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ABSTRACT The intensive research and development efforts directed towards large-scale complex industrial

systems in the context of Industry 4.0 indicate that safety and reliability issues pose significant challenges.

During online operation, system performance degradation will lead, not only to economic losses, but also

potential safety hazards. In the existing research and technical routes, the target of the fault diagnosis systems

is to trigger alarms to report the fact of the existence of malfunctions as well as the underlying reasons

accurately. However, it remains unanswered how urgent it is to fix it, and what degrees of fault-tolerance,

maintenance, and fault recovery are needed. Further analyses are necessary to evaluate the impact of the

detected fault on the plant-wide performance. In this article, to enable a more comprehensive and precise

description of the plant-wide operational status, the roles of the commonly used performance metrics, the

state-of-the-art performance evaluation approaches, as well as the performance-oriented and plant-wide

process monitoring techniques are investigated. On this basis, an alternative straightforward technical route,

embedded in the cyber-physical-social system framework is proposed. A roadmap including the key research

questions, the future research directions, and an outlook about the future vision is presented.

INDEX TERMS Design technical route, distributed implementation, fault diagnosis, industrial cyber-

physical system (ICPS), plant-wide process, process monitoring.

I. INTRODUCTION

Industrial cyber-physical system (ICPS) is the central research

focus in the context of Industry 4.0 [1]. It aims to achieve

higher control and management degree by taking into account

the physical entities and the communication, control and cog-

nition networks simultaneously. From a systems and control

perspective, ICPS design involves dealing with the boost-

ing complexity and uncertainty resulting from: (i) Stochas-

tic and dynamic external environment in which the physical

entities operate. (ii) Varying boundary conditions due to the

scarcity of production capability and the shared resources. (iii)

Distributed implementation on geographically dispersed in-

frastructure. (iv) Uncertainties from human participants, e.g.,

the indeterminate role of managers in sophisticated decision-

making processes. At the technical level, there is a strong drive

to facilitate interdisciplinary research with a special emphasis

on the collaboration of the systems and control community

with the ICT (information and communication technology)

sector. For large-scale industrial processes, how to exploit the

full capability of ICPS while ensuring the plant-wide safety

and performance has attracted extensive interests from both

the academia and the industry [2]–[9].

In 2016, a fascinating demonstration was given by Dr. Colin

J. Parris from the GE Global Research Center to show how,

with the aid of the digital twin techniques and a third-part

app, a steam turbine operating at Southern California can be

remotely and automatically reconfigured to avoid a potential

damage to its rotor, to prolong its remaining useful life and to

minimize unexpected maintenance costs [10]. However, this

is still hardly realizable for the general industry today due to

a lack of the connectivity in the fleets of assets as well as

a constant tracking of the entire life cycle of the processes.
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An uncontinuous thread makes it unconfident how a decision

made to deal with one problem will affect the other subsys-

tems and the performance of the plant-wide process. Some

kind of backbone is urgently required to associate the key

relevant factors for optimal trade-off.

Towards elevating the flexibility and resilience design of

large-scale ICPS control and monitoring, autonomous sub-

systems are often incorporated in the large-scale industries.

However, this leads to decentralization and the division and

separation of the decision-making processes. Without effec-

tive means of supervision and control, the coordination of

various functional units for the unified global targets will be

impossible [11]–[13]. In this context, performance-oriented

monitoring and control systems play an essential role for the

top-level managers to retain the capability to promote strategic

initiatives from the plant-wide perspective and to fulfill the

plant-wide performance expectations.

Due to the universal existence of the broken thread in in-

dustrial practice and the introduction of autonomy, the hierar-

chical performance evaluation structure (both downstreaming

and upstreaming) is no longer linear. The top-level manage-

ment system needs to concede partial decision-making power

to the lower levels where necessary local information is avail-

able and the boundary conditions are clearly defined, so that

the decisions are context-aware, timely and free of transmis-

sion errors. By this means, the lower level modules of various

functionalities can determine their own configurations with

self-awareness. They hold the right to determine the operation

modes, division of workload, scheduling, medium-term and

long-term planning, etc. In the meantime, in order to retain

control of the global strategies and targets, plant-wide per-

formance indicator (PWPI) is necessary for the plant-wide

monitoring tasks, the definition of which is dependent on the

existing approaches for performance evaluation. It is then used

for the plant-wide monitoring purpose. Based on the review of

the recent progress, it is found that a majority of the design

routes are following the same pattern and that data-based

approaches take up a high proportion, as will be depicted in

Fig. 4 (a) and discussed in Section V. These observations

motivate this work, and the intended contributions include the

following aspects.
� The evaluation indices of the performance of the system,

the process performance metrics, the state-of-the-art per-

formance evaluation approaches, and the key issues re-

garding the distributed implementation are reviewed.
� After revealing the bottleneck induced by the current

research technical route, an alternative, more straight-

forward strategy for plant-wide process monitoring is

suggested. The future vision is depicted to encourage

further research efforts based on plant-wide performance

degradation.
� From a broader perspective, the impact of the novel prob-

lems and techniques in the Industry 4.0 era are discussed,

especially the necessity of the deeply intertwined design

of the process safety and cyber-security. On this basis, a

number of future research directions are recommended.

Research methodology: The sources of the referred articles

include the authors’ focus on the related topics as well as

the dedicatedly designed searches from top-tier journals and

conferences. The searching engines and the main databases

used include Web of Science (Core collection), IEEE Xplore,

Google, etc. The list of references is a bit IEEE-centric.

The index terms include “plant-wide,” “Industry 4.0,” “in-

dustrial cyber-physical system,” “key performance indicator,”

“remaining useful life,” “performance degradation,” “process

health management,” “framework” and some similar items.

The year range was specified as the past ten years (2010–

2020), with an intentional incline to the recent advancement

over the past five years. Despite this, the most classical and

influential articles/books, published even if over twenty years

ago, are cited whenever necessary. Please note that this paper

is not a review-type article, but more significantly oriented to

the future R&D. A visionary roadmap not only needs to break

through inertial thinking and possess a global perspective,

but also needs to exploit the pattern in the value chain and

the relationship between the stakeholders [14]. Towards this,

this work investigates what prospects are expected powered

by the novel research route and suggests the necessary key

technologies towards such a future. This part benefits in part

from the insightful articles at IEEE Future Directions (https:

//cmte.ieee.org/futuredirections/) and the references therein.

