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Abstract. We investigate the performance of state of the art univer-
sal steganalyzers proposed in the literature. These universal stega-
nalyzers are tested against a number of well-known steganographic
embedding techniques that operate in both the spatial and transform
domains. Our experiments are performed using a large data set of
JPEG images obtained by randomly crawling a set of publicly avail-
able websites. The image data set is categorized with respect to
size, quality, and texture to determine their potential impact on ste-
ganalysis performance. To establish a comparative evaluation of
techniques, undetectability results are obtained at various embed-
ding rates. In addition to variation in cover image properties, our
comparison also takes into consideration different message length
definitions and computational complexity issues. Our results indi-
cate that the performance of steganalysis techniques is affected by
the JPEG quality factor, and JPEG recompression artifacts serve as
a source of confusion for almost all steganalysis techniques. © 2006

SPIE and IS&T. �DOI: 10.1117/1.2400672�

1 Introduction

A range of image-based steganographic embedding tech-
niques have been proposed in the literature, which in turn
have led to the development of a large number of stega-
nalysis techniques. The reader is referred to Ref. 1 for a
review of the field. These techniques could be grouped into
two broad categories, namely, specific and universal stega-
nalysis. The specific steganalysis techniques, as the name
suggests, are designed for a targeted embedding technique.
These types of techniques are developed by first analyzing
the embedding operation and then �based on the gained
knowledge� determining certain image features that become
modified as a result of the embedding process. The design
of specific steganalysis techniques requires detailed knowl-
edge of the steganographic embedding process. Conse-

quently, specific steganalysis techniques yield very accurate
decisions when they are used against the particular stega-
nographic technique.

The second group of steganalyzers, universal tech-
niques, were proposed to alleviate the deficiency of specific
steganalyzers by removing their dependency on the behav-
ior of individual embedding techniques. To achieve this, a
set of distinguishing statistics that are sensitive to wide va-
riety of embedding operations are determined and col-
lected. These statistics, obtained from both the cover and
stego images, are then used to train a classifier, which is
subsequently used to distinguish between cover and stego
images. Hence, the dependency on a specific embedder is
removed at the cost of finding statistics that distinguish
between stego and cover images accurately and classifica-
tion techniques that are able to utilize these statistics.

Much research has been done on finding statistics that
are able to distinguish between cover and stego images ob-
tained through different embedding techniques.

2–5
Although

previous studies report reasonable success on controlled
data sets, there is a lack of assessment on how various
proposed techniques compare to each other. This is mainly
because previous work is limited either in the number of
embedding techniques studied or the quality of the data set
used in addition to the classification technique employed.

For example, Ref. 5 uses a data set of images consisting
of only 1800 images. These images were compressed at the
same rate and were of the same size. In Ref. 2, two stega-
nalysis techniques are studied using the same data set of
1800 images. A larger study was done in Refs. 4 and 6,
employing 40,000 images with constant size and compres-
sion rate, where only one steganalysis technique was inves-
tigated. Thus, there is a lack of a study that provides com-
parative results among a number of universal steganalysis
techniques over data sets of images with varying properties,
e.g., source, nature, compression level, size, etc. Our goal
in this work is twofold: first, to evaluate a range of embed-
ding techniques against the state of the art universal stega-
nalysis techniques, and second, to investigate the effect of
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image properties on the performance of steganalysis tech-
niques. In this regard, we are interested in answering ques-
tions such as

1. What are the impacts of the factors such as size, tex-
ture, or source on steganography and steganalysis?

2. How do compression and recompression operations
affect the steganalysis performance?

3. Does the image domain used for steganographic em-
bedding have to match with the domain of steganaly-
sis?

4. What are the required computational resources for
deploying a steganalyzer?

Some of these questions are inherently hard to answer and
are subjects of ongoing research. For example, techniques
aimed at reliably determining the source of an image �e.g.,
digital camera, scanner, computer graphics, etc.� are just
emerging and have certain shortcomings.

7,8

The rest of this paper is organized as follows. We begin
by introducing the data set used in our experiments in Sec.
2. Section 3 discusses our experimental setup. Section 4
evaluates a number of discrete cosine transform �DCT�-
based embedding techniques. Section 5 discusses the effect
of recompression on the performance of steganalyzers. The
performances of spatial- and wavelet-based embedding
techniques are evaluated in Secs. 6 and 7, respectively. Sec-
tion 8 discusses the effects of JPEG compression artifacts
on spatial and wavelet domain embedding technique. In
Sec. 9, we investigate the effect of image texture on the
performance of steganalyzers. Issues concerning the poor
performance of a wavelet-based steganalyzer,

4
the maxi-

mum embedding rate achievable by each embedding tech-
nique, and the required computational resources are ad-
dressed along with our discussion in Sec. 10.

2 Description of Data Set

One of the important aspects of any performance evaluation
work is the data set employed in the experiments. Our goal
was to use a data set of images that would include a variety
of textures, qualities, and sizes. At the same time, we
wanted to have a set that would represent the type of im-
ages found in the public domain. Obtaining images by
crawling Internet sites would provide us with such data set.
Thus, we obtained a list of 2 million JPEG image links
from a web crawl. We chose the JPEG image format due to
its wide popularity. From this list, we were able to access
and download only a total number of 1.5 million images,
out of which 1.1 million unique and readable images were
extracted. Image uniqueness was verified by comparing
SHA1 �secure hash algorithm 1� hashes of all available
images. A histogram of total number of pixels in the images
is given in Fig. 1�a�.

JPEG images are compressed using a variety of quality
factors. But since one has a freedom in selecting the quan-
tization table when compressing an image using the JPEG
algorithm, there is no standard definition of a quality factor.
Therefore, we approximated the quality factor of the im-
ages in our data set by deploying the publicly available
Jpegdump program.

