
Scalable Computing: Practice and Experience

Volume 10, Number 4, pp. 429–441. http://www.scpe.org
ISSN 1895-1767
c© 2009 SCPE

PERFORMANCE STUDY OF THE FIRST THREE INTEL MULTICORE PROCESSORS

AMI MAROWKA∗

Abstract. The transition from sequential computing to parallel computing represents the next turning point in the way
software engineers design and write software. This paradigm shift leads the integration of parallel programming standards for
high-end shared-memory machine architectures into desktop programming environments. In this paper we present a performance
study of these new systems. We evaluate the performance of an OpenMP shared-memory programming model that is integrated
into Microsoft Visual Studio C++ 2005 and Intel C++ compilers on a multicore processor. We benchmarked using the NAS
OpenMP high-level applications benchmarks and the EPCC OpenMP low-level benchmarks. We report the basic timings and
runtime profiles of each benchmark and analyze the running results.

Key words: multicore, openMP, NPB, micro-benchmarks

1. Introduction. For many years parallel computers have been used only by an exclusive scientific niche.
Only universities and research institutions backed by government budgets or funded by multi-billion-dollar com-
panies could afford to purchase state-of-the-art parallel machines. Multiprocessor machines are very expensive
and demand expertise in system administration and programming skills. Parallel computing therefore remains
a specialized field of an exclusive community.

Now, two complementary technologies bring parallel computing to the desktop. On the hardware side is the
multicore processor for desktop computers, and on the software side is the integration of the OpenMP parallel
programming model into Microsoft Visual C++ 2005. These technologies promise massive exposure to parallel
computing that nobody can ignore, thus making a technology shift unavoidable.

The dual-core processors first appeared on the market six years ago [1]. The chip makers Sun and IBM were
the first: Sun introduced the Microprocessor Architecture for Java Computing and IBM launched the Power 4
dual-core processor. These processors, like their predecessors, were expensive and optimized for special-purpose
computing with intensive tasks running on high-end servers. The greatest change came with the dual-core
processors that AMD and Intel launched in 2005. Designed for desktop computers, these processors caused
prices to drop; thus, a desktop computer with a dual-core processor can now be bought for less than $500. This
price is affordable for students and computer science departments alike. But dual-core processors are only the
beginning. The chip makers are now working on the next generation of multicore processors that will contain
4, 8, and 16 cores on a single die. Unfortunately, writing a parallel code is more complex than writing a serial
code [2]. Parallel programming is extremely difficult. This is where the OpenMP programming model comes
into the picture [3]. OpenMP helps developers to create multithreaded applications more easily while retaining
the look and feel of serial programming.

The extra development effort and code complexity of parallel programming give rise to an obvious question–
Is it worthwhile? The best way to answer this question is by benchmarking. This paper presents a performance
study of OpenMP shared-memory programming model [3] that was integrated into Microsoft Visual Studio
C++ 2005 and Intel C++ compilers on multicore processors. The benchmarking was conducted using the NAS
OpenMP parallel benchmark suite [4] with different sizes of input classes, and the EPCC OpenMP directives
benchmarks [7, 12]. We report the basic timings and runtime profiles of each benchmark and analyze the
running results. A preliminary conference version paper of the study presented in this paper is [14]. This paper
presents a completed study and includes details and materials that have been studied since the first version,
such as related-works section; more tables and figures; more detailed tables and figures; benchmarking of Intel
Quad-core machine; and clearer presentation of comparison between different architectures by clock cycles.

The rest of this paper is organized as follows. Section 2 presents related work. In Sections 3, 4, and 5 we
provide brief overviews of the OpenMP, NPB benchmarks, and EPCC micro-benchmarks respectively. Section
6 is an in-depth analysis of the benchmarks results and Section 7 presents our conclusions.

2. Related Work. Multicore processors are ubiquitous and therefore they are studied intensively from
many aspects. Many chipmakers offer today multicore processors with different architectures. The work pre-
sented in this paper covers the first generations of multicore processors from Intel. The performances of these

∗Department of Computer Science, Shenkar College of Engineering and Design, Israel amimar2@yahoo.com

429

430 Ami Marowka

processors are compared by using OpenMP NPB benchmarks and the EPCCmicro-benchmarks on MSWindows
operating system.

Chunhua Liao et al [15] reported on experiments of OpenMP on Sun Fire V490 with Chip Multiprocessing
(Solaris 10 operating system) and a Dell Precision 450 workstation with Simultaneous MultiThreading(SMT)
technology (Linux kernel 2.6.3 SMP(Symmetric Multi-Processor) operating system). For this study they used
EPCCMicrobenchmark suite, subsets of the benchmarks in SPEC OMPM2001 and the NAS parallel benchmark
3.0 suites. The main conclusions of this study are that a straightforward OpenMP implementation for traditional
SMP architecture may not achieve good scalability on the Xeon system because of memory bandwidth bottleneck
and competition for the shared computing resources. They found that a HyperThreading-aware OS is important
for maintaining load balance and efficiently utilizing the resources of an SMT system and that the EPCC micro-
benchmarks results also indicated that the overhead of OpenMP synchronization implementation in a SMT
system is higher than that in an SMP system.