The preliminary problems of study were initially presented

at the international conference IEEE ICPS 2018 [15] and

small-scale workshops/seminars focusing on plant-wide pro-

cess monitoring problems.

The rest of the paper is unfolded as follows. The next

section summarizes the basic problems and tasks. Towards

performance evaluation system construction, Section III in-

troduces four main evaluation indices while the approaches

to calculating them are the focus of Section IV. Afterwards,

Section V discusses the existing approaches to plant-wide

and performance-oriented process monitoring. Section VI-A

presents an alternative research route while the following sub-

section depicts the future vision as well as the core research

directions and open research questions towards such prospect.

The last section concludes the paper.

II. PROBLEM STATEMENT

The focus of this work is on the integrated design framework

and the technical routes for automatic monitoring systems

for safety-critical ICPS, such as process industry, intelligent

factories and smart grids. Such systems are usually physically

interconnected, very large in scale, geographically dispersed,

and have hierarchical structures. From a macroscopic point

of view, plant-wide monitoring enables global capabilities

in revealing the abnormalities, coordination, management,

and optimization in a reliable manner [12]. There have been

emerging practical demands for various processes and plants

demonstrated in the literature, including chemical reaction

plants [11], [16], [17], mineral processing plant [2], Zinc hy-

drometallurgy plant [4], oil fractionator process [18], etc. The

responsibilities of the plant-wide monitoring systems mainly
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include plant-wide performance evaluation, plant-wide fault

diagnosis and prognosis, as well as (in the general concept)

plant-wide performance optimization with maintenance.

a) Plant-wide performance evaluation: The overall perfor-

mance is characterized by the PWPI, which refers to the met-

ric of overall production and operation stability and perfor-

mance, including production efficiency, total output, idle rate

(scheduling efficiency), stability margin, etc. [15], [19], [20].

Please note that the concept of PWPI should be interpreted as

a combination of several essential global evaluation metrics

rather than an aggregated metric. One important component

of PWPI is the total cost, the components of which are listed

below separately.

PWPI =











Overall product quality

Total yield of the final products

Total cost

· · ·











Total cost =





















Total energy consumption

Total raw material consumption

Equipment and depreciation expense

Total maintenance cost

Total labor cost

· · ·





















The task is to analyze how well the plant-wide system is

responding to the dynamic practical demands and dealing with

numerous constraints. It will be shown in this paper that the

construction of an evaluation and assessment (E&A) network

constitutes a key to PWPI estimation.

b) Plant-wide fault diagnosis and prognosis: The tasks in-

clude the detection, localization, identification, and prognosis

of faults with special focuses on hierarchical, distributed, de-

centralized, and networked system configurations.
� Fault detection: To answer the question of whether or

not the system is operating in a healthy status [21].
� Fault localization: To determine the subsystems, the

devices, and the components where faults occur; To

determine the source (the origin) that induces other

faults [22].
� Fault analysis: To provide more in-depth information

after fault detection; To examine the reason and the root

cause that lead to the faults, and the impacts through

propagation [23]; To determine on which level should

fault tolerance and maintenance be carried out [24].
� Fault prognosis: To infer the failure of the machines/

the malfunction in the process online, and predict them

before actually taking place [25].

In addition to the above tasks, it remains unsolved how

to gather contextual (only the required and the transmissible)

real-time data and operation status information from different

functional units; how to determine the degree of emergency of

different faults; and how to distinguish faults from malicious

external attacks.

c) Plant-wide performance optimization with maintenance:

Conventionally, optimization, and maintenance are usually

classified as system synthesis tasks rather than analysis

tasks [2]. In the plant-wide performance supervised design

problem, they are too intertwined to be separately studied.
� Fault tolerance: To suppress the fault-induced influences

temporarily, by taking actions to retain the overall stabil-

ity and key performances [5].
� System recovery: To carry out maintenance procedures

to eliminate hardware failures and process malfunctions

for healthy status with long-term reliability [22].
� Optimization: In terms of a specific period of time, to

achieve predictive scheduling that improves the overall

adaptiveness to the dynamic external factors and PWPI

by adjusting the organization of the functional units [2].

From the perspective of system analysis, nominal PWPI can

be derived when the nominal local performance indices are

defined and the scheduling rules of the available resources are

specified. In contrast, plant-wide optimization is a completely

reverse process [2]. According to the upper-level commands,

the scheduling unit determines nominal PWPI, denoted by

Qpw(k). From the top-down, an “allocator” fi(·) is determined

such that Qi(k) = fi(Qpw(k)) where Qi(k) denotes the unit

operational indices of subsystem i from time k till the next

update. Furthermore, the set-points in each subsystem are

determined according to Qi(k). In the multi-level structure,

the procedure is repeated by analogy. It should be noted that

in practical applications, the design of fi(·) is subject to the

feasibility and equilibrium requirements, as well as the nu-

merous constraints from the subordinate units.

In large-scale industrial enterprises, the operation core con-

ducts most of the activities that are directly related to pro-

duction [2]. It is composed of the largest scale of production-

related physical entities, and there normally exists redundant

productive power applicable to a wide range of production

demands, e.g., machines with functionalities that are mutually

replaceable. According to certain grouping criteria, key per-

formance indicator (KPI) management systems are designed

corresponding to each group, and on this basis, they are as-

signed temporal goals.

For those production tasks involving evident sequential and

temporal dependences, such as the sub-processes on the same

production line, the successful operation relies on the simulta-

neous functioning of different units, which are respectively re-

sponsible for unique tasks. Each unit has time-sensitive goals

to achieve, typically characterized by the desired outputs. If a

unit fails to fulfill certain goals, its downstream sub-processes

will be affected. In the worst case, the influence will propagate

in a chain reaction and lead to cascading effects causing per-

formance degradation of the overall process. By mathematical

formulation, a fault in Unit i will affect the performance indi-

cator of Unit i as well as the downstream of Unit i:

�Qpw = f (�Qi, {�Q j | j ∈ Di})

where �Qpw denotes PWPI degradation, �Qi and �Q j re-

spectively denote the performance indicator degradation of
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FIGURE 1. Descriptors of process performance.

Unit i and j. Di is the set of all downstream nodes of Unit

i. It should be noted that some faults will stop propagation

due to the protection mechanisms of the devices/units [26].

