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Abstract—Modern web applications face stringent require-
ments along many dimensions including latency, scalability, and
availability. In response, several geo-distributed cloud datastores
have emerged in recent years. Customizing datastores to meet
application SLAs is challenging given the scale of applications,
and their diverse and dynamic workloads. In this paper, we
tackle these challenges in the context of quorum-based systems
(e.g. Amazon Dynamo, Cassandra), an important class of cloud
storage systems. We present models that optimize percentiles of
response time under normal operation and under a data-center
(DC) failure. Our models consider factors like the geographic
spread of users, DC locations, consistency requirements and
inter-DC communication costs. We evaluate our models using
real-world traces of three applications: Twitter, Wikipedia and
Gowalla on a Cassandra cluster deployed in Amazon EC2. Our
results confirm the importance and effectiveness of our models,
and highlight the benefits of customizing replication in cloud
datastores.

I. INTRODUCTION

Interactive web applications face stringent requirements on

latency, and availability. Service level agreements (SLAs)

often require bounds on the 90th (and higher) percentile

latencies [33], which must be met while scaling to hundreds

of thousands of geographically dispersed users. Applications

require 5 9’s of availability or higher, and must often be op-

erational despite downtime of an entire DC. Failures of entire

DCs may occur due to planned maintenance (e.g. upgrade of

power, cooling and network systems), and unplanned failure

(e.g. power outages, and natural disasters) [33], [24], [4], [8]

(Figure 1). Application latencies and downtime directly impact

business revenue [7].

In response to these challenges, a number of systems that

replicate data across geographically distributed data-centers

(DCs) have emerged in recent years [24], [38], [33], [26], [23],

[40], [15], [8]. An important requirement on these systems is

the need to support consistent updates on distributed replicas,

and ensure both low write and read latencies. This is necessi-

tated given datastores target interactive web applications that

involve reads and writes by geographically distributed users

(e.g. Facebook timelines, collaborative editing). Consequently,

a distinguishing aspect of cloud datastores is the use of

algorithms (e.g., quorum protocols [38], [33], Paxos [24], [15],

[8]) to maintain consistency across distributed replicas.

Achieving low read and write latencies with cloud datastores

while meeting the consistency requirements is a challenge.

Meeting these goals requires developers to carefully choose the

number of replicas maintained, which DCs contain what data,

as well as the underlying consistency parameters (e.g., quorum

sizes in a quorum based system). Replica placement techniques

in traditional Content Delivery Networks (CDNs) (e.g., [45])

do not apply because consistency has to be maintained with

distributed writes while maintaining low latencies. Tailoring

cloud datastores to application workloads is especially chal-

lenging given the scale of applications (potentially hundreds of

thousands of data items), workload diversity across individual

data items (e.g. celebrities and normal users in Twitter have

very different workload patterns), and workload dynamics (e.g.

due to user mobility, changes in social graph etc.)

The problem of customizing replication policies in cloud

datastores to application workloads has received limited sys-

tematic attention. Some datastores like [38], [33] are based

on consistent hashing, which limits their flexibility in placing

replicas. Other datastores like [41], [40] assume that all data is

replicated everywhere, which may be prohibitively expensive

for large applications. While a few datastores can support

flexible replication policies [24], [48], they require these

replication decisions to be configured manually which is a

daunting task.

Fig. 1. Downtime and number of failure episodes (aggregated per
year) of the Google App Engine data store obtained from [5].

In this paper, we present frameworks that can automatically

determine how best to customize the replication configuration

of geo-distributed datastores to meet desired application ob-

jectives. We focus our work on systems such as Amazon’s

Dynamo [33], and Cassandra [38] that employ quorum pro-

tocols. We focus on quorum-based systems given their wide

usage in production [33], [38], the rich body of theoretical

work they are based on [30], [28], [50], [43], and given the

availability of an open-source quorum system [38]. However,

we believe our frameworks can be extended to other classes

of cloud storage systems as well.

We focus on optimization frameworks to obtain insights into

the fundamental limits on application latency achievable for a

given workload while meeting the consistency requirement.
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Our models are distinguished from quorum protocols in the

theoretical distributed systems community [30], [28], [50],

[43], in that we focus on new aspects that arise in the context

of geo-distributed cloud datastores. In particular, our models

consider the impact of DC failures on datastore latency, and

guide designers towards replica placements that ensure good

latencies even under failures. Further, we optimize latency

percentiles, allow different priorities on read and write traffic,

and focus on realistic application workloads in wide-area

settings.

We validate our models using traces of three popular appli-

cations: Twitter, Wikipedia and Gowalla, and through experi-

ments with a multi-region Cassandra cluster [38] spanning all

8 EC2 geographic regions. While latencies with Cassandra

vary widely across different replication configurations, our

framework generates configurations which perform very close

to predicted optimal on our multi-region EC2 setup. Further,

our schemes that explicitly optimize latency under failure are

able to out-perform failure-agnostic schemes by as much as

55% under the failure of a DC while incurring only modest

penalties under normal operation. Our results also show the

importance of choosing configurations differently across data

items of a single application given the heterogeneity in work-

loads. For instance, our Twitter trace required 1985 distinct

replica configurations across all items, with optimal configu-

rations for some items often performing poorly for other items.

Overall the results confirm the importance and effectiveness

of our frameworks in customizing geo-distributed datastores

to meet the unique requirements of cloud applications.

II. REPLICATION IN GEO-DISTRIBUTED DATASTORES

A commonly used scheme for geo-replicating data is to

use a master-slave system, with master and slave replicas

located in different DCs, and data asynchronously copied to

the slave [2], [4]. However, slaves may not be completely syn-

chronized with the master when a failure occurs. The system

might serve stale data during the failure, and application-level

reconciliation may be required once the master recovers [4],

[8]. On the other hand, synchronized master-slave systems

ensure consistency but face higher write latencies.

To address these limitations with master-slave systems,

many geo-distributed cloud storage systems [24], [15], [8],

[40], [15], [19], [48], [37], [41], [26] have been developed in

the recent years. A distinguishing aspect of cloud datastores is

the use of algorithms to maintain consistency across distributed

replicas, though they differ in their consistency semantics and

algorithms used. Systems like Spanner [24] provide database-

like transaction support while other systems like EIGER[40]

and COPS[41] offer weaker guarantees, primarily with the

goal of achieving lower latency.