Kent Milfeld et al [16] studied the performance of two dual-core processors, Intel dual-core Woodcrest
(RedHat OS) and AMD dual-core Opteron (SuSE OS). In this work the costs of creating Pthreads and OpenMP
thread were investigated and the performance of thread/process scheduling and affinity in multi-cache systems
and the thread synchronization methods and costs were evaluated. Also, the L2 Cache Characteristics (latency)
and the impact of a large-page memory on the performance of four NPB-MPI benchmarks were studied. The
main conclusions of the authors are that applications need to be optimized for CLP, but it is still uncertain
which cache system, independent or shared, will be best. Moreover, shared L2 cache suffers from contention and
low level synchronization methods for multiple cores and thus will need to be implemented in thread control at
the user-program level to assure locality of the data. Nevertheless, independent cache systems are contention
free at the L2 cache level, and are probably more ideal for MPI codes, which employ non-shared paradigms.

Furlinger Karl et al [17] studied the scalability characteristics of medium and large variants of the SPEC
OpenMP benchmarks on large-scale shared memory multiprocessor machines using their own OpenMP profiling
tool, ompP. The experiments were conducted on 2 to 32 processors on a 32 processor SGI Alitx 3700 with
the medium variant while the large variant were tested on 32 to 128 processors, with increments of 16, of
a larger Altix 4700 machine. Four overheads categories used to evaluate the scalability: (S) corresponds to
synchronization overhead, (I) represents overhead due to imbalance, (L) denotes limited parallelism overhead
and (M) signals thread management overhead. The results show that 4 of 7 medium applications and 3 of 5
large applications achieved poor scalability due to load imbalance, thread management overhead, and small
parallel loops.

Grant and Afsahi [18] studied the optimal operating configuration of Hybrid chip multithreaded SMPs
for scientific applications and to identify the shared resources that might become a bottleneck to performance
under the different hardware configurations. The authors investigated a two-way dual-core Hyper-Threaded
(HT) Intel Xeon SMP server under single program and multi-program multithreaded workloads using the NAS
OpenMP benchmark suite. The experiments were conducted on a Dell PowerEdge 2850 SMP server with Red
Hat Linux Enterprise WS 4.1 distribution with Kernel 2.6.9-11 while LMbench tool used for measuring the L1,
L2, and main memory latencies of the processor. The performance results indicate that in the single-program
case, the CMP-based SMP and CMT-based SMP configurations have the highest average speedup across all
of the applications. The most efficient architecture is a single HT-enabled dual-core processor that is almost
comparable to the performance of a 2-way dual-core HT disabled system.

Curtis-Maury et al [19] evaluated the performance of OpenMP applications on simulated CMP and SMT
architectures using Simics simulation platform. The simulations evaluated the performance of NAS Parallel
Benchmarks suite. The authors found that the high level of resource sharing in SMTs results in performance
complications, should more than 1 thread be assigned on a single physical processor. CMPs, on the other hand,
are an attractive alternative. Their results show that the exploitation of the multiple processor cores on each
chip results in significant performance benefits. Moreover, the execution of multiple threads on each processor is
more efficient and predictable on CMPs than it is on SMTs due to the higher degree of resource isolation, which
results in fewer conflicts between threads co-executing on the same processor. Although adaptive run-time
techniques can improve the performance of OpenMP applications on SMTs, inherent architectural bottlenecks
hinder the efficient exploitation of these processors.

3. OpenMP Programming Model. OpenMP is a tool for writing multi-threaded applications in a
shared memory environment [3]. It consists of a set of compiler directives and library routines. The compiler

Performance Study of the First Three Intel Multicore Processors 431

generates a multi-threaded code based on the specified directives. OpenMP is essentially a comparatively recent
standardization SMP (Symmetric Multi-Processor) development and practice. By using OpenMP, it is relatively
easy to create parallel applications in FORTRAN, C, and C++. Compiler and third party applications support
is becoming more common.

An OpenMP program begins with a single thread of execution called the master thread. The master thread
spawns teams of threads in response to OpenMP directives, which perform work in parallel. Parallelism is thus
added incrementally: the serial program evolves into a parallel one. OpenMP directives are inserted at key
locations in the source code. These directives take the form of comments in FORTRAN and pragmas in C
and C++. The compiler interprets the directives and creates the necessary code to parallelize the indicated
tasks/regions. The parallel region is the basic construct that creates a team of threads and initiates parallel
execution. Most OpenMP directives apply to structured blocks, which are blocks of code with one entry point
at the top and one exit point at the bottom. The number of threads created when entering parallel regions is
controlled by the value of the environment variable OMP NUM THREADS. The number of threads can also
be set by a function call from within the program, which takes precedence over the environment variable. It is
possible to vary the number of threads created in subsequent parallel regions. Each thread executes the block
of code enclosed by the parallel region.

In general, there is no synchronization between threads. Different threads may reach the end of the parallel
region at different times. OpenMP does provide constructs for synchronization, but the code should not be
written in such a way that its output depends upon different threads executing statements at particular times.
OpenMP provides a number of constructs for thread synchronization and coordination, among them critical,
atomic, barrier, and master. These are sufficient for many needs, but OpenMP also provides a set of runtime
thread-locking functions that can be used for fine control. When all threads reach the end of the parallel region,
all but the master thread go out of existence and the master continues alone. The OpenMP directive clauses—
Private, Shared, and Default—control whether the listed variables are shared among different threads or are
private (local) to each thread.

OpenMP provides several constructs for sharing work among threads in a team. These are: Parallel for/do,
Parallel Sections, Workshare, and Single directive. These constructs are placed inside an existing parallel
region. The result is to distribute execution of associated statements among the existing threads. A number
of environmental variables may be set to control aspects of OpenMP execution; for example, the number of
threads, loop scheduling, and the enabling of nested parallelism and dynamic adjustment of the number of
threads.