III. PERFORMANCE EVALUATION INDICES

Before reviewing the recent progress in the approaches for

performance evaluation, the descriptors that quantify the per-

formance of the industrial systems are summarized. As shown

in Fig. 1, key performance indicator (KPI), remaining useful

life (RUL), overall equipment effectiveness (OEE) and control

performance indicator (CPI) constitute the main evaluators,

oriented to different aspects of the overall system.

A. KEY PERFORMANCE INDICATOR NETWORK

Key performance indicator (KPI) is an extensively used ter-

minology by the human resources sector to evaluates the

performance of staff [27]. This concept is introduced to the

industrial monitoring and management field to characterize

the variables that play dominant roles in the overall production

process. For practical applications, KPIs need to be designed

to reflect the operational status of the core functional units,

and based on this, to reveal and forecast the variations in

the multi-dimensional performance requirements, such as the

economic expectations and the health status of the life cy-

cle management (LCM). However, most of the related liter-

ature assume the existence of well-designed KPIs, their focus

being mostly on proposing KPI prediction approaches and

KPI-oriented process monitoring schemes [28]. Furthermore,

compared with the conventional monitoring tasks, the concept

of the KPI-oriented process monitoring does not have a long

history [29]. Based on these considerations, how to design the

KPIs appropriately in large-scale distributed and hierarchical

systems and to make full use of the potentials of KPIs requires

more attention in future research [23].

There are three major issues to be emphasized to exploit the

greater potential of KPI-oriented plant-wide process monitor-

ing. First, the concept of “KPI network” is introduced to the

hierarchical system structure [24]. KPIs are designed at each

level to quantify the behaviors of the production processes

while having dependency with the upstream, the downstream,

and the parallel KPIs. On top of the physical connections,

the communication networks, and the control networks, the

KPI network constitutes an essential auxiliary structure, es-

tablished in the virtual space for the networked monitoring

systems. With the KPI network, fault localization and tracing

become more straightforward, and it lays the necessary foun-

dations for KPI-oriented plant-wide optimization.

Second, although KPIs can be calculated based on practical

production data, how to specify desired values in the control

tasks is still subjective. This drawback can be eased with

the correlations embedded in the KPI network. Nevertheless,

the monitoring system designers and analysts need to bear in

mind that the KPI network may NOT contain all information

required for fault diagnosis due to the inevitably unmodeled

factors: some expert knowledge is too complicated to be

quantified while some other dominant factors are unnoticed

and therefore omitted. This leads to an asymmetrical network

configuration for the bottom-up integration and the top-down

allocation/tracing tasks. On the other hand, when specifying

the desired KPIs, which involves dynamic adjustments ac-

cording to multiple time scale (short-term/long-term) plan-

ning and strategic arrangement, boundary conditions such as

the maximum input-output ratio, available productive forces,

inventory, and even the external impacts must be taken into

consideration.

Third, network topology changes induced by the structural

reform do not necessarily indicate redesigning the KPI net-

work starting from scratch, especially when the variations

are simple (e.g., addition, subtraction, or reorganization of

parallel/replaceable functional units) or sequentially separable

(e.g., incorporating adjacent links in the industrial chain).

Dynamic KPI network configuration is also applicable for

temporarily Adhoc scheduling purposes. Furthermore, for dy-

namic processes, it is favorable to switch the KPI network

configurations at different LCM stages to incline to the current

goals.

B. REMAINING USEFUL LIFE

Remaining useful life (RUL) is another evaluation index that

attracts extensive research interests in the modern industry.

As one of the central tasks of the prognostic and health man-

agement (PHM) system, existing RUL prediction approaches

are mainly based on the expert knowledge and mechanism

models established with the aid of colossal amounts of his-

torical data [30], [31]. The prediction results will be fur-

ther used to adjust the maintenance schedule and be used

for the recovery of performance degradation. Compared with

other performance indices, RUL prediction is designed to be

reliable-critical, to reflect the worst-case, and to generate the

deterioration trajectories along time, which are supposed to be

monotonically decreasing.

Unlike KPI that can be calculated based on the data from

the current or a past period of time, RUL is future-oriented,

and the prediction values may deviate from the true situations

due to complicated reasons. Both the accessibility of the train-

ing data and the degradation model to be adopted have much

impact on the credibility of the prediction results.
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FIGURE 2. Obtaining RUL predictions: how to be more reliable.

Fig. 2 illustrates the general design procedures for predict-

ing the RUL. In the scenarios where historical degradation

data are unavailable, accelerated aging tests (or accelerated

failure tests) are designed to compress the degradation process

to an acceptable time-scale in the form of repeatable and

consumable experiments to duplicate the practical evolution

processes. During the tests, characteristic variables, such as

those listed in Fig. 2 are monitored. They are recorded to

construct databases that cover multiple operation modes and

failure modes. With the informative database, various types of

(mixture) prediction models can be constructed. To improve

accuracy, it is favorable to develop context-aware approaches

that take into consideration the working conditions to suppress

the influences of external factors.

C. OVERALL EQUIPMENT EFFECTIVENESS

In the fields of the manufacturing industry and some process

industry, overall equipment effectiveness (OEE) is a popular

evaluator. It synthesizes the factors that cause productivity

loss in three major aspects: availability, efficiency, and quality.

Availability characterizes the time utilization ratio, i.e.,

the operation time/shutdown time of the production line,

which could be affected by both the scheduling performance

(planned downtime) and the process faults (unplanned down-

time). To reduce the planned downtime, dynamic/real-time

optimal scheduling approaches that are robust to constraint

variations, internal failures, and external changes are needed.

To reduce the unplanned downtime, small-delay fault diagno-

sis systems and intelligent decision modules that can achieve

prompt failure recovery maintenance strategies are needed.

Efficiency is also called performance or capacity utilization

ratio (as in Wikipedia). It measures the relative speed the

machinery is running at with respect to the full speed or the

rated maximum power. In industrial practice, high efficiency

is achieved by reducing the idling time and setting high oper-

ation speed. However, such high demand will lead to serious

depreciation and a decline in the yield rate.

The third factor, quality, characterizes how well the prod-

ucts meet the standards. For most applications, quality indica-

tors are generally not calculated online but calculated when

a batch of production outcomes are available or when the

final products are fully analyzed. This will introduce much

delay before the performance is degraded to an unacceptable

degree, during which time the system is still operating and

generating products with major defects. As a result, how to

reliably predict the quality of final products has become a hot

research topic in recent years.