Quorum-based datastores: Quorum protocols have been

extensively used in the distributed systems community for

managing replicated data [30]. Under quorum replication, the

datastore writes a data item by sending it to a set of replicas

(called a write quorum) and reads a data item by fetching

it from a possibly different set of replicas (called a read

Fig. 2. Replica configuration across schemes for a set of Twitter
data items. Reads/writes are mapped to the nearest Amazon EC2
DC. While all 8 EC2 regions (and 21 Availability Zones) were used
to compute the configurations for all schemes, only DCs that appear
in at least one solution are shown. For clarity, placement with N-1C
is not shown.

quorum). While classical quorum protocols [30] guarantee

strong consistency, many geo-distributed datastores such as

Dynamo [33], and Cassandra [38] employ adapted versions

of the quorum protocol, and sacrifice stronger consistency for

greater availability [33]. In these systems, reads (or writes)

are sent to all replicas, and the read (or write) is deemed

successful if acknowledgments are received from a quorum.

In case the replicas do not agree on the value of the item

on a read, typically, the most recent value is returned to the

user [33], [38], and a background process is used to propagate

this value to other replicas. Replication in these systems can

be configured so as to satisfy the strict quorum property:

R+W > N (1)

where N is the number of replicas, R and W are the read

and write quorum sizes respectively. This ensures that any

read and write quorum of a data item intersect. Configuring

replication with the strict quorum property in Cassandra and

Dynamo guarantees read-your-writes consistency [51]. Fur-

ther, any read to a data item sees no version older than the

last complete successful write for that item (though it may see

any later write that is unsuccessful or is partially complete).

Finally, note that Dynamo and Cassandra can be explicitly

configured with weaker quorum requirements leading to even

weaker consistency guarantees [14].

III. MOTIVATING EXAMPLE

In using cloud storage systems, application developers must

judiciously choose several parameters such as the number

of replicas (N ), their location, and read(R) and write(W )

quorum sizes. In this section, we illustrate the complexity in

the problem using a real example, and highlight the need for

a systematic framework to guide these choices. The example

is from a real Twitter trace (Section VII-A), and represents a

set of users in the West Coast who seldom tweet but actively

follow friends in Asia and the East Coast.

Figure 2 depicts the placement with multiple replica con-

figuration schemes. The DC locations and inter-DC delays

were based on Amazon EC2, and we required that at most

one replica may be placed in any EC2 Availability Zone

(AZ). Table I summarizes the performance of the schemes.

Our primary performance metric is the quorum latency, which
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for the purpose of this example is the maximum of the read

and write latency from any DC. The read (write) latency in a

quorum datastore is the time to get responses from as many

replicas as the read (write) quorum size. Our frameworks are

more general and can generate configurations optimized for

different priorities on read and write latencies. We discuss

possible schemes:

User centric: This scheme is representative of traditional CDN

approaches and aims to place replicas as close to users as

possible with no regard to quorum requirements. In the limit,

replicas are placed at all DCs from which accesses to the

data item arrive (USW-1, APS-1, and USE-1 in our example).

It may be verified that for this choice of replicas, the best

quorum latency achievable is 186 msec, obtained with read

and write quorum sizes of 2. Note that this placement would

also be generated by the classical Facility Location problem

when facilities may be opened with zero cost.

Globally central: This scheme seeks to place replicas at a

DC which is centrally located with respect to all users by

minimizing the maximum latency from all DCs with read/write

requests. In our example, this scheme places a replica at

USW-1. Note that for resiliency, replicas could be placed in

additional availability zones of the US West region, but the

quorum latency would still remain 186 msec.

Basic Availability: This is our model (Section VI), which

optimizes quorum latencies under normal conditions (all DCs

are operational) while ensuring the system is functional under

the failure of a single DC. This scheme chooses 4 replicas, one

at each of the DCs, as shown in Figure 2, with R = 3 and

W = 2. This configuration has a quorum latency of 117msec

- a gain of 69 msec over other schemes. Intuitively, the benefit

comes from our scheme’s ability to exploit the asymmetry in

read and write locations, increasing the number of replicas and

appropriately tuning the quorum sizes.

N-1 Contingency: While the Basic Availability scheme guar-

antees operations under any single DC failure, latencies could

be poor. For e.g., on the failure of APN-1, the write latency

from USE-1 increases to 258msec. Our N-1 Contingency

scheme (Section VI) suggests configurations that guarantee

optimal performance even under the failure of an entire DC.

In our example, the N-1 Contingency scheme configures 6

replicas (3 in APN-1, 2 in USE-1 and 1 in USW-1) with

R = 5 and W = 2. This configuration ensures the quorum

latency remains 117 msec even under any single DC failure.

Note that this configuration has the same performance as the

BA scheme under normal conditions as well.

Overall, these results indicate the need and benefits for a

systematic approach to configure replication policies in cloud

datastores. Further, while our example only considers a subset

of items, applications may contain tens of thousands of groups

of items with different workload characteristics. Manually

making decisions at this scale is not feasible.

IV. SYSTEM OVERVIEW

Figure 3 shows the overview of our system. The datastore

is deployed in multiple geographically distributed DCs (or

TABLE I
COMPARING PERFORMANCE OF SCHEMES

Scheme Quorum latency (msec) N,R,W
Normal Failure

Globally central 186 186 3, 2, 2
User centric 186 258 3, 2, 2
Basic Availability 117 191 4, 3, 2
N-1 Contingency 117 117 6, 5, 2

availability zones), with each data item replicated in a subset

of these DCs. Since our focus is on geo-replication, we

consider scenarios where each DC hosts exactly one replica of

each item, though our work may be easily extended to allow

multiple replicas.

Fig. 3. System overview

Applications consist of front-end application servers and

back-end storage servers. To read/write data items, an applica-

tion server contacts a ”coordinator” node in the storage layer

which is typically co-located in the same DC. The coordinator

determines where the item is replicated (e.g. using consistent

hashing or explicit directories), fetches/updates the item using

a quorum protocol, and responds to the application server.

We use the term “requests” to denote read/write accesses

from application servers to the storage service, and we con-

sider the request to “originate” from the DC where the ap-

plication server is located. We model “request latency” as the

time taken from when an application server issues a read/write

request to when it gets a response from the storage service.

It is possible that the application issues a single API call to

the storage service that accesses multiple data items. (e.g. a

multi-get call in Cassandra with multiple keys). We treat such

a call as separate requests to each data item.