OpenMP also provides a number of routines that may be called from within one’s code. These may be used
to get and set the number of threads, enable or disable dynamic thread allocation, check whether the code is
executing in parallel, etc. Changes in the runtime environment made by these routines take precedence over
the corresponding environment variables.

4. NAS Parallel Benchmark. We used the NPB OpenMP-C benchmark suite, based on NPB 2.3-serial
version, to evaluate the OpenMP performance on our multicore machines. Since the official OpenMP version
of the NBP benchmarks from NASA is written only in FORTRAN we used the NPB OpenMP-C version that
was developed as part of the Omni project [6]. The NAS Parallel Benchmarks (NPB) [4, 5] was devised by the
Numerical Aerodynamic Simulation Program of NASA for the performance analysis of highly parallel computers.
The NPB are valuable since they are rigorous and close to real-life needed applications. The NPB consist of five
kernels and three simulated applications. They all compute or simulate different algorithmic and computational
aspects of aerodynamic applications. For most of the kernels it is possible to select the problem size. Sometimes
the problem sizes are called: Class S or T (12x12x12), Class W (24x24x24), and Class A 64x64x64).

The following is a brief description of the five kernels we used in our work.

Kernel EP. In the embarrassing parallel benchmark, two-dimensional statistics are accumulated from a
large number of Gaussian pseudo-random numbers, which are generated according to a particular scheme that
is well suited for parallel computation.

Kernel MG. The MG (Multi-grid) benchmark is a simplified multi-grid kernel, which solves a 3-D Poisson
PDE. The Class W problem uses the same size grid as Class S but has a greater number of inner loop iterations.

Kernel CG. In the CG (Conjugate Gradient) benchmark, a conjugate gradient method is used to compute
an approximation to the smallest eigen value of a large, sparse, symmetric positive definite matrix. This kernel
is typical of unstructured grid computations applications.

432 Ami Marowka

Table 5.1

The Tested Multicore Machines

Platform No. of Cores Clock(GHz) L1 Cache L2 Cache Memory

Intel Pentium D 820 2 2.8 2x16KB 2x1MB 512MB
Intel Core 2 Duo E6300 2 1.86 2x32KB 1x2MB 1GB
Intel Core 2 Quad Q6600 4 2.4 4x32KB 2x2MB 512MB

Kernel FT. In the FT (3-D FFT PDE) benchmark, a 3-D partial differential equation is solved using
FFTs. This kernel performs the essence of many spectral methods. This benchmark is somewhat unique in
that computational library routines may be legally employed.

Kernel IS. The IS (Integer Sort) benchmark tests a sorting operation that is important in particle method
codes. This type of application is similar to particle-in-cell applications of physics, wherein particles are assigned
to cells and may drift out. The sorting operation is used to reassign particles to the appropriate cells.

The three simulated applications we used are as follows.

BT is a simulated CFD application that uses an implicit algorithm to solve 3-dimensional (3-D) compressible
Navier-Stokes equations. The finite differences solution to the problem is based on an Alternating Direction
Implicit (ADI) approximate factorization that decouples the x, y, and z dimensions. The resulting systems are
Block-Tridiagonal of 5x5 blocks and are solved sequentially along each dimension.

SP is a simulated CFD application that has a similar structure to BT. The finite differences solution to
the problem is based on a Beam-Warming approximate factorization that decouples the x, y, and z dimensions.
The resulting system has Scalar Pentadiagonal bands of linear equations that are solved sequentially along each
dimension.

LU is a simulated CFD application that uses the symmetric successive over-relaxation (SSOR) method to
solve a seven-block-diagonal system resulting from finite-difference discretization of the Navier-Stokes equations
in 3-D by splitting it into block Lower and Upper triangular systems.

5. EPCC Microbenchmarks. The EPCC micro-benchmark suite is a set of benchmarks that measure
the overhead incurred by OpenMP compiler directives of a specific OpenMP implementation [7, 12]. Three
classes of overhead can be measured by the EPCC micro-benchmark suite: synchronization, loop scheduling,
and array operations. The current release supports the OpenMP 2.0 standard. The overhead cost incurred by a
specific compiler directive is measured by comparing the sequential execution time of a section code containing
the compiler directive, and the parallel execution time of the same code. The measurements are repeated a few
times for statistical stability. By using the EPCCmicro-benchmark, the developer is able to compare the relative
efficiency of different implementations of OpenMP running on the same platform; choose the more efficient
construct of two semantically equivalent; and predict the overall performance of an application. Although there
are other tools in the market that were developed for similar purposes as EPCC, such as ompP [10] that performs
overhead analysis, and Sphinx [13], EPCC software is considered the de-facto standard of its kind.

6. Experimental Results. We tested the performance of the EPCC micro-benchmarks and the NAS
OpenMP kernels and applications on multicore machines. The list of the tested platforms is shown in Table
1. On the software side we used the OpenMP version 2.0 of Intel C++ OpenMP compiler 11.0 under the XP
operating system. All the benchmarks were also compiled by Microsoft Visual Studio C++ 2005 and evaluated
on the above multicore machines. However, the differences between the results obtained by using the Microsoft
and Intel compilers are negligible, so they are not shown here. Only the results obtained by Intel compiler
are shown here. All the measurements shown are in units of Kilo-Clock-Cycles (KCC) and Giga-Clock-Cycles
(GCC) for better comparison between different machine architectures. KCC is thousands of clock-cycles per
second and GCC is billions of clock-cycles per second.