D. CONTROL PERFORMANCE INDICATORS

In the control layer, control performance assessment has dis-

tinct means and standards [32]–[36]. The process variance

(output variance) index and user-specified performance spec-

ifications can be adopted for control loop performance eval-

uation. Some key factors to characterize the coherence of

control performance include pole location, upper bound of

the variable variances/covariances, peak amplitude, entropy,

and the stability margin (maximum amplification effect) of

the system [37]–[39]. In the well-developed theory of opti-

mal control, the optimity of several simple types of system

(such as linear time-invariant system, affine nonlinear sys-

tem, and double integral system) has been solved, in which

the constraints (boundary conditions) are addressed in the

cost function to deal with the problems of time/control in-

put/energy consumption minimization [40]. As special KPIs

in the control layer, they are referred to as control performance

indicators (CPIs). It should be noted that it is more favorable

to carry out evaluations based only on the routine operating

data rather than performing additional tests on the system.

From a frequency domain perspective, power spectra analysis

can be employed to reveal periodical characteristics for energy

systems such as smart grids. Compared with time-domain

indicators, it is easier to deal with data defects and network

induced time delay [25], [37].

IV. PERFORMANCE EVALUATION APPROACHES

A. KPI PREDICTION APPROACHES

Conventional KPI prediction schemes are dedicated to re-

vealing the dependency between process measurements and

KPIs [41]. This requires plenty of underlying mechanisms and

expert knowledge as the fundamental to derive the quantita-

tive equations. However, the modeling processes are hardly

achievable for large-scale complex systems and therefore

sometimes unsuitable for plant-wide monitoring tasks.

In recent years, approaches based on multivariate statistical

analysis (MVA) have gained more popularity for plant-wide

system monitoring due to their capability to make use of the

correlation among process variables [42]. It should be noted

that for the prediction problem, correlation analysis does not

need a rigorous reasoning process and an interpretation of

the internal principles. The construction of the correlation

relationship is straightforward, as long as proper training data

are available. A comprehensive review is presented in [25]. In

parallel, there is also an emerging trend towards KPI predic-

tion based on learning techniques [28], [43], [44].

In another aspect, data-induced challenges are being solved

with newly proposed approaches. In terms of compromised

data quality, abnormal sensor readouts identified as outliers
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are dealt with in [45], and contaminated measurements are

cleaned in [46] and [47], Regarding data availability, packet

loss and multiple sampling rates related issues have been

taken into consideration [45], [48]. In addition, research to-

wards reducing data safety risks such as malicious false data

injection attack is in progress [49].

In a plant-wide system, “the curse of dimensionality” be-

comes evident due to the boosting amounts of data [50]. In

this context, variable selection, feature extraction, and fea-

ture elimination (dimensionality reduction) play an important

role. They have been studied extensively over the past few

decades [51]–[53]. Fruitful results have been reported with

successful applications to almost all domains of natural sci-

ence and social science such as disease diagnosis, business

analysis, and market forecasting, etc. With the support of

transdisciplinary collaboration, many of the approaches can

be redesigned to be applicable for engineering purposes. For

instance, as a part of the plant-wide monitoring tasks, digital

signal processing, image processing, and data mining gener-

ally involve preprocessing procedures to obtain structured and

pre-filtered databases with carefully selected variables [54].

Apart from the variables directly defined based on measurable

physical quantities, abstract features are also constructed with

machine learning techniques and multivariate analysis to char-

acterize dominant properties of systems or processes [55]–

[58]. The interested readers are recommended to explore more

in the review article [50] and the references therein.

B. RUL ESTIMATION APPROACHES

Regarding the availability of degradation data, the main

sources for large-scale processes include historical databases

and event logs while the device level and component level

data are mostly generated in the laboratories dedicated to

the construction of aging models. To mitigate the problem of

insufficient performance degradation data, further research ef-

forts are required towards four strategies: (i) accelerated aging

test [59], (ii) hardware-in-the-loop (HITL) simulation [60],

(iii) semi-supervised online learning [60], and (iv) developing

digital twins tools [61]. Generally speaking, the former two

strategies need destructive tests while the latter two tend to be

non-destructive.

Regarding model construction, there are various types of

models proposed to characterize the performance degradation

processes. For instance, first principle-based (Coffin-Manson

model [62]), learning-based (deep neural network [63], sparse

auto-encoder [64], extreme learning machine (ELM) [65]),

algebraic equation-based (linear regression with con-

straints [66]), differential equation-based (Kalman filter [67]),

statistical hypothesis based (Gaussian process [68], Wiener

process [69], particle filtering [70]), signal processing based

([71], [72]), etc. As for model selection, a degradation

model is appropriate only if the type and characteristics

of the system/process are taken into careful consideration,

for instance, the system dynamics, nonlinearity, parameter

variation, etc. Besides, the availability of the training data and

the potential identification methods should also be considered.

At the last stage of design (Refer to Fig. 2), most of the

existing performance degradation-based approaches define

RUL as the length of time before the performance curve hits

a threshold [73]. The determination of the threshold has a

significant impact on the estimation result, especially when

the performance decline rate is low. Common solutions to

threshold selection/calculation can be summarized in three

categories: (i) expert knowledge-based (e.g., [64], [70], [74]),

(ii) statistical hypothesis-based ([69], [75]), and (iii) experi-

mental/manual setting ([76]–[78]). Alternatively, based on the

concept of the health/degradation state, RUL can be defined

as the expected time before maximum separability between

different states is found [77]. It is interesting to find that

following this definition, RUL estimation can be analogized

as the LCM of the health index signals. The design tasks in-

clude identifying finite health/degradation states, calculating

the probability mass function of the health states, as well as

constructing the maximum likelihood state estimator and RUL

predictor.

Apart from algorithmic innovations for general applica-

tions, a large proportion of research outcomes also focuses

on the RUL prediction of specific components or devices, for

instance, power transformers and transducers [71], [75], [79];

supercapacitors [78], [80]; transistors (MOSFET, IGBT) and

diodes [62], [70], [81]; bearings [66], [67], etc. Other previous

review can be found in [82], [83], [60], [84], [77] and the

references therein. Furthermore, the definitions of the related

terminologies and the role of RUL in the prognosis and health

management framework can be learned from [85].

C. CALCULATION OF OEE AND CPI

As widely adopted, OEE is calculated by Availability ×

E f f iciency × Quality. The evaluation of OEE is rather

straightforward because the calculation is heavily dependent

on how the three-tuple (availability, efficiency, quality) is

quantified, and is more related to the definition of how close

a device is operating compared with the full potential (the

nominal specifications).