Users are mapped to application servers in DCs nearest to

them through traditional DNS redirection mechanisms [49].

While application servers typically contact a coordinator in

the same DC, a coordinator in a nearby DC may be contacted

if a DC level storage service failure occurs (Section VI).

V. LATENCY OPTIMIZED REPLICATION

In this section, we present a model that can help application

developers optimize the latency seen by their applications with

a quorum-based datastore. Our overall goal is to determine the

replication parameters for each group of related data items.

These include (i) the number, and location of DCs in which

the data items must be replicated; and (ii) the read and write

quorum sizes.

We expect our formulations to be applied over classes of

items that see similar access patterns. For e.g., while ac-

cess patterns for Wikipedia vary across languages, documents
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TABLE II
PARAMETERS AND INPUTS TO THE MODEL

Term Meaning

M Number of available DCs.
Dij Access latency between DCs i and j.
Ci Cost of outgoing traffic at DC i.

N l
i Number of reads/writes from DC i.

T l Read/Write Latency Threshold.

pl Fraction of requests to be satisfied within T l.
xi Whether DC i hosts a replica.

qlij Whether i’s requests use replica in j to meet quorum.

Ql Quorum size.

Y l
i Whether requests from i are satisfied within T l.

Y l
ik

Whether requests from i are satisfied within T l

on failure of replica in k.
nij Whether reads from i fetch the full data item from j.
l l ∈ r, w indicates if term refers to reads/writes.

within a language see accesses from the same geographic

regions, and could be grouped together. Systems like Span-

ner [24] require applications to bucket items into “directories”,

and items in the bucket see the same replica configuration. Our

formulations would be applied at the granularity of directories.

In this section, we focus on latency under normal operation.

In Sections VI and VI-B, we show how our models may be

extended to consider latency under failure, and incorporate

communication costs.

A. Meeting SLA targets under normal operation

We consider settings where the datastore is deployed in up

to M geographically distributed DCs. Dij denotes the time to

transfer a data item from DC j to DC i. For the applications

we consider, the size of objects is typically small (e.g., tweets,

meta-data, small text files etc.), and hence data transmission

times are typically dominated by propagation delays rather

than the bandwidth between the DCs. Therefore, the Dij

parameter in our formulations (and evaluation) are based on

the round trip times between the DCs. For applications dealing

with large data objects, the measured Dij values would capture

the impact of data size and bandwidth as well.

Our focus is on regimes where the load on the storage node

is moderate, and the primary component of the access latency

is the network delay. Hence, we do not model the processing

delays at the datastore node which are not as critical in the

context of geo-replication.

We do not model details specific to implementation – e.g.,

on a read operation, the Cassandra system retrieves the full

item from only the closest replica, and digests from the others.

If a replica besides the closest has a more recent value,

additional latency is incurred to fetch the actual item from

that replica. We do not model this additional latency since

the probability that a digest has the latest value is difficult

to estimate and small in practice. Our experimental results

in Section VIII demonstrate that, despite this assumption, our

models work well in practice.

Let xi be a binary indicator variable which is 1 iff DC i

holds a replica of the data item. Let Qr and Qw be the read

and write quorum sizes, and T r and Tw respectively denote

the latency thresholds within which all read and write accesses

to the data item must successfully complete. Let qrij and qwij
respectively be indicator variables that are 1 if read and write

accesses originating from DC i use a replica in location j to

meet their quorum requirements.

Typical SLAs require bounds on the delays seen by a pre-

specified percentage of requests. Let pr and pw denote the

fraction of read and write requests respectively that must have

latencies within the desired thresholds. A key observation is

that, given the replica locations, all read and, similarly all

write requests, that originate from a given DC encounter the

same delay. Thus, it suffices that the model chooses a set of

DCs so that the read (resp. write) requests originating at these

DCs experience a latency no more than T r (resp. Tw) and

these DCs account for a fraction pr (resp. pw) of read (resp.

write) requests. Let Nr
i (resp. Nw

i ) denote the number of read

(write) requests originating from DC i. Let Y r
i (resp. Y w

i )

denote indicator variables which are 1 iff reads (resp. writes)

from DC i meet the delay thresholds. Then, we have :

qlij ≤ xj ∀i, j l ∈ {r, w} (2)

Dijq
l
ij ≤ T l ∀i, j l ∈ {r, w} (3)

∑

j

qlij ≥ QlY l
i ∀i; l ∈ {r, w} (4)

∑

i

N l
iY

l
i ≥ pl

∑

i

N l
i ∀i; l ∈ {r, w} (5)

Equations (2) and (3) require that DC i can use a replica in

DC j to meet its quorum only if (i) there exists a replica in DC

j; and (ii) DC j is within the desired latency threshold from

DC i. Equation (4) ensures that, within i’s quorum set, there

are sufficiently many replicas that meet the above feasibility

constraints for the selected DCs. Equation (5) ensures the

selected DCs account for the desired percentage of requests.

To determine the lowest latency threshold for which a

feasible placement exists, we treat T r and Tw as variables

of optimization, and minimize the maximum of the two

variables. We allow weights ar and aw on read and write delay

thresholds to enable an application designer to prioritize reads

over writes (or vice-versa). In summary, we have the Latency

Only(LAT) model:

(LAT) min T

subject to T ≥ alT l, l ∈ {r, w}
Qr +Qw =

∑
j xj + 1

Quorum constraints (2), (3), (4)

Percentile constraints (5)

Ql ∈ Z, l ∈ {r, w}
qlij , xj , Y

l
i ∈ {0, 1}, ∀i, j; l ∈ {r, w}

Note that the constraint on quorum sizes captures the strict

quorum requirement (Section II) that each read sees the action

of the last write. Also, when pr = pl = 1, (LAT) minimizes

the delay of all requests and we refer to this special case

as (LATM). Finally, while (4) is not linear, it may be easily

linearized as we show in [47]. Hence, our model can be solved

using ILP solvers like CPLEX [6].
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Fig. 4. An optimal multi replica solution with Qr
= 2, Qw

=

2 ensures a latency threshold of l, while an optimal single replica
solution increases it to

√

3l

B. How much can replication lower latency?

Given the consistency requirement of quorum datastores,

can replication lower latency, and, if so, by how much? In

this section, we present examples to show that replication can

lower latency, and provide bounds on the replication benefit

(ratio of optimal latency without and with replication). In

assessing the benefits of replication, two key factors are (i)

symmetric/asymmetric spread: whether read and write requests

originate from an identical or different set of DCs; and (ii)

symmetric/asymmetric weights: whether the weights attached

to read and write latency thresholds (ar, aw) are identical or

different.