9
Essentially, Jpegdump estimates the

quality factor of the image by comparing its quantization

table to the suggested quantization table in the JPEG stan-
dard. A histogram of estimated JPEG quality factors is
given in Fig. 1�b�.

Given the variety in size as well as the quality of the
images obtained, we decided to break up our data set into a
number of categories. Table 1 provides the number of im-
ages in each category. We restricted our experiments to the
medium-size images with high, medium, and low qualities,
where only 100K randomly selected images from among
the medium-quality images were used in the experiments.
Furthermore, since some of the studied techniques were
designed to operate only on gray-scale images �and their
color image extensions are the subjects of further study�, all
images are converted to gray scale by having their color
information stripped off. The image size histograms �in
number of pixels�, as well as the estimated JPEG quality
factors are given in Fig. 2.

3 Experimental Setup

Universal steganalyses are composed of two important
components. These are feature extraction and feature clas-

Fig. 1 �a� Normalized histogram of number of pixels in each image,
with a bin size of 25,000 pixels. The five main peaks �denoted by
circles� correspond to images of size 480�640, 600�800, 768
�1024, 1280�960, and 1200�1600 respectively. �b� Normalized
histogram of estimated JPEG quality factors.
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sification. In feature extraction, a set of distinguishing sta-
tistics are obtained from a data set of images. There is no
well-defined approach to obtaining these statistics, but of-
ten they are proposed by observing general image features
that exhibit strong variation under embedding. The second
component, feature classification, operates in two modes.
First, the obtained distinguishing statistics from both cover
and stego images are used to train a classifier. Second, the
trained classifier is used to classify an input image as either
being clean �cover image� or carrying a hidden message
�stego image�. In this context, the three universal tech-
niques studied in this work take three distinct approaches in
obtaining distinguishing statistics from images �i.e., feature
extraction�. These techniques are:

1. BSM: Avcibas et al.
2,10

considers binary similarity
measures �BSMs�, where distinguishing features are
obtained from the spatial domain representation of
the image. The authors conjecture that correlation be-
tween the contiguous bit planes decreases after a
message is embedded in the image. More specifically,
the method looks at seventh and eight bit planes of an
image and calculates three types of features, which
include computed similarity differences, histogram
and entropy related features, and a set of measures
based on a neighborhood-weighting mask.

2. WBS �wavelet-based steganalysis�: A different ap-
proach is taken by Lyu and Farid

3,4
for feature extrac-

tion from images. The authors argue that most of the
specific steganalysis techniques concentrate on first-
order statistics, i.e., histogram of DCT coefficients,
but simple countermeasures could keep the first-order
statistics intact, thus making the steganalysis tech-
nique useless. So they propose building a model for
natural images by using higher order statistics and
then show that images with messages embedded in
them deviate from this model. Quadratic mirror filters
�QMFs� are used to decompose the image into wave-
let domain, after which statistics such as mean, vari-
ance, skewness, and kurtosis are calculated for each
subband. Additionally the same statistics are calcu-
lated for the error obtained from a linear predictor of
coefficient magnitudes of each subband, as the sec-
ond part of the feature set. More recently, in Ref. 6,
Lyu and Farid expand their feature set to include a set
of phase statistics. As noted in their work, these ad-
ditional features have little effect on the performance
of the steganalyzer. Therefore, we employed only the
original set of features as proposed in Ref. 3

3. FBS �feature-based steganalysis�: Fridrich
5

obtains a
set of distinguishing features from DCT and spatial

domains. As the the main component of the proposed
approach, a simple technique is used to estimate sta-
tistics of the original image, before embedding. Esti-
mation is simply done by decompressing the JPEG
image, and then cropping its spatial representation by
four lines of pixels in both horizontal and vertical
directions. Afterward, the image is JPEG recom-
pressed with the original quantization table. The dif-
ference between statistics obtained from the given

Table 1 Cover image data set.

High �90 to 100� Medium �75 to 90� Low �50 to 75� Poor �50 to 0�

Large �75 K to 2000 K� 74,848 60,060 22,307 10,932

Medium �300 K to 750 K� 54,415 207,774 83,676 31,340

Small �10 K to 300 K� 77,120 301,685 102,770 44,329

Fig. 2 �a� Normalized histogram of number of pixels in each image,
with a bin size of 25,000 pixels, for images in the medium-size cat-
egories with high, medium, and low quality factors, and �b� normal-
ized histogram of their estimated JPEG quality factor.
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JPEG image and its original estimated version are
obtained through a set of functions that operate on
both spatial and DCT domains.

All three steganalysis techniques were implemented in
the C programming language and verified by comparing
test results against those reported by the authors. In the
following, we discuss our experimental setup including is-
sues related to embedded message length and the type of
classifier used.

Note that the BSM and WBS techniques operate in spa-
tial domain; therefore in the case of JPEG and JPEG2000
images, the images are first decompressed before being fed
into the steganalyzer. In the case of the FBS technique,
which operates on JPEG images, non-JPEG images are
compressed with a quality factor of 100 and then fed in to
the steganalyzer, to avoid the steganalyzer detecting differ-
ent image formats rather than embedding artifacts.

3.1 Message Size

When creating the stego data set, we had a number of op-
tions in defining the length of the message to be embedded.
In essence there are three possible approaches in defining
the messages length:

1. Setting message size relative to the number of coef-
ficients that the embedder operates on �i.e., change-
able coefficients�. This approach guarantees an equal
percentage of changes over all images.

2. Setting constant message size. In such an approach,
message sizes are fixed irrespective of the image size.
As a down side, the data set created with such an
approach could contain a set of images that have very
few relative changes with respect to their size and
images that have maximal changes incurred during
the embedding process.