As for the evaluation of the CPIs, there have been fruit-

ful traditional techniques for the offline analysis, many of

which have been extensively studied and included in the text-

books [86], such as the root locus technique in the time do-

main analysis, and the frequency response techniques, e.g., the

Bode plot and the Nyquist plot. Nevertheless, it is practically

demanded to design online evaluation approaches, especially

those oriented to the quantification of the robustness of the

closed-loop systems.

In the past decade, both model-based and data-driven ap-

proaches have been studied. In [39], a multi-objective con-

strained close-loop control assessment approach was pro-

posed for a user-specified benchmark. Constraints are for-

mulated as linear matrix inequalities (LMIs), and the multi-

objective optimization problem is converted to the concave

minimization problem subject to the corresponding LMI con-

straints, which is solved by a cone complementarity lineariza-

tion algorithm. Based only on streams of process data and
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without the need for the plant model, a fuzzy performance

index is defined to assess the control loop performance in [37].

The core idea is to calculate the coherence degree between the

signals with the aid of the operation state classification. More

recently, a data-driven computation approach of the gap metric

and the optimal stability margin is proposed in [38]. The

gap metric characterizes the distance between the subspaces

in the Hilbert space, and the stability margin characterizes

the maximum tolerable uncertainty of a closed-loop system

before unstable.

V. PLANT-WIDE PERFORMANCE ORIENTED FAULT

DIAGNOSIS

A. REMARK ON THE CONCEPTS

Since performance-oriented fault diagnosis is only half step

away from performance optimization, some concepts have to

be clarified first, before diving into discussions about con-

crete ideas and solutions. Specifically, at the top-level of the

plant-wide system, the difference between strategic decision-

making and performance optimization is clarified.

A good decision requires visionary planning. This means

that the decision-makers must base on the full understanding

of the current situation and the future trend from a global per-

spective, and need to coordinate the power in the plant-wide

system with a trade-off between the contradictory factors in an

indeterministic situation. Sustainable development outweighs

stage optimality. For this purpose, good risk control, adaptiv-

ity, and robust capital chain are considered on top of achieving

maximized profits.

By contrast, an optimal performance indicates that the key

factors have been addressed well in terms of the specific op-

erational condition and the specific working context that have

already or will have taken place. In this sense, it is evaluated

based on the deterministic facts of the current or a past period

of time. Its target lies in completing specific tasks, whose

results can be expected, and meeting the highest expectations.

Nevertheless, when a top-level decision has been made, plant-

wide optimization can be pursued.

B. EXISTING APPROACHES

Despite that the research towards performance supervised

plant-wide process monitoring is still in the infancy stage,

performance-oriented fault detection and plant-wide monitor-

ing in the general sense have received plenty of efforts in

recent years. This part investigates the recent progress from

several aspects.

In terms of the division of a large-scale system, multiblock

MVA based approaches were proposed in [16], [17], [26],

[87], most of which fall in the distributed modeling framework

proposed in [11] or the data-driven distributed monitoring

framework proposed in [12]. Facing the challenging task, the

plant-wide process decomposition procedure in these works

still requires a priori knowledge and might remain a bit ar-

bitrary. All testified on the Tennessee Eastman process, the

work [11] relied on the process knowledge and constructed

3 sub-blocks; the work [26] referred to the information reso-

lution capability of principal components and constructed 15

sub-blocks; the solution in [16] was based on the functional

unit and constructed 4 sub-blocks while a different set of 4

sub-blocks was adopted in [17].

In terms of local monitoring, the fault detection task has

been well addressed. Multiblock principal component analy-

sis (PCA), multiblock partial least squares (PLS), hierarchi-

cal PCA/PLS, localized Fisher discriminant analysis, as well

as many other generalized MVA models and their nonlinear

extensions (e.g., based on the kernel technique) provide great

foundations for the distributed or the decentralized implemen-

tation of the local detectors [88].

Regarding fault localization, a successful application can

be found in [17]. The indicators of faulty sub-block and

faulty variable were derived based on the alarm counts and

reconstruction-based contribution for rough localization and

precise localization, respectively [89]. For root cause analysis,

authors in [23] proposed a tensor subspace analysis-based

discriminant analysis approach in case of multiple faults. As

for the approaches where each sub-block contains partial in-

formation of the complete set of process variables, such as

in [26], common responsible variables can be regarded as the

suspects of the root cause of faults.

Oriented to the plant-wide performance, the recent progress

in the fault diagnosis and prognosis approaches was illustrated

in [25] with an open-source Matlab toolbox. Recently, the

authors of [23] proposed to use a modified canonical variable

analysis (CVA) approach that can distinguish KPI-related and

unrelated subspaces at both the plant-wide level and the sub-

process level. For better reliability, how to combine/synthesis

parallel algorithms with available process knowledge was

studied in [36]. An attempt was made for control performance

diagnosis with discrete monitoring outputs using Bayesian

inference. From the communication point of view, some per-

spectives on the integration of the data-driven and event-

driven processes were presented in [90], which addresses the

challenges in deployments.

In a plant-wide system, while many of the subunits can

be regarded as operating under static conditions, this is not

often the case at the lower control loop level. For instance,

batch processes are composed of at least two operation

phases and the transient phase does not satisfy the stationary

assumptions, i.e., the mean values of the variables and the

variances are not constants. For customer-oriented production

lines, the set-points of closed-loop control systems change

according to the specific requirements (various expected

values). Moreover, there are circumstances when the variation

of the working condition cannot be neglected, for instance,

the temperature changes due to seasonal changes. There is

an urgent need to deal with the strong dynamics as well as

the operating mode-dependent and non-stationary processes,

especially in the plant-wide systems where multiple of the

above-mentioned scenarios can simultaneously take place.

If the complete system dynamics are known, a scalable

plug-and-play (PnP) approach to distributed fault detection is
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FIGURE 3. Distributed performance supervised plant-wide monitoring system: From the CPSS perspective.

available for interconnected large-scale systems [91]. In [92],

sparse cointegration analysis was adopted to distinguish the

static and dynamic equilibrium relations in the closed-loop

configuration. In addition to the static equilibrium errors,

it was proposed to simultaneously monitor the temporal

equilibrium errors, enabling the MVA based approach to

make use of the process dynamics.