Figure 4 shows an example where spread and weights are

symmetric and the replication benefit is
√
3 ≈ 1.732. When

replicas can be placed arbitrarily on a Euclidean plane, it can

be shown via an application of Helly’s theorem [17] that the

replication benefit is bounded by 2√
3
≈ 1.155. The setup of

Figure 4 shows that this is a tight bound since replication

achieves this benefit over single placement at the centroid

of the triangle. Replication benefit can be even higher with

asymmetric weights as seen in the observation below.

Observation 1: With asymmetric spreads and metric de-

lays, the replication benefit for (LATM) and (LAT) is at most

4max(ar,aw)
min(ar,aw) .

The proof can be found in our technical report [47].

VI. ACHIEVING LATENCY SLAS DESPITE FAILURES

So far, we have focused on replication strategies that can

optimize latency under normal conditions. In this section we

discuss failures that may impact entire DCs, and present

strategies resilient to such failures.

A. Failure resilient replication strategies

While several techniques exist to protect against individual

failures in a DC [27], geo-distributed DCs are primarily

motivated by failures that impact entire DCs. While failures

within a DC have been studied [27], [32], there are few

studies on failures across DCs to the best of our knowledge.

Discussions with practitioners suggests that while DC level

failures are not uncommon (Figure 1), correlated failures of

multiple geographically distributed DCs are relatively rare

(though feasible). Operators strive to minimize simultaneous

downtime of multiple DCs through careful scheduling of

maintenance periods and gradual roll-out of software upgrades.

While a sufficiently replicated geo-distributed cloud data-

store may be available despite a DC failure, the latency are

likely negatively impacted. We present replication strategies

that are resilient to such failures. Pragmatically, we first focus

on the common case scenario of single DC failures. Then, in

Section VI-B, we show how our models easily extend to more

complex failure modes. Our models are:

Basic Availability Model (BA): This model simply optimizes

latency using (LAT) with the additional constraints that the

read and write quorum sizes are at least 2 (and hence the

number of replicas is at least 3). Clearly, read and write

requests can still achieve quorum when one DC is down

and basic availability is maintained. This model does not

explicitly consider latency under failure and our evaluations

in Section VIII indicate that the scheme may perform poorly

under failures – for e.g., the 90th percentile request latency

for English Wikipedia documents increased from 200msec to

280msec when one replica was unavailable.

N-1 Contingency Model (N-1C): This model minimizes the

maximum latency across a pre-specified percentile of reads

and writes allowing at most one DC to be unavailable at

any given time. The model is motivated by contingency anal-

ysis techniques commonly employed in power transmission

systems [36] to assess the ability of a grid to withstand a

single component failure. Although this model is similar in

structure to (LAT), there are two important distinctions. First,

the quorum requirements must be met not just under normal

conditions, but under all possible single DC failures. Second,

the desired fraction of requests serviced within a latency

threshold, could be met by considering requests from different

DCs under different failure scenarios.

Formally, let prf (resp. pwf ) be the fraction of reads (resp.

writes) that must meet the delay thresholds when a replica in

any DC is unavailable. Note that the SLA requirement on fail-

ures may be more relaxed, possibly requiring a smaller fraction

of requests to meet a delay threshold. Let Y r
ik (resp. Y w

ik ) be

indicator variables that are 1 if read (resp. write) requests from

DC i are served within the latency threshold when the replica

in DC k is unavailable. Then, we replace (5) and (4) with the

following:
∑

i

Ql
iY

l
ik ≥ plf

∑

i

N l
i ∀i∀k (6)

∑

j,j 6=k

qlij ≥ QlY l
ik ∀i, k l ∈ {r, w} (7)

The first constraint ensures that sufficient requests are serviced

within the latency threshold no matter which DC fails. The

index k for the Y variables allows the set of requests satisfied

within the latency threshold to depend on the DC that fails.

The second constraint ensures that the quorum requirements

are met when DC k fails with the caveat that DC k cannot be

used to meet quorum requirements. We remark that (7) may

be linearized in a manner similar to (4). Putting everything
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together, we have:

(N-1C) min Tf

subject to Tf ≥ alT l, l ∈ {r, w}
Qr +Qw =

∑
j xj + 1

Quorum constraints (2), (3), (7)

Percentile constraints (6)

Ql ∈ Z, l ∈ {r, w}
qlij , xj , Y

l
ik ∈ {0, 1}, ∀i, j, k; l ∈ {r, w}.

B. Model Enhancements

We discuss enhancements to the N-1 Contingency model:

Cost-sensitive replication: When datastores are deployed on

public clouds, it is important to consider dollar costs in

addition to latency and availability. We focus on wide-area

communication costs since (i) this is known to be a dominant

component of costs in geo-replicated settings [34]; (ii) best

practices involve storing data in local instance storage with

periodic backups to persistent storage [25] - the costs of such

backups are independent of our replication policy decision;

and (iii) instance costs are comparable to a single DC deploy-

ment with the same number of replicas. Most cloud providers

today charge for out-bound bandwidth transfers at a flat rate

per byte (in-bound transfers are typically free), though the

rate itself depends on the location of the DC. Let Ci be the

cost per byte of out-bound bandwidth transfer from DC i.

Consider an operation that originates in DC i and involves

writing a data item whose size is S bytes. Then, the total

cost associated with all write operations is
∑

i N
w
i SCi

∑
j Xj .

However, read operations in Cassandra retrieve the full data

item only from its nearest neighbor but receives digest from

everyone. Let nij denote an indicator variable, which is 1 if

the full data item is fetched from DC j. The size of the digest

is assumed negligibly small. The total cost associated with

all read operations is:
∑

i

∑
j N

r
i nijSCj . It is now straight-

forward to modify (N-1C) to optimize costs subject to a delay

constraint. This may be done by making threshold (T) a fixed

parameter rather than a variable of optimization and adding

additional constraints on nij .

Jointly considering normal operation and failures: Formu-

lation (N-1C) finds replication strategies that reduce latency

under failure. In practice, a designer prefers strategies that

work well in normal conditions as well as under failure. This

is achieved by combining the constraints in (LAT) and (N-1C),

with an objective function that is a weighted sum of latency

under normal conditions T and under failures Tf . The weights

are chosen to capture the desired preferences.