3. Set message size relative to image size. Similar to the
preceding, we could have two images of the same
size, but with a different number of changeable
coefficients.

In creating our data set, we use the first approach in
setting the message size as it also takes into account the
image �content� itself, unlike the latter two. Note that the
number of changeable coefficients in an image does not
necessarily indicate the embedding rate achievable by a
particular steganographic technique �as discussed in Sec.
10.2�. In the following sections, we discuss in more detail
the number of changeable coefficients with respect to the
image type and the embedding technique.

3.2 Classifier

As noted earlier, the calculated features vectors obtained
from each universal steganalysis technique are used to train
a classifier, which in turn is used to classify between cover
and stego images. A number of different classifiers could be
employed for this purpose. Two of the techniques more
widely used by researchers for universal steganalysis are
Fisher’s linear discriminate �FLD� and support vector ma-
chines �SVMs�. SVMs are more powerful, but on the down
side, require more computational power, especially if a

nonlinear kernel is employed. To avoid high computational
cost and to obtain a reasonable success, we have employed
a linear SVM �Ref. 11� in our experiments.

To train and test a classifier, the following steps were
performed:

1. A random subset of images, 10%, was used to train
the classifier. Here, if the two sets of images �i.e.,
cover and stego� are nonequal, 10% of the smaller set
is chosen as the size of the design set.

2. The rest of images �i.e., cover and stego�, 90%, were
tested against the designed classifier, and decision
values were collected for each.

3. Given the decision values, the receiver operating
curves �ROCs� curves are obtained.

12

4. The area under the ROC curve, also known as AUR,
was calculated as the accuracy of the designed clas-
sifier against previously unseen images.

4 DCT-Based Embedders

DCT domain embedding techniques are very popular due to
the fact that DCT-based image format, JPEG, is widely
used in the public domain in addition to being the most
common output format of digital cameras. Although modi-
fications of properly selected DCT coefficients during em-
bedding will not cause noticeable visual artifacts, they will
nevertheless cause detectable statistical changes. Various
steganographic embedding methods are proposed, with the
purpose of minimizing the statistical artifacts introduced to
DCT coefficients. We studied four of these methods,
namely Outguess,

13
F5 �Ref. 14�, model based,

15
and per-

turbed quantization
16

�PQ� embedding techniques.
Note that since these techniques modify only nonzero

DCT coefficients, message lengths are defined with respect
to the number of nonzero DCT coefficients in the images.
More specifically we have used embedding rates of 0.05,
0.1, 0.2, 0.4, and 0.6 BPNZ-DCT. In the rest of this section
we introduce the results obtained for each of the mentioned
embedding techniques.

4.1 Outguess

Outguess, proposed by Provos
13

realizes the embedding
process in two separate steps. First, it identifies the redun-
dant DCT coefficients that have minimal effect on the cover
image, and then depending on the information obtained in
the first step, chooses bits in which it would embed the
message. Note that at the time Outguess was proposed, one
of its goals was to overcome steganalysis attacks that look
at changes in the DCT histograms after embedding. Provos,
proposed a solution in which some of the DCT coefficients
are left unchanged in the embedding process so that follow-
ing the embedding, the remaining coefficients are modified
to preserve the original histogram of the DCT coefficients.

We embedded messages of length 0.05, 0.1, and 0.2
BPNZ-DCT in our cover data set using the Outguess

13
em-

bedding technique. The code for Outguess is publicly avail-
able and implemented quite efficiently

17
in C. The perfor-

mance of the universal steganalysis techniques, in terms of
AUR, are given in Fig. 3. As part of the embedding pro-
cess, the Outguess program, first recompresses the image,
with a quality factor defined by the user, and then it uses
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the obtained DCT coefficient to embed the message. To
minimize recompression artifacts, we communicated the
estimated quality factor of the image to the Outguess pro-
gram. But a question that comes to mind is whether the
steganalyzer is distinguishing between cover and stego im-
ages or cover and recompressed cover images. To investi-
gate this question, we also looked at how the steganalysis
technique performs when it is asked to distinguish between
the set of stego images and recompressed cover images
�where the latter is obtained by recompressing the original
images using their estimated quality factor�. The results ob-
tained are given in Fig. 3.

4.2 F5

F5 �Ref. 14� was proposed by Westfeld and embeds mes-
sages by modifying the DCT coefficients. �For a review of
jsteg, F3, and F4 algorithms that F5 is built on, please refer
to Ref. 14.� The most important operation done by F5 is
matrix embedding with the goal of minimizing the amount
of changes made to the DCT coefficients. Westfeld

14
takes

n DCT coefficients and hashes them to k bits, where k and
n are computed based on the original images as well as the
secret message length. If the hash value equals the message
bits, then the next n coefficients are chosen, and so on.
Otherwise one of the n coefficients is modified and the hash
is recalculated. The modifications are constrained by the
fact that the resulting n DCT coefficients should not have a
hamming distance of more than dmax from the original n
DCT coefficients. This process is repeated until the hash
value matches the message bits.

A JAVA implemented version of the F5 code is publicly
available. Similar to Outguess, the available implementa-
tion of F5 first recompresses the image, with a quality fac-
tor input by the user, after which the DCT coefficients are
used for embedding the message. We used the quality fac-
tor estimated for each image as an input to the F5 code
when embedding a message. Messages of length 0.05, 0.1,
0.2, and 0.4 BPNZ-DCT were used to create the stego data
set. We have also obtained AUR values on how well the
techniques could distinguish between the stego and recom-
pressed images. The results obtained are provided in Fig. 4.