In the next subsection, more discussions about the dis-

tributed implementation of the monitoring systems and the

overall decision-making mechanisms based on local informa-

tion fusion are presented.

C. DISTRIBUTED IMPLEMENTATION

1) DISTRIBUTED MONITORING CENTERS

A distributed system can be modeled by a set of fully-

interconnected subsystems or interaction-oriented subsys-

tems [93]. As for the former representation, the dynamics and

outputs of the subsystems are driven by their states, the control

inputs, and the external states. For the latter representation, the

subsystem dynamics is driven by its states, the control inputs,

and the received information from the neighbor nodes. Gener-

ally, the received information is denoted by the weighted sum

of all the sent information from the other subsystems.

Assume that the plant-wide process is composed of a group

of subsystems. Each subsystem is correlated to the neighbor-

ing subsystems through the cross-states and the communica-

tion channels. Meanwhile, there are several geographically

distributed monitoring centers constructed, jointly responsible

for the plant-wide monitoring task. As shown in Fig. 3, the

subsystems are represented with nodes in the network, and

the corresponding process information is sent to one adja-

cent monitoring center for local fault diagnosis and fault lo-

calization. The distributed implementation of the plant-wide

monitoring system task is to develop local monitoring sys-

tems sensitive to plant-wide performance degradation at each

monitoring center, using only the local process data and the

communication information with the adjacent nodes. The in-

terested readers are referred to [93].

Each distributed monitoring center plays several roles:

i) Master node: From the perspective of hierarchical man-

agement, each monitoring center is a master node. By

contrast, the subunits within the jurisdiction can be re-

garded as slave nodes which are liable to the monitoring

center and upload the status and data only to the corre-

sponding master node. In another aspect, the local mon-

itoring center is responsible for revealing plant-wide

performance degradation and potential faults, through

communication with other master nodes in the network.

ii) Datacenter: To collect, store, and dispatch the process

data in charge. The data center also maintains a local

historical database.

iii) Computing center: To perform large-scale neural/matrix

computations online in real-time to serve the local fault

diagnosis systems and process other computation re-

lated requests.

iv) Problem solver: At both the software and hardware lev-

els, to identify the sources that cause major performance

degradation and isolate the faults. After the failure re-

covery procedures, a re-evaluation will be carried out.

v) Resource allocator: Having gathered all the real-time

operation status information, the local monitoring cen-

ter aids to schedule the sub-process and the devices in

terms of vacancy, health status, efficiency, etc.

2) FUSION OF RESULTS FROM THE NODES

In this part, the extensively studied fusion approaches are

reviewed.

i) Weighed statistics based fusion strategy: The underlying

idea was originally used in the locality learning problems and

the nonlinear approximation problems [94], [95]. The weight

is determined by a metric, characterizing how far an obser-

vation deviates from the local data origin, i.e., the distance

between data [38], [96]. However, in the fusion task of the

distributed implemented test statistics, it should be noted that

there is a major difference: each node has its own dynamics

and specifications. Recall that the weights should reflect the
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contribution of each node to the overall system, in the fusion

problem, a metric can be adopted only if it characterizes the

degree to which each subsystem deviates from the normal

working condition. In other words, the distances between the

nominal systems and the actual systems should be quantified

and measured online. Following this, the fused evaluation

index and the fused threshold can be respectively defined as

the weighted sums of the local evaluation indices and the

local thresholds, where the weights are defined as the distance

metric.

ii) Probability theory-based fusion strategy: Assume that

the local null hypothesis denotes the degradation-free or fault-

free condition at each node, and the local alternative hypoth-

esis indicates performance degradation or faulty condition at

each node. On this basis, the total null hypothesis is defined as

the simultaneous satisfaction of all the local null hypothesis,

and the total alternative hypothesis is the opposite hypothesis

of such.

Considering that the nodes are not mutually independent,

the probability of accepting the total null hypothesis under the

condition that all the observations happen cannot be directly

calculated by the multiplication of the local probabilities. To

deal with this, the core idea is to use the Bayesian formula

and the total probability formula to solve for the posterior

probability by using the priori probability. The unconditioned

probabilities of whether a fault occurs or not can be assigned

a preset confidence level and the corresponding significance

level, respectively. The calculation of the priori probability

can be referred to [11] and [92].

iii) Voting based fusion strategy: Similar to the organiza-

tional decision-making schemes, each local center is assigned

a binary “YES/NO” vote. From the plant-wide perspective,

the degree of trust of each node, which is usually a pre-defined

function of the local historical false alarm rate and the lo-

cal missing detection rate, plays a significant role in such a

strategy.

VI. ROADMAP FOR PLANT-WIDE MONITORING IN THE

INDUSTRY 4.0 ERA

A. ALTERNATIVE RESEARCH ROUTE

The existing literature describes efforts mainly in decompos-

ing the plant-wide process into smaller-scale ones. In nature,

these approaches are dedicated to degenerating the plant-wide

problem into a local monitoring problem. As shown in Fig. 4

(a), this technical route mainly involves answering three ques-

tions: (i) how to automatically group the set of all available

process variables collected from the plant-wide system into

sub-blocks based on abstract features [26]; (ii) how to design

local monitoring systems; and (iii) how to combine local re-

sults for global decision-making [11]. Nevertheless, additional

efforts are needed for explicitly tracking and localizing the

faults (inversely from global to local). In today’s engineer-

ing practice, almost all fault diagnosis systems are designed

locally inside some functional units without considering the

interactions between the units. Generally, they treat external

FIGURE 4. Comparison of two technical routes.

factors as unmodeled uncertainties or disturbances. In a recent

article [91], approaches have been proposed dedicated to a

better use of the information about these interactions.

This paper emphasizes that the design of the plant-wide

monitoring system needs to take into consideration the exist-

ing organizational structure, the operating mode, the strategies

and aims of the plant-wide system, and even the human and

social factors. These objective facts also need to be treated as

design inputs as a part of system knowledge. Otherwise, the

difficulties in interpreting the fault mechanisms will be hardly

surmountable. It should be noted that a plant-wide process

does not necessarily indicate a fully automated process. This

is a common misunderstanding or illusion of thinking regard-

ing plant-wide performance supervised design. With human

operators involved in the interval of sub-processes, some nec-

essary information and data during the consecutive operation

are intercepted. In this context, while some operations can be

evaluated with quantified standards, the others can be only

supervised using obscure indices.