Failures of multiple DCs: While we expect simultaneous

failures of multiple DCs to be relatively uncommon, it is easy

to extend our formulations to consider such scenarios. Let K

be a set whose each element is a set of indices of DCs which

may fail simultaneously and we are interested in guarding

the performance against such a failure. We then employ (N-

1C) but with k iterating over elements of K instead of the

set of DCs. A naive approach may exhaustively enumerate

all possible combination of DC failures, could be computa-

tionally expensive, and may result in schemes optimized for

TABLE III
TRACE CHARACTERISTICS

Application # of keys/classes Span

Twitter[39] 3,000,000 2006-2011

Wikipedia[11] 1961 2009-2012
Gowalla[22] 196,591 Feb 2009-Oct 2010

unlikely events at the expense of more typical occurrences.

A more practical approach would involve explicit operator

specifications of correlated failure scenarios of interest. For

e.g., DCs that share the same network PoP are more likely to

fail together, and thus of practical interest to operators.

Network partitions: In general, it is impossible to guarantee

availability with network partition tolerance given the strict

quorum requirement [31]. For more common network outages

that partition one DC from others, our N-1C model ensures

that requests from all other DCs can still be served with

low latency. To handle more complex network partitions,

an interesting future direction is to consider weaker quorum

requirements subject to bounds on data staleness [14].

VII. EVALUATION METHODOLOGY

We evaluate our replication strategies Latency Only (LAT),

Basic Availability (BA), and N-1 Contingency (N-1C) with a

view to exploring several aspects such as:

• Accuracy of our model in predicting performance

• Limits on latency achievable given consistency constraints

• Benefits and costs of optimizing latency under failures

• Importance of employing heterogeneous configurations for

different groups of data items within an application

• Robustness to variations in network delays and workloads

We explore these questions using experiments on a real

wide-area Cassandra cluster deployed across all the 8 regions

(and 21 availability zones) of Amazon EC2 and using trace-

driven simulations from three real-world applications: Twitter,

Wikipedia and Gowalla. Our EC2 experiments enable us to

validate our models, and to evaluate the benefits of our

approach in practice. Simulation studies enable us to evaluate

our strategies on a larger scale (hundreds of thousands of data

items), and to explore the impact of workload characteristics

and model parameters on performance. We use GAMS [18]

(a modeling system for optimization problems) and solve the

models using the CPLEX optimizer.

A. Application workloads

The applications we choose are widely used, have geograph-

ically dispersed users who edit and read data, and fit naturally

into a key-value model. We note that both Twitter and Gowalla

are already known to use Cassandra [10]. We discuss details

of the traces below (see table III for summary):

Twitter: We obtained Twitter traces [39] which included a

user friendship graph, a list of user locations, and public

tweets sent by users (along with timestamp) over a 5 year

period. We analyzed Twissandra, an open-source twitter-like

1Aggregating all articles per language (e.g. 4 million articles in English
Wikipedia are aggregated.)
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Fig. 5. Validating the accuracy of models.

application, and found three types of data items: users, tweets

and timelines. We focus our evaluations on timeline objects

which are pre-materialized views that map each user to a list

of tweets sent by the user and her friends. Writes to a timeline

occur when the associated user or her friends post a tweet, and

can be obtained directly from the trace. Since the traces do not

include reads, we model reads by assuming each user reads

her own timeline periodically (every 10 min), and reads her

friend’s timeline with some probability (0.1) each time the

friend posts a tweet.

Wikipedia: We obtained statistics regarding Wikipedia usage

from [11], which lists the total as well as the breakdown of

the number of views and edits by geographic region for each

language and collaborative project. The data spans a 3 year

period with trends shown on quarterly basis. Our model for

the Wikipedia application consists of article objects with the

document id as a key and the content along with its meta data

(timestamps, version information, etc). Article page views are

modeled as reads while page edits are modeled as writes. Since

per article access data is not available, we model all articles of

the same language and project as seeing similar access patterns

since access patterns are likely dominated by the location of

native speakers of the language.

Gowalla: Gowalla is a (now disabled) geo-social networking

application where users ”check-in” at various locations they

visit and friends receive all their check-in messages. The

traces [9] contained user friendship relationships, and a list of

all check-ins sent over a two year period. Since the application

workflows are similar, we model Gowalla in a similar fashion

to Twitter. Check-ins represent writes to user timelines from

the location of the check-in, and reads to timelines were

modeled like with Twitter.

VIII. EXPERIMENTAL VALIDATION

In this section, we present results from our experiments

using Cassandra deployed on Amazon EC2.

A. Implementation

Off-the-shelf, Cassandra employs a random partitioner that

implements consistent hashing to distribute load across mul-

tiple storage nodes in the cluster. The output range of a hash

function is treated as a fixed circular space and each data

item is assigned to a node by hashing its key to yield its

position on the ring. Nodes assume responsibility for the

region in the ring between itself and its predecessor, with

immediately adjacent nodes in the ring hosting replicas of the

data item. Cassandra allows applications to express replication

policies at the granularity of keyspaces (partitions of data).

We modified the applications to treat groups of data items

as separate keyspaces and configure distinct replication policy

for each keyspace. Keyspace creation is a one-time process

and does not affect the application performance. The mapping

from data object to the keyspace is maintained in a separate

directory service. We implemented the directory service as

an independent Cassandra cluster deployed in each of the

DCs and configured its replication such that lookups(reads)

are served locally within a DC (e.g. R = 1,W = N ).

B. Experimental platform on EC2

We performed our experiments and model validations using

Cassandra deployed on medium size instances on Amazon

EC2. Our datastore cluster comprises of nodes deployed in

each of the 21 distinct availability zones (AZ) across all the

8 regions of EC2 (9 in US, 3 in Europe, 5 in Asia, 2 in

South America and 2 in Australia). We treat availability zones

(AZs) as distinct DC in all our experiments. The inter-DC

delays (21 ∗ 21 pairs) were simultaneously measured for a

period of 24 hours using medium instances deployed on all

the 21 AZs and the median delays values (MED) were used

as input to our models. We mapped users from their locations

to the nearest DC. Since the locations are free-text fields in

our traces, we make use of geocoding services [3] to obtain

the user’s geographical co-ordinates.

