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Studies for an optical sensor for IceCube-Gen2

1. IceCube, IceCube-Upgrade and IceCube-Gen2

The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope deployed in the

glacial ice of the South Pole in Antarctica, and aims to observe high energy astrophysical neutrinos.

Between depths of 1450 m to 2450 m, 5160 digital optical modules (DOMs) are deployed along

86 strings, and detect Cherenkov light emitted by secondary charged particles produced by the

interactions of neutrinos. In the following text, this established project is referred to as IceCube-

Gen1.

The IceCube Upgrade array, also known as IceCube-Gen2 Phase-1, consists of approximately

700 newly designed optical sensors and calibration modules, densely embedded near the bottom

center of the existing IceCube Neutrino Observatory. The Upgrade array is currently planned to be

deployed during 2022/2023 Austral Summer. Two new optical module designs will be employed in

the Upgrade: the multi-PMT Digital Optical Module (mDOM) [1] and the Dual optical sensors in

an Ellipsoid Glass for Gen2 (D-Egg) [2], both designed to improve the photon detection efficiencies

and the calibration capability of the detector. The IceCube Upgrade improves the reconstruction

efficiency for few-GeV neutrinos, and will improve knowledge of the properties of scattering in ice,

which yields better resolution on the neutrino events.

The IceCube upgrade is to be followed by the construction of the Gen2 array [3]. IceCube-

Gen2 will consist of approximately 8 km3 of instrumented ice and an array of approximately 10,000

optical sensors with a horizontal spacing of ∼240 m to achieve at least five times better sensitivity

than that of IceCube for high energy neutrinos between 100 TeV to 1 PeV [4].

The different science targets goals of each project require different array configurations. Due

to the horizontally sparse design of Gen2, maximising the photon collection efficiency of DOMs is

particularly important.

2. Requirements and the baseline optical module designs for Gen2

Gen2 will be a major construction effort. Optical sensors will be installed into water-filled

holes in the South Pole ice made by a hot water drill, and will be fixed in place when the hole ice re-

freezes. For a significant cost saving as well as to complete the construction within eight years, the

drill hole size is being optimized. This will limit the diameter of optical modules for Gen2 to . 12′′,

smaller than that of Gen1 DOMs. Regardless of their design, the modules will need to withstand

Table 1: Information on the various optical modules

Name PMT diameter Number of Glass diameter Glass height

[inch] PMTs [mm] [mm]

Gen1 DOM 10 1 330 330

mDOM 3.15 24 356 411

D-Egg 8 2 300 534

mEgg 4 14 300 534

LOM−16 4 16 313 444

LOM−18 4 18 305 540
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(a) Gen1 DOM (b) mDOM (c) D-Egg (d) mEgg (e) LOM−18

Figure 1: Schematic view of the optical modules. Gen-1 DOMs are used for the IceCube array, and mDOM

and D-Eggs will be deployed in the IceCube-Upgrade holes. mEgg and LOM−18 are two designs for IceCube

Gen2 studied here.

the maximum pressure of 70 MPa during the hole refreezing period, and 13-30 MPa will be the

typical pressure after re-freezing. Modules need to be sound against the thermal gradient of 20 ◦C

water during deployment to -9 ◦C to -40 ◦C expected during operating conditions. Simulations

indicate that optical modules with a three times higher effective area compoared to Gen1 DOM and

less than ± 20% variation in sensitivity across the angle of photon incidence, will allow us to meet

our science goals.

Figure 1 shows the schematic view of the optical modules deployed as IceCube array (a), the

modules to be installed in the Upgrade array (b,c) and the modules under investigation for the Gen2

array (d,e). The Gen1 DOM is a highly reliable optical sensor running for more than ten years with

an extremely small (≤ 0.5%) post-deployment failure rate. A Gen1 DOM implements a single

downward-facing 10 inch photomultiplier tube (PMT), the Hamamatsu R7081-2-MOD, and signals

from the PMT are digitized in the readout board placed in the upper hemisphere of the module.

The mDOM for the IceCube Upgrade includes twenty-four 3.15 inch PMTs (Hamamatsu

R15458-02) oriented in all directions, providing homogeneous sensitivity to photons. The side of

the entrance window of the PMT is covered by an aluminum-coated reflector which improves the

effective area by a factor of 20% [1].

The D-Egg, also being used in the IceCube Upgrade, implements two high-quantum efficiency

(QE) 8 inch PMTs, the Hamamatsu R5912-100, in an elliptical glass vessel, facing both upward

and downward. Because the top and bottom parts of the housing glass curvature are designed to

be matched precisely with the R5912 PMT surface curvature of q131 mm, the actual photocathode

area is 20% more than when a flat disk of the same diameter is assumed.