First, we measured the overhead cost of the OpenMP directives by using the EPCC micro-benchmarks. In
general, it is an important practice to start parallel application benchmarks by examining the overhead incurred
by the primitive parallelism functions used by the parallel programming model on the testbed machine. This
way the programmer has a priori knowledge of the effects of various possible overhead sources on the total
performance of the applications. Tables 2-6 and figures 1-5 show results measured on the Intel Pentium D, Intel

Performance Study of the First Three Intel Multicore Processors 433

Table 6.1

Synchronization overheads(in KCC) of 1, 2 and 4 threads on Pentium D, Core 2 Duo and Core 2 Quad machines

Pentium D Core 2 Duo Core 2 Quad
Num of Threads 1 2 4 1 2 4 1 2 4

Parallel 2.8 37.3 234 1.3 16.1 65 1.2 46.6 45.2
for 0.2 14.5 292 0.1 6.2 65 0.1 11.1 12.2

Parallel-for 2.9 39.4 221 1.3 15.1 64 1.3 48 45.5
Barrier 0.2 14.0 288 0.01 6.2 63 0.02 10.9 11.7
Single 0.1 9.6 266 0.09 5.3 2.0 0.07 11.9 11.4
Critical 0.2 1.0 2.0 0.13 0.93 0.5 1.2 1.0 14.4

Lock-Unlock 0.2 1.4 2.5 0.16 0.93 0.8 1.3 1.8 10.6
Ordered 0.5 27.1 27.1 0.24 10.7 15.0 0.25 23.5 20.3
Atomic 0.1 0.3 0.4 0.07 0.22 0.20 0.07 0.3 1.0

Reduction 3.0 40.2 260 0.13 16.1 17.0 1.2 50 52

Core 2 Duo and Intel Core 2 Quad machines while running EPCC micro-benchmarks compiled by Intel C++
compiler 9.1.

Table 2 shows the OpenMP synchronization overheads measured by running the EPCC micro-benchmarks
with 1, 2 and 4 threads. Figure 1 is a bar chart of the OpenMP synchronization overheads measured by running
the EPCC micro-benchmarks with two threads. First, it can be observed from figure 1 that the overhead cost
is less than 50K cycles in all the cases. This low overhead has a negligible effect on the NAS applications
performance that will be discussed later. Second, the OpenMP directive overheads on the Intel Core 2 Duo
are up to 50% less than the overheads incurred by the directives on the Intel Pentium D and the Intel Core 2
Quad. This improvement is mainly due to the shared L2 cache memory architecture of the Intel Core 2 Duo
processor compared to the distributed L2 cache memory of the Intel Pentium D. The Intel Core 2 Quad processor
contains two separate pairs of dual-core with shared L2 cache each. However, when two threads are spawned,
the operating system maps each one of them to a different pair of dual-core. The physical separation of four
cores to two pair of dual-core is the cause of the increase in the synchronization costs as shown in figure 1 and
Table 2. On the other hand, when four threads are invoked on a quad-core processor, the operating system
maps each one of the four threads to a different core and thus there is no competition between the threads
on the available cores. The result is less overhead due to better scheduling as can be shown in Table 2. For
example, the barrier synchronization overheads on the Intel Pentium D and the Intel Core 2 Duo (which are
dual-core processors) with four threads are 288 KCC and 63 KCC respectively, while the barrier synchronization
overhead on the Intel Core 2 Quad with four threads is only 11.7 KCC. We will elaborate on these architectures
later. Third, the overhead of a single core is relatively high. Thus, it is better for single threaded applications
to be compiled with the OpenMP option set to off.

Further analysis of the results leads to the following conclusions: the combined directive Parallel-For is
more efficiently used than the Parallel and the For directives, which are used separately; it costs less to use
the Critical directive than to use the Lock-Unlock pair directives; the Barrier and the Single directives have a
relatively low overhead; the Order and the Reduction clauses have relatively high costs, as can be expected; and,
finally, the overhead of the Atomic directive is negligible and thus is recommended for use, where it is possible,
instead of the Critical or the Lock-Unlock directives. We omit the discussion on scalability with respect to the
number of cores because it is useless to do such an analysis when the machines have only two and four cores.

Table 3 shows the Array (or privatization) overheads of four clauses: Private, Firstprivate, CopyPrivate,
and Copyin for 1, 2 and 4 threads on the tested machines and figure 2 is a bar chart of the results for the case of
two threads. First, it can be observed again that the Intel Core 2 Duo processor presents lower overheads than
the Pentium D and the Core 2 Quad processors when using two threads. However, when using four threads the
Intel Core 2 Quad processor is more efficient. For example, to access a private array on the Intel Pentium D and
the Intel Core 2 Duo with four threads costs 160 KCC and 98 KCC respectively, while it costs only 36.2 KCC on
the Intel Core 2 Quad with four threads. Moreover, the results show that the Private, Firstprivate, and Copyin
clauses are incurred acceptable overhead costs for the array allocation process. The CopyPrivate demonstrates
excellent performance and a negligible overhead cost that enables super-efficient inter-threads communication.

434 Ami Marowka

Table 6.2

Array privatization overheads(in KCC) of 1, 2 and 4 threads on Pentium D, Core 2 Duo and Core 2 Quad machines.

Pentium D Core 2 Duo Core 2 Quad
Num of Threads 1 2 4 1 2 4 1 2 4

Private 2.85 37.9 160 2.0 22.8 98 1.4 52 36.2
FirstPrivate 2.8 44.4 274 2.0 22.4 100 1.4 53.9 35.7
CopyPrivate 0.2 0.28 0.28 0.05 0.08 0.05 0.05 0.08 0.05

CopyIn 2.8 51.1 211 2.0 24.0 102 1.5 52.9 100

Table 6.3

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Pentium D machine.