4.3 Model-Based Embedding Technique

Unlike techniques discussed in the two previous subsec-
tions, the model-based technique, proposed by Sallee,

15

tries to model statistical properties of an image and pre-
serves them during embedding process. Sallee breaks down
transformed image coefficients into two parts and replaces
the perceptually insignificant component with the coded
message bits. Initially, the marginal statistics of quantized
�nonzero� ac DCT coefficients are modeled with a paramet-
ric density function. For this, a low-precision histogram of
each frequency channel is obtained, and the model is fit to
each histogram by determining the corresponding model
parameters. Sallee defines the offset value of a coefficient
within a histogram bin as a symbol and computes the cor-
responding symbol probabilities from the relative frequen-
cies of symbols �offset values of coefficients in all histo-
gram bins�.

At the heart of the embedding operation is a nonadaptive
arithmetic decoder that takes as input the message signal
and decodes it with respect to measured symbol probabili-

Fig. 3 AUR for the Outguess ��� embedding technique with mes-
sage lengths of 0.05, 0.1, and 0.2 of BPNZ-DCT. Stego versus cover
images are indicated by solid lines, and stego versus recomp-cover
are shown with the dashed lines. Actual values are provided in Sec.
12. The symbols �, �, and � correspond to high-, medium-, and
low-quality images, respectively.
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ties. Then the entropy decoded message is embedded by
specifying new bin offsets for each coefficient. In other
words, the coefficients in each histogram bin are modified
with respect to embedding rule, while the global histogram
and symbol probabilities are preserved. Extraction, on the
other hand, is similar to embedding. That is, model param-
eters are determined to measure symbol probabilities and to
obtain the embedded symbol sequence �decoded message�.
�Note that the obtained model parameters and the symbol
probabilities are the same both at the embedder and detec-
tor.� The embedded message is extracted by entropy encod-
ing the symbol sequence.

Unlike the previous two techniques, the model-based
technique does not recompress the image before embed-
ding. Therefore, a comparison of recompressed and stego
images does not apply in this case. Although Matlab code is
publicly available for this technique, we implemented this
technique in C since given our large data set, embedding
speed was an important factor. We used message lengths of
0.05, 0.1, 0.2, 0.4, and 0.6 BPNZ-DCT to create our data
set. The obtained results are given in Fig. 5.

4.4 PQ Technique

Taking a different approach from the previous embedding
techniques, Fridrich et al.

16
propose the PQ embedding

technique in which the message is embedded while the
cover image undergoes compression. That is, a JPEG image
is recompressed with a lower quality factor, where only
selected set of DCT coefficients that could be quantized to
an alternative bin with an error smaller than some preset
value are modified. The crux of the method lies in deter-
mining which coefficients are to be used for embedding so
that the detector can also determine the coefficients carry-
ing the payload. For this, the embedder and the detector
agree on a random matrix as side information. Essentially,
the embedding operation requires solving a set of equations
in GF�2� �Galois Fields 2� arithmetic. Finding the solution
to the system requires finding the rank of a k�n matrix,
which is computationally intensive. Therefore, to speed up
the embedding process, the image is broken into blocks of
smaller sizes, and the system is solved independently for
each block. This incurs an additional overhead, which must
be embedded in each block for successful message extrac-
tion.

The PQ technique was the last DCT-based embedding
technique we studied. We implemented the code for this
technique in C and had a stego data set created with mes-
sage lengths of 0.05, 0.1, 0.2 and 0.4 BPNZ-DCT. The
corresponding steganalysis results are provided in Fig. 6.
Similar to previously studied techniques, we determined
how the universal steganalyzers perform in distinguishing
between recompressed �with quantization steps doubled�
and PQ stego images, as given in Fig. 6.

5 Recompression Effect

A good classification-based technique must have a high de-
tection rate, and at the same time, a small false alarm rate.
As we illustrated in the previous section, some of the
JPEG-based steganographic embedding techniques recom-
press the JPEG image before embedding the message in
them, which may be the cause of false alarms �i.e., classi-
fier misclassifying images because of the recompression ar-

Fig. 4 AUR for the F5 embedding technique with message lengths
of 0.05, 0.1, 0.2, and 0.4 of BPNZ-DCT. Stego versus cover images
are indicated by solid lines, and stego versus recomp-cover are
shown with the dashed lines. Actual values are provided in Sec. 12.
The symbols �, �, and � correspond to high-, medium-, and low-
quality images, respectively.
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tifacts�. Thus, we are interested in how the discussed uni-
versal steganalysis techniques perform when asked to
classify between a set of original cover images and their
recompressed versions. We call this procedure the universal
steganalysis confusion test. Based on the results in the pre-
vious section, there are two cases of interest:

1. Recompressing images with the quality factor esti-
mated from the original image. As evident from Table
2, unlike FBS which confuses recompressed images

as stego, BSM and WBS are not able to distinguish
between cover and recompressed cover images. This
type of recompression was seen with Outguess and
F5 embedding techniques.

2. Recompressing images with a quality factor smaller
than the original quality factor. More specifically the
quantization steps were doubled. In this case, the

Fig. 5 AUR for the model-based embedding technique with mes-
sage lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 of BPNZ-DCT. Stego
versus cover images are indicted by solid lines, and stego versus
recomp-cover are shown with the dashed lines. Actual values are
provided in Sec. 12. The The symbols �, �, and � correspond to
high-, medium-, and low-quality images, respectively.

Fig. 6 AUR for the PQ embedding technique with message of
lengths of 0.05, 0.1, 0.2, and 0.4 of BPNZ-DCT. Stego versus cover
images are indicated by solid lines, and stego versus recomp-cover
are shown with the dashed lines. Actual values are provided in Sec.
12. The symbols �, �, and � correspond to high-, medium-, and
low-quality images, respectively.
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FBS technique is affected most. Note that such a re-
compression is deployed by the PQ embedding
technique.