An alternative more straightforward research route for

plant-wide performance supervision and optimization shall

be in the cyber-physical-social system (CPSS) design frame-

work (refer to Fig. 3). The design technical route for per-

formance supervised plant-wide monitoring mainly includes

two parts: performance evaluation system construction, and

performance-oriented fault diagnosis approach development,

as shown in Fig. 4 (b).

In the conventional sense, the target of the fault diagnosis

systems is to accurately trigger alarms in case any malfunc-

tion happens. The “accuracy” here can be interpreted as an

optimal fault detection rate with effectively suppressed false

alarms. In other words, the target is to report the fact of the

existence of malfunctions as well as the underlying reasons

accurately. However, it remains unanswered how urgent it is

to fix it, and what degrees of fault-tolerance, maintenance,

and fault recovery are needed. Further analyses are necessary

to evaluate the impact of the detected fault on the overall

performance. Specifically, performance degradation of all re-

lated subsystems needs to be estimated with the aid of fault

propagation analysis, which is a quite challenging task. What

we intend to emphasize is that the design paradigm of separat-

ing the fault detection process and the fault analysis process

may lead to unnecessary workload to the design of plant-wide
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performance supervised process monitoring system. Thereby,

the more straightforward strategy for plant-wide process mon-

itoring is to design fault diagnosis systems that only trigger

alarms when the PWPI has deteriorated.

In simple scenarios, the direct relationship between the

PWPI and the operation status of each subsystem (via the

KPI network) can be established. Performance supervised

analysis and optimization of PWPI can be performed, using

either deductive or reasoning methods. No extra analysis is

needed. However, this is sometimes hardly achievable due to

the complexity of the fault propagation mechanism, induced

by the interconnected subsystems. A reasonable relaxation

of “establishing a direct relationship” lies in designing fault

diagnosis systems with the aid of the calculated PWPI so that

they trigger alarms only when the faults have a high likelihood

to result in severe degradation in PWPI, rather than conven-

tionally trigger alarms whenever a fault is detected regardless

of its amplitude and impact to the other parts of the plants.

Playing an essential role in the next generation smart fac-

tory, plant-wide process monitoring helps to elevate the op-

erational transparency and therefore lays great foundations

in forming a close-loop with the decision-making and the

optimization of industrial processes. However, in terms of the

emerging large-scale processes that are composed of plenty

of production lines, devices, and tens of thousands of compo-

nents, it is neither possible nor economical to maintain every

single item and fix all the malfunctions in time—this greatly

weakens the value of the obtained results. In this sense, perfor-

mance supervised plant-wide process monitoring can reveal

the degradation in the dominant factors that are directly linked

to the high-level scheduling and decision-making tasks, and

beyond this, will contribute to the integration of the upstream

and the downstream industry chains and value chains, even

promoting new services. In the existing roadmap article [97],

study towards the real-time monitoring of PWPI is listed as

the top recommendation to enable the next generation of the

manufacturing industry.

B. FUTURE VISION AND RESEARCH DIRECTIONS

Technology advancement is the enabler of novel products and

services. What drive the inevitable evolution are the added

values and the benefits brought to the customers (the market).

The following part presents what to expect in the next decade

powered by the proposed research route, and on this basis,

suggests the necessary key technologies towards such a future

from a multidisciplinary view.

Fig. 5 shows the milestone technologies to achieve for the

transformation from the traditional process monitoring prac-

tice to the performance supervised plant-wide monitoring.

Today, the industry is rapidly adopting them, and the internal

processes and the whole value chain are being reshaped [98].

In the dimension of platform and infrastructure, core aspects

include the construction of information containers, distributed

monitoring networks, protocols and standards, as well as the

realization of the digital twins of the plants and services. In

the dimension of algorithmic improvement, the fuel to drive

FIGURE 5. Roadmap to performance supervised plant-wide monitoring.

the E&A network lies in semantic perception (soft sensing

& contextual data learning). The functioning of the critical

safety and security infrastructure in an autonomous manner

is achieved by automatic configuration/inspection of the PnP

devices and the online analysis and prognosis of the impact

caused by internal faults or external attacks. Meanwhile, the

development of digital twin (DT) based services such as full

life-cycle tracking will act as an indispensable part of the

novel paradigm due to the benefits for system transparency

and accessibility from a global perspective. The top-priority

research directions and open questions are summarized in

Fig. 6. They will be explained in detail in the following sub-

sections.

1) FULL-SCALE OPERATIONAL AND MAINTENANCE

TRANSPARENCY SUPPORTED BY THE EVALUATION &

ASSESSMENT NETWORK

In the conventional monitoring schemes for large-scale sys-

tems with hierarchical structures, cross-level information is

usually intentionally ignored and left out from the information

flow due to a lack of formal message broadcasting mecha-

nisms. By constructing the E&A network, it provides a novel

topology for transparent information flow of the performance

degradations and other relevant data. For the high-level su-

pervisors, this is a key to promptly localize the problem-

atic subsystem after a malfunction is detected. Assessment

is meaningful because it helps to monitor the reliability and

trustworthiness of the sub-processes that the corresponding

human participants are in charge of. In this sense, the most

relevant “social” factor (i.e., the first S in CPSS) can be effec-

tively included in the online close-loop.

In the physical space, the properly-structured infrastruc-

ture set constitutes a dedicated transmission network for the

heterogeneous data generated by different devices and estab-

lishes an efficient transmission route across the levels. In the

unified framework, the synchronization techniques can play a

better role in dealing with the inconsistent time-delays, and

the data association techniques can better help to generate
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FIGURE 6. Summary of top-priority research directions and open questions.

semantic data. As a result, this will facilitate the control and

management center to give time-sensitive instructions.

2) ACTIVE COMPENSATION OF THE SAFETY DEFECTS

INDUCED BY THE SECURITY BREACHES

The openness of the system is one of the key factors to exploit

the best potentials of ICPS. In addition to an increase in the

plug-and-play devices deployed at the production end, there is

an emerging trend in enhancing the connectivity between the

production-end and the business end. As a result, physically-

isolated industrial control networks become exposed to exter-

nal attacks. Once the security line of defense falls, the safety

of the production sites will be straightforwardly threatened.