Threads Pentium D
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.8 0.2 0.05 0.2 0.03 0.06 0.05 0.05
2 16.8 15.3 18.6 20.5 15.6 21 15.2 15
4 294 290 296 294 292 292 292 292

Dynamic 1 25 12 8.6 6.3 3.7 3.1 2.6 1.8
2 92 50 40 30 25 23 20 19
4 425 352 327 308 300 294 288 282

Guided 1 0.22 2.5 2.4 2.2 2.3 1.8 2.3 2.4
2 27 25 24 23 22 23 19 18
4 305 302 300 300 297 296 295 294

Table 6.4

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Core 2 Duo machine.

Threads Core 2 Duo
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.07 1.54 1.8 1.9 2.0 2.5 3.0 4.0
2 7.4 6.2 6.2 6.4 7.5 7.5 6.0 6.2
4 74 74 74 74 74 74 74 74

Dynamic 1 16.0 8.0 4.0 2.0 1.2 2.7 0.65 0.55
2 39 21 15 12 10 8.7 8.2 8.7
4 138 104 87 81 79 74 72 72

Guided 1 0.5 0.5 0.5 1.3 0.5 0.5 0.5 0.94
2 10 8.7 9.6 9.3 8.2 7.5 7.5 7.5
4 80 80 80 79 80 80 80 80

Table 6.5

OpenMP Loop Scheduling overheads (in KCC) of 1, 2 and 4 threads on Intel Core 2 Quad machine.

Threads Core 2 Quad
Chunk size 1 2 4 8 16 32 64 128

Static 1 0.2 0.3 0.4 0.5 0.5 0.6 0.6 2.4
2 10.3 10.0 9.8 7.8 7.0 10.1 9.9 9.8
4 12.8 11.6 11.7 11.0 10.8 11.0 11.0 26.4

Dynamic 1 15.7 9.5 6.3 4.7 1.4 3.4 3.2 0.6
2 89 25 13.3 17.4 15.8 10.5 11.4 13.6
4 391 182 88 28.4 20.2 18.5 17.1 16.6

Guided 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 16.4 10.5 12.5 14.3 15.7 8.8 13.5 12.0
4 24.6 23.0 21.5 19.3 18.4 16.6 15.8 15.2

Performance Study of the First Three Intel Multicore Processors 435

Table 6.6

Performance (in GCC) of EP, FT, MG, CG, BT, SP, and LU benchmarks for 1, 2 and 4 threads, and problem class W on
Pentium D, Core 2 Duo and Core 2 Quad machines.

Pentium D
Threads EP FT MG CG BT SP LU

1 33.68 2.57 2.54 2.35 33.76 99.96 66.05
2 16.66 2.52 1.7 2.18 29.7 146.46 37.12
4 46.64 2.04 2.85 3.19 37.91 1304 3967

Core 2 Duo

1 15.14 1.24 1.48 1.45 14.32 47.69 35.4
2 7.75 1.19 0.98 1.39 13.24 64.43 20.68
4 7.7 0.98 1.17 1.56 14.48 292 1266

Core 2 Quad

1 15.12 1.22 1.41 1.46 22.03 47.54 33.93
2 7.53 1.15 0.79 1.0 19.96 56.61 19.89
4 3.96 0.81 0.64 0.6 19.96 76.34 12.14

0

5

10

15

20

25

30

35

40

45

50

Cl
oc

k C
yc

les
 (x

10
00

)

Pa
ra

lle
l

Fo
r

Pa
ra

lle
l-F

or

Ba
rri

er

Si
ng

le

Cr
itic

al

Lo
ck

-U
nlo

ck

Or
de

re
d

At
om

ic

Re
du

cti
on

Pentium D

Core 2 Duo

Core 2 Quad

Fig. 6.1. OpenMP Synchronization overheads of two threads on Intel Pentium D, Intel Core 2 Duo and Intel Core 2 Quad
machines.

Tables 4, 5 and 6 show the OpenMP loop scheduling overheads of the Static, Dynamic, and Guided clauses
for chunk sizes of 1 to 128 when running 1, 2 and 4 threads, for Intel Pentium D, Intel Core 2 Duo and Intel
Core 2 Quad machines respectively. Figures 3-5 are bar charts of the results for the case of two threads.

It can be observed that each clause has a different pattern. In the case of Intel Pentium D and two threads
(Figure 3), the block cyclic scheduling (Static) presents similar overhead for all chunk sizes (∼ 15K cycles). The
Dynamic scheduling overhead decreases rapidly from the maximum point at a chunk size of one (92K cycles) to
the minimum point at a chunk size of 128 (19K cycles). The Guided scheduling overhead has a similar pattern
but with a more moderate decreasing curve. The maximum point is at a chunk size of one (92K cycles) and the
minimum point is at a chunk size of 128 (14K cycles). The conclusion is that by increasing the chunk size the
loop scheduling overhead is minimized.

436 Ami Marowka

0

10

20

30

40

50

60

Cl
oc

k C
yc

les
 (x

10
00

)

Pr
iva

te

Fir
stP

riv
ate

Co
py

-P
riv

ate

Co
py

in

Pentium D Core 2 Duo Core 2 Quad

Fig. 6.2. OpenMP Array Scheduling (privatization) overheads of two threads on Intel Pentium D, Intel Core 2 Duo and Intel
Core 2 Quad machines.