6 Spatial Domain Embedders

Spatial domain embedding techniques were the first to be
proposed in the literature. Their popularity is derived from
their simple algorithmic nature, and ease of mathematical
analysis. We have studied two least significant bit tech-
niques, LSB and LSB�. In the LSB technique, the LSB of
the pixels is replaced by the message bits to be sent. Usu-
ally the message bits are scattered around the image. This
has the effect of distributing the bits evenly; thus, on aver-
age, only half of the LSBs are modified. Popular stegano-
graphic tools based on LSB embedding

18–20
vary in their

approach for hiding information. Some algorithms change
LSB of pixels visited in a random walk, others modify
pixels in certain areas of images. Another approach, called
LSB�, operates by incrementing or decrementing the last
bit instead of replacing it; an example of such approach is
used in Ref. 20.

The set of BMP �bitmap� images is obtained by decom-
pressing the images from the three image sets being studied
to BMP format. Since all pixels in the image are modifi-
able, the number of changeable coefficients is equal to the
number of pixels in the images. Thus, message lengths of
0.05, 0.1, 0.2, 0.4, and 0.6 bits/pixel were used to create
the stego data set, where we had implemented the LSB
embedder in C. The obtained results for the LSB technique
are in Fig. 7.

The second studied technique was LSB� with which the
pixel values are either incremented or decremented by one
instead of flipping the pixel’s least significant bit. Again
using a C implementation, and message lengths as in the
LSB case the stego data set was created. Results are shown
in Fig. 8. The superior performance of FBS with the LSB
and LSB� techniques will be discussed in Section 8.

7 Wavelet Domain Embedding

Wavelet-domain-based embedding is quite new, and not as
well developed or analyzed as DCT-based or spatial do-
main techniques. But such techniques will gain popularity
as JPEG2000 compression becomes more widely used.
Therefore, we studied a wavelet-based embedding tech-
nique called StegoJasper

21
as part of our work. In

JPEG2000 compression algorithm, wavelet coefficients are
bit plane coded in a number of passes, where, depending on

the pass and the importance of the bit value, the bit is either
coded or discarded. Using information available to both the
encoder and decoder, Su and Kuo first identify a subset of
the preserved bits that are used for embedding the secret
message. Then, bits are modified while keeping in mind the
amount of contribution they make to the reconstructed im-
age at the decoder side. In other words, bits with least level
of contributions are modified first, this backward embed-
ding approach minimizes the embedding artifact on the re-
sulting stego image.

To create the JPEG2000 stego data set from our original
JPEG data set, we first estimated the bit-rate of each JPEG
image �by dividing its file size by the image dimensions in
pixels�. Then the JPEG images were compressed with a
JPEG2000 compressor using the calculated bit rate in order
to obtain the cover set. Similarly, JPEG images were fed
into a modified JPEG2000 compressor,* to obtain the stego
data set. Note that since the least significant bits of selected
wavelet coefficients are modified, we define the number of
changeable coefficients in this case equal to the number of
selectable coefficients. Obtained accuracy results are given
in Fig. 9.

8 JPEG Artifacts

In the experimental results, we observed that FBS is able to
obtain high accuracy with spatial domain embedding tech-
niques as well, although it was designed exclusively for
DCT-based �i.e., JPEG� images. Such results can be ex-
plained by considering the fact that the BMP images used
in the experiments were obtained from JPEG images, thus
baring JPEG compression artifacts. That is, if the BMP
image is compressed back to JPEG domain with a quality
factor of 100, as we have done in our experiments when
feeding non-JPEG images to the FBS technique, the indi-
vidual DCT histograms will contain peaks centered at the
quantization step sizes of the original JPEG image. But if
the same BMP image is compressed to a JPEG image, with
a quality factor of 100, after LSB or LSB� embedding then
the added noise will cause the sharp peaks to leak to neigh-
boring histogram bins. Such a difference is the source of
the high accuracy results by the FBS technique.

In fact, a close inspection of the results shows that the
performance of the steganalysis techniques varies by the
quality factor of the original JPEG images. Thus, we ob-
tained 13,000 gray-scale images, which were down-
sampled to a size of 640�480 to minimize any JPEG com-

*The StegoJasper code was provided by Dr. Po-Chyi Su and Dr. C.-C. Jay Kuo.

Table 2 Effect of the recompression on steganalysis techniques for case 1 and case 2.

Case 1 Case 2

HQ MQ LQ HQ MQ LQ

BSM 51.13 50.04 53.17 56.76 74.84 83.93

WBS 51.02 50.55 52.78 63.79 73.56 88.54

FBS 64.54 69.39 64.88 79.93 84.90 91.07

HQ, MQ, and LQ refer to high-, medium-, and low-quality image sets, respectively.
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Fig. 7 AUR for the LSB embedding technique, with message
lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 of bits/pixels. Actual values are
provided in Sec. 12. The symbols �, �, and � correspond to high-,
medium-, and low-quality images, respectively.

Fig. 8 AUR for the LSB±embedding technique, with message
lengths of 0.05, 0.1, 0.2, 0.4, and 0.6 of bits/pixels. Actual values are
provided in Sec. 12. The symbols �, �, and � correspond to high-,
medium-, and low-quality images, respectively.
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pression artifacts. Using the LSB embedding technique a
stego data set was created using a message length equal to
0.6 bits/pixel. Classifiers were trained for each steganalysis
technique using 15% of the data set, and the remaining
images were used to test the trained classifier. Interestingly,
using a linear classifier, none of the steganalysis techniques
were able to obtain acceptable accuracy results. But after
using a nonlinear classifier, we were able to obtain good
performance results only for the BSM technique. The ob-
tained results are shown in Fig. 10.