The Long Optical Module (LOM) for Gen2 [5] is designed to fit into the smaller Gen2 holes

while maximizing the effective photon sensitive area. The Gen2 hole diameter limits the diameter

of the pressure vessel. The height of the housing is limited by the total weight of the module to

be less than 26 kg. The optimized LOM modules include sixteen or eighteen 4 inch PMTs1. The

mEgg is another model of the optical module for Gen2 and uses fourteen 4 inch PMTs in the same

glass housing as the D-Egg.

1Currently, both sixteen and eighteen-PMT designs (LOM−16 and LOM−18) are under investigation.
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3. Enlarging the effective photo-sensitive area with gel pad

All existing modules (Gen1 DOM, mDOM, and D-Egg) utilize ultraviolet (UV) transparent

silicone elastomers (optical gel) for coupling between the glass vessel surface and PMT photo-

cathodes. The transmittance of the glass and the optical gel is improved for the Upgrade modules

compared to that of the Gen1 DOM [2, 6]. For the Gen2 modules, because of the elongated vessel

shape, the PMT surfaces are not vertically facing the glass surface. This complicates the module

design. Either we have to use a large amount of optical gel fully filling the vessel or we need to come

up with a technique to reduce the amount of optical gel, keeping good optical coupling properties.

(a)

(b)

Figure 2: (a) Picture of a gel pad molded on a 3.15 inch PMT used for mDOM (b) Schematic view of a

tentative design of LOM−18. Yellow represents gel pads.

In the mEgg and LOM, the air gaps between PMTs and the pressure vessel are filled with an

optical gel pad. Figures 2a and 2b show a picture of the molded gel pad and its schematic view in

the tentative mechanical design of the LOM. The side wall has a conical shape and works as a light

collector thanks to the total internal reflection between the boundary of silicone and air.

To determine the optimal shape of the gel pad, we simulated the photon capture probability

assuming the geometrical configuration of the mEgg. Using a GEANT4 [7] based optical photon

tracking simulator, we injected a 380 nm parallel circular beam (the beam diameter was chosen

to be large enough to fully cover the outer dimension of the mEgg) into the model of the mEgg,

and calculated the probability that photons will arrive at any of the PMT photocathodes. Figure 3a

shows the evaluated photon capture probability for various values of the gel pad opening angle

(its definition is shown in Fig. 3b). After integration over the solid angle, we find that the photon

capture probability is maximum for opening angles from 60◦ to 80◦.

The increase in photon capture probability with gel pads is due to the total reflection at their

conical surface, and it is of importance to experimentally confirm the performance under realistic

conditions in terms of control of surface conditions. We molded the gel pad onto a 3.15 inch PMT

(the one adopted for the mDOM) as shown in Fig. 2a)2 and investigated the feasibility of the gel

pad scheme. We injected a parallel spot beam (wavelength 468 nm, spot diameter ∼ 2 mm) and

counted the number of registered photons while scanning with the beam over the photocathode of

the PMT. Figure 4 shows the distribution of the obtained number of photons with and without a gel

2At the time of writing, we did not have an electrically functional 4 inch PMT.
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Figure 3: (a) Photon capture probability for various configurations of the opening angle as a function of the

incident zenith angle of photons. The geometry of the mEgg was assumed. (b) Definition of the opening

angle. (c) Definition of the zenith angle.
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Figure 4: Distribution of the observed number of photoelectrons measured by a PMT (a) with and (b)

without the gel pad. The solid and dashed lines represent the outer radii of the PMT and gel pad, respectively.

pad. This confirmed that the gel pad indeed increases the sensitive region and causes no serious

degradation of photon collection efficiency in the central region. For the parallel beam, an increase

in effective area of 68% was measured which is close to the 75% estimated by the simulation.
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4. Simulation studies of Cherenkov photon sensitivities

4.1 Simulation setup

(a) (b)

Figure 5: (a) Tentative design of the hemisphere of the LOM used in simulation. (b) Implementation of the

gel pads (blue) and PMTs (red) in the glass. For a half hemisphere, there are three different levels and they

are called bottom, middle, and top.

Figure 5 shows the preliminary design of the LOM−18 glass vessel, gel pads, and PMTs

implemented in the simulation. The transmittance of the glass and gel pad are assumed to be the

same as those of the D-Egg. The opening angles of the gel pads (see Fig. 3b), 20◦, 10◦, and 70◦

(from the middle to top), are chosen so as not to overlap with each other. Eighteen 4 inch PMTs are

arranged and tilted in the glass as follows: the top PMTs are vertically aligned, the middle PMTs

are tilted by 45◦, and the bottom PMTs are tilted by 50◦. In the current initial simulation studies,

other components such as internal structures and electrical boards are neglected, though there is

large enough space to fit them within the pressure vessel.