C. Accuracy and model validation

We validate the accuracy of our models with experiments

on our EC2 Cassandra cluster described above. We use the

example from our Twitter trace (Figure 2) for this experiment.

Replica configurations were generated with the MED delay

values measured earlier and read/write requests to Cassandra

cluster were generated from application servers deployed at

the corresponding DCs as per the trace data. The duration of

the entire experiment was about 6 hours.

Figure 5 shows the CDFs of the observed and predicted

latencies for read and write requests for the BA configuration.

The CDFs almost overlap for write requests, while we observe

a delay of approximately 9 msec evenly for all read requests.

This constant delay difference in the reads can be attributed to

the processing overhead of read requests in Cassandra which

includes reconciling the response of multiple replicas to ensure

consistency of the read data. Overall, our results validate the

accuracy of our models. They also show that our solutions

are fairly robust to the natural delay variations present in real

cloud platforms.

D. Benefits of performance sensitive replication

We first evaluate the benefits of flexible replication policy

over a fixed replication policy on the EC2 Cassandra cluster

described above. For this experiment, we use a month long

trace from Twitter consisting of 524, 759 objects correspond-

ing to user timelines in Twitter. The replica configurations

7
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Fig. 7. Boxplot showing the distribution of read latency with BA and N-1C models
for every half hour period. Whiskers show the 10th and 90th percentiles.

were generated for each timeline object using the BA model

and the corresponding directory entries were created in all the

regions. Reads and writes were initiated as per the traces from

the Twissandra application servers deployed in each of the

EC2 regions. While the duration of the entire experiment was

scaled to 16 hours, care was taken to ensure that the fraction

of requests to all objects from each DC was proportional to

what was observed in the trace data.

Figure 6 shows the CDF comparing the read and write

latency observed with our BA scheme and Cassandra’s random

partitioner. The Y-Axis shows the CDF of the fraction of all

requests seen in the system (approx 6 million each for BA and

Random) while the X-Axis shows the observed per request

latency in msec. To ensure a fair comparison of schemes,

the observed latency values for BA includes directory lookup

latency as well. From the figure, we see that our flexible

replication scheme is able to outperform the default replication

scheme by 50 msec (factor of 3) at the 50th%ile and by

100msec at the 90th%ile (factor of 2). A keen observer might

note that Random performs marginally better than (approx

3 − 8msec) BA at the initial percentiles due to the latency

overhead incurred for the directory lookup.

E. Availability and performance under failures

In this section, we study the performance of the BA and

N-1C schemes under the failures of different DCs using our

multi-region Cassandra cluster on EC2. We perform this study

using the trace data from Wikipedia for the English wiki

articles for which the accesses arrive from all the 8 EC2

regions including 50% from the US, 23% from Europe, 10%

from Singapore, 5% from Sydney and the rest from South

America and Tokyo. Failures were created by terminating the

Cassandra process in a DC and redirecting requests from the

application to the Cassandra process in the closest DC. The

duration of the experiment was approximately 9 hours.

For the English wiki articles, our BA scheme placed two

replicas in the west coast (USW-1a and USW-2a) and the

3rd replica in Tokyo (APN-1a) with R = 2 and W = 2.

This is reasonable since nodes in the US West are reasonably

equidistant from Asia, Australia, Europe and US East while

placing the 3rd replica in Asia also reduces the 90%ile latency

under normal operation. Figure 7(a) shows the performance

of the BA scheme under failure of different DCs. The corre-

sponding events for every half hour period is marked at the top

of the plots. From the figure, we see that the 90%ile latency

increases significantly from 200msec (under normal operation)

to 280msec when the west coast DCs fail (40% increase),

while the failure of Tokyo DC (APN-1a) has only a marginal

impact on the performance.

In contrast, the N-1C scheme explicitly optimizes for latency

under a failure and places the 3rd replica in USW-1a instead

of Tokyo. Figure 7(b) shows the performance of the N-1C

scheme under failures of different DCs. The figure shows

that our N-1C scheme performs similar to the BA scheme

(median of 90msec and 90%ile of 200ms) during normal

operation. However, unlike the BA configuration, the 90%ile

latency remains largely unaffected under all failures. Our

results highlight the need to explicitly optimize for perfor-

mance under failure and show the benefits of N-1C over the

BA scheme. Further, the median and 90%ile latencies from

our experiments were found to be very close to our model

predictions under normal and failure conditions for both the

models, thereby validating our models.

IX. LARGE SCALE EVALUATION

We adopt a trace driven simulation approach for our large

scale evaluation on the three application traces, where we

consider the datastore cluster to comprise of nodes from each

of 27 distinct DCs world-wide, whose locations were obtained

from AWS Global Infrastructure [1]. Inter-DC delays were

measured between Planet-lab nodes close to each DC and

delay measurements were collected simultaneously between

all pairs of locations over a few hours and median delays

were considered. Users were mapped to the closest DCs as in

our EC2 experiments. We pick this extended set of DCs as the

EC2 regions are limited in number. For example, EC2 has no

regions in the Mid-west US, but AWS Global Infrastructure

provides multiple DCs in those areas. Moreover, we expect

these DCs to be expanded to offer more services in the future.

Experiments in this section use traces of one month (Dec 2010)

in Twitter, one month (Oct 2010) in Gowalla and one quarter

(Q4 2011) in Wikipedia.
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(b) Benefits of heterogeneous replication

Fig. 8. Trace driven study with all keys in the application.

A. Performance of our optimal schemes

Figure 8(a) shows the CDF of the observed read latency

across both schemes for all keys in Twitter and Wikipedia

traces under normal and failure conditions. For each key, we

plot the read latency under normal conditions (all replicas

are alive) and when the most critical replica (replica whose

failure results in the worst latency) for that key fails. From

the figure, we see that the read latency observed by the BA

scheme deteriorates drastically under failure for almost all

keys in both the applications. For instance, more than 40% of

the keys in Twitter observed an increase of 50+ msec (more

than 20% of the keys observed an increase of 100+ msec in

Wikipedia) under failure conditions. However, read latency for

N-1C observed only a marginal variation under failure (most

keys in Twitter observed less than 30msec increase in latency

on its replica failures). Surprisingly, we find that the N-1C

scheme incurs an almost negligible penalty in its latency under

normal conditions despite optimizing the replica configuration

explicitly for the failure of a replica. Further, we found that

BA was often able to optimize latency with two of the chosen

replicas and the third choice did not significantly impact

performance. In contrast, the N-1C scheme carefully selects

the 3rd replica ensuring good performance even under failures.