Another JPEG-artifact-related phenomenon we observed
is that, unlike other techniques studied, in the case of the
JPEG2000 embedding technique as the quality of images is
decreased, the accuracy of steganalyzer decreases. This

could be explained by observing that as the JPEG2000 im-
ages are compressed with a lower quality factor, the origi-
nal JPEG artifacts are minimized making steganalyzers less
effective in detecting such stego images. In Fig. 9, we see
that in the case of FBS, this effect is maximized.

9 Image Texture

In the preceding sections we categorized images with re-
spect to their JPEG quality factor, and observed the effect
on the performance of the steganalyzers. But other than the
JPEG quality factor, image properties such as image texture
could be used to categorize the images. There are many
approaches to quantify the texture of an image. A crude
measure of image texture would be the mean variance of
JPEG blocks. This measure is simple and can be efficiently
computed, even with our large data set.

To examine the effect of image texture on steganalysis,
we calculate the mean block variance of all the images in
our dataset. �The variance is observed to change from 0 to
11,600�. Using the mean of the available range, the cover
image set was divided into two categories—of high and
low variance. Each cover image set was then used to obtain
a stego data set, using the model based embedding tech-
nique, with message lengths of 0.05, 0.1, 0.2, 0.4 and 0.6
BPNZ-DCT coefficients. The obtained AUR values are dis-
played in Fig. 11. From the figure we could observe that the
performance of the classifier is affected by the variance of
the images being used. More specifically, the classifier per-
forms less accurately when confronted with high-variance
images �i.e., highly textured or noisy� as expected.

10 Discussion

In this section, we first explain the poor performance of
WBS over DCT-based embedding techniques. Then we
compare the maximum embedding rate as well as the mes-
sage lengths over different embedding domains. Last, we
note the required computational resources for our experi-
ments.

Fig. 9 AUR for the StegoJasper embedding technique with mes-
sages lengths of 0.05, 0.6, and 1 of bits/changeable coefficients.
Actual values are provided in Sec. 12. The symbols �, �, and �

correspond to high-, medium-, and low-quality images, respectively.

Fig. 10 ROC curves obtained from the studied steganalysis tech-
nique against the LSB technique. In this case, the image data set
was modified to minimize the JPEG artifacts.
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10.1 WBS’s Poor Performance

In the experimental results we have obtained for the WBS
technique, we were unable to achieve performance numbers
in the same range as reported by Lyu and Farid.

4
We be-

lieve that the difference in the performance is due to the
following factors:

1. We used a linear SVM as opposed to a nonlinear
SVM.

2. Our data set includes images with variety of qualities
as well as sizes as opposed to constant quality and
size.

3. There are different message length definitions.

It is our understanding that the last point in the preced-
ing list has the largest effect on the results. We did a small
experiment to verify this point. As discussed earlier, there
are a number of ways to create the stego data set. In Ref. 4
constant message sizes are used to create the stego data set.
In accordance with that study, we selected 2000 gray-scale
images of size 800�600 with quality of 85 as cover and
created a stego data set with Outguess ��� technique.

We defined three message lengths as 1, 5, and 10% of
maximum rate, which we defined as 1 bit/pixel. Thus,
since all images have constant size in our data set the mes-
sage lengths used were 600, 3000, and 6000 bytes. Out of
2000 images, we were able to embed into 1954, 1450, and
585 images using messages of size 1, 5, and 10%. Then for
each message length a linear SVM classifier was trained
using the set of cover images and stego images with that
message length, using an equal number of images in the
design set. The design set size was set to 40% of the
smaller of the two cover and stego data sets. The designed
classifier was tested against the remaining images. The re-
sulting ROC curves are given in Fig. 12.

Next we created a stego data set with the message length
definition we used in our work, where the message length
ranges from 0.05, 0.1, and 0.2 BPNZ-DCT. The number of
images in which we were able to embed a message was,
respectively, 1948, 1893, and 1786. Note that the difference

in message length definition may lead to considerable dif-
ferences in embedded message lengths, as indicated by the
two sets of numbers. For example in Ref. 3, Lyu and Farid
report that they were able to embed only into approxi-
mately 300 out of 1800 images with the highest embedding
rate used in their experiments. Whereas in our experiments,
at highest embedding rates �0.2 BPNZ-DCT� we were able
to embed into 1786 out of 2000 of the images. Again using
the same setup as in the previous case, classifiers were
designed and tested. The resulting ROC curves are seen in
Fig. 12. As is evident from the obtained results, the classi-
fiers performance changes considerably depending on the
message length definition used.

10.2 Maximum Embedding Rate

Earlier we stated that our definition of message length is
relative to the number of changeable coefficients in image,
which is dependent on the embedding technique and the
coefficients it used in the process. But in the experiments,
we observed that the DCT-based embedding techniques
were not able to fully utilize the changeable coefficients
available in the images �where changeable coefficients in
this case were non-zero DCT coefficients�. Thus, we ex-
perimentally obtained the maximum embedding rate for
each of the four techniques. The corresponding results are
given in Fig. 13, where the values obtained for each tech-
nique are sorted independently for better visualization.
Note that maximum embedding rates obtained are only es-
timates, and in some cases optimistic. For example, with
the PQ technique, we are showing the ratio of changeable
coefficient �i.e., coefficients that fall in a small range
around the quantization values� over the total number of
NZ-DCT coefficients. Actual embedding rate will be lower
due to the embedding overhead incurred when splitting the
image into smaller blocks to speed up the embedding pro-
cess. As observed in Fig. 13, the model-based embedding
technique is able to best utilize the changeable coefficients
in the embedding process over different image quality val-
ues, and Outguess comes in as the worst technique in uti-
lizing the changeable coefficients.