4.2 Effective photo-sensitive area comparisons

The performance of each optical module is evaluated using its effective area. We simulated a

parallel circular beam directed at the module, and calculated the effective area by

�(\, q, _) =
�0

#gen

∑

8:hit

%(_, ®A8), (1)

where \ and q are zenith and azimuth angles of the beam, _ is the wavelength of the generated

photons, �0 is the area of the circular beam, #gen is the number of generated photons, %(_, ®A8) is

the detection efficiency of the PMT for the wavelength of _ at the hit position of 8-th trial, and the

summation is over photons which hit on any photocathodes of PMTs.

The comparison of the sensitivity of the individual modules is performed using the effective

area at 400 nm. This is a typical wavelength of the incoming Cherenkov photons, since small

wavelength photons are preferentially absorbed in the ice. For small distances, the Cherenkov-

6
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Figure 6: Effective area at 400 nm as a function of cosine of zenith angle of incident photons. The

downward-facing direction is defined as \ = 0 (cos \ = 1).

averaged effective area can be another benchmark:

�̄(\, q) =

∫ 700 nm

270 nm

d_ �(\, q, _)%(_)

∫ 700 nm

270 nm

d_ %(_)

(2)

%(_) =
2cU

_2

(

1 −
1

V2=(_)2

)

, (3)

where %(_) is the Cherenkov spectrum, = is the refractive index of ice, and V is the velocity of the

traversing charged particle, assumed to be 1. Note that %(_) diverges for small wavelengths and

�̄(\, q) depends on the lower cutoff of _.

Figure 6 shows the effective area of various optical modules as a function of cosine of the

zenith angle, where \ = 0 is taken as the downward direction. In the calculations for the mEgg and

LOM, we assumed that the 4 inch PMTs have the same quantum efficiency (QE) as the PMTs in

the mDOM. The dependence of the detection efficiency on the hit position of the photons on the

photocathode results from simulations performed by the manufacturer. For the Gen1 DOM, D-Egg,

and mDOM, we used experimentally measured values. By increasing the number of PMTs as well

as the collection ability of photons through the use of gel pads, the mDOM and LOM show larger

effective areas than the Gen1 DOM. The LOM design is characterized by a more homogeneous

sensitivity to the direction of photon incidence than the mEgg.

Table 2 summarizes the effective areas of the various optical modules after averaging over cos \

and q. The Cherenkov-averaged values are shown with respect to that of the Gen1 DOM. For both

quantities, the eighteen-PMT model of the LOM will exceed the sensitivity of the Gen1 DOM by

more than a factor three. Furthermore, if the same QE is available for the 4 inch PMTs as for the

D-Egg PMTs, the sensitivity can be improved by another 30%.

7
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Table 2: Effective area of optical modules (preliminary)

Name Effective area (400 nm) Cherenkov-averaged effective area ∗

[cm2] [Ratio to Gen-1 DOM]

Gen1 DOM 34 − 37∗ 1

mDOM 108 3.5 − 4.0

D-Egg 94 2.8 − 3.2

mEgg † 103 3.2 − 3.6

LOM−16† 105 3.2 − 3.7

LOM−18† 118 3.6 − 4.2

∗ Variation comes from a difference of the treatment of the detection efficiency of PMTs.

† If high quantum efficiency PMT is available, these improve by 30%.

5. Conclusion

To improve the sensitivity to astrophysical neutrinos, IceCube-Gen2 will include approximately

10,000 next-generation optical modules. To achieve the best performance at limited cost, the

diameter of the optical modules is required to be ∼ 12′′. The optimal design resulted in the concept

of the Long Optical Module (LOM). The LOM will consist of sixteen or eighteen 4 inch PMTs,

gel pads as optical coupler, and a transparent pressure vessel. A gel pad made of UV transparent

silicone optical elastomer has a cone-shaped structure and increases the effective area via total

internal reflection at its side surface. The concept of this scheme was experimentally confirmed

using a parallel beam scan. To compare the effective area and its incident angular dependence

for various optical modules, an optical photon simulation was performed. Compared to the Gen1

DOM, the LOM design will improve the effective area by more than a factor of three. The LOM

shows high homogeneity with respect to the dependence of the sensitivity on the angle of photon

incidence. Furthermore, if the same high-QE PMT as that of D-Egg is available in the future, the

gain will further improve by an additional factor of 30%.
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