In the case of Intel Core 2 Duo and two threads (Figure 4), the loop scheduling overheads present similar
pattern compared to the Intel Pentium D, but the overheads are up to 50% lower than those of the Intel Pentium
D. The block cyclic scheduling (Static) is reach its optimal overhead at a chunk size of 64 (6K cycles). The
Dynamic scheduling overhead decreases rapidly from the maximum point at a chunk size of one (48K cycles) to
the minimum point at a chunk size of 64 (8K cycles). The Guided scheduling overhead has a similar pattern
but with a more moderate decreasing curve. The maximum point is at a chunk size of one (10K cycles) and the
minimum point is at a chunk size of 128(7K cycles).

In the case of the Intel Core 2 Quad and two threads (Figure 5), the loop scheduling overheads present
similar pattern compared to the Intel Pentium D, but the overheads are more fluctuated. The block cyclic
scheduling (Static) is reach its optimal overhead at a chunk size of 16 (7K cycles). The Dynamic schedul-
ing overhead decreases rapidly from the maximum point at a chunk size of one (88K cycles) to the minimum
point at a chunk size of 16 (10K cycles). The Guided scheduling overhead has a similar pattern but with a
more moderate decreasing curve. The maximum point is at a chunk size of one (17K cycles) and the mini-
mum point is at a chunk size of 32(8K cycles). It can be observed again that in the case of the Intel Core
2 Quad and four threads (Table 6), the scheduling overhead is up to twice compared to the case of two
threads but still reasonably, in contrast to the scheduling overhead associate with four threads on the Intel
Pentium D and the Intel 2 Core Duo where the overhead costs, due to less cores, are unacceptable (Table 4
and 5).

The bottom line of the EPCC micro-benchmarks results is that the overhead incurred by the OpenMP
directives and the clauses are low and will not harm the performance of the NBP application benchmarks.

The NPB benchmarks were conducted with three different input sizes: S, W, and A for 1, 2 and 4 threads.
The total running time of each benchmark was measured by wall-clock time. The speedup, efficiency, and the
overhead of each run were calculated as follows:

Speedup = T1/Tp,k where T1 is the time measured for running with a single core and Tp,k the time measured
with p cores and k threads.

Efficiency = T1/(p · Tp) where T1 is the time measured for running with a single core and Tp the time
measured with p cores.

Performance Study of the First Three Intel Multicore Processors 437

0

10

20

30

40

50

60

70

80

90

100

Clo
ck

 Cy
cle

s (
x1

00
0)

Sta
tic

Dy
na

mi
c

Gu
ide

d

2 Threads

1 2 4 8 16 32 64 128

Fig. 6.3. OpenMP Loop Scheduling overheads of two threads on Intel Pentium D machine.

0

5

10

15

20

25

30

35

40

Clo
ck

 Cy
cle

s (
x1

00
0)

Sta
tic

Dy
na

mi
c

Gu
ide

d

2 Threads

1 2 4 8 16 32 64 128

Fig. 6.4. OpenMP Loop Scheduling overheads of two threads on Intel Core 2 Duo machine.

Overhead = Tp,k − T1/p where T1 is the time measured for running with a single core and Tp,k the time
measured with p cores and k threads.

We ran the original benchmarks that appear in [6] without any modification. Table 7 presents the perfor-
mance (in Giga clock cycles) of class W (24x24x24) of seven different benchmarks in the NAS OpenMP suite
for 1, 2 and 4 threads on the tested machines. Figure 6 is a bar chart of the calculated speedup of the NPB
benchmarks, for the case of two threads, on the Intel Pentium D, the Intel Core 2 Duo and the Intel Core 2

438 Ami Marowka

0

10

20

30

40

50

60

70

80

90

Clo
ck

 Cy
cle

s (
x1

00
0)

Sta
tic

Dy
na

mi
c

Gu
ide

d

2 Threads

1 2 4 8 16 32 64 128

Fig. 6.5. OpenMP Loop Scheduling overheads of two threads on Intel Core 2 Quad machine.

Quad machines. However, the behavior of the benchmarks results for input classes S and A are similar to
the input class W. The results of the IS kernel are omitted due to a problem known to the developers of the
benchmarks suite , which they will fix in the next release. Figure 7 is a bar graph that depicts the percentage
of the computation time and the overhead time as part of the total execution time, in the case of the Intel
Pentium D machine.

Analysis of these results leads to the following findings.

The EP Kernel falls into the category of applications termed “embarrassingly parallel” based on the trivial
partition ability of the problem, while incurring no data or functional dependencies, and requiring little or no
communication between processors. It is included in the NPB suite to establish the reference point for peak
performance on a given platform. Therefore, it is not surprising that the EP kernel achieved perfect speedup
(∼ 2.0) for two threads.

As can be observed from Figure 6, the speedups of the Intel Pentium D and the Intel Core 2 Duo processors
are similar, with slight improvement in the case of Intel Core 2 Quad processor. The LU decomposition appli-
cation, in case of Intel Pentium D, shows good speedup and efficiency for two cores, 1.77 and 0.88 respectively,
but in the case of four threads the speedup drops drastically to 0.01 due to fewer cores than threads. The Intel
Core 2 Duo processor achieves speedup of 1.71 and efficiency of 0.85 for two threads but drops to speedup of
0.02 for the case of four threads. On the other hand, the Intel Core 2 Quad achieves speedup 1.7 (0.85 efficiency)
and 2.73 (0.68 efficiency) for two and four threads respectively (Table 7). The MG kernel shows more modest
speedups (1.49 and 1.51) and efficiency (0.74 and 0.75) for two threads while for four threads the speedups drop
to 0.89 and 0.79 on the Intel Pentium D and the Intel Core 2 Duo respectively. In the case of Intel Core 2 Quad
the speedups are 1.78 (0.89 efficiency) and 2.20 (0.55 efficiency) for two and four threads respectively.

