cego.be/

9. De gelijkzwevende stemming klinkt zo gek nog niet.
Simon Stevin, “Vande Spiegheling der Singconst”, manuscript van rond 1600.

10. Kindertheater is geen kinderspel.
Arie Spinazie, http://www.ariespinazie.nl/

11. Een manager van een fastfood-restaurant wordt verplicht om verse hambur-
gers weg te gooien, maar wordt verleid om oude hamburgers te verkopen.

12. Door het gebruik van route-navigatiesystemen, zoals GPS, is men vaker de
weg kwijt.
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