Despite that the security issues of the networked systems

have raised extensive attention in the post-Snowden age,

plenty of the existing industrial processes was not initially

designed with such consideration, which provides possibilities

for the malicious attackers to make use of the defects to carry

out illegal activities such as eavesdropping and launching in-

tegrity attacks. Compared with IT attacks, the cyber-physical

attacks to the process control systems cause physical dam-

ages. Several world-shocking events have taken place, such

as the infamous Stuxnet virus and the intrusion events of

the German steel mill, the Ukraine power grid, and the Iran

nuclear power plant [99], [100]. Having been aware of the

possibility of cyber-physical attacks, the performance super-

vised plant-wide monitoring system can reveal the source of

the security breaches and achieve timely isolation before the

whole process becomes uncontrollable.

3) DATA-DRIVEN AND KNOWLEDGE-BASED

ADAPTIVE DIAGNOSIS

In the condition of highly dynamic topology changes due to

the flexible connectivity and the openness of the system, the

plant-wide system has an evolving characteristic. Reconfigu-

ration and maintenance of the monitoring system itself will

become overloaded. To improve this, contextual data will be

used to adapt to the variations in the system configuration

and the external environment—the heterogeneous data can be

under unified management, and further, used to synchronize

the correspondences in the physical world and the virtual re-

dundancy. This is one of the main targets of the DT technique.

Compared with the traditional model-based adaptive compen-

sation approaches, data-driven techniques facilitate the adap-

tiveness in large-scale complex systems by constructing uni-

fied information containers.

To transform new expert knowledge into executable instruc-

tions/commands at the online stage is another favorable capa-

bility. As aforementioned, safety issues have become deeply

intertwined with cyber-security issues. When a new security

breach is identified, knowledge-based preventive monitoring

will be activated.

4) RESILIENT CONTROL AND FULL

LIFE-CYCLE MANAGEMENT

Performance supervised plant-wide process monitoring can

provide valuable information for the closed-loop control and

decision-making tasks. Resilient control refers to the control

strategy that aims to minimize the multi-dimensional perfor-

mance loss in case of unexpected events. It is straightforward

that the monitored indices from the E&A network can provide

comprehensive supports for the formulation of multi-objective

optimization problems. The high-level decision-makers will

have quantized information about the macroscopic control

performance and will get to know precisely the impact of the

unexpected events in advance.

From the perspective of life cycle management, the plant-

wide monitoring system acts as a basis to trigger major strate-

gic decisions and the switching of the control strategies, such

as to achieve an optimal trade-off between the safety margin

and the overall performance. Beyond monitoring the oper-

ating processes, it will be generalized to cover the full life

cycle of “design–manufacturing–assembly–commissioning–

operating–maintenance–decommissioning,” and even linked
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with the procurement and the marketing processes at the

business-end.

5) GROUND-UP COMPATIBILITY WITH THE

SECURITY DESIGN

From the algorithmic perspective, the plant-wide monitoring

system will be equipped with the capabilities of online attack

modeling, threat assessment, as well as defense mechanism

analysis (prognosis) [99]. From the implementation perspec-

tive, some compatible standards proposed in the Industry 4.0

pyramid can be adopted. For instance, OPC UA is an open

standard that specifies information exchange for industrial

communication needs [101]. OPC UA covers all the layers

from the bottom component level to the top plant-wide de-

cision level, including those in Fig. 3. It can be used across

platforms and applies to Internet/Ethernet-based CPSs. Fur-

thermore, the most attractive feature lies in its ground-up

security design that considers both the data trustworthiness

(in terms of confidentiality, integrity, and availability) and

access control (in terms of authentication, authorization, and

auditability) [102], [103]. This provides an intrinsic capability

to defend the external cyber-physical attacks such as the DoS

attack, replay attack, and false data injection attack.

6) AUXILIARY KEY TECHNOLOGIES

Apart from the aforementioned visions and directions that are

directly related to the monitoring tasks, which are the main

domain of study for the system and control experts, there

are also several key open questions in other disciplines (e.g.,

computer science and technology).

First, efforts are required to manage the real-time process

data and different types of internal and external information.

For this purpose, the implementation of the physical contain-

ers in a unified framework is an important foundation. The po-

tential containers include the cloud servers, the fog computing

nodes, and the dedicated databases for knowledge graph [97],

[104]. Authors in [105] highlighted the challenges related to

operational-log analysis. In terms of computing power, au-

thors in [106] discussed the new computing paradigm how the

interconnection between the cloud, fog, and edge computing

is expected, as well as some open questions in the communi-

cation layer.

Second, to better acquire real-time operation status, the

sensing and cognition abilities of the system are to be im-

proved with the machine vision techniques. Image or video-

based soft sensing has demonstrated great potentials to deal

with harsh working conditions beyond the applicable limit of

the traditional sensors [107]. These research will facilitate the

transformation from image to knowledge, and from knowl-

edge to executable adjustment of the monitoring units. Ac-

companied by this, intensive examination of the data sources

is required, especially for PnP devices such as webcams.

Before granting full access, the access point and the related

subsystems should run in the “sandbox mode”. The trust-

worthiness of the PnP device and the data integrity must be

inspected to ensure reliability regarding the interpretation of

the perception results.

Third, digital twin technology is essential as a multifaceted

replica that bridges the physical entities and the virtual space.

In terms of individual devices, by taking advantage of the

property of full life-cycle modeling, it is expected to achieve

an elevation in the prognosis performance in a multi-time-

scale manner [108]. Performance supervised monitoring is

optimized by integrating the (short-term) monitoring of sys-

tem dynamics and the (long-term) prediction of performance

degradation. In terms of plant-wide systems, simulation-based

deduction is a useful application based on the digital twin [61].

It is still an open question on how to fuse expert knowledge in

the decision-making process to determine the degree of emer-

gency and the required maintenance level. To approach this,

semantic recognition, construction of the knowledge graph,

and multi-threaded reasoning along the E&A network are

needed.

VII. CONCLUSION

This paper rethinks the technical route of performance su-

pervised plant-wide process monitoring. With more practi-

cal issues in large-scale industries taken into consideration,

especially to deal with the challenges introduced by the au-

tonomous units and the participation of humans, it is pro-

posed to develop new schemes in the CPSS design framework.

For this purpose, an alternative research route is proposed

where the construction of performance evaluation systems

and the development of performance-oriented fault diagno-

sis approaches play the central role. The roles of the per-

formance evaluation indices and the existing approaches to

calculate them are investigated in detail. On this basis, the

existing performance-oriented and plant-wide monitoring ap-

proaches are reviewed, and the current practice to deal with

the distributed implementation problem is summarized. Fur-

thermore, the future research directions and an outlook about

the future prospect are presented.
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