Overall, our results clearly show the benefit of explicitly

optimizing the replication for failure conditions.

B. Need for heterogeneous configuration policy

In this section, we highlight the importance of allowing

heterogeneous replica configurations in datastores and show

why a uniform replication configuration for all data in the

application can often have poor performance. We analyzed the

configurations generated by N-1C for all keys in the Twitter

trace. From our analysis we find that there were as many as

1985 distinct configurations (combination of replica location,

N , R, W ) that were used in the optimal solutions.

Interestingly, we find that the benefits are not only due to

optimizing the location of replicas but also due to careful

configuration of the replication parameters - N , R and W . To

isolate such cases we consider a variant of our N-1C model that

we call 3−2−2 which has fixed replication parameters N = 3,

R = 2 and W = 2, but allows flexibility in the location of

the replicas. Figure 8(b) shows the difference in the access

latency between the 3− 2− 2 and N-1C schemes for Twitter.

The X-axis has the various replication factors observed in the

optimal solutions and each corresponding box plot shows the

25th, median and 75th percentiles (whiskers showing the 90th

percentile) of the difference in access latency between the two

schemes. Our results clearly show that a uniform configuration

policy for all data in the application can be sub-optimal and

allowing heterogeneity in replica configuration can greatly

lower the latency (as much as 70msec in some cases).

C. History-based vs Optimal

So far, we had assumed that the workloads for the appli-

cations are known. However, in practice, this may need to

be obtained from historical data. In this section, we analyze

this gap by comparing the performance of our schemes using

historical and actual workloads for all three applications.

Figure 9(a) shows the CDF comparing the performance

of Wikipedia during the first quarter of 2012 when using

the history-based and the optimal replication configuration.

The curves labeled history-based correspond to the read and

write latency observed when using the replica configuration

predicted from the fourth quarter of 2011. The curves labeled

optimal correspond to the read and write latency observed

when using the optimal replica configuration for the first

quarter of 2012. Figures 9(b) and 9(c) show similar graphs

for Twitter and Gowalla. These figures show that history-

based configuration performs close to optimal for Wikipedia

and Twitter, while showing some deviation from optimal per-

formance for Gowalla. This is because users in Gowalla often

move across geographical regions resulting in abrupt workload

shifts. For such abrupt shifts, explicit hints from the user when

she moves to a new location or automatically detecting change

in the workload and rerunning the optimization are potential

approaches for improving the performance.

D. Robustness to delay variations

Our experiments on EC2 (Section VIII) show that our

strategies are fairly robust to natural delay variations across

cloud DCs. In this section, we extend our analysis over a

larger set of keys. We compute about 1800 time snapshots

of the entire 27*27 inter-DCs delays for our extended DC set.

All delay values in the snapshot were measured approximately

at the same time. Next, we computed the optimal replica

configurations (using our BA and N-1C schemes) for 500
random keys from the Twitter trace for each of 1800 snapshots.
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Fig. 9. Optimal performance vs performance using replica placements from the previous period.

Fig. 10. Comparing SNAP and MED performance.

We call these the SNAP configurations. Similarly, replica

configurations are computed using the median delay values

of the 1800 snapshots. We call these the MED configurations.

We then compare the performance of the MED configuration

using delays observed at each snapshot with the performance

of the optimal SNAP configuration at the same snapshot.

Figure 10 shows the CDF of the difference in access latency

between the MED and SNAP configurations. Each curve in the

figure corresponds to a range of latencies observed using the

SNAP configurations. For SNAP latencies less than 100msec,

and for over 90% of snapshots, MED only incurs less than

5msec additional latency. Also, for almost 80% of all the

SNAPs, the corresponding MED configuration was optimal.

While the penalty is higher for SNAP latencies over 100 msec,

we believe they are still acceptable (less than 15msec for

90% of the cases) given the relatively higher SNAP latencies.

Overall, the results further confirm our EC2 results and show

that delay variation impacts placement modestly.

E. Asymmetric read and write thresholds

Thus far, we assumed that read and write latencies are

equally desirable to optimize. However, in practice, some

applications may prioritize read latencies, and others might

prioritize writes. We have explored solutions generated by our

approach when our models are modified to explicitly constrain

the read and write thresholds. For Twitter, we found that a

bound of 100msec on the write latency has no noticeable

impact on the read latency, though the tail was more pro-

nounced. Interestingly, we also found that the bound of 50msec

increases the read latency by less than 20msec for 60% of the

keys. We found that constraints on write latency resulted in

configurations that had a significantly higher replication factor

and higher read quorum sizes. This is expected because our

models tries to minimize the latency by moving the replica

closer to the write locations in order to meet the constraint.

We omit results for lack of space.

X. RELATED WORK

SPAR [44] presents a middle-ware for social networks

which co-locates data related to each user within the same

DC to minimize access latency. [44] achieves this by having

a master-slave arrangement for each data item, creating enough

slave replicas, and updating them in an eventually consistent

fashion. However, master-slave solutions are susceptible to

issues related to data loss, and temporary downtime (see Sec-

tion II). In contrast, we consider a strict quorum requirement,

and allow updates on any replica.

Owing to consistency constraints, quorum placement is

different from facility location (FL) problems, and known

variants [45]. The classical version of FL seeks to pick a subset

of facilities (DCs) that would minimize the distance costs (sum

of distances from each demand point to its nearest facility),

plus the opening costs of the facilities. Without opening cost

or capacity constraints, FL is trivial (a replica is introduced

at each demand point) – however quorum placement is still

complex. For e.g., in Figure 4, the optimal FL solution places

3 replicas at the triangle vertices which is twice the quorum

latency of our solution. Increasing the number of replicas can

hurt quorum latencies owing to consistency requirements, but

does not increase distance costs with FL.

Volley [12] addresses the problem of placing data consider-

ing both user locations and data inter-dependencies. However,

[12] does not address replication in depth, simply treating

replicas as different items that communicate frequently. [12]

does not model consistency requirements, a key focus of our

work. Also, unlike [12], our models automatically determine

the number of replicas and quorum parameters while consid-

ering important practical aspects like latency percentiles and

performance under failures.