The rest of the benchmarks (FT, CG, BT, and SP) show poor speedups and efficiencies. These results can
be explained by the logical structure of the applications, which do not match the underlying architectures of
the multicore processors. For example, the FT kernel uses FFT on a complex array to solve a three-dimensional
partial differential equation. Communication patterns in this kernel are structured and long distance in nature.
This benchmark represents the essence of many “spectral” codes or eddy turbulence simulations. The CG kernel
is used in conjugate gradient methods to approximate the smallest eigen-value of a symmetric, positive definite,
sparse matrix with a random pattern of non-zeros. The communication patterns in this kernel are long- distance
and unstructured.

Performance Study of the First Three Intel Multicore Processors 439

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

EP FT MG CG BT SP LU

Benchmarks

Pentium D
Core 2 Duo
Core 2 Quad

Fig. 6.6. NPB speedup results of EP, FT, MG, CG, BT, SP, and LU benchmarks for 2 threads; problem class W; on
Pentium D, Core 2 Duo and Core 2 Quad machines.

These observations reveal the following conclusions. First, all the benchmarks, except EP, achieve very poor
efficiency when the number of threads (4) is greater than the number of cores (2) which occurs in the cases of
Intel Pentium D and Intel Core 2 Duo processors. In the case of Intel Core 2 Quad processor and four threads
there is improvement in the speedups when changing the number of threads from two to four threads, except
to the SP benchmark that exhibits poor performance in all the cases. It happens because the overhead caused
by context-switch operations of the competing threads on the CPU resources is high. Moreover, two threads
sharing a single core lead to cache conflicts that decrease the hit rate and thus degrade the performance.

The above poor performance of the NPB applications brought us, on the one hand, to extend our study
further and to look for possible solutions to improve the performance but without restructuring the application
programs, and on the other hand, to extend our understanding of how the underlying hardware works.

The Intel Pentium D processor has a different cache-memory architecture than Intel Core 2 Duo and Intel
Core 2 Quad processors [8, 9]. The Pentium D 820 processor is a “distributed” cache-memory with two separately
L1 caches of 16KB each and two separately L2 caches of 1MB each. On the other side, the Intel Core 2 Duo
E6300 is a “shared” cache-memory with two separate L1 caches of 32KB each and a shared L2 cache of 4MB
and the Intel Core 2 Quad Q6600 has two separate pairs of dual-core with 4MB shared L2 cache, and 2x32KB
L1 caches. To understand the implications of these three different architectures on the performance, lets look
at the following example.

Let A[100] be a shared array used by two threads running on two different cores. The threads are writing
the array at the same time. One thread accesses the first part of the array, A[0-49], and the second one accesses
the second half of the array, A[50-99]. In the case of the Intel Pentium D, array A will be copied into the L1
and the L2 caches of each core. Now, each time one of the threads completes a write operation, there is a need
to update the copy of the array A in the neighboring core in order to maintain the caches consistency. This
update is costly in terms of CPU cycles, as can be seen in Table 8. However, we expected to an improvement in
the case of Intel Core 2 Duo processor because the L2 cache is shared, but we were disappointed to discover that
the speedups of NBP benchmarks showed only ∼ 4% improvment (in the case of FT, MG and SP) compared
to the Intel Pentium D, and ∼ 4% worsening (in the case of CG, BT and LU) when running with two threads.

So, we continued to explore further and we found another obstacle that we were not aware of: the shared
L2 cache of the Intel Core 2 Duo is not banked. The L2 cache serves only one core at any given clock cycle, so
a banked organization will not help. A round robin scheme is used to allocate L2 cache services to the cores for

440 Ami Marowka

0%

20%

40%

60%

80%

100%

EP FT MG CG BT SP LU

Benchmarks

Computation Overhead

Fig. 6.7. NPB computation time vs. overhead time of EP, FT, MG, CG, BT, SP, and LU benchmarks for 2 threads and
class W on Pentium D machine.

Table 6.7

False sharing penalties.

Case Data Location Latency(cycles/nsec)

L1 to L1 Cache L1 14 core + 5.5 bus

Through L2 L2 14 core

Through Main 14 core + 5.5 bus
Memory Memory + 40-80 nsec

scenarios when both cores request L2 service. The false sharing penalty of the Intel Core 2 Duo is depicted in
Table 8 and was taken from [9].

We looked further for optimization possibilities for improving the performance of the applications but
without need to rewritten the programs.

First, we used a thread affinity option to tie a thread to its data to improve data locality [11]. Since OpenMP
does not support thread affinity capabilities we used the Windows operating systems SetThreadAffinityMask

option. Monitoring the threads scheduling by the Intel VTune performance analyzer confirmed that each thread
was tied to one core during the program execution. Unfortunately, we did not observe any improvement in the
performance of the applications. Second, we changed the loop iterations scheduling by using the OpenMP
schedule clause. The fact that most of the parallelism of the NPB applications is done by for work-sharing,
encouraged us to find the optimal scheduling. We tried the Static, Dynamic, and Guided options with 1, 4, 8,
16, 32, 64, and 128 chunk sizes. Unfortunately, we cannot report any significant improvement in the applications
performance.

To summarize this section we list the key observations of our study.
• The impact of the parallel overheads of the OpenMP parallel mechanisms on the performance of NPB
benchmarks is negligible.

• The new Intel multicore processors reduce the parallel overheads incurred by the OpenMP mechanisms
compared to their predecessors.