Fig. 11 AUR values obtained for the FBS steganalysis technique
against the model-based technique.

Fig. 12 Effects of message lengths definition on the WBS
technique.
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To compare the message lengths that can be embedded
by all studied techniques, we first calculated the three dif-
ferent types of changeable coefficients, assuming 1 bit em-
bedding per changeable coefficient, the obtained values are
divided by 8 to obtain byte values. The resulting histogram
of such values is shown in Fig. 14. We should note that as
shown earlier with the DCT based embedding techniques
not all changeable coefficients are utilized. For example,
with the model based technique on average only 60% of
changeable coefficients are utilized. As we see in Fig. 14,
spatial domain techniques could carry the largest messages.
Also, we observe that StegoJasper is able to carry messages
even larger than the DCT-based embedding techniques. We

note that we are not considering any detectability con-
straints here, but merely investigating how well the set of
changeable coefficients are utilized by each embedding
technique.

10.3 Computational Resources

Working with such a huge data set required much process-
ing time. The cover images took about 7 Gbytes of space,
and our stego data set had an overall size of 2 Tbytes. Our
experiments were done on a Linux box with four Xeon
2.8-GHz processors. In embedding techniques, we found
PQ to be the slowest code, taking a few days to embed in
the cover data set at the largest embedding rate studied. On

Fig. 13 Maximum embedding rates for DCT-based embedding
techniques for �a� high-quality, �b� medium-quality, and �c� low-
quality images.

Fig. 14 Histogram of changeable coefficients divided by 8 to get
embeddable byte values for �a� high-quality, �b� medium-quality, and
�c� low-quality images.
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the other hand, Outguess was the fastest code, completing
the embedding process in about 4 h at the largest message
length studied.

With steganalysis techniques we found BSM to be the
fastest technique, roughly taking about 3 h to process 100K
images. FBS took about 4 h and WBS was the slowest of
all taking about 12 h. Note that the processing times we
obtained are quite implementation specific, and better per-
formance could potentially be obtained by further optimi-
zation of the codes.

11 Conclusion

We investigated the performance of universal steganalysis
techniques against a number of stegonagraphic embedding
techniques using a large data set of images. Through our
work we made a number of observations. The most impor-
tant are

1. The FBS technique outperforms other studied tech-
niques in this study. Although as we illustrated in
Sec. 8, FBS results on spatial domain embedders are
affected by the fact that the image sets used in the
experiments were originally JPEG compressed.
Hence, if true BMP images �i.e., no compression ar-
tifacts� are employed then the BSM technique obtains
superior performance with spatial domain embedding
techniques.

2. The PQ embedding technique is found to be the least

detectable technique among the considered tech-
niques in our experiments.

3. JPEG image quality factor affects the steganalyzers
performance. Cover and stego images with high-
quality factors are less distinguishable than cover and
stego image with lower quality.

4. JPEG recompression artifacts confuse all steganalyz-
ers to varying extent. Furthermore, such artifacts also
carry over with format conversion �e.g., FBS results
with StegoJasper showed dependency on the JPEG
quality factor�.

This work aimed at answering a number of questions
raised in the introduction. However, some of the raised
questions are inherently difficult to answer. For example, it
is usually argued that images obtained from a scanner or
generated through computer graphics will behave differ-
ently from high resolution images obtained from a digital
camera. However, accurate categorization of images based
on their origin �e.g., digital camera, scanned, computer
graphics� remains a difficult task. Another question we
were not able to resolve was the dependency of the stega-
nalyzer’s performance on the size of images. This can be
attributed to our data set in which the variation in the image
sizes was not significant. However, the detection perfor-
mance is likely to suffer for smaller images, as the distinc-
tiveness of the collected statistics will reduce. These issues
are the subject of further study.

12 Appendix

AUR values obtained from experiments in Secs. 4, 6, and 7 are presented in this Appendix in Tables 3–11.

Table 3 AUR of high-quality images.

Outguess F5 Model Based PQ

0.05 50.38 50.86 50.11 56.34 BSM

0.05 51.66 50.95 49.61 63.50 WBS

0.05 63.44 63.16 52.31 80.03 FBS

0.1 50.08 50.78 50.44 56.58 BSM

0.1 53.00 51.21 49.64 60.05 WBS

0.1 66.90 64.04 55.65 80.42 FBS

0.2 51.41 50.22 51.10 57.14 BSM

0.2 55.43 52.39 50.10 64.35 WBS

0.2 82.59 70.11 60.42 80.69 FBS

0.4 NA 51.34 52.23 58.35 BSM

0.4 NA 55.68 51.96 73.64 WBS

0.4 NA 79.86 70.54 90.39 FBS

0.6 NA NA 53.58 NA BSM

0.6 NA NA 53.61 NA WBS

0.6 NA NA 76.32 NA FBS
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Table 4 AUR for all embedding techniques when compared against
cover but recompressed high-quality images.

Outguess F5 PQ

0.05 51.21 50.06 50.00 BSM

0.05 50.72 49.76 49.45 WBS

0.05 55.99 54.04 49.70 FBS

0.1 52.11 50.29 50.03 BSM

0.1 52.91 50.12 49.66 WBS

0.1 60.71 58.12 50.06 FBS

0.2 52.12 50.73 50.91 BSM

0.2 54.32 51.04 50.46 WBS

0.2 77.18 69.22 51.29 FBS

0.4 NA 52.06 54.08 BSM

0.4 NA 54.78 60.05 WBS

0.4 NA 82.19 62.22 FBS

Table 5 AUR for medium-quality images.