While systems like Spanner [24] and Walter [48] support

flexible replication policies, they require these policies to be

manually configured by administrators. In contrast, our formu-

lations enable quorum based datastores to make these replica

configuration decisions in an automated and optimal fashion.

Recent works like Vivace [21] suggest novel read/write algo-

rithms that employ network prioritization which enable geo-

replicated datastores adapt to network congestion. Unlike these
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systems, we focus on the more general and important prob-

lem of automatically configuring the replication parameters

including the number of replicas, location of replicas and quo-

rum sizes. SPANStore[52] focuses on placing replicas across

multiple cloud providers with the primary aim of minimizing

costs exploiting differential provider pricing. In contrast, we

focus on supporting flexible replication policies at different

granularities that can be tuned to a variety of objectives such as

minimizing latencies under failure. Also, the quorum protocol

implemented by SPANStore is different from the ones used in

quorum based systems like Cassandra, and hence our model

formulations are different. [46] proposes algorithms extending

scalable deferred update replication (SDUR) in the context of

geographically replicated systems. In contrast, we focus on the

orthogonal problem of configuring optimal replication policies

for geo-distributed datastores.

While there has been much theoretical analysis of quorum

protocols, our work is distinguished by our focus on widely

used quorum datastores, and issues unique to datastore set-

tings. Prior work has considered communication delays with

quorum protocols [28], [50], [43]. In particular, [28], [50]

consider problems that minimize the maximum node delays.

However, none of these works optimize latency percentiles,

latency under failures, or consider different priorities for read

and write traffic. To our knowledge, our framework is the first

to consider these factors, all of which are key considerations

for geo-distributed datastores. We also note that [28], [50],

[43] are in the context of coteries [29], and do not immediately

apply to cloud datastores which are adapted from weighted

voting-based quorum protocols [30].

Several works have examined availability in quorum con-

struction [16], [13], [35], [42], [20]. Most of these works

do not consider the impact of failures on latency. Recent

work [42] has considered how to dynamically adapt quorums

to changes in network delays. Given that systems like Cassan-

dra and Dynamo contact all replicas and not just the quorum,

we focus on the orthogonal problem of replica selection so

that failure of one DC does not impact latency. Several early

works [16], [13] assume independent identically distributed

(IID) failures, though non-IID failures are beginning to receive

attention [35]. Instead, we focus on choosing replication

strategies that are resilient and low-latency under failures of

a single DC, or a small subset of DCs which are prone to

correlated failures (Section VI-B).

XI. DISCUSSION AND IMPLICATIONS

We discuss the implications of our findings:

Implications for datastore design: Our results in Sec-

tion IX-B show the importance of diverse replica configura-

tions for the same application given heterogeneity in work-

loads for different groups of items – 1985 distinct replica

configurations were required for Twitter. Many geo-replicated

datastores are not explicitly designed with this requirement in

mind and may need to revisit their design decisions. For e.g.,

Eiger [40] replicates all data items in the same set of DCs.

Cassandra [38] and Dynamo [33] use consistent hashing which

makes it difficult to flexibly map replicas to desirable DCs (we

effectively bypass consistent hashing with multiple keyspaces

in Section VIII). In contrast, Spanner [24] explicitly maintain

directories that list locations of each group of items, and is thus

better positioned to support heterogeneous replication policies.

Delay variation: Our multi-region EC2 evaluations (Sec-

tion VIII) and simulation results (Section IX-D) show that

placements based on median delays observed over several

hours of measurement are fairly robust to short-term delay

variations. We believe delay variation impacts placement mod-

estly since links with lower median delay also tend to see

smaller variations. These results indicate that the benefits of

explicitly modeling stochasticity in delay is likely small, and

these benefits must be weighed against the fact that stochastic

delay values are hard to quantify in practice especially when

not independent. Further, we note that placements from our

N-1C model can tolerate congestion close to any DC. Finally,

more persistent variations in delay over longer time-scales are

best handled by recomputing placements on a periodic basis

or on a prolonged change in network delays.

Workload variation: Section IX-C shows that for many

applications, the optimal solution based on historical access

patterns performs well compared to the solution obtained with

perfect information of future access patterns. Consider the case

where workloads exhibit seasonal patterns (for e.g. diurnal

effects) and data-migration costs over short time-scales are

large enough that one chooses to maintain same replicas across

the seasons. Then, our models optimize placement assuming a

percentage of total requests across seasons are satisfied within

the specified latency. Instead, if one wants to have a certain

service level for each season, our models may be extended

by replicating the model for each season and imposing the

constraint that placement decisions are season independent. Fi-

nally, we also evaluated our models with placement recompu-

tations performed at different time granularities. We found that

daily, weekly and monthly recomputations perform similarly,

while hourly recomputation benefits a modest fraction(15%)

of requests but incurs higher migration overheads. Hence,

recomputation at coarser granularities seems to be the more

appropriate choice.

Computational Complexity: Our optimization framework al-

lows a systematic approach to analyzing replication strategies

in cloud datastores, and delivers insights on the best latency

achievable for a given workload with consistency constraints.

With our prototype implementation LAT, BA, and N-1C mod-

els solve within 0.16, 0.17 and 0.41 seconds respectively using

a single core on a 4 core, 3GHz, 8GB RAM machines.

While already promising, we note that (i) our implementation

is not optimized. Many opportunities (heuristics, valid cuts,

modeling interface) exist for better efficiency; (ii) systems like

Spanner [24] require applications to bucket items, and com-

putations would be performed at coarser bucket granularities;

(iii) our per-bucket formulations are embarrassingly parallel;

and (iv) our placements are stable over days (Sec IX-C) and

placement recomputations are not frequent.
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XII. CONCLUSIONS

In this paper, we make several contributions. First, we have

developed a systematic framework for modeling geo-replicated

quorum datastores in a manner that captures their latency,

availability and consistency requirements. Our frameworks

capture requirements on both read and write latencies, and

their relative priority. Second, we have demonstrated the

feasibility and importance of tailoring geo-distributed cloud

datastores to meet the unique workloads of groups of items

in individual applications, so latency SLA requirements (ex-

pressed in percentiles) can be met during normal operations

and on the failure of a DC. Third, we explore the limits

on latency achievable with geo-replicated storage systems for

three real applications under strict quorum requirement. Our

evaluations on a multi-region EC2 test-bed, and longitudinal

workloads of three widely deployed applications validate our

models, and confirm their importance.
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