• It is recommended to turn off the OpenMP compiler option when running single threaded applications
because the relatively high overhead incurred by OpenMP.

Performance Study of the First Three Intel Multicore Processors 441

• It is recommended to use one thread per processor-core to prevent the competition of two threads on
a single core.

• Using the OpenMP directives Parallel and For together rather than separately incur less overhead.
• It is recommended to use the low-overhead OpenMP Atomic directive, where it is possible, instead of
other locking mechanisms.

• OpenMP Loop scheduling incurs less overhead when the chunk size increases.
• The poor performance of five NPB benchmarks (FT, MG, CG, BT, and SP) is due to lack of matching
between the logical structures of the applications and the underlying architecture of the multicore
processors.

7. Conclusions. Multicore processors will dominate scientific computing, and commercial computing as
well, in the near future. Understanding their performance characteristics is essential for design scalable and
efficient applications. In this paper, we presented the efficiency of applications from NPB OpenMP-C suite and
the overhead measurements of OpenMP directives and clauses running on Intel Pentium D, Intel Core 2 Duo
and Intel Core 2 Quad machines using MS Visual studio C++ 2005 and Intel C++ compilers.

The benchmarking results show that most of the applications achieved poor performance, not because
of the overhead incurred by the OpenMP directives, but because the NPB applications induced computation
and communication patterns which are not cache friendly and result in a lot of false sharing situations. The
diversified cache architectures of multicore processors call for new parallel programming languages and compilers
that can use the hierarchy of cache memory systems in an efficient manner.

REFERENCES

[1] Geer D. (2005), “Chip makers turn to multicore processors,” IEEE Computer.
[2] Marowka A. (2007), “Parallel Computing on Any Desktop,” Communication of ACM, Vol. 50, Issue 9, pp. 74-78.
[3] “OpenMP Application Program Interface,” http://www.openmp.org.

[4] Bailey D. H., Harsis T., Saphir W., Wijngaart R. V., Woo A., and Yarrow M., (1995) “The NAS Parallel Benchmarks 2.0,”
Report NAS-95-020, Nasa Ames Research Center.

[5] Jin H., Frumkin M., and Yan J., (1999) “The OpenMP Implementation of NAS Parallel Benchmarks and Its Performance,”
Report NAS-99-011, Nasa Ames Research Center.

[6] “The Omni Project,” http://phase.hpcc.jp/Omni/home.html

[7] Bull M. (1999), “Measuring Synchronisation and Scheduling Overheads in OpenMP,” Proceeding of First European Workshop
on OpenMP (EWOMP ’99) Lund, Sweden.

[8] Doweck J., (2006) “Inside Intel R© CoreTM Micro architecture and Smart Memory Access,” A White Paper, Intel.
[9] Mendelson A., Mandelblat J., Gochman S., Shemer A., Chabukswar R., Niemeyer E. and Kumar A., (2006) “ICMP Implemen-

tation in Systems Based on the Intel R© CoreTM Duo Processor,” Intel R© Technology Journal, Vol. 10, Issue 02.
[10] Furlinger K., Gerndt M., and Dongarra J., (2007) ”Scalability Analysis of the SPEC OpenMP Benchmarks on Large-Scale

Shared Memory Multiprocessors,” Proceeding of ICCS.
[11] Tian T., (2007) “Tips for effective usage of the shared cache in multicore architectures,” Embedded magazine, http://

embedded.com/showArticle.jhtml?articleID=196902691

[12] Bull M. and O’Neill D., (2001) “Microbenchmark Suite for OpenMP 2.0,” Proceedings of the Third European Workshop on
OpenMP (EWOMP’01), Pages: 41–48, Barcelona, Spain.

[13] “Sphinx Micro-benchmark Suite,” http://www.llnl.gov/CASC/RTS_Report/sphinx.html

[14] Marowka A., (2008) “Performance of OpenMP Benchmarks on Multicore Processors,” 8th International Conference on Algo-
rithms and Architectures for Parallel Processing(ICA3PP), Agia Napa, Cyprus, LNCS proceeding Vol. 5022 pp. 208-219.

[15] Liao C., Liu Z., Huang L., and Chapman B. (2005) “Evaluating OpenMP on Chip MultiThreading Platforms,” Proceeding of
first international workshop on OpenMP (IWOMP 2005), Eugene, Oregon USA.

[16] Milfeld K., Goto K., Purkayastha A., Guiang C. and Schulz K. (2007) “Effective Use of Multi-Core Commodity Systems,”
The 8th LCI International Conference on High-Performance Clustered Computing, Lake Tahoe, California, 2007.

[17] Furlinger K., Gerndt M. and Jack Dongarra J. (2007) “Scalability Analysis of the SPEC OpenMP Benchmarks on Large-Scale
Shared Memory Multiprocessors,” Proceeding of ICCS, LNCS Volume 4488, pp. 815–822.

[18] Grant E. R. and Afsahi A. (2007) “A Comprehensive Analysis of OpenMP Applications on Dual-Core Intel Xeon SMPs,”
IEEE Proceeding of Parallel and Distributed Processing Symposium (IPDPS 2007).

[19] Curtis-Maury M., Ding X., Antonopoulos C. D. and Nikolopoulos D. S. (2008) “An Evaluation of OpenMP on Current and
Emerging Multithreaded/Multicore Processors,” M. S. Mueller et al. (Eds.): IWOMP 2005/2006, LNCS 4315, pp. 133–144,
2008.

Edited by: Marcin Paprzycki
Received: May 25th, 2009
Accepted: November 25th, 2009