Outguess F5 Model Based PQ

0.05 51.66 50.12 50.11 75.36 BSM

0.05 52.50 51.76 50.14 76.61 WBS

0.05 77.61 71.32 53.35 85.09 FBS

0.1 54.06 50.56 50.85 75.50 BSM

0.1 53.77 52.58 50.85 76.59 WBS

0.1 89.05 77.12 57.06 85.55 FBS

0.2 55.39 51.76 51.53 75.53 BSM

0.2 58.16 54.97 53.41 75.92 WBS

0.2 95.41 85.59 64.65 85.79 FBS

0.4 NA 53.86 53.62 76.90 BSM

0.4 NA 61.46 56.79 79.36 WBS

0.4 NA 93.27 79.01 86.96 FBS

0.6 NA NA 56.40 NA BSM

0.6 NA NA 61.61 NA WBS

0.6 NA NA 87.29 NA FBS

Table 6 AUR for all embedding techniques when compared against
cover but recompressed medium-quality images.

Outguess F5 PQ

0.05 51.61 49.94 51.23 BSM

0.05 50.76 49.87 50.79 WBS

0.05 65.10 55.20 50.27 FBS

0.1 53.98 50.23 52.16 BSM

0.1 53.27 50.58 51.90 WBS

0.1 78.77 62.74 50.87 FBS

0.2 55.82 51.25 53.33 BSM

0.2 57.77 53.44 52.82 WBS

0.2 90.91 76.39 52.64 FBS

0.4 NA 52.55 55.34 BSM

0.4 NA 59.94 55.54 WBS

0.4 NA 89.93 56.95 FBS

Table 7 AUR for low-quality images.

Outguess F5 Model Based PQ

0.05 53.63 53.63 49.87 84.05 BSM

0.05 54.81 53.46 50.63 88.30 WBS

0.05 97.16 68.86 54.11 91.24 FBS

0.1 54.53 54.52 50.87 83.90 BSM

0.1 57.72 54.68 52.14 88.65 WBS

0.1 97.58 76.03 59.46 91.29 FBS

0.2 57.59 54.35 51.97 83.78 BSM

0.2 62.33 58.47 56.46 88.30 WBS

0.2 98.78 87.44 70.07 91.63 FBS

0.4 NA 56.72 54.59 83.48 BSM

0.4 NA 67.99 63.53 89.65 WBS

04 NA 95.75 85.31 92.38 FBS

0.6 NA NA 60.48 NA BSM

0.6 NA NA 68.18 NA WBS

0.6 NA NA 92.62 NA FBS
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Table 8 AUR for all embedding techniques when compared against
cover but recompressed Low-quality images.

Outguess F5 PQ

0.05 57.08 49.89 50.00 BSM

0.05 54.52 50.33 51.18 WBS

0.05 94.19 55.70 51.08 FBS

0.1 57.45 49.85 50.41 BSM

0.1 56.91 51.99 52.53 WBS

0.1 94.89 64.74 53.35 FBS

0.2 56.61 51.38 51.33 BSM

0.2 61.72 56.59 55.04 WBS

0.2 97.07 80.47 56.88 FBS

0.4 NA 52.00 53.52 BSM

0.4 NA 67.28 58.54 WBS

0.4 NA 93.95 63.00 FBS

Table 9 AUR for LSB embedded images.

LSB �H� LSB �M� LSB �L�

0.05 62.39 68.42 71.94 BSM

0.05 54.22 56.91 55.90 WBS

0.05 89.13 97.30 96.92 FBS

0.1 68.13 78.28 85.21 BSM

0.1 60.14 65.69 64.40 WBS

0.1 95.26 99.35 99.48 FBS

0.2 74.63 87.30 94.45 BSM

0.2 69.18 75.54 76.94 WBS

0.2 96.62 99.71 99.74 FBS

0.4 80.78 92.50 97.37 BSM

0.4 78.94 87.06 88.33 WBS

0.4 98.33 99.80 99.80 FBS

0.6 83.85 93.27 97.52 BSM

0.6 83.20 90.86 91.52 WBS

0.6 99.18 99.80 99.80 FBS

Here H is high-, M is medium-, and L is low-quality images.

Table 10 AUR for LSB±embedded images.

LSBP �H� LSBP �M� LSBP �L�

0.05 59.16 61.91 67.21 BSM

0.05 54.17 57.14 56.30 WBS

0.05 89.07 97.30 96.96 FBS

0.1 62.11 69.46 79.60 BSM

0.1 60.29 66.18 65.26 WBS

0.1 95.38 99.31 99.47 FBS

0.2 67.97 81.99 89.34 BSM

0.2 69.95 77.82 79.24 WBS

0.2 96.62 99.73 99.76 FBS

0.4 80.92 92.74 95.68 BSM

0.4 79.77 89.36 90.42 WBS

0.4 98.94 99.80 99.80 FBS

0.6 85.82 96.52 97.64 BSM

0.6 84.10 92.73 93.28 WBS

0.6 99.27 99.80 99.81 FBS

Here H is high-, M is medium-, and L is low-quality images.

Table 11 AUR for StegoJapser embedded images.

SJ �H� SJ �M� SJ �L�

0.05 49.86 49.80 49.83 BSM

0.05 50.67 49.71 49.74 WBS

0.05 55.14 52.54 50.83 FBS

0.6 52.36 51.32 51.10 BSM

0.6 57.14 57.44 59.62 WBS

0.6 75.93 68.15 61.56 FBS

1 64.15 64.70 68.24 BSM

1 64.70 62.10 62.11 WBS

1 80.15 72.02 65.39 FBS

Here H is high-, M is medium-, and L is low-quality